+ All Categories
Home > Documents > Zero Voltage

Zero Voltage

Date post: 04-Apr-2018
Category:
Upload: satyavanapalli3422
View: 229 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 7/30/2019 Zero Voltage

    1/31

    1

    Soft-Switching in DC-DC Converters:

    Principles, Practical Topologies,Design Techniques, Latest Developments

    Raja Ayyanar

    Arizona State University

    Ned Mohan

    University of Minnesota

    Eric Persson

    International Rectifier

    2002, N. Mohan, R. Ayyanar, E. Persson APEC 2002

    Some of the slides in this presentation are used for the course EE5741 Advanced Power Electronics given by Prof Robbins and Prof Mohan at the University of Minnesota

  • 7/30/2019 Zero Voltage

    2/31

    2

    Objectives What is soft-switching?

    Basic principles

    Concentration on a few

    popular topologies Design techniques

    Computer simulations New developments

  • 7/30/2019 Zero Voltage

    3/31

    4

    What is Soft-Switching

    Switching transitions occur under favorable

    conditions device voltage or current is zero

    Reduced switching losses, switch stress,

    possibly low EMI, easier thermal management

    A must for very high frequency operation,(also medium frequency at high power levels)

    Usually involves compromises in conduction loss,

    switch rating, passive components etc.

  • 7/30/2019 Zero Voltage

    4/31

    5

    Relationship Between Efficiency

    and Power Density

    0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    PowerRating

    20lossP W=

    10lossP W=

    Efficiency

    0 8. 0 84. 0 88. 0 92. 0 96.

    100

    200

    300

    400

    500

    0

    1

    out

    out loss

    out loss

    P

    P P

    P P

    =+

    =

  • 7/30/2019 Zero Voltage

    5/31

    6

    Hard-Switching

    iLiL +

    -

    +

    -Vd

    vT

    vdiodei IL o

    iT +

    -

    +

    -Vd

    vT

    vdiodei IL o

    iT

    +

    gatev

    Tv

    Ti

    lossP

    diodei

    diodev

    ( ) ( )on off sw s c cP f t t +

  • 7/30/2019 Zero Voltage

    6/31

    7

    n+

    p

    ndsC

    gdC

    drain-bodydepletion layer

    gsC

    pn

    +

    gatesource

    drain

    n+

    Cross-sectional view of an n-channel MOSFET

    MOSFET Characteristics

    Outputcharacteristics

    Transfercharacteristics

  • 7/30/2019 Zero Voltage

    7/31

    8

    MOSFET Characteristics

    inV

    GGV

    GR

    gdC

    gsC

    fDoI

    ( )D gsi f V=

    MOSFET model valid inactive and cutoff regions

    Variation of capacitances withds

    V

  • 7/30/2019 Zero Voltage

    8/31

    9Time

    0s 0.5us 1.0us 1.5us 2.0us 2.5us 3.0us 3.5us 4.0us

    V(M1:d)/4 ID(M1)*2 V(R2:2) V(V3:+)

    -10

    0

    10

    20 0

    V1

    50V

    80

    D2I3

    1A

    R2

    25.0

    M1

    IRF150

    R3

    1m

    L2

    40nH

    Simulation of Hard Switching Converters

    DSv

    gate

    input

    DiGSv

    Ideal diode

    IRF150

  • 7/30/2019 Zero Voltage

    9/31

    10

    Simulation of Hard Switching Converters

    Diode reverse recovery

    Time

    30.9500us 31.0000us 31.0500us 31.1000us30.9154us 31.1299us

    -I(R3) V(M1:1)/3 V(M1:2) I(I1)

    0

    20.0

    38.5

    Time

    32.95us 33.00us 33.05us 33.10us 33.15us 33.20us 33.25us 33.30us33.34us

    -I(R3) V(M1:1)/3 V(M1:2) I(I1)

    0

    20.0

    38.5

    V1

    100

    R2

    10

    M1

    MTB20N20E

    V4

    TD = 1u

    TF = 1nPW = 2uPER = {1/fs}

    V1 = 0

    TR = 1n

    V2 = 15

    PARAMETERS:

    fs = 100kR_LOAD = 1

    I15A

    MU

    R2020R

    D5

    MTB20N20E

    MUR2020R

    Time

    30.0us 30.4us 30.8us 31.2us 31.6us 32.0us 32.4us 32.8us 33.2us 33.6us 34.0us

    -I(R3) V(M1:1)/2 V(M1:2) I(I1)

    0

    20

    40

    -10

    55

    dsv

    gsv

    dsioI

    dsv

    oIgsvds

    i

    dsv

    dsi oI

    gsv

  • 7/30/2019 Zero Voltage

    10/31

    11

    Problems of Hard-Switching

    Possible Solutions (combination) Snubbers to reduce di/dt and dv/dt

    Circuit layout to reduce stray inductances

    Gate drive

    Soft switching to achieve ZVS and/or ZCS

    usually no change in losses (unless loss recovery)

    circuit layout

    turn on / off speeds

    Switching losses

    Device stress, thermal management

    EMI due to high di/dt and dv/dt

    Energy loss in stray L and C

  • 7/30/2019 Zero Voltage

    11/31

    12

    Snubbers

    Passive components (R, L, C) and a diode to shape

    switching trajectories

    Turn-on snubber (seldom used)

    i t

    V

    L tTd

    s( )=

    low di/dt lower turn-on losses in the device low reverse recovery current

    At turn-on

    Price to be paid at turn-off

    1/2 LI2 energy dissipated during off interval off interval > 2 to 3 times LS/RS time constant switch voltage rating increases by R

    S

    IO

    iT

    Ls Rs

    Io

    +

    -v

    T

    t

    Vd

    vT

    iT

    t0

    0

    iT

    Ls Rs

    Io

    +

    -v

    T

    t

    Vd

    vT

    iT

    t0

    0

  • 7/30/2019 Zero Voltage

    12/31

    13

    Turn-off Snubbers

    At turn-off

    while builds up

    switch turn-off loss decreases lower dv/dt

    i I iT o CSi DC S

    S

    = ( flows through )

    Issues at turn-on

    1/2 CV2

    energy dissipated in RS and switch switch current rating increases by

    ON interval > 2 to 3 times RSCS time constant

    vT

    Vd

    R S

    iT

    Io

    +

    -vT CS

    RS

    Vd

    DS

    iCSiT

    Io

    +

    -vT CS

    RS

    Vd

    DS

    iCS

    vT

    iT

    Io

    Vd

    0

    CS1CS2CS3

    0

    C C CS S S3 2 1> >

    CS = 0

    vT

    iT

    Io

    Vd

    0

    CS1CS2CS3

    0

    C C CS S S3 2 1> >

    CS = 0

  • 7/30/2019 Zero Voltage

    13/31

    14

    Soft-Switching

    ZVS (Zero Voltage Switching) ZCS (Zero Current Switching)

    Advantages

    - Lower losses (may be !)

    - Low EMI (may be !)- Allows high frequency operation

  • 7/30/2019 Zero Voltage

    14/31

    15

    ZVS (Zero Voltage Switching)

    Turn OFFTurn ON

    Switch voltage brought to zero

    before gate voltage is applied

    Ideal, zero-loss transition

    Low-loss transition

    Parallel capacitor as a

    loss-less snubber

    Preferred scheme for very high frequency

    applications using MOSFETs

  • 7/30/2019 Zero Voltage

    15/31

    16

    ZCS (Zero Current Switching)

    Best suited for converters with IGBTs due to

    tail current at turn-off

    Switch current brought to zero

    before gate voltage is removed

    Ideal, zero-loss transition

    Turn OFF

    Turn ON

    Low-loss transition Series inductor as a loss-less snubber

    Energy in junction capacitance is lost

  • 7/30/2019 Zero Voltage

    16/31

    17

    ZVS and Hard-Switched Waveforms

    Zero-voltage switched Hard-switched

    gate sourcev

    drain sourcev

    12V

    12V

    gate sourcev

    drain sourcev

    0V 0V

    12V

  • 7/30/2019 Zero Voltage

    17/31

    18

    An Example: Zero Voltage Transition (ZVT)

    At t =0 is turned off , T+

    ( )

    ( )

    0 0

    0-

    C

    dC

    v

    v V

    + =

    =

    - dC Cv v V+ + =

    dV

    +

    +

    oV

    T

    +

    T

    D+

    D

    L

    Li

    C+

    -C

    Ci +

    -Ci

    A

    Synchronous Buck Converter

    Li

    0

  • 7/30/2019 Zero Voltage

    18/31

    19

    - dC CSince v v V + + =

    0-

    C Cs s

    dv dvC C

    dt dt

    ++ =

    0-C Ci i+ + =

    0

    -

    C

    dC

    v

    v V

    + =

    =0

    dV

    - LC Clso, i - i i+ =

    2-

    L

    C C

    ii -i+ = =

    At the end of this charge/discharge interval,

    positive iL is carried by

    Subsequently, is turned on; iL mustreverse direction

    D

    T

    dV

    +

    +

    oV

    T+

    T

    D+

    D

    L

    Li

    sC+

    -sC

    Ci +

    -Ci

    A

    Zero Voltage Transition (ZVT)

  • 7/30/2019 Zero Voltage

    19/31

    20

    Zero Voltage Transition

    dV

    +

    +

    oV

    T+

    T

    D+

    D

    L

    Li

    sC

    +

    -sC

    Ci +

    -Ci

    A

    ConductingDevices

    0t 0t 0

    "t 1t 1

    t 2t 3t

    dV oV

    Li

    T+ T

    D

    None None

    D+ T+

    None

    t

    t

    ( )av t

    0

    0

    ( )Av t

  • 7/30/2019 Zero Voltage

    20/31

    21

    Time

    9us 10us 11us 12us 13us 14us 15us 16us 17us

    V(M2:d)/2 ID(M2)*2 V(M2:g) I(L1)*2 V(V8:+)

    -20

    -10

    0

    10

    20

    0

    L1

    20uH

    IC = 2A

    V1

    21V

    C21000uFIC = 10V

    M1

    IRF150

    M2

    IRF150V8

    TD = {TDLY2}

    V7

    TD = {TDLY1}

    R7

    25

    R8

    25

    PARAMETERS:

    PulseWidth = 4.5us

    Period = 10us

    TDLY1 = 5.5us

    TDLY2 = 0.5us

    R6

    10.0

    Simulation of a ZVT Buck Converter

    DSvgateinput

    Di

    GSv Li

    ZVT_buck.opj

  • 7/30/2019 Zero Voltage

    21/31

    22

    Classification of

    Soft-Switching Schemes

    Load Resonant Converters Converters with Resonant Switches (Quasi-

    resonant, Multi-resonant) Resonant Transition Converters

    ZVT and ZCT

  • 7/30/2019 Zero Voltage

    22/31

    47

    Makes use of switch capacitances and transformer

    leakage inductance and magnetizing current

    Phase Shift Controlled

    Full-Bridge Converter (ZVT)

    TA+

    TA TB

    TB+

    Db

    +

    Db

    Da

    Da

    +

    +

    dV oIA

    Ba b

    Poles A & B switched at nearly 50% duty-cycle

    Output voltage regulation is achieved by phase

    modulating the two pole outputs

  • 7/30/2019 Zero Voltage

    23/31

    48

    TA+

    TA TB

    TB+

    Db

    +

    Db

    Da

    Da

    ++

    2

    dV

    oIA

    B

    a

    b+

    2dV

    DA+

    DA

    DB

    DB+

    lT

    L

    0ficticious Li

    +

    inV ABi+

    ABv

    Switching waveforms

    In pole A

    ABv =0A AT to T +

    dV+

    ABv =0A AT to T +

    d-V

    In pole B

    AB dB BT to T v V + = +

    AB dB BT to T v -V + =

    0

    0

    ABv

    Bv

    Av

    ABi

    t

  • 7/30/2019 Zero Voltage

    24/31

    49

    Transitions - Pole B

    T to TB B +

    0AB dv V= +

    L oi stays at I

    0

    AB dv -V=

    L oi stays at - I

    TA+

    TB

    TB+

    Db

    Da

    +

    +

    IoA

    B

    a

    b

    dV

    Li

    ABv

    ABi

    - +B BT to T

    + -B BT to T

    t

  • 7/30/2019 Zero Voltage

    25/31

    50

    Transitions - Pole A

    0ABA AT to T v+ =

    d-V

    All four diodes conduct Leakage inductance resonates with switch capacitance

    Determination of Tdel critical for ZVS design

    Load dependent ZVS

    Db

    Da

    +

    LiTB

    +

    +

    oI

    AB

    ab

    dV

    TA

    TA+

    ABv

    ABi+ -

    A AT to T

    t

  • 7/30/2019 Zero Voltage

    26/31

    51

    Methods to increase ZVS range

    Use of external series inductor

    Disadvantages

    Loss of volt-sec

    higher turns-ratio

    higherconduction loss

    increasedVA ratings

    Load dependent ZVS

    +

    Vin

    +

    VoA B

    iAB

    Lo

    Lseries

    +

    vrect

    iAB

    vAB

    0

    left-leg

    vrect

  • 7/30/2019 Zero Voltage

    27/31

    52

    Use of magnetizing current

    Disadvantages

    higher conduction loss due to

    peak circulating current current through right-leg

    MOSFETs

    peak magnetizing currentindependent of Vin

    i iload mag+

    imag

    A B

    +

    Vin

    imagvAB

    left leg2

  • 7/30/2019 Zero Voltage

    28/31

    53

    Design of other parameters like Lo, Co, transformer etc

    identical to hard switched PWM

    Factors Affecting ZVS

    Capacitance across MOSFETs

    internal and external

    Leakage inductance

    Delay timeMagnetizing current

    ZVS Load Range

  • 7/30/2019 Zero Voltage

    29/31

    54

    Designing for ZVS

    ( ) ( )2

    eqds in mag _ pk refl

    ds

    Lv V I I sin t C

    = +

    1

    2 eq dsL C

    =

    ( )1 2eq

    mag _ pk refl in,maxds

    L

    . I I V C+

    2 22

    delay eq ds. T L . C

    =

    Conditions for ZVS

    MOSFET voltage during critical

    turn-on transitiondsv

    t

    22

    Lk dsL C

  • 7/30/2019 Zero Voltage

    30/31

    55

    A Possible Design Approach Using MathCAD

    Sweep for all practical values of

    Calculate total losses. Iterate for different ZVS ranges

    dsC - based on limiting voltage rise during turn-offdelayT - as a percentage of switching period

    mag,pk lk Calculate required I and L for each set

    Calculate switch peak current and RMS current

    Turn-off loss Conduction loss

    Designing for ZVS

  • 7/30/2019 Zero Voltage

    31/31

    56

    Designing for ZVS

    Total_loss

    Total

    Losses

    (W)

    deli Tdsj C

    ij


Recommended