+ All Categories
Home > Documents > Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener...

Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener...

Date post: 19-Dec-2015
Category:
View: 219 times
Download: 3 times
Share this document with a friend
Popular Tags:
62
Zvi Wiener ContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener [email protected] tel: 02-588-3049
Transcript
Page 1: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 1

Financial Engineering

Continuous Time Finance

Zvi [email protected]

tel: 02-588-3049

Page 2: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 2

Futures Contracts Mark to market Convergence property Spot-futures parity Cost-of-carry Martingale Risk-neutral Measure Forwards and Futures Girsanov’s Theorem and its counterpart Feynman-Kac Formula Stochastic optimization The Maximum Principle

Page 3: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 3

Futures Markets

Futures and forward contracts are similar to options in that they specify purchase or sale of some underlying security at some future date.

However a future contract means an obligation of both sides.

It is a commitment rather than an investment.

Page 4: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 4

Basics of Futures Contracts

Delivery of a commodity at a specified place, price, quantity and quality.

Example: no. 2 hard winter wheat or no. 1 soft red wheat delivered at an approved warehouse by December 31, 1997.

Page 5: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 5

Basics of Futures Contracts

Long position – commits to purchase the commodity.

Short position – commits to deliver.

At maturity: Profit to long = Spot pr. at maturity – Original futures pr.

Profit to short = Original futures pr. –Spot pr. at maturity

it is a zero sum game

Page 6: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 6

Futures Markets

The initial investment is zero however some margin is required.

The later cash flow is mark-to-market for a future contract and is concentrated in one point for the forward contract.

Futures are standardized and not specify the counterside.

Page 7: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 7

Futures Markets Currencies

– all major currencies, including cross rate Agricultural

– corn, wheat, meat, coffee, sugar, lumber, rice Metals and Energy

– copper, gold, silver, oil, gas, aluminum Interest Rates Futures

– eurodollars, T-bonds, LIBOR, Municipal, Fed funds Equity Futures

– S&P 500, NYSE index, OTC, FT-SE, Toronto

Page 8: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 8

Mechanism of Trading

Long Shortcommodity

money

ClearinghouseLong Short

Page 9: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 9

Marking to Market

Example: initial margin on corn is 10%.

1 contract is for 5,000 bushels,

price of one bushel is 2.2775,

so you have to post the initial margin =

$1,138.75 = 0.1*2.2755*5000

If the futures price goes from 2.2775 to 2.2975

the clearinghouse credits the margin account of the long position for 5000 bushels x 2 cents or $100 per contract.

Page 10: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 10

Marking to Market

Your balance

time

Maint.margin

margin call

Initialmargin

Page 11: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 11

Marking to Market and Margin

The current futures price for silver delivered in five days is $5.10 (per ounce).

One futures contract is for 5,000 ounces

Page 12: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 12

Marking to Market and Margin

Day Futures Price

0 (today) $5.10

1 $5.20

2 $5.25

3 $5.18

4 $5.18

5 $5.21

Page 13: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 13

Marking to Market and MarginDay Futures P&L/oz. Margin

1 $5.20 5.20-5.10= 0.10 500

2 $5.25 5.25-5.20= 0.05 250

3 $5.18 5.18-5.25=-0.07 -350

4 $5.18 5.18-5.18= 0.00 0

5 $5.21 5.21-5.18= 0.03 150

Total: $550

Compare the total to forward: (5.21–5.10)5000

Page 14: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 14

Convergence Property

The futures price and the spot price must converge at maturity.

Otherwise there will be an arbitrage based on actual delivery.

Sometimes delivery is costly!

Page 15: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 15

Futures Markets

Cash delivery: sometimes is allowed, sometimes is the only way to deliver.

The question of quality is resolved with a conversion factor. The cheapest to deliver option.

Page 16: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 16

Futures Markets

The S&P 500 futures calls for delivery of $500 times the value of the index. If at maturity the index is at 475, then $500x475=$237,500 cash is the delivery value.

If the contract was written on the futures price 470 (some time ago), who will pay money?

Short side will pay to the long side.

Page 17: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 17

Futures Markets Strategies

Hedging and Speculation – efficient tool for hedging and speculation. A significant leverage effect.

Page 18: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 18

Basis Risk and Hedging

The basis is the difference between the futures price and the spot price. (At maturity it approaches zero).

This risk is important if the futures position is not held till maturity and is liquidated in advance.

Spread position is when an investor is long a futures with one ttm and short with another.

Page 19: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 19

Spot-Futures Parity Theorem

Create a riskless position involving a futures contract and the spot position.

Buy one stock for S and take a short futures position in it.

The only difference is from dividends.

Thus F + D – S is riskless.

The amount of money invested is S.

Page 20: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 20

Spot-Futures Parity Theorem

Create a riskless position involving a futures contract and the spot position.

Buy one stock for S and take a short futures position in it.

The only difference is from dividends.

Thus F + D – S is riskless.

The amount of money invested is S.

S

SDFrf

Page 21: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 21

Spot-Futures Parity Theorem Cost-of-carry relationship

)1()1( drSDrSF ff

Page 22: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 22

Spot-Futures Parity Theorem Cost-of-carry relationship

Tf drSF )1(

For contract maturing in T periods

Page 23: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 23

Relationship for Spreads

)(12

2

1

12

2

1

)1)(()(

)1()(

)1()(

TTf

Tf

Tf

drTFTF

drSTF

drSTF

This is a rough approximation based on anassumption that there is a single source ofrisk and all contracts are perfectly correlated.

Page 24: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 24

Martingale

X - a stochastic time dependent variable.

Et - expectation based on information available at time t.

Xt is a martingale if for any s > t

Et(Xs) = Xt

Page 25: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 25

Martingale

Most financial variables are not martingales because of the drift component (inflation, interest rates, cost of storage, etc.)

However one can change a numeraire so that the new financial variable becomes a martingale.

What can be chosen for an ABM, GBM?

Page 26: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 26

Martingale

dX = dt + dZ ABM

Et(Xs) = Xt+ (s-t)

set Yt = Xt- t

then dYt= dt + dZ - dt = dZ

hence Et(Ys) = Yt

Page 27: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 27

MartingaledX = Xdt + XdZ GBM

What is Et(Xs)?

set Yt = Xte-t

dY = e-t dX - e-tXdt =

e-tXdt + e-t XdZ - e-tXdt =

( - )Ydt + YdZ.

What is Et(Ys)?

Page 28: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 28

Martingale

dY = ( - )Ydt + YdZ

then d(lnY) = ( - - 0.5 2) dt + dZ

lnYt = lnY0 + ( - - 0.5 2) t + Z

if a~N(, ), then E(ea) =exp(+0.52)

lnYt~N(lnY0 + ( - - 0.5 2) t, t)

Then E0(Yt) = Y0exp(( - - 0.5 2)t+0.52t).

Page 29: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 29

Martingale

E0(Yt) = Y0exp(( - - 0.5 2)t+0.52t).

Set =

E0(Yt) = Y0

Et(Ys) = Yt - martingale!

What is the economic meaning of Y?

Page 30: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 30

Equivalent Martingale Measure

Harrison and Kreps

Harrison and Pliska

There exists a risk neutral probability measure.

There exists an equivalent martingale measure.

For a detailed explanation, see Duffie.

Extension to a stochastic volatility, see Grundy,

Wiener.

Page 31: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 31

Forward Contract

)()(exp0 t

T

t

Qt FWdssrE

T

t

Qt

T

t

Qt

t

dssrE

WdssrEF

)(exp

)(exp

if W and r are independent Ft=EtQ(W)

Page 32: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 32

Futures Contract

WEQtt

Mark-to-market procedure equatesthe instantaneous price to zero.

Page 33: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 33

Girsanov’s Theorem

Let dX = (X,t)dt + (X,t)dZ.

If there exist and , such that = - ,

then there exists a new probability measure equivalent to the original one, such that

relative to the new measure the original process X becomes:

dX = (X,t)dt + (X,t)dZ*

Page 34: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 34

by a change of the probability measure (note B*),if there exists a process such that .

Girsanov’s TheoremGirsanov’s Theorem

can be transformed totdZtXdttXdX ),(),(

*tdZtXdttXdX ),(),(

Page 35: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 35

),( tXFchange of variables

tdZtXdttXdX ),(),( can be transformed to

(Girsanov)tdZtXdttXdX ),(),( *1.

tdZtadtdF )(... (Theorem 1)2.

tdZtFadtdF )(... (Theorem 1’)3.

Page 36: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 36

Monotonic change of variables preserves order

x

y

x x y y2 1 2 1

2

y2

x

1

1

y

x

Page 37: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 37

Monotonic change of variables preserves order

x

y1

x

11 PrPr yyxx

1

Page 38: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 38

tdZxdttxdx )(),(

change of variables: x

K

xdx

xy)(

1)(

K

xxd

xxy

x

K

lnˆ1

ˆ1

)(

Constant volatility case: tdBxdttxdx ˆ),(

tdZdtx

x

txdy

2

)('

)(

),(

leads to

Example

Page 39: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 39

Theorem 1. The diffusion process

is transformed by the following change of variables

into a process with a deterministic diffusion parameter

dZtadtFtadF )(2

)( 21

Free parameters:a(t) – defines the resulting diffusion parameterA(t) – defines zero level of the new variable

tdZtxdttxdx ),(),(

dt

tatxF

x

tA

)( ),(

)(),(

Page 40: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 40

Feynman-Kac Formula

0.52fxx + fx + ft - rf + h=0

f(X,T) = g(X)

The solution is given by:

)(),(),( ,,, TTt

T

t

ssttx XgdssXhEtXf

T

t

dXr

st e

),(

, the discount factor

Page 41: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 41

Stochastic Optimization

In many cases financial assets involve decisions. In some cases we should assume that decision makers are rational and try to use an optimal decision, in some cases we assume not rational behavior.

Page 42: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 42

A Time-Homogeneous Problem

Values do not depend on time explicitly.

A financial asset V, which depends on a set of variables X, and time t.

Control variable .

0

0 ),(max dsXueEV rs

dZsXdsXdX ),(),(

Page 43: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 43

A Time-Homogeneous Problem

Sometimes the control variable is a constant, sometimes it is a function of time and state.

The expected cash flow is:

ECF = u(X, )ds

The capital gain is:

CG = dV = VxdX+0.5Vxx(dX)2

The expected capital gain is:

ECG = (Vx+0.52Vxx)dt

Page 44: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 44

A Time-Homogeneous Problem

The value of V does not depend on time.

The optimally managed total return per unit of

time is given by:

ETR = max(ECF+ECG)=

max[u(X, )+ (X, )Vx +0.52 (X, )Vxx]

It must be equal the risk free return:

rV= max[u(X, )+ (X, )Vx +0.52 (X, )Vxx]

Page 45: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 45

The Maximum Principle

X follows an ABM with parameters and .

An asset pays continuous cash flow at the rate Xdt.

There is no limited liability option.

A manager can influence the growth rate of X.

Suppose that for any one has to pay 2dt to

managers.

What is the optimal strategy?

Page 46: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 46

The Maximum Principle

dZdsdXts

dsXeEV rs

..

max0

20

xxx VVXrV 22 5.0max

Page 47: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 47

The Maximum Principle

xxx VVXrV 22 5.0max

xopt

x

V

V

5.0

20

Note that Shimko assumes that one can not replacea manager, thus opt is constant and hence Vxx=0.

Page 48: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 48

The Maximum Principle

With this assumption we get V=2X opt + C

34

1

2)2(

rr

XV

XCXrrV optopt

Page 49: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 49

The Maximum Principle

Assuming one-time decision we can value thesecurity as a sum of linearly growing perpetuity(ABM) minus a level perpetuity (constant paymentof 2 forever.

rrr

XV

2

2

Optimizing with respect to we obtain:

34

1

rr

XV

Page 50: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 50

The Maximum Principle

Without this assumption we get:

xxx VVXrV 22 5.025.0

A non-linear ODE, must be solved numerically.

What are the appropriate boundary conditions?

Page 51: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 51

Multiple State Variables

Consider a perpetually lived value-maximizing monopolist who produces output at a rate of qdt, but faces a stochastically varying demand.

Assume that the demand is linear p = a - bq, where p is the price of the good, and a, b are given by:

b

a

dZqbadtqbagdb

dZqbadtqbafda

),,(),,(

),,(),,(

dtdZdZ ba

Page 52: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 52

Multiple State Variables

The initial conditions are a(0)=a0, b(0)=b0.

Assume that the cost of production is zero.

The value of the firm is V, such that:

0

0 )(max qdsbqaeEV rs

q

Page 53: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 53

Multiple State Variables

The expected cash flow is:

(a-bq)qdt

The capital gain component is:

dV = Vada+Vbdb+0.5Vaa(da)2+Vabdadb+0.5Vbb(db)2

The expected capital gain is:

ECG=E[dV]=fVa+ gVb+0.52Vaa+Vab+0.52Vbb

Page 54: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 54

Multiple State Variables

The maximum total return is:

max(TR) = max(ECF+ECG) = rV

Therefore

bbabaabaq

VVVgVfVqbqarV 22 5.05.0)(max

The first order condition is:

05.0)(5.02 bbqqqabaaqbqaq VVVVgVfbqa

Page 55: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 55

Multiple State VariablesAssume that

f(a,b,q) = af0

g(a,b,q) = bg0

(a,b,q) = a0

(a,b,q) = b0

The value of the firm is:

bbabaaba VbabVVaVbgVafb

arV 2

02

0020

200

2

5.05.04

)22(4 2000

2000

2

gfrb

aV

Page 56: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 56

Optimal Asset Allocation

Merton 1971.

Utility function: U= r - 0.5A2

Here r is the expected rate of return and - its standard deviation.

A - is the individual’s coefficient of risk aversion.

Page 57: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 57

Optimal Asset Allocation

Denote by - proportion invested in risky assets. Then

fP rrr )1( 222 P

Page 58: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 58

Optimal Asset Allocation

Maximizing utility with respect to , we get:

02

1)1( 22

Pf ArrU

2

A

rr fopt

Page 59: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 59

Dynamic Asset Allocation

How one can apply the Girsanov’s theorem?

Perfect markets, no taxes, costs, restrictions.

The budget equation:

rPdtdP

XdZXdtdX

XdZWdtcWrPXWdW ])1([

Page 60: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 60

Dynamic Asset AllocationThe objective function is to maximize the expected lifetime discounted utility.

XdZWdtcWrPXWdWts

dsscUeEJ s

c

])1([..

))((max0

0,

Page 61: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 61

Problem 4.3

The height of a tree at time t is given by Xt, where Xt follows an ABM. We must decide when to cut the tree.

The tree is worth $1 per unit of height, and if the tree is cut down at time at height Y, then its value today is:

V = e-rY.

Page 62: Zvi WienerContTimeFin - 5 slide 1 Financial Engineering Continuous Time Finance Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049.

Zvi Wiener ContTimeFin - 5 slide 62

Problem 4.3

a. What PDE must the value of the tree satisfy?

b. What are the boundary conditions?

c. Value the tree, assuming that the value is zero

when the tree’s height is -.

d. What is the optimal cutting policy?


Recommended