+ All Categories
Home > Documents > Zyklusvorlesung Molekularbiologie WS 2009/10Victor Sourjik, Seite 1 Kontrolle der Genexpression...

Zyklusvorlesung Molekularbiologie WS 2009/10Victor Sourjik, Seite 1 Kontrolle der Genexpression...

Date post: 10-Dec-2015
Category:
Upload: sofia-stokes
View: 214 times
Download: 0 times
Share this document with a friend
34
Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 1 Kontrolle der Genexpression Victor Sourjik, ZMBH
Transcript

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 1

Kontrolle der Genexpression

Victor Sourjik, ZMBH

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 2

Wie wird das Expressionsniveau reguliert?

Figure 6-3 Molecular Biology of the Cell (© Garland Science 2008)

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 3

Genexpression bei Bakterien und Eukaryonten

Figure 6-21 Molecular Biology of the Cell (© Garland Science 2008)

Differences:- Genome organisation- Gene- / Transcript structure- Processing of RNA - RNA Degradation- RNA Transport- Translation

Evolutionary significance of these differences?

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 4

Genexpressionskontrolle bei Eukaryonten

Figure 7-5 Molecular Biology of the Cell (© Garland Science 2008)

Eucaryotes have more opportunities to regulate gene expression than bacteria

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 5

Vielfalt der RNA Moleküle in der Zelle

Table 6-1 Molecular Biology of the Cell (© Garland Science 2008)

What RNA polymerases transcribe what RNAs?

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 6

RNA-Polymerasen

Table 6-2 Molecular Biology of the Cell (© Garland Science 2008)

Bacteria have only one RNA polymerase

Eucaryotes have three RNA polymerases:

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 7

Transkriptionskontrolle (bei Bakterien)

Transcription

5‘ 3‘RNA

AUG UGA

DNA+1 (start site) terminator

5‘ UTR 3‘ UTRPromoter

Coding region

Initiation Elongation Termination

Initiation of transcription is the main point of regulation(both in bacteria and in eucaryotes)

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 8

Transkriptionsinitiation (bei Bakterien)

Assembly of the (pre)initiation complex (PIC) on promoter is the most frequently regulated step in bacteria and in eucaryotes

closed complex

binding

isomerisation

open complex

initiation

synthesis start

promoter clearance

elongation

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 9

„Passive“ und „aktive“ TranskriptionsregulationPassive regulation by promoter strength

Sigma 70 consensus promoter in E. coli: TTGACA...17bp...TATAAT

TTGAAA...17bp...TATAATTTCAAA...17bp...TAATAT

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 10

„Passive“ und „aktive“ TranskriptionsregulationActive regulation

Bacteria:

-Sigma Factors

-Activators

-Repressors

Eucaryotes:

-Chromatin remodeling factors-General transcription factors (GTFs)

-Activators-Repressors

-Covalent Modifications

GTFs

Pol II

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 11

Wirkungsmechanismen von Transkriptionsfaktoren (Bakterien)

binding to subunit

binding to subunit

conformational change in promoter

Activators

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 12

Wirkungsmechanismen von Transkriptionsfaktoren (Bakterien)

steric hindrance

DNA looping

modulation of

an activator

Repressors

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 13

Signalintegration (Bakterien)

repositioning

independent contacts

cooperative binding

anti-repression

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 14

Promotor- und Genstruktur bei Bakterien und Eukaryonten

+1 (start site) terminator

-35 -10UP

5‘ TTGACA...17bp...TATAAT 3‘-35 -10

Bacterial promoter

5‘ YYCAYYYYY 3‘ 5‘ AGAC 3‘

cleavage and poly-A signal

TATA box (-30)

5‘ TATAA 3‘Eucaryotic promoter

Inr (-3 to +5) DPE (+30)

GC box (-90)

CAAT box (-75)

Binding sites for activators and repressors

Proximal binding sites for activators and repressors; enhancers/UASs; silencers; insulators etc

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 15

Allgemeine Transkriptionsfaktoren bei Eukaryonten

Figure 6-16 Molecular Biology of the Cell (© Garland Science 2008) Figure 6-17 Molecular Biology of the Cell (© Garland Science 2008)

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 16

Initiationskomplex und Aktivatoren

Figure 7-44 Molecular Biology of the Cell (© Garland Science 2008)

Eucaryotic initiation complex consists of multiple general and specific TFs -> Multiple opportunities of regulation

-Mediator complex offers multiple binding sites for PIC assembly

-Eucaryotic TFs can bind to the regulatory sequences (enhancers) far upstream or downstream from the transcription start site (TSS)

-Similar to bacterial activators, many eucaryotic activators assist assembly of (pre)initiation complex

-Other activators recruit histone modifiers and chromatin remodelers

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 17

Wichtiges Konzept: DNA looping and persistence length

DNA is stiff at short distances but flexible at long distances(persistence length von ca. 200 bp)=> Binding sites that are farther apart can easier come close to each other!

Figure 7-41 Molecular Biology of the Cell (© Garland Science 2008)

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 18

Chromatinstruktur und Transkriptionsinitiation

Eucaryotic promoter DNA must be freed or at least loosened from nucleosomes to allow assembly of the initiation complex:

Nucleosomes hinder TF binding to the DNADNA sequence influences nucleosome positioning„Pioneer“ TFs bind at nucleosome-free regionsHistone chaperones regulate nucleosome dynamicsChromatin remodeling complexes affect distribution and composition of the nucleosomesTFs recruit histone modification enzymes (acetyl transferases, methyl transferases, kinases)Histone variant H2A.Z promotes transcription (H2A.Z-containing nucleosomes are more labile)

GTFs

Pol II

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 19

Wichtiges Konzept: Chromatin remodeling

Chromatin remodeling can free promoter region and thereby activate transription; it is accomplished by chromatin remodeling complexes, histone chaperones and histone-modifying enzymes

Figure 7-46 Molecular Biology of the Cell (© Garland Science 2008)

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 20

Eukaryontischer Transkriptionszyklus

Chromatin opening

PIC Assembly

Initiation

Promoter clearance

Escape

Elongation

Termination

Recycling

Activators

Most important control steps: -Chromatin opening-Assembly of PIC-Escape of Pol II

Eucaryotes have a larger variety of regulatory mechanisms than bacteria due to chromatine remodeling and covalent modifications of histones, TFs and Pol II

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 21

„Offene“ und „bedeckte“ PromotorenMost active gene promoters are not covered by nucleosomes

Promoter region is held free by poly-dA:dT tracks that impare nucleosome binding and by the H2A.Z nucleosomes

Gene expression from open promoters is more stable

Promoters of regulated genes are typically covered by nucleosomes

Promoter region has to be freed by chromatin remodeling

Gene expression is stochastically variable

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 22

Beispiel von einem regulierten Promotor:PHO5-Promoter in S. cerevisiae

PHO5 gene is upregulated upon phosphate starvation through chromatin opening:

Activator Pho2 und histone acetyl transferase NuA4 bind the first regulatory sequence (UASp1) already before induction

Activator Pho4 binds at UASp1 and recruits histone acetyl transferase SAGA

Pho2-Pho4 complex, histone acetylation by SAGA, chromatin remodeling by Ino80 and Swi/Snf, and histone chaperone Asf1 lead to promoter opening and assembly of initiation complex

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 23

Mechanismen der Repression bei Eukaryonten

Figure 7-50 Molecular Biology of the Cell (© Garland Science 2008)

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 24

Kombinatorische Integration der Transkriptionssignale

Initiation results from integration of multiple positive and negative signals Individual signals are integrated synergistically

Figure 7-58 Molecular Biology of the Cell (© Garland Science 2008)

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 25

Beispiel der Signalintegration: Segmentierung von Drosophila Embryo

Figure 7-53 Molecular Biology of the Cell (© Garland Science 2008)

?

What is the cause of stripe-like expression of Eve gene?

Eve

Regulators of Eve

Eve regulators are expressed asymmetrically, but how does this produce stripes?

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 26

Beispiel der Signalintegration: Segmentierung von Drosophila Embryo

The regulation is combinatorial and stripe-specific

Figure 7-56 Molecular Biology of the Cell (© Garland Science 2008)

Eve expression in stripe 2 is under positive regulation of Hunchback und Bicoid and negative regulation of Giant und Krüppel

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 27

Morphogengradienten und GenexpressionCan a tissue convert a morphogen gradient into a stripe-specific gene expression?

Particular morphogen concentration can activate only some but not the other genes, dependent on the binding affinity:

Low concentration -> only genes with high-affinity binding sites are activatedHigh concentration -> all genes posessing binding sites are activated

Similar regulation can take place for temporal gradients

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 28

Methoden der genomweiten Transkriptionsanalyse

Classical method of expression analysis: Nothern blot

Figure 8-38 Molecular Biology of the Cell (© Garland Science 2008)

RNA (or DNA) is separated by the size on a gel, transfered to the membrane and hybridized with gene-specific probe

RNA -> Nothern blotDNA -> Southern blot

Low throughput and poor quantification

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 29

Methoden der genomweiten Transkriptionsanalyse

Quantitative measurements of gene expression: RT-PCR

Reverse transcription

RNA DNA

PCR

Figure 8-72 Molecular Biology of the Cell (© Garland Science 2008)

The course of PCR (amount of double-stranded DNA) is monitored using a specific fluorescent dye

Differences in concentration of particular mRNA in different samples can be calculated as 2N, with N being the difference in the number of cycles to obtain the same amount of product

Medium throughput, high precision

N

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 30

Methoden der genomweiten Transkriptionsanalyse

High-throughput approach: Microarrays

Figure 8-73 Molecular Biology of the Cell (© Garland Science 2008)

Figure 8-74 Molecular Biology of the Cell (© Garland Science 2008)

mRNA is converted to cDNA and labeled, and subsequently hybridized with an array of gene-specific probes (either spotted cDNA samples or oligonucleotides)

Differences in expression between samples are determined as a ratio of fluorescence signals at individual spots

Up- and downregulated genes can be clustered together using analysis software

Is not very precise, has low dynamic range

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 31

Methoden der genomweiten Transkriptionsanalyse

High-throughput approach: Next-generation (deep) sequencing

Massively parallel sequencing techniques enable sequencing of genome-wide cellular RNA pools

Typical sequencing reads are 30-100 nucleotides -> RNA or cDNA has to be fragmented

A single read contains 105-107 reactions, depending on a platform, so most RNAs are covered by multiple „reads“ -> read occurence for a particular gene reflects expression level

The approach is quantitative

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 32

Methoden der genomweiten Transkriptionsanalyse

DNA fragments are coupled to beads with specific linkers

DNA fragments are amplified on individual beads using emulsion PCR

~400,000 individual beads are placed into well of a microfluidic plate

Sequence reads of up to 250 bases are produced by flowing individual deoxynucleotides over the plate are following PPi release through light emission

Roche 454 sequencing

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 33

Methoden der genomweiten Transkriptionsanalyse

Illumina (Solexa) sequencing

DNA fragments are coupled to glass slide and subjected to Bridge amplification

~10,000,000 individual reads of 40 bp are produced at a time by using fluorescently labeled removable terminator tags

Zyklusvorlesung Molekularbiologie WS 2009/10 Victor Sourjik, Seite 34

Methoden der genomweiten Transkriptionsanalyse

Genome-wide analysis of DNA binding: Chromatin immunoprecipitation (ChIP)

Binding proteins are cross-linked to DNA, then DNA is sheared, binding proteins with bound DNA fragments are purified and amplified

Identity of bound fragments is then determined using either Microarrays (ChIP-chip) or next-generation sequencing (ChIP-Seq)

As a result, one obtains genomic distribution of transcription factors, Pol II, nucleosomes etc

Distribution of specific TFs on a fragment of chromosome 1


Recommended