+ All Categories
Home > Documents > Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western...

Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western...

Date post: 08-May-2023
Category:
Upload: urbinoc
View: 0 times
Download: 0 times
Share this document with a friend
13
Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western Tethys) FRANCESCO GUERRERA 1 and MANUEL MARTÍN-MARTÍN 2 Key words. – Triassic-Miocene successions, correlations, tectono-sedimentary events, geodynamic control Abstract. A synthetic study has been made to identify main tectono-sedimentary and geodynamic events in cen- tral-western Tethys. For this, an interdisciplinary analysis has been performed on successions belonging to tectonic units derived from Betic-Maghrebian-southern Apennine “Flysch basin” domain. The stratigraphic records of the inter- nal, external, and mixed successions deposited in lateral basins of different chains show very similar characters, espe- cially regarding: (a) lithostratigraphy and ages; (b) kind and provenance of supplies (immature and supermature petrofacies from internal and external margins, respectively); (c) presence of “mixed successions” (composed of alter- nating internal and external petrofacies) attesting to clear palaeogeographic relationships between opposite depositional systems; and (d) timing of the deformation. In addition, specific lithofacies reveal correspondence with similar sedimen- tary events, such as: (1) very thick silicoclastic supply concentrated in restricted time ranges indicating the main deformational phases in the margin/basin systems; (2) levels rich in black-shales, glauconian, siliceous-producers, and volcaniclastic intercalations, widespread in the studied successions and linked to particular events at the Tethyan scale (anoxic periods, starvation-upwelling, acid-intermediate penecontemporaneous volcanic activity, respectively). Tectonic influence has also been recorded by means of unconformities and tectofacies (such as turbidites, slumps, or olisthostromes, etc.), being correlated with the main deformational phases. Similar stratigraphic and tectonic events have also been found in the Calvana unit of Val Marecchia nappe (Ligurides, northern Apennine). Correlations of strati- graphic and tectonic events support the proposal of an evolutionary geodynamic model involving the presence of a “Mesomediterranean microplate” in intermediate position during Africa-Europe convergence. The closure of central-western Tethys occasioned the Betic-Maghrebian-southern Apennine oceanic branch deformation and the birth of perimediterranean chains during middle-late Miocene. Reconstruction des événements géodynamiques dans les chaînes Bético-Magrhébides et des Apennins (Téthys centro-occidentale) Mots-clés. – Successions du Triasique-Miocène, Corrélations, Evénements tectono-sédimentaires, Contrôle géodynamique. Résumé. – Cette étude vise à identifier, de manière synthétique, les principaux événements tectono-sédimentaires et géodynamiques de la Téthys centre-occidentale. Une analyse pluridisciplinaire a été effectuée sur les séries des unités tectoniques issues du “bassin des Flyschs”, domaine présent dans les chaînes de montagnes bordant le Bassin méditerra- néen occidental (Bétiques, Rif, Tell et Apennin). L’enregistrement stratigraphique des séries internes, externes et inter- médiaires déposées dans ce “bassin” le long de ces chaînes de montagnes montre des caractères similaires et, en particulier les successions sur: (a) lithostratigraphies et les âges ; (b) la nature et provenance du matériel sédimentaire (pétro-faciès immatures et super-matures provenant respectivement des marges internes et externes) ; (c) l’existence de successions mixtes (composées par une alternance stratigraphique de pétrofaciès d’origine interne et externe) attestant la présence de relations paléogéographiques évidentes entre systèmes de dépôts opposés (d) et l’âge de la déformation. En outre, des lithofaciès caractéristiques montrent la correspondance avec des événements sédimentaires similaires, tels que: (1) une alimentation silico-clastique très épaisse, concentrée dans un temps court indiquant des phases principales de déformations dans les systèmes “marge/bassin” ; (2) des niveaux riches en argilites noires, glauconite, producteurs siliceux et des niveaux volcano-clastiques, reconnus dans les séries étudiées, liés à des événements particuliers à l’é- chelle de la Téthys (respectivement période anoxiques, sous-alimenté, activité volcanique acide-intermédiaire subcon- temporain). Des instabilités tectoniques ont été également enregistrées par des discordances et des faciès tectoniques (tels que turbidites, slumps, olistostromes, etc.) étant liées aux phases principales de déformations tectoniques. De plus, des événements stratigraphiques et tectoniques similaires ont été également mis en évidence dans l’unité “Calvana” de la nappe “Val Marecchia” (Ligurides, Apennin du nord). Les corrélations des événements stratigraphiques et tectoni- ques ont permis de proposer un modèle géodynamique évolutif impliquant la présence d’une “microplaque mesomédi- terranéenne”, en position intermédiaire, qui a joué un rôle-clé lors de la convergence Europe-Afrique. La fermeture de la Téthys centre-ouest a entrainé la déformation de la branche océanique Bético-Maghrébides et de l’Apennin du sud engendrant la naissance des chaînes périméditerranéennes à partir du Miocène moyen à supérieur. Bull. Soc. géol. France, 2014, t. 185, n o 5, pp. 329-290 Bull. Soc. géol. Fr., 2014, n o 5 1. Dipartimento di Scienze della Terra, della Vita e dell’Ambiente (DiSTeVA), Università degli Studi di Urbino “Carlo Bo”, Campus Scientifico, 61029 Urbino, Italy 2. Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Campus San Vicente, San Vicente del Respeig, 03080 Alicante, Spain. Corresponding author: [email protected] Manuscript deposited on ; accepted on A tribute to the memory of Michel Durand-Delga
Transcript

Geodynamic events reconstructed in the Betic, Maghrebian, and Apenninechains (central-western Tethys)

FRANCESCO GUERRERA1 and MANUEL MARTÍN-MARTÍN2

Key words. – Triassic-Miocene successions, correlations, tectono-sedimentary events, geodynamic control

Abstract. – A synthetic study has been made to identify main tectono-sedimentary and geodynamic events in cen-tral-western Tethys. For this, an interdisciplinary analysis has been performed on successions belonging to tectonicunits derived from Betic-Maghrebian-southern Apennine “Flysch basin” domain. The stratigraphic records of the inter-nal, external, and mixed successions deposited in lateral basins of different chains show very similar characters, espe-cially regarding: (a) lithostratigraphy and ages; (b) kind and provenance of supplies (immature and supermaturepetrofacies from internal and external margins, respectively); (c) presence of “mixed successions” (composed of alter-nating internal and external petrofacies) attesting to clear palaeogeographic relationships between opposite depositionalsystems; and (d) timing of the deformation. In addition, specific lithofacies reveal correspondence with similar sedimen-tary events, such as: (1) very thick silicoclastic supply concentrated in restricted time ranges indicating the maindeformational phases in the margin/basin systems; (2) levels rich in black-shales, glauconian, siliceous-producers, andvolcaniclastic intercalations, widespread in the studied successions and linked to particular events at the Tethyan scale(anoxic periods, starvation-upwelling, acid-intermediate penecontemporaneous volcanic activity, respectively). Tectonicinfluence has also been recorded by means of unconformities and tectofacies (such as turbidites, slumps, orolisthostromes, etc.), being correlated with the main deformational phases. Similar stratigraphic and tectonic eventshave also been found in the Calvana unit of Val Marecchia nappe (Ligurides, northern Apennine). Correlations of strati-graphic and tectonic events support the proposal of an evolutionary geodynamic model involving the presence of a“Mesomediterranean microplate” in intermediate position during Africa-Europe convergence. The closure ofcentral-western Tethys occasioned the Betic-Maghrebian-southern Apennine oceanic branch deformation and the birthof perimediterranean chains during middle-late Miocene.

Reconstruction des événements géodynamiques dans les chaînes Bético-Magrhébides et desApennins (Téthys centro-occidentale)

Mots-clés. – Successions du Triasique-Miocène, Corrélations, Evénements tectono-sédimentaires, Contrôle géodynamique.

Résumé. – Cette étude vise à identifier, de manière synthétique, les principaux événements tectono-sédimentaires etgéodynamiques de la Téthys centre-occidentale. Une analyse pluridisciplinaire a été effectuée sur les séries des unitéstectoniques issues du “bassin des Flyschs”, domaine présent dans les chaînes de montagnes bordant le Bassin méditerra-néen occidental (Bétiques, Rif, Tell et Apennin). L’enregistrement stratigraphique des séries internes, externes et inter-médiaires déposées dans ce “bassin” le long de ces chaînes de montagnes montre des caractères similaires et, enparticulier les successions sur: (a) lithostratigraphies et les âges ; (b) la nature et provenance du matériel sédimentaire(pétro-faciès immatures et super-matures provenant respectivement des marges internes et externes) ; (c) l’existence desuccessions mixtes (composées par une alternance stratigraphique de pétrofaciès d’origine interne et externe) attestantla présence de relations paléogéographiques évidentes entre systèmes de dépôts opposés (d) et l’âge de la déformation.En outre, des lithofaciès caractéristiques montrent la correspondance avec des événements sédimentaires similaires, telsque: (1) une alimentation silico-clastique très épaisse, concentrée dans un temps court indiquant des phases principalesde déformations dans les systèmes “marge/bassin” ; (2) des niveaux riches en argilites noires, glauconite, producteurssiliceux et des niveaux volcano-clastiques, reconnus dans les séries étudiées, liés à des événements particuliers à l’é-chelle de la Téthys (respectivement période anoxiques, sous-alimenté, activité volcanique acide-intermédiaire subcon-temporain). Des instabilités tectoniques ont été également enregistrées par des discordances et des faciès tectoniques(tels que turbidites, slumps, olistostromes, etc.) étant liées aux phases principales de déformations tectoniques. De plus,des événements stratigraphiques et tectoniques similaires ont été également mis en évidence dans l’unité “Calvana” dela nappe “Val Marecchia” (Ligurides, Apennin du nord). Les corrélations des événements stratigraphiques et tectoni-ques ont permis de proposer un modèle géodynamique évolutif impliquant la présence d’une “microplaque mesomédi-terranéenne”, en position intermédiaire, qui a joué un rôle-clé lors de la convergence Europe-Afrique. La fermeture dela Téthys centre-ouest a entrainé la déformation de la branche océanique Bético-Maghrébides et de l’Apennin du sudengendrant la naissance des chaînes périméditerranéennes à partir du Miocène moyen à supérieur.

Bull. Soc. géol. France, 2014, t. 185, no 5, pp. 329-290

Bull. Soc. géol. Fr., 2014, no 5

1. Dipartimento di Scienze della Terra, della Vita e dell’Ambiente (DiSTeVA), Università degli Studi di Urbino “Carlo Bo”, Campus Scientifico, 61029Urbino, Italy2. Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Campus San Vicente, San Vicente del Respeig, 03080 Alicante,Spain. Corresponding author: [email protected] deposited on ; accepted on

A tribute to the memory of Michel Durand-Delga

Usuario
Tachado
Usuario
Texto insertado
329-341

INTRODUCTION

The Maghrebian Flysch basin (MFB), which opened in theJurassic-Cretaceous [Durand-Delga, 1980a; Durand-Delgaand Fontboté, 1980; Wildi, 1983; Bouillin, 1986; Bouillinet al., 1986] and lateral prosecutions in Betic cordillera[Martín-Algarra, 1987; Guerrera et al., 1993] and Lucanianbasin (LB) from southern Apennine [Bonardi et al., 1996,2001; Perrone et al., 2008], represent Meso-Cenozoic oce-anic domains that are useful for geodynamic reconstruc-tions of central-western south Alpine chains [Alcalá et al.,2013; cum bibl.]. Since the Jurassic, MFB and LB have con-stituted the southernmost branch of western neo-Tethys[see fig. 2 in Guerrera et al., 2005], separating a Meso-mediterranean Microplate (MM) from the Africa and Adriaplates [Doglioni, 1992; Guerrera et al., 1993; 2005; 2012].Névado-Filabride and Piemontese-Ligurian oceanic areasconstituted the northernmost branch of western neo-Tethysseparating Iberia-Europe from MM.

Broad agreement exists regarding the structural frame-work of these chains composed of three main tectonic com-plexes (internal, basin, and external), while the discussionis open concerning palaeogeographical and palaeotectonicreconstructions. The main stratigraphic records represent-ing each sector of Betic and Maghrebian chains [Guerreraet al., 1993, 1998, 2005, 2012; Belayouni et al., 2010,2012, 2013; Alcalá et al., 2013; among others, cum bibl.]and the south Apennine [de Capoa et al., 2000; 2003; 2004;among others, cum bibl.] have been correlated, showingsimilar geological evolution, as indicated previously byGuerrera et al. [1993, 2005, 2012].

Nevertheless, prosecution of the MFB in northernApennine is still debated even if recent data [Perrone, 1996;de Capoa et al., 2003; Perrone et al., 1998; 2008; cum bibl.]have enabled different stratigraphic successions to be re-constructed, disputing the traditional Mesozoic palaeogeo-graphic restoration of the northern Apennine [Abbate and

Sagri, 1970; Decandia and Elter, 1972; Vai and Castellarin,1992; among others].

Investigations in all sectors of the study basins allow re-constructions of the sedimentary evolution, geodynamicevents, and timing of deformation of a Wilson’s Cycle:Jurassic-early Cretaceous rifting and drifting, Cretaceous-Palaeogene turbiditic and pelagic deposits (pre-orogenicsedimentation), early Miocene foredeep stage with thicksiliciclastic and volcaniclastic deposition, middle Miocenenappe stacking in the growing chains with piggy-back bas-ins and ending of chains building during the late Tortonian.

The palaeogeographic and palaeotectonic model pre-sented here is an attempt to synthesise a more completeevolution of the MFB by also considering the transversal re-lationships between subdomains of the same basin and itspossible lateral extensions. These latter relationships espe-cially the extension in the Apennine chain together with anupdate of the all stratigraphic and petrographic data repre-sent the most original contribution of this work. A compari-son is made with models created from comparablemethodological approaches of the central-western Mediter-ranean area.

Aim

This paper proposes the reconstruction along Betic-Maghrebian-Apennine chains (about 3,000 km long) of themain geodynamic phases from its birth (Triassic-Jurassic)to its deformation (early-middle Miocene), through strati-graphic records and the correlation of successions recog-nized from the MFB domain.

The study evidences some important tectono-sedimen-tary and geodynamic events reconstructed by interdisciplin-ary analyses from selected and representative tectonic unitsderived from Betic-MFB-LB. Reconstructed events showa good lateral correlation both, among different sectors ofthe chains, as sub-basins of the same chains. The results

Bull. Soc. géol. Fr., 2014, no 5

330 GUERRERA F. et al.

FIG. 1. – Betic-Maghrebian (Rif, Algerian-Tunisian Tell, Sicily and Calabro-Peloritani arc) and South Apennine chains with location of the reconstructedstratigraphic successions. A paleogeographic sketch is inserted in the upper-central part of the figure displaying terms used in the text.

Usuario
Tachado
Usuario
Texto insertado
Basin
Usuario
Tachado
Usuario
Texto insertado
Basin
Usuario
Texto insertado
at Cretaceous times

support a proposal for a reconstruction of the main evolu-tionary basin stages and a correlation of the geodynamicevents of central-western branches of Tethys. A tentativecorrelation with Calvana unit of Val Marecchia nappe(Ligurides) of the northern Apennines is also proposedsince, as indicated by de Capoa et al. [2003], this unitshows a very similar evolution with internal successions ofMaghrebian-Lucanian basins. All the tectonic units consid-ered derive from middle-late Miocene deformation of Me-sozoic to Miocene p.p. successions deposited in differentcorrelated sub-basins. The aerial distribution and ages ofthick Miocene flysch deposits represent an important toolfor studying the diachronous growth of the accretionarywedges during the closure of the basins with the birth of thechains.

Methodology

To recognize the main tectonic-sedimentary events, com-parisons of more representative Mesozoic-Miocene strati-graphic records are taken into account. The tectono-sedimen-tary reconstruction of the MFB domain proposed here takesinto account both (a) previous studies coming from differ-ent sectors of the Betic, Maghrebian and south Apenninechains [Bouillin et al., 1970; Didon et al., 1973;Durand-Delga, 1980a; 1980b; Durand-Delga and Fontboté,1980; Wildi, 1983; Bouillin et al., 1986; Guerrera et al.;1992; 1998; Bonardi et al., 1996, 2001; de Capoa, 1997;2004; Durand-Delga et al., 2000; Zaghloul et al., 2002;2006; Belayouni et al., 2006; 2012; 2013; among others,cum bibl.] as well as (b) evolutionary models of the differ-ent subdomains updated over time [Martin-Algarra, 1987;Doglioni, 1992; Guerrera et al., 1993; 2005; 2012; deCapoa et al., 2000; 2002; 2003; 2007; Durand-Delga et al.,2000; Frizon de Lamotte et al., 2000; Chalouan et al., 2001;Michard et al., 2002; Bonardi et al., 2003; Chalouan andMichard, 2004; Mauffret et al., 2004; Vera, 2004;Crespo-Blanc and Frizon de Lamotte, 2006; Perrone et al.,2008; Belayouni et al., 2010; Thomas et al., 2010a;Lustrino et al., 2011; Alcalá et al., 2013; among others,cum bibl.]. The new contribution of this study consists of anupdate of the complete stratigraphic and petrographic dataavailable, fitted for the first time into a more complete andgeneral framework of the central-western Mediterraneanarea. All data have been reinterpreted highlighting the fol-lowing aspects: (1) vertical and lateral evolution of the maincharacters of lithofacies (suite of main rocks); (2) identifi-cation by mineralogical and petrographic analyses of differ-ent supplies coming from differentiated depositionalsystems linked to different margins of the basins; (3) identi-fication of tectonic influences by means of specifictectofacies such as slumps, olistostromes, and main uncon-formities; (4) stratigraphic correlations based on a modernchronostratigraphy derived from integrated biostratigraphicalanalyses; (5) space-time reconstruction of main tectonic-sedimentary stages of basins; (6) updated timing of defor-mation; (7) interpretation of more evident geodynamicevents; (8) to propose an evolutionary geodynamic model atthe Mediterranean scale of the maghrebian-like chains.

Memory

This paper is meant to pay tribute to the memory of Profes-sor Michel DURAND-DELGA who passed away in 2012.

Prof. Durand-Delga, a great expert on the geology ofperi-Mediterranean chains, was a light to follow and a mir-ror to reflect the scientific qualities and virtues as a person.In particular, we deeply appreciated the teachings of Prof.Durand-Delga, especially during very interesting geologicalexcursions along north-African chains and on the occasionof our internships at Toulouse University. But, what we ap-preciated more of this “gentleman of geology” was the“man” Durand-Delga for his intellectual honesty, deephumanity and availability in personal relations.

GEOLOGICAL SETTING

The central-western Mediterranean area is bordered by threemain south-alpine systems: Betic cordillera, Maghrebianchain (Rif, Tell, and Calabria-Peloritani arc) and theApennines. The western extremity of Betic-Rifian arc isrepresented by a complex palaeogeographical frameworkderived from the presence of different continental blocksand depositional areas [Guerrera et al., 2012; Alcalá et al.,2013; cum bibl.]. The main continental blocks were: Iberianplate with its South Iberian margin; African plate with itsNorth African margin; and the southwestern sector of“Mesomediterranean microplate” [MM, sensu Guerrera etal., 1993; 2005; 2012]. These are made of a pre-MesozoicHercynian basement and a Meso-Cenozoic sedimentarycover, both affected by Alpine orogeny. The maindepositional areas were represented by: southwestern sectorof South Iberian margin (most internal part of Subbetic);western sector of MFB; North African margin drifting andderive of the above-mentioned continental blocks andtectono-sedimentary processes in depositional domainswere controlled by geodynamics of the area [Martín-Algarra, 1987; Sanz de Galdeano, 1990, 1997; Guerrera etal., 2012], leading to the Betic-Rifian arc formation. Duringthe late Oligocene-early Miocene, South Iberian marginwas supplied by materials coming from the erosion of anIberian craton (Meseta) and Subbetic structural heightsfrom South Iberian margin itself [Alcalá et al., 2012; 2013],producing marly deposits (carbonate rich without quartz,feldspar, or mica). MFB, which opened mainly from theMesozoic to the late Cretaceous, after the breakup ofPangaea [Wildi, 1983; Bouillin, 1986], constituted thesouthern branch of western Tethys ocean together with itsLucanian ocean continuation [Guerrera et al., 2005;Perrone et al., 2008]. Coeval marine basins in the Betic cor-dillera derived from the northwestern branch of westernTethys [Martín-Algarra, 1987; Puga, 1990; Tendero et al.,1993; Vera, 2004] connecting Piemont-Ligurian and CentralAtlantic oceans. These oceans surrounded the MM[Guerrera et al., 1993; 2005], a crustal Hercynian crystal-line basement block with Mesozoic sedimentary covers(Kabylies-Peloritani-Calabria and Alpujarride-Malaguide-Ghomaride), detached from Europe-Iberia and North Africaduring Tethyan opening [Martín-Algarra et al., 2000].

Mesozoic and Tertiary successions related to MFB that con-stitute these chains were deposited in three majorpalaeogeographic realms, according to Guerrera et al.[1993]: Internal Domain units (strongly deformed andmetamorphosed) are made up of ophiolitic nappes and sev-eral basement nappes, at places with Mesozoic (Triassic toearly Jurassic “Verrucano” continental red beds, Jurassic

Bull. Soc. géol. Fr., 2014, no 5

GEODYNAMIC EVENTS RECONSTRUCTED IN THE WESTERN TETHYS 331

Usuario
Tachado
Usuario
Texto insertado
Microplate

p.p. platform limestones and Cretaceous basinal clayely-arenitic sedimentation) and Tertiary (mainly basinalterrigenous) covers; passive External domain was invadedby prevailing pelites and by widespread ultra-mature quartzose(polycyclic) supply (Numidian Fm) derived from the ero-sion of pre-Palaeozoic African craton and sedimentarycover [Guerrera et al., 1992; 2012; Thomas et al., 2010a;cum bibl.]; MFB deposits (clayely and terrigenous forma-tions of Cretaceous to Miocene) were deposited in deepoceanic and/or “oceanoid” basins [“Maghrebian ocean”,sensu Guerrera et al., 2005], and structured during Miocenein several nappes and melanges. In the MFB, since the earlyCretaceous the type of sedimentation was divided into“Mauritanian” (internal) and “Massylian” (external) sub-ds[Bouillin et al., 1970; Durand-Delga, 1980b; Durand-Delgaet al., 2000; and references therein] controlled by sedimen-tary systems influenced by opposite margins. The internalsub-domain received abundant pelites and immaturesiliciclastic turbitites (with feldspar and mica) suppliedfrom the erosion of active MM, especially during late

Oligocene-early Miocene [Guerrera et al., 1993; 2005; deCapoa et al., 2000; 2004; 2007; Belayouni et al., 2010; cumbibl.].

The whole central-western Tethyan area undergone openingfrom Permian to Cretaceous [Roure et al., 2012] followedby convergence giving the birth and surrounding chains andin some extent of the Mediterranean sea. From late Creta-ceous onward, shortening between Africa and Europe pro-duced a subduction in the northern area of the central-westernTethys with the subsequent formation of the Alpine chains.l. giving Pyrenees, Alps, Iberian range and deformation inthe N-NW side of the MM [Durand-Delga, 1980a;Durand-Delga and Fontboté, 1980; Martín-Algarra, 1987;Guerrera et al., 1993; 2005; 2012; Doglioni et al., 1999; deCapoa et al., 2003; among others, cum bibl.]. In the south-ern area of the central-western Tethys (southern part of theMM and the MFB) that Paleogene tectonics was deep[Belayouni et al., 2012] till the latest Oligocene and mainlyEarly Miocene [Martín-Martín et al., 1997a; 1997b]. Therollback and the retreat of the lithosphere involved in the

Bull. Soc. géol. Fr., 2014, no 5

332 GUERRERA F. et al.

FIG. 2. – Internal (“Mauretanian” sub-domain) stratigraphic successions of the Betic, Maghrebian and Apennine chains.

Usuario
Tachado
Usuario
Texto insertado
-domains
Usuario
Tachado
Usuario
Texto insertado
early

new subduction of the African and Iberian plates under theMM caused the appearing of back-arc basins that evolvedinto the formation of the Mediterranean sea [Vergés andFernàndez, 2012; Platt et al., 2013] associated with volca-nism from the Burdigalian onward [Martín-Algarra, 1987].During Miocene compressional tectonics, internal and ex-ternal deposits were thrusted, piggy-back basins developed,oroclines developed and chains built up in the lateTortonian [Martín-Algarra, 1987; Guerrera et al., 1993; deCapoa et al., 2004; among others].

STRATIGRAPHIC RECORDS

Internal sub-domain sedimentation

The Betic terrains belonging to internal MFB crop outmainly in the Campo de Gibraltar area and along theInternides/Externides boundary as reduced tectonic slices[Durand-Delga and Fontboté, 1980; Martín-Algarra, 1987;Guerrera et al., 2005; cum bibl.]. Some internal successionsare common in all sectors of the Maghrebian-southApennine chains. Figure 2 shows the complete successionsbelonging to the more representative tectonics derived fromthe evolution of internal sub-domain of the chains consid-ered. These successions show similar evolution, normallystarting with ophiolitic ensemble (pillow-lavas, pil-low-breccias, basalts, grabbroes, peridotites, and lateralequivalents) and/or ophiolite covers (radiolarites, silicifiedslates, cherty limestones, etc.). Thick Cretaceous turbiditicsedimentation followed, as is well known in the Betic andMaghrebian chains, consisting of pelites and quartz-richarenites with a stratigraphic substratum constituted by marlyand limestones with occasional microbreccias [Guerreraet al., 1993; 2005; cum bibl.]. From the Cretaceous to thelate Oligocene, pre-orogenic successions comprising simi-lar and coeval formations consist of varicoloured clays withcalcareous and siliciclastic immature turbidite intercala-tions. Later, upper Oligocene-lower Miocene deposits gradeinto internal immature turbiditic sandstones (lithoarenites,arkoses, etc.) supplied by depositional systems related toMM (Hercynian crystalline basement and sedimentarycover) [Guerrera et al., 2005; 2012; cum bibl.]. Thesesyn-late- and late-orogenic flysch deposits often show aconsistent volcanogenic supply [Guerrera et al., 1998; cumbibl.], as for example the Tusa Flysch Fm in Sicily [deCapoa, et al., 2002]. In northern Apennines, the recon-structed succession of the Calvana unit (Val Marecchianappe, Ligurides) shows a succession correlated with simi-lar successions cropping out in the southern Apennine andBetic-Maghrebian chains [de Capoa et al., 2003; Perrone etal., 2008].

External sub-domain sedimentation

The most representative deposits of the external sub-do-main along Betic-MFB-south Apennine chains is repre-sented by the upper Oligocene-lower/middle MioceneNumidian Fm [Guerrera et al., 1992; 2012; Thomas et al.,2010a; 2010b; Belayouni et al., 2013; cum bibl.], normallyuprooted from its substrate (fig 3). In Sicily and the TunisanTell, this substrate is preserved [Belayouni et al., 2013].The vertical succession of the Numidian Fm is very similareverywhere, consisting of three members (fig. 3): (a)

mainly pelitic, (b) prevalently quartzarenitic and (c)pelitic-quartzarenitic indicated by a silexitic marker level.These members are arranged into two main diversified suc-cessions: (1) basinal (internal and more distal) and, (2) mar-ginal (external and more proximal) reflecting importantpalaeogeographic significance [Guerrera et al., 2012; cumbibl.]. These successions normally appear along all thestudy chains even if in some sectors the absence of specificstudies does not allow their clear distinction. Both diversi-fied successions often show internal and external “Numidi-an lateral facies” [Guerrera et al., 2012; Alcalá et al., 2013;cum bibl.]. In particular, the “External Numidian lateral fa-cies” are frequently rooted in external domains. In general,these lateral facies show great variability in lithofacies as-sociations, frequently deposited in shallow-water environ-ments (platform; fan-delta quartzose conglomerates, andprodeltaic pelites) or in continental realms (fluvialchannelized quartzose bodies and fossil dunes). In addition,some Numidian-like distal turbidites have recently been de-scribed along the Internal/External boundary of the Beticc[Alcalá et al., 2013].

The existence of Numidian External lateral facies com-posed of ultramature quartzose arenites deposited in deepand shallow water or even continental settings stratigra-phically overlying external units of the African marginclearly support the idea of an African plate origin [Guerreraet al., 2012; Alcalá et al., 2013; cum bibl.]. All these internaland external Numidian lateral facies constitute importantkeys for palaeogeographical-geodynamic reconstruction.

The age of the Numidian Fm is mainly from latestOligocene to earliest Burdigalian, especially in North Af-rica, reaching the Langhian in Sicily and southernApennines [Guerrera et al., 1992; 2012; Belayouni et al.,2012; cum bibl.]. Younger ages in the Sicily-southernApennine sectors indicate a greater distance of the supplycompared to North Africa and a delay in the progressiveeastward migration of the deformation.

Mixed sedimentation (between internal-externalsub-domains)

Among all “Numidian lateral facies” [Guerrera et al., 2012;cum bibl.] the latest Oligocene-early Miocene internal “MixedSuccessions” (more distal) are evidenced in all study sectors[Guerrera et al., 1986; 1993; 2012; Carmisciano et al., 1989;Belayouni et al., 2010; Alcalá et al., 2013; cum bibl.], beingcharacterized by stratigraphic alternations between sandstonesand associated pelites of completely different compositions(immature and supermature sandstones) and origins (fig. 4).This kind of lateral facies is due to interference of two maininternal and external sub-domain depositional systems. In thesame stratigraphic succession, these deposits show an alterna-tion of different petrofacies composed of: (a) immature lithicarkoses and litharenites from inner crystalline belts (MM) and(b) ultra-mature quartz-arenites coming from external cratonicareas (African margin). The presence of “Mixed Successions”along the study chains since the early Cretaceous [Zaghloul etal., 2003] reflects lateral relationships between internal andexternal sub-domains of the MFB. The sedimentation in thedepocentral basinal areas of the “Mixed Successions” seemsto be the most plausible interpretation. In this way, thissynorogenic “flysch family” constitutes an important tool fortectono-sedimentary correlations.

Bull. Soc. géol. Fr., 2014, no 5

GEODYNAMIC EVENTS RECONSTRUCTED IN THE WESTERN TETHYS 333

Usuario
Tachado
Usuario
Texto insertado
Betic Cordillera [Alcalá et al., 2013]

DISCUSSION

Different problems are related to the MFB domain such as:1) the type of basement (continental, oceanic, and/or thin-ning crust); 2) palaeogeographic location; 3) subdomainsand their relationships; 4) sedimentary systems and kind ofsupply; 5) lateral continuity; 6) age of deformation, 7)geodynamic implications

In the literature, many models concerning the peri-Med-iterranean evolution chains can be found, but comparisonsamong them are often not easy for differences in the dataorigin and approach. The model presented here is based onclassical geology (terrain, stratigraphic record, structuralrelations, mineralogical-petrographic analyses, correlationswith literature data, etc.) and some others are based onstructural analysis and geophysical as well as lithospherekinematics (sometimes speculative) but not always with acorresponding initial palaeogeography or a fine chronology.

In this sense, some main subjects need further discussionbelow: (1) Cretaceous palaeogeograpy, existence or not ofan intermediate microplate between Europe and Africa, andlocation of the oceanic branches; (2) relationships betweendepositional systems (compatible source areas) and defor-mation phases; (3) extension to the northern Apennines ofthe internal (“Mauretanian”-like) sedimentation.

Cretaceous palaeogeograpy, existence or not of amicroplate between Europe and Africa and locationof the oceanic branches

It is well known that Betic-Maghrebian chains and theirprosecution in the southern Apennines show similarpalaeogeographic domains and sub-domains and palaeo-tectonic evolution [Bouillin et al., 1970; Didon et al., 1973;Durand-Delga 1980a; 1980b; Durand-Delga and Fontboté,1980; Bouillin et al., 1986; Guerrera et al., 1993; 2005;

Bull. Soc. géol. Fr., 2014, no 5

334 GUERRERA F. et al.

FIG. 3. – External (“Massylian” sub-domain) stratigraphic successions of the Betic, Maghrebian and south Apennine chains.

2012; Bonardi et al., 1996, 2001; among others, cum bibl.]but the location of the oceanic branches and the presence,or not, of a microplate between Africa and Europe is stilldebated.

Models not considering an intermediate microplate

These consider an initial and unique oceanic branch calledthe Ligurian-Tethys as the old boundary between Europeand Africa to the west of the Alps [Bouillin, 1986; Bouillinet al., 1986; Durand-Delga, 1980a; 1980b; Durand-Delgaand Fontboté, 1980; Schettino and Turco, 2011; Stampfliand Borel, 2002; Gigliuto et al., 2004; Capitano and Goes,2006; Fildes et al., 2010; Vergés and Fernàndez, 2012;among others]. A palaeogeographic element calledAlKaPeCa for Bouillin [1986] (responsible in the future ofthe Internal Zones of the Alpine peri-Mediterranean belts)is defined as an element belonging to the European marginbut not separated by an oceanic branch.

Models considering an intermediate microplate

For us and many other authors the existence of an interme-diate micro-continent is needed to explain many pieces ofgeological evidences. The older papers that have proposedan intermediate microplate between Africa and Europeplates in their models were Wildi [1983], Martin-Algarra[1987], and Doglioni [1992]. Later, on the basis of geologi-cal data, Guerrera et al. [1993] reconstructed the differentpalaeogeographic domains and the main palaeotectonicevents of the Maghrebian chain while considering the pres-ence of a “Mesomediterranean terrane” between Europe andAfrica plates. This was subsequently developed by several

authors with new data coming from different sectors of thechains [de Capoa et al., 1997; 2000; 2002; 2003; 2004;2007; Durand-Delga et al., 2000; Zaghloul et al., 2002;2006; Bonardi et al., 2003; Guerrera et al., 2005; 2012;Belayouni et al., 2006; 2010; 2012; Crespo-Blanc andFrizon de Lamotte, 2006; Alcalá et al., 2013; among others,cum bibl.]. Models coming from these latter studies show apalaeogeography of central-western Mediterranean areafrom early Cretaceous to Miocene, illustrating the locationof oceanic areas (Névado-Filabride, Piemontese-Ligurian,MFB and LO) and their relationships with Iberia-Europe,Africa and Adria margins. Most of these models also con-sider the presence of a Hercynian microplate (MM) betweenthe European and African plates [Guerrera et al., 2005;2012; Belayouni et al., 2010; 2012; 2013; Alcalá et al.,2013]. This palaeogeographic reconstruction, resulting alsofrom the comparison between the Betic, Maghrebian andApennine chains, is frequently used for the Gibraltar arc[Martin-Algarra, 1987; Frizon de Lamotte et al., 2000;Chalouan et al., 2001; Michard et al., 2002; de Capoa et al.,2003; Chalouan and Michard, 2004; Mauffret et al., 2004,Vera, 2004; among others, cum bibl.] and for theCalabro-Peloritani arc [Perrone et al., 2008; Bonardi et al.,1996; 2001; 2003; among others, cum bibl.].

Other models

Handy et al. [2010] proposed an intermediate model be-tween the former ones with a microcontinent calledAlkapeca separated by two oceanic branches (westernLigurian and eastern Ligurian) from Iberia and Africa, re-spectively. Other recent papers based on geophysical andlithosphere kinematic [Luján et al., 2006; Vergés and

Bull. Soc. géol. Fr., 2014, no 5

GEODYNAMIC EVENTS RECONSTRUCTED IN THE WESTERN TETHYS 335

FIG. 4. – Mixed (between internal and external subdomains) stratigraphic successions of the Betic, Maghrebian and south Apennine chains.

Usuario
Tachado
Usuario
Texto insertado
LB

Fernàndez, 2012; Platt et al., 2013] are focused on thePalaeogene to Miocene period, the subductional stile, theformation of the Betic-Rifian arc, and the opening of thewestern Mediterranean. These papers proposed a westwardmotion of the Alboran domain (our western part of the MM)mainly during the Miocene coeval to a westward rollbackand retreating of the lithosphere involved in the subductionof the African and Iberian plates under the Alboran domainwith the consequent thinning in the back arc area and theopening of the western Mediterranean.

Relationships between depositional systems (sourceareas) and deformation phases

Sedimentary successions from MFB-LO, locally coveringtheir oceanic substratum, crop out widely exposed from Gi-braltar arc to the southern Apennines. These form severalnappes, sandwiched between the basement nappes, origi-nated from MM (Internal domain) and nappes developedwithin Iberia, North Africa and west-Adria palaeo-margins(External domains).

In Algeria, a “Flysch Maurétanien” and a “FlyschMassylien” are found [Gélard, 1969; Bouillin et al., 1970],distinguishing different Cretaceous-Palaeogene deposits,and characterizing internal (northern) and external (south-ern) sub-domains of MFB, respectively. This distinctionwas later extended to all MFB from the Betic cordilleras toSicily [Didon, 1969; Durand-Delga, 1980b; Wildi, 1983;Guerrera et al., 1993; Martin-Algarra, 1987; de Capoa etal., 2000].

Internal (“Mauretanian”) and external (“Massylian”)sub-domains are characterized by successions reflectingdifferent lithological characters and tectonic evolution oftheir source areas. Clastic supply of internal deposits de-rived from erosion of MM, composed of pre-Alpine base-ments and Meso-Cenozoic sedimentary covers, and locallyaffected by Alpine metamorphism, whereas the externalones were fed by African craton [Durand-Delga, 1980a;Hoyez, 1989; Guerrera et. al., 1992; 2012; Thomas et al.,2010a; 2010b; cum bibl.]. Differences between internal andexternal deposits become particularly evident in early Mio-cene when a thick sedimentation of immature sandstonesoccurred in the internal sub-domain, while the highly ma-ture quartzarenitic supply (Numidian Fm) was deposited inthe external one. Transition between internal and externalsedimentation (mixed successions) in the MFB reveals amarked interference by two depositional systems [Guerreraet al, 2012; cum bibl.] since early Cretaceous [Zaghloul etal., 2003].

Some other models (not considering the existence of theintermediate microplate) propose a European provenancefor a basin separating the European from the African plates[Gigliuto et al., 2004; Fildes et al., 2010]. These authors ig-nore important data from literature (e.g. the existence ofvery different supplies; “mixed successions”; integrated andmore recent biostratigraphy, etc.) as replicated by Careri etal. [2004], Thomas et al. [2010a; 2010b] and Guerrera et al.[2012] and references therein.

According to Durand-Delga [1969; 1980a], Bouillin[1977; 1986], and Gélard [1979] the sedimentary evolutionof MFB ends with late Eocene levels due to a late Lutetiantectonic phase causing an initial deformation of MFB and

leading to a new palaeogeography where overlyingPriabonian-early Miocene deposits should represent a dif-ferent tectono-sedimentary cycle. Although the occurrenceof an Eocene tectonic phase has long been debated, thereare no data supporting the Late Eocene continental collisionbetween the MM and Africa-Adria plates suggested byJolivet and Faccenna [2000] and Chalouan and Michard[2004]. The Late Crececeous-Paleogene tectonics affectedthe northern area of the central-western Tethys (Alps, Pyre-nees, Iberian range, N-NW part of the MM, NE Corsica andLigurides) due to the subduction of the Névado-Filabrideand Liguride-Piemontese ocanic basins below the MM(fig. 5) with subsequent formation of the Alpine chain s.s.[Martin-Algarra, 1987; Guerrera et al., 1993; Frizon deLamotte et al., 2000; Lustrino et al., 2011; Alcalá et al.,2013; among others, cum bibl.]. In southern areas, as thesouthern part of the MM and the MFB, the Paleogene tec-tonics was deep resulting in basement folding deduced fromchange of facies and minor unconformity surfaces found inthe sedimentary successions [Belayouni et al., 2012]. Thetectonics became superficial reaching the surface asthrustings at latest Oligocene and mainly Early Miocene[Martín-Martín et al., 1997a, 1997b]. Really, many continu-ous Mesozoic-early Miocene successions, whose deforma-tion started only during the Aquitanian-Burdigalian times,have been described [Martin-Algarra, 1987; Guerrera et al.,1993; 2005; 2012; cum bibl.]. Thus, pre-Neogene tectonicsmust be excluded as the main deformation and destructionof MFB. Likewise, successions of LB are continuous up toearly Miocene and start to deform in the Burdigalian[Lentini, 1979; Zuppetta et al., 1984; Bonardi et al., 1988;Critelli et al., 1994; Di Staso and Giardino, 2002]. Thus,here the hypothesis of a middle Miocene accretion of theMFB-LO units against the Africa-Adria margins is sup-ported [Guerrera et al., 1993; Doglioni et al., 1998; 1999;Vergés and Sàbat, 1999; Frizon de Lamotte et al., 2000;Mauffret et al., 2004; Roca et al., 2004].

The end of MFB-LB being structured in nappes isdiachronic and related to the tectonic escape of continentalblocks due to the Africa/Europa convergence and the Medi-terranean sea opening since the Burdigalian (fig. 5). MMwas fractured during this opening and several minor blocks(such as the Alboran, Kabylies, Calabria-Peloritani,Tuscanides; see palaeogeographic sketch from figure 1)were incorporated into the current Betic and Maghrebianchains [Durand Delga, 1980a; Durand Delga and Fontboté1980; Wildi, 1983; Bouillin, 1986; Bouillin et al., 1986;Martín-Algarra, 1987; Roure et al., 2012]. Older structuringis recorded in the Betic-Rifian arc with the tectonic escapeof the Alboran block (western part of the MM, includingGhomaride-Malaguide-Alpujarride; see palaeogeographicsketch from figure 1) north-westwards, first (duringOligocene-Aquitanian), and then westwards duringAquitanian-Burdigalian times. The main deformation wasfollowed by a southwards tectonic escape of the Kabylideblock to build the Tellian zone also during Burdigalian.More recent deformation is registered in Sicily and thesouthern Apennines (Calabria), where structuring is datedto the middle Miocene, representing an eastward tectonicescape. This evolution therefore shows an anti-clockwiserotation of main sense of convergence of units by about of200 degrees (fig. 5).

Bull. Soc. géol. Fr., 2014, no 5

336 GUERRERA F. et al.

Usuario
Tachado
Usuario
Texto insertado
LB

Extension of the internal sedimentation to thenorthern Apennines

Terrains recognized both in the southern (internal LB :North-Calabrian, Albanella, Corleto and Rocca Imperialeunits) and northern (Calvana unit of Val Marecchia nappe)Apennines (fig. 2) indicate the same tectono-sedimentaryevolution of the different units of internal sub-domain ofBetic and MFB [Guerrera et al., 1993; 2005; Bonardi et al.,2003; de Capoa et al., 2003; 2013]. New data compiled onthe Calvana nappe (Ligurides, northern Apennine) [Perroneet al., 1998; 2008; 2014; Plesi et al., 2002; de Capoa et al.,2003; Di Staso et al., 2009; cum bibl.] show a continuousmiddle Jurassic to early Miocene stratigraphic succession(column no 7 of fig. 2). Terrains of Calvana supergroup,considered as having sedimented in the easternmost Exter-nal Ligurian domain, show a peculiar stratigraphic succes-sion, characterized by a fine-grained sedimentationreaching up to the Palaeocene (lacking of HelminthoidFlysch) and followed by early-middle Eocene calcareousand marly-calcareous turbidites (Monte Morello or AlbereseFm). These features have led some authors to consider theCalvana supergroup as sedimented in Sub-Ligurian domainand not in External Ligurian domain [Vai and Castellarin,1992]. The first compressive phase occurred during theearly Miocene, being sealed by Langhian up-thrust basin-related sediments (San Marino Limestone Fm), unconform-ably lying above Calvana terrains. Thus, the stratigraphicrecord suggests the persistence up to this age of anundeformed oceanic realm located in an external positionwith respect the Piemontese-Ligurian one and separatedfrom this latter by a microcontinent (MM), resulting later in

Tuscan nappes and nappes involving a pre-Alpine crystal-line basement of Calabria-Peloritani arc. The presence of anophiolitic succession (peridotites, gabbros, basalts, pillow-lavas, and pillow breccias and Diaspri Fm) at the base ofCalvana nappe allows this sedimentation to be consideredas ocean-derived, deformed not before the early Miocene[Plesi et al., 2002]. In fact, the occurrence of continuoussedimentation reaching early Miocene suggests the persis-tence up to this age of an undeformed oceanic area. Thisarea represents a second oceanic branch located externally(eastward) compared to Ligurian-Piemontese ocean, de-formed only in the Miocene, which must be considered ex-ternal also with respect to the Tuscan domain. This latter,deformed not before early Miocene, probably represents thenorthern prosecution of the MFB-LO external oceanicbranch and the Tuscan domain, separating two oceanicrealms, the prosecution of the MM, as well as Calabrian-Peloritanian continental domain [Perrone, 1996; de Capoaet al., 2003; Perrone et al., 1998; 2008; 2014; cum bibl.].Hence, the palaeogeographic and palaeotectonic evolutionof southern and northern Apennines should be much moresimilar, to what is now traditionally accepted, to theMaghrebian chain.

CONCLUSION

Despite some variations in age, similar evolution and goodcorrelations were found in all segments of studied chains.The main conclusions have been graphically summarized inTable 1, correlating the study sectors on: the suite of mainrocks, tectonic regional cadre, basin stage, and geodynamicevolution. At first sight, table I evidences a lateral variationin the age of the basin stages and in the geodynamic evolu-tion from west to east. While in the western chains (Betic toTunisian Tell) certain homogeneity is found in the ages, adiachronism of different eastern sectors is found. In fact, ayoungering in the geodynamic evolution is reflected in theBetic-African branch to Sicily, South Apennines, and NorthApennines. Period to period, it can be summarized asfollows:

(1) Triassic to early Jurassic. Continental red beds(Verrucano-like) in the margins of the continental blocks in-dicate the beginning of the alpine-like extension, markingthe beginning of geologic evolution in all sectors (pre-rift-ing stage giving rise to several tectonic alignments and thusthe future Tethyan branches);

(2) Late Triassic to Jurassic p.p.. The neritic to pelagiclimestone platform indicate the prosecution of extension,giving rise to the rifting stage with marine Tethyan narrowbranches that opened over thinned continental crust;

(3) Late Jurassic to Earliest Cretaceous. The ophiolitesuite and deep marine sedimentary cover (radiolarites) withblack shales intervals in central basins represent theoceanization stage with oceanic crust creation;

(4) Cretaceous p.p.. Very deep marly successions withanoxic facies-type black-shales are related to drifting stageup to the maximum separation of two opposite continentalmargins. The extensive phase (prerifting, rifting and drift-ing) Triassic to Cretaceous p.p., seems to evidence adiachronism in the aperture of the MFB and the LB, the lat-ter being younger;

Bull. Soc. géol. Fr., 2014, no 5

GEODYNAMIC EVENTS RECONSTRUCTED IN THE WESTERN TETHYS 337

FIG. 5. – Cretaceous palaeogeographic sketch of the central-western Te-thyan domain. In purple, the future Alpine chains (Cretaceous-Palaeogeneevolution) and, in dark gray, the most external branch of the Betic-Maghre-bian-Apennine chains (Miocene evolution). (Colors refer to pdf version).

Usuario
Tachado
Usuario
Texto insertado
Val Marecchia
Usuario
Tachado

(5) Latest Cretaceous-Paleogene p.p.. Pelagic marly toclayish sedimentation with local hemipelagic limestone in-tercalations, slump levels, and rare turbidites indicate thetectonic inversion (from distensive to compressive) and thebeggining of deep deformations (growing folds and blindthrusts) affecting the overlying sedimentation with the ap-pearance of facies diversification and local unconformitysurfaces (pre-foredeep stage) mainly in the MFB;

(6) Late Oligocene-early Miocene. This is the mainturbiditic (pelitic-arenitic from internal and quartzareniticfrom external margins) supply with a mixed-successionscentral basin. Sedimentation of MFB also shows aglauconite marker-bed at the Oligo-Aquitanian boundary inthe Tunisian area, black shale intervals, and widespreadsilexite and vulcanoclastic marker beds during theBurdigalian. This sedimentation represents the coevalforedeep stage of the deformation (syn-flysch deposits) andmarks the beginning (paroxysmal phase) of orogenic pro-cess. Asynchronism can be deduced from western Betics tonorthern Apennine, mainly evidenced in Sicily, South andNorth Apennine, where the turbiditic supply reaches themiddle Miocene. This is thought to be related to the closingof the Betic-Maghrebian branch (MFB) before the Sic-ily-Appenine branch (LB);

(7) Middle Miocene. Shallowing upward marine depos-its with terrigenous supply reduction and with a marked

control of sedimentation by tectonic process are interpretedas late-orogenic flysches (piggy-back or thrust-top basins)with the development of thrusts, back-thrusts, gravitationalslidings, melanges, etc. and affected by youngerdeformational events, sealing internal and external nappestacks. This ended with the incorporation of all tectonicunits of the rising chains into an orogenic wedge and con-temporaneous to Mediterranean opening;

(8) Late Miocene to Pliocene. Very shallow marine de-position (Messinian evaporitic succession) or continental(fluvial red beds or marly-calcareous lacustrine beds) af-fected by several main unconformities is considered to be apost-nappe sedimentary cycle (molassic and/orintramontane deposition) related to the tectogenesis withnew basin creations over the orogen (contemporaneous tothe Mediterranean opening progression), sealing all previ-ous orogenic structures and with a sedimentation progres-sively younger outwards.

Acknowledgements. – Research supported by CGL2011-30153-CO2-02 andCGL2012-32169 research project (Spanish Ministry of Education andScience), by Urbino University found (head researcher F. Guerrera), and byResearch Groups and projects of the Generalitat Valenciana from AlicanteUniversity (CTMA-IGA). The English of the manuscript was revised byMr. David Nesbitt. The authors thank an anonymous referee and DamienDo Couto for their helpful review.SGF associate editor : Romain Augier

Bull. Soc. géol. Fr., 2014, no 5

338 GUERRERA F. et al.

TABLE I. – Main correlated basin stages and geodynamic events along the Betic, Maghrebian and Apennine chains.

Usuario
Nota adhesiva
Table I is missing!

References

ABBATE E. & SAGRI M. (1970). – The eugeosynclinal sequences. – Sed.Geol., 4, 251-340.

ALCALÁ F.J., LÓPEZ-GALINDO A. & MARTÍN-MARTÍN M. (2012). – Clay mine-ralogy as a tool for integrated sequence stratigraphic and palaeo-geographic reconstructions: Late Oligocene-Early Aquitanianwestern internal South Iberian margin, Spain. – Geol. J., doi:10.1002 / gj.2451.

ALCALÁ F.J., GUERRERA F., MARTÍN-MARTÍN M., RAFFAELLI G. & SERRANO

F. (2013). – Geodynamic implications derived from Numi-dian-like distal turbidites deposited along the Internal-Externaldomain boundary of the Betic cordillera (S Spain). – TerraNova, 26, 119-129.

BELAYOUNI H., DI STASO A., GUERRERA F., MARTÍN-MARTÍN M., SERRANO

F., MARIO TRAMONTANA M. (2006). – New data about the Piedi-monte Formation (Monte Soro unit): insights and constraints tothe geodynamic evolution of the Sicilian Maghrebids. – Geodin.Acta – The European Journ.Geodynamics, 19/2, 117-133.

BELAYOUNI H., BRUNELLI D., CLOCCHIATTI R., DI STASO A., EL AMRANI EL

HASSANI I., GUERRERA F., KASSAA S., LARIDHIOUAZAA N.,MARTÍN-MARTÍN M., SERRANO F. & TRAMONTANA M. (2010). –La Galite archipelago (Tunisia, North Africa): Stratigraphic andpetrographic revision and insights for geodynamic evolution ofthe Maghrebian chain. – J. African Earth Sci., 56, 15-28.

BELAYOUNI H., GUERRERA F., MARTÍN-MARTÍN M. & SERRANO F. (2012). –Stratigraphic update of the Cenozoic Sub-Numidian formationsof the Tunisian Tell (North Africa): Tectonic/sedimentary evolu-tion and correlations along the Maghrebian chain. – J. AfricanEarth Sci., 64, 48-64.

BELAYOUNI H., GUERRERA F., MARTÍN-MARTÍN M. & SERRANO F. (2013). –Paleogeographic and geodynamic Miocene evolution of the Tuni-sian Tell (Numidian and post-Numidian successions): bearingwith the Maghrebian chains. – Intern. J. Earth Sci. (Geol. Rundsch.),102, 831-855.

BONARDI G., AMORE F.O., CIAMPO G., DE CAPOA P., MICONNET P. & PER-

RONE V. (1988). – Il “Complesso Liguride” Auct.: stato delle co-noscenze e problemi aperti sulla sua evoluzione appenninica ed isuoi rapporti con l’Arco calabro. – Mem. Soc. Geol. It., 41,17-35.

BONARDI G., GIUNTA G., MESSINA A., PERRONE V. & RUSSO S. (1996). –The Calabria-Peloritani arc and its correlation with northernAfrica and southern Europe. – IGCP Project 276, Newsletter 6(spec. iss.), Messina (1996) 27-86.

BONARDI G., CAVAZZA W., PERRONE V. & ROSSI S. (2001). – Calabria-Pelo-ritani terrane and northern Ionian sea. In: G.B. VAI & I.P. MARTI-

NI, Eds., Anatomy of an orogen: The Apennines and adjacentMediterranean basins. – Kluwer Acad. Publ., Dordrecht/Boston/London, 287-306.

BONARDI G., DE CAPOA P., DI STASO A., ESTEVEZ A., MARTÍN-MARTÍN M.,MARTÍN-ROJAS I., PERRONE V. & TENT-MANCLÚS J.E. (2003). –Oligocene to Early Miocene depositional and structural evolu-tion of the Calabria-peloritani arc southern terrane (Italy) andgeodynamic correlations with the Spain Betics and Morocco Rif.– Geodyn. Acta – The Europ. J. Geodyn., 16, 149-169.

BOUILLIN J.-P. (1977). – Géologie alpine de la Petite Kabylie dans les ré-gions de Collo et d’El Milia (Algérie). – Thèse Univ. Paris,511p.

BOUILLIN J.-P. (1986). – Le “bassin maghrébin”: une ancienne limite entrel’Europe et l’Afrique à l’ouest des Alpes. – Bull. Soc. géol. Fr.,???????, 2, 547-558.

BOUILLIN J.-P., DURAND-DELGA M., GELARD J.-P., LEIKINE M., RAOULT

J.-F., RAYMOND D., TEFIANI M. & VILA J.-M. (1970). – Défini-tion d’un flysch massylien et d’un flysch maurétanien au seindes flyschs allochtones de l’Algérie. – C. R. Acad. Sci., Paris,270, 2249-2252.

BOUILLIN J.-P., DURAND-DELGA M. & OLIVIER PH. (1986). – Betic-Rifianand Tyrrhenian arcs: distinctive features, genesis and develop-ment stages. In: F. Wezel, Ed., The origin of arcs. – Elsevier,Amsterdam, 1986, 321-338.

CAPITANO F.A. & GOES S. (2006). – Mesozoic spreading kinematics: conse-quences for Cenozoic central and western Mediterranean sub-duction. – Geophys. J. Int., 165, 804-816.

CARMISCIANO R., COCCIONI R., CORRADINI D., D’ALESSANDRO A., GUERRERA

F., LOIACONO F., MORETTI E., PUGLISI D. & SABATO L. (1989). –Nuovi dati sulle “successioni miste” inframioceniche dell’Algeria(Grande Kabilia) e della Sicilia (Monti Nebrodi): confronti conanaloghe successioni torbiditiche nell’Arco di Gibilterra e nell’-Appennino lucano. – Mem. Soc. Geol. It., 38, 551-576.

CARERI G., GUERRERA F., MARTIN-ALGARRA A., MARTIN-MARTIN M.,MESSINA A. & PERRONE V. (2004). – Discussion on petrographyand geochemistry of granitoid pebbles from the Oligocene-Mio-cene deposits of the internal Rifian chain (Morocco): a possibilenew hypothesis of provenante and paleogeographical implica-tions – Discussion. – Geol. Carpathica – Intern. Geol. J., 55/4,341-348.

CHALOUAN A., MICHARD A., FEINBERG H., MONTIGNY R. & SADDIQI O.(2001). – The Rif mountain building (Morocco): A new tectonicscenario. – Bull. Soc. géol. Fr., 172, 603-616.

CHALOUAN A. & MICHARD A. (2004). – The Alpine Rif belt (Morocco): Acase of mountain building in a subduction-subduction-transformfault triple junction. – Pure Appl. Geoph., 161, 489-519.

CRESPO-BLANC A. & FRIZON DE LAMOTTE D. (2006). – Structural evolutionof the external zones derived from the flysch trough and theSouth Iberian and Maghrebian paleomargins around the Gibraltararc: a comparative study. – Bull. Soc. géol. Fr., 177, 5, 267-282.

CRITELLI S., DE CAPOA P., LE PERA E. & PERRONE V. (1994). – Stratigrafia epetrografia delle Arenarie di Albanella (Valle del Calore,Appennino Campano). – Boll. Soc. Geol. It., 113, 451-463.

DECANDIA F.A. & ELTER P. (1972). – La zona ofiolitifera del Bracco nel set-tore compresotra Levanto e la Val Graveglia (Appennino Ligure).– Mem. Soc. Geol. It., 11, 503-530.

DE CAPOA P., GUERRERA F., PERRONE V. & SERRANO F. (1997). – New bios-tratigraphic data on the Frazzanò Formation (Longi-Taorminaunit): consequences on defining the deformation age of the Cala-bria-Peloritani arc southern sector. – Riv. It. Paleont. e Stratigr.,103, 3, 343-356.

DE CAPOA P., GUERRERA F., PERRONE V., SERRANO F. & TRAMONTANA M.(2000). – The onset of the syn-orogenic sedimentation in theFlysch basin of the Sicilian Maghrebids: state of the art and newbiostratigraphic constraints. – Eclogae. Geol. Helv., 93, 65-79.

DE CAPOA P., DI STASO A., GUERRERA F., PERRONE V., TRAMONTANA M. &ZAGHLOUL M.N. (2002). – The Lower Miocene volcaniclastic se-dimentation in the Sicilian sector of the Maghrebian Flysch ba-sin: geodynamic implications. – Geodin. Acta, 15, 141-157.

DE CAPOA P., DI STASO A., GUERRERA F., PERRONE V. & TRAMONTANA M.(2003). – The extension of the Maghrebian Flysch basin in theApenninic chain: paleogeographic and paleotectonic implica-tions. – Atti Congr. “Etat des connaissances géologiques des ré-gions nord du Maroc: la Chaîne rifaine dans son cadreMéditerranéen occidental, Rabat (Maroc). – Travaux. Inst. Sci.Rabat, Géogr. Phys., 21, 77-92.

DE CAPOA P., DI STASO A., GUERRERA F., PERRONE V. & TRAMONTANA, M.(2004). – The age of the oceanic accretionary wedge and conti-nental collision in the Sicilian sector of the Maghrebian chain. –Geodin. Acta, 17, 331-348.

DE CAPOA P., DI STASO A., PERRONE V. & ZAGHLOUL M.N. (2007). – The ageof the foredeep sedimentation in the Betic-Rifian Mauretanianunits: a major constraint for the reconstruction of the tectonic evo-lution of the Gibraltar arc. – C.R. Geoscience, 339, 161-170.

DE CAPOA P., D’ERRICO M., DI STASO A., PERRONE V., SOMMA R. & ZAG-

HLOUL M.N. (2013). – Biostratigraphic constraints for the paleo-geographic and tectonic evolution of the Alpine central-westernediterranean chains (Betic, Maghrebian and Apenninic chains).– Rend. Online Soc. Geol. It., 25, 43-63.

DIDON J. (1969). – Etude géologique du Campo de Gibraltar (Espagne mé-ridionale). – Thèse Univ. Paris, 539p.

DIDON J., DURAND-DELGA M. & KORNPROBST J. (1973). – Homologies géo-logiques entre les deux rives du détroit de Gibraltar. – Bull. Soc.géol. Fr., 15, 77-105.

DI STASO A. & GIARDINO S. (2002). – New integrate biostratigraphic dataabout the Saraceno Formation (North-Calabrian unit; southernApennines). – Boll. Soc. Geol. It., v. spec., 1, 517-526.

Bull. Soc. géol. Fr., 2014, no 5

GEODYNAMIC EVENTS RECONSTRUCTED IN THE WESTERN TETHYS 339

DI STASO A., PERROTTA S, GUERRERA F., PERRONE V. & TRAMONTANA M.(2009). – New biostratigraphic and petrographic data from thePoggio Carnaio Sandstone Fm (Val Marecchia nappe): insightsinto the tectonic evolution of the northern Apennines. – It.J. Geosci., 128, 2, 443-454.

DOGLIONI C. (1992). – Main differences between thrust belts. – Terra Nova,4, 152-164.

DOGLIONI C., MONGELLI F. & PIALLI G. (1998). – Boudinage of the Alpine beltin the Apenninic back-arc. – Mem. Soc. Geol. It., 52, 457-468.

DOGLIONI C., FERNANDEZ M., GUEGUEN E. & SABAT F. (1999). – On the in-terference between the early Apennines-Maghrebides back-arcextension and the Alps-Betics orogen in the Neogene geodyna-mics of the western Mediterranean. – Boll. Soc. Geol. It., 118,75-89.

DURAND-DELGA M. (1969). – Mise au point sur la structure du nord-est dela Berberie. – Publ. Serv. Géol. d’Algérie, 39, 89-131.

DURAND-DELGA M. (1980a). – La Méditerranée occidentale: étapes de sagenèse et problèmes structuraux liés à celle-ci. – Livre Jub. Soc.géol. Fr, Mém. h.s., 10, 203-224.

DURAND-DELGA M. (1980b). – Considérations sur les flyschs du Crétacé in-férieur dans les chaînes alpines d’Europe. – Bull. Soc. géol. Fr.,7, XXII, 15-30.

DURAND-DELGA M. & FONTBOTE J.M. (1980). – Le cadre structural de laMéditerranée occidentale. – Mém. BRGM, 115, 67-85.

DURAND-DELGA M., ROSSI M., OLIVIER P. & PUGLISI D. (2000). – Situationstructurale et nature ophiolitique des roches basiques jurassiquesassociées aux flychs maghrébins du Rif (Maroc) et de Sicile(Italie). – C.R. Acad. Sci., Paris, 331, 29-38.

FILDES C., STOW D., RIAHI S., SOUSSI M., PATEL U., MILTON J.A. & MARSH S.(2010). – European provenance of the Numidian Flysch in northernTunisia. – Terra Nova, 22, 1-9.

FRIZON DE LAMOTTE D., SAINT BEZAR B., BRACÈNE R. & MERCIER E.(2000). – The two main steps of the Atlas building and geodyna-mics of the western Mediterranean. – Tectonics, 19, 740-761.

GELARD J.-P. (1969). – Le flysch à base schisto-gréseuse de la bordure mé-ridionale et orientale du massif de Chellata: le flysch mauréta-nien (Grande Kabylie). – Bull. Soc. géol. Fr., 7, ???, 676-686.

GELARD J.-P. (1979). – Géologie du nord-est de la Grande Kabylie (un seg-ment des zones internes de l’orogène littoral maghrébin). – ThèseUniv. Dijon, 335p.

GIGLIUTO L.G., OUAZANI-TOUHAMI A., PUGLISI G. & ZAGHLOUL M.N.(2004). – Petrography and geochemistry of granitoid pebblesfrom the Oligocene-Miocene deposits of the internal Rifianchain (Morocco): a possible new hypothesis of provenance andpaleogeographical implications. – Geol. Carpathica, 55, 3,261-272.

GUERRERA F., LOIACONO F. & GRASSO M. (1986). – Dati preliminari sullesuccessioni oligomioceniche “miste” affioranti lungo la CatenaBetico-Maghrebide-Appennino meridionale: una famiglia diflysch con evidenti implicazioni paleogeografiche e paleotetto-niche. – Boll. Soc. Geol. It., 105, 99-110.

GUERRERA F., LOIACONO F., PUGLISI D. & MORETTI E. (1992). – The Numi-dian nappe in the Maghrebian chain: State of the art. – Boll.Soc., Geol., It., 111, 217-253.

GUERRERA F., MARTIN-ALGARRA A. & PERRONE V. (1993). – Late Oligo-cene-Miocene syn-/late-orogenic successions in western andcentral Mediterranean chains from the Betic cordillera to thesouthern Apennines. – Terra Nova, 5, 525-544.

GUERRERA F., MATTIOLI M., PUGLISI D., RENZULLI A., SANTI P., VENERI F.,ASSORGIA A. & BALOGH K. (1998). – An overview of the UpperOligocene-lower Miocene volcanogenic sediments in the wes-tern Mediterranean: what volcanic source areas and geodynamicconstraints? – Atti “Xth Congress R.C.M.N.S. “New lights onMediterranean chronology, Tethys-Parathetys connections”. –Romanian J. Strat., 78, 43-56.

GUERRERA F., MARTÍN-MARTÍN M., PERRONE V. & TRAMONTANA M. (2005). –Tectono-sedimentary evolution of the southern branch of thewestern Tethys (Magrebian Flysch basin and Lucanian ocean). –Terra Nova , 17, 358-367.

GUERRERA F., MARTÍN-ALGARRA A. & MARTÍN-MARTÍN M. (2012). – Tecto-no-sedimentary evolution of the “Numidian Formation” and La-teral Facies (southern branch of the western Tethys): constraintsfor central-western Mediterranean geodynamics. – Terra Nova,24, 34-41.

HANDY M.R., SCHMID S.M., BOUSQUET R., KISSLING E. & BERNOULLI D.(2010). – Reconciling plate-tectonic reconstructions of AlpineTethys with the geological–geophysical record of spreading andsubduction in the Alps. – Earth-Sci. Rev., 102, 121-158.

HOYEZ B. (1989). – Le Numidien et les flyschs oligo-miocènes de la bor-dure sud de la Méditerranée occidentale. – Thèse Univ. Lille,495p.

JOLIVET L. & FACCENNA C. (2000). – Mediterranean extension and the Africa-Eurasia collision. – Tectonics, 19, 1095-1106.

LENTINI F. (1979). – Le Unità Sicilidi della Val d’Agri (Appennino Luca-no). – Geol. Romana, 18, 215-225.

LUJÁN M., CRESPO-BLANC A. & BALANYÁ C. (2006). – The Flysch troughthrust imbricate (Betic cordillera): a key element of the GibraltarArc orogenic wedge. – Tectonics, 25, 1-17.

LUSTRINO M., DUGGEN S. & ROSENBERG C. (2011). – The central-westernMediterranean: Anomalous igneous activity in an anomalouscollision tectonic setting. – Earth Sci. Rev., 104, 1-40.

MARTÍN-ALGARRA A. (1987). – Evolución geológica Alpina del contactoentre las zonas internas y las zonas externas de la cordillera Bé-tica. – Published D. Thesis, University of Granada PublishingService (Spain), 1171p.

MARTÍN-ALGARRA A, MESSINA A, PERRONE V., RUSSO S, MAATE A. &MARTÍN-MARTÍN M. (2000). – A lost realm in the Internal do-mains of the Betic-Rif orogen (Spain and Morocco): Evidencefrom conglomerates and consequences for Alpine geodynamicevolution. – J. Geol., 108, 447-467.

MARTÍN-MARTÍN M., EL MAMOUNE B., MARTÍN-ALGARRA A. & SERRA-KIEL

J. (1997a). – La formation As, datée de l’Oligocène, est im-pliquée dans les charriages des unités malaguides supérieures dela Sierra Espuña (zones internes bétiques, province de Murcie,Espagne). – C.R. Acad. Sci., Paris, 325, 861-868.

MARTÍN-MARTÍN M., EL MAMOUNE B., MARTÍN-ALGARRA A., MARTÍN-PÉREZ J.A. & SERRA-KIEL J. (1997b). – Timing of deformation inthe Malaguide complex of the Sierra Espuña (SE Spain). Geody-namic evolution of the Internal Betic zone. – Geol. Mijnb. 75,309-316.

MAUFFRET A., FRIZON DE LAMOTTE D., LALLEMANT S., GORINI C. & MAIL-

LARD A. (2004). – E-W opening of the Algerian basin (westernMediterranean). – Terra Nova, 16, 257-264.

MICHARD A., CHALOUAN A. FEINBERG H., GOFFÉ B. & MONTIGNY R.(2002). – How does the Alpine belt end at Gibraltar? A collageastride a plate boundary in the West Mediterranean area (Moroc-co, Spain). – Bull. Soc. géol. Fr., 173, 3-15.

PERRONE V. (1996). – Une nouvelle hypothèse sur la position paléogéogra-phique et l’évolution tectonique des unités de Verbicaro et deSan Donato (région calabro-lucanienne; Italie): implications surla limite Alpes-Apennin en Calabre. – C. R. Acad. Sci., Paris,322, 877-884.

PERRONE V., DE CAPOA P. & CESARINI F. (1998). – Remise en question, àpropos de la nappe du Val Marecchia, d’attributions paléogéo-graphique et structurales de l’Apennin Nord-oriental (Italie). –C.R. Acad. Sci., Paris, 326, 347-353.

PERRONE V., DI STASO A. & PERROTTA S. (2008). – The evolution of the wes-tern Adriatic margin and contiguous oceanic area: open problemsand working hypotheses. – Boll. Soc. Geol. It., 127, 357-373.

PERRONE V., PERROTTA S., MARSAGLIA K., DI STASO A. & TIBERI V. (2014). –The Oligocene ophiolite-derived breccias and sandstones of theVal Marecchia nappe: Insights for paleogeogrphy and evolutionof northern Apennines (Italy). – Palaeogeogr. Palaeoclimatol.Palaeoecol., 394, 128-143.

PLATT J.P., BEHR W.M., JOHANESEN K. & WILLIAMS J.R. (2013). – The Be-tic-Rif arc and Its orogenic hinterland: A review. – Ann. Rev.Earth Planet. Sci., 41, 313-357.

PLESI G., GALLI M. & DANIELE G. (2002). – The Mts Rognosi Ophiolithicunit (cfr. Calvana unit Auct.): paleogeographic position in theExternal Ligurian domain, relationships with the tectonic unitsderived from Adriatic margin. – Boll. Soc. Geol. It., 1, 273-284.

PUGA E. (1990). – The Betic ophiolitic association. – Ofioliti, 15, 97-117.

Bull. Soc. géol. Fr., 2014, no 5

340 GUERRERA F. et al.

ROCA E., FRIZON DE LAMOTTE D., MAUFFRET A., BRACENE R., VERGES J.,BENAOUALI N., FERNANDEZ M., MUNOZ J.A. & ZEYEN H. (2004). –TRANSMED Transect II: Aquitaine basin-Pyrenees-Ebro ba-sin-Catalan coastal ranges-Valencia trough-Balearic promonto-ry-Algerian basin-Kabylies-Atlas-Saharan domain. In: W.CAVAZZA, F. ROURE, W. SPAKMAN, G.M. STAMPFLI AND P.A. ZIE-

GLER, Eds, The TRANSMED atlas: The Mediterranean regionfrom crust to mantle. – Springer Verlag, Heidelberg

ROURE F., CASERO P. & ADDOUM B. (2012). – Alpine inversion of the NorthAfrican margin and delamination of its continental lithosphere. –Tectonics, 31, 1-28.

SANZ DE GALDEANO C. (1990). – Geologic evolution of the Betic cordille-ras in the western Mediterranean, Miocene to the present. – Tec-tonophysics, 172, 107-119.

SANZ DE GALDEANO C. (1997). – La zona interna Bético-Rifeña. – Mono-grafi´as Tierras del Sur. Univ. Granada, España, 316p.

SCHETTINO A. & TURCO E. (2011). – Tectonic history of the western Tethyssince the Late Triassic. – Geol. Soc. Amer. Bull., 123, 1/2, 89-105.

STAMPFLI G.M. & BOREL G.D. (2002). – A plate tectonic model for the Pa-leozoic and Mesozoic constrained by dynamic plate boundariesand restored synthetic oceanic isochrones. – Earth Planet. Sci.Lett., 196, 17-33.

TENDERO J.A., MARTÍN-ALGARRA A., PUGA E. & DÍAZ DE FEDERICO A.(1993). – Lithostratigraphie des métasédiments de l’associationophiolithique Névado-Filabride (SE Espagne) et mise en évi-dence d’objets ankéritiques évoquant des foraminifères plancto-niques du Crétacé: conséquences paléogéographiques. – C. R.Acad. Sci., Paris, 316, 1115-1122.

THOMAS M.F.H., BODIN S., REDFERN J. & IRVING D.H.B. (2010a). – A cons-trained Africa-craton source for Cenozoic Numidian Flysch:Implications for the paleogeography of the western Mediterra-nean basin. – Earth Sci. Rev., 101, 1-23.

THOMAS M.F.H., BODIN S. & REDFERN J. (2010b). – Comment on: ’’Euro-pean provenance of the Numidian flysch in northern Tunisia’’[Fildes et al., 2010]. – Terra Nova, 22, 6, 501-505.

VAI G.B. & CASTELLARIN A. (1992). – Correlazione sinottica delle unitàstratigrafiche 1082 nell’Appennino settentrionale. – Studi Geol.Camerti, V. Spec. CROP 1-1A, 171-185.

VERA J.A. (2004). – Geología de España. – Soc. Geol. España, Inst. Geol. yMinero, Madrid.

VERGES J. & FERNANDEZ M. (2012). – Tethys-Atlantic interaction along theIberia-Africa plate boundary: The Betic-Rif orogenic system. –Tectonophysics, 579, 144-172.

VERGES J. & SABAT F. (1999). – Constraints on the Neogene Mediterraneankinematic evolution along a 1000 km transect from Iberia toAfrica. In: B. Durand, L. Jolivet, F. Horvath and M. Séranne,Eds. – Geol. Soc. Sp. Publ., 156, 63-80.

WILDI W. (1983). – La chaîne tello-rifaine (Algérie-Maroc-Tunisie): struc-ture, stratigraphie et évolution du Trias au Miocène. – Rev. Géol.Dyn. Géogr. Phys. 24, 201-297.

ZAGHLOUL M.N., GUERRERA F., LOIACONO F., MAIORANO P. & PUGLISI D.(2002). – Stratigraphy and petrography of the Beni Ider flysch inthe Tétouan area (Rif chain, Morocco). – Boll. Soc. Geol. It.121, 69-85.

ZAGHLOUL M.N., GUERRERA F., TUCKER M.E., EL MOUTCHOUN B., OUAZANI

TOUHAMI A. & PUGLISI D. (2003). – New petrographic and sedi-mentological data from Early Cretaceous mixed succession(Flysch basin domain; northern Rif, Morocco): provenance andpaleogeography of the Mauretanian and Massylian sub-domains. –17ème Coll. Bassins Sedim. Marocains (CBSM), Rabat, 2003,Abs., 153-155.

ZAGHLOUL M.N., DI STASO A., DE CAPOA P. & PERRONE V. (2006). – Occur-rence of upper Burdigalian silexite beds within the Beni Iderflysch Fm. In the Ksar-es-Seghir area (Maghrebian flysch basin,northern Rif, Morocco): correlations and geodynamic implica-tions. – Boll. Soc. Geol. It., 126, 223-239.

ZUPPETTA A., RUSSO M. & TURCO E. (1984). – Alcune osservazioni sulleTufiti di Tusa nell’area compresa tra Valsinni e Rocca Imperiale(confine calabro-lucano). – Boll. Soc. Geol. It., 103, 623-627.

Bull. Soc. géol. Fr., 2014, no 5

GEODYNAMIC EVENTS RECONSTRUCTED IN THE WESTERN TETHYS 341


Recommended