+ All Categories
Home > Documents > Structure and Physical Properties of PZT-PMnN-PSN Ceramics Near the Morphological Phase Boundary

Structure and Physical Properties of PZT-PMnN-PSN Ceramics Near the Morphological Phase Boundary

Date post: 12-Mar-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
9
Research Article Structure and Physical Properties of PZT-PMnN-PSN Ceramics Near the Morphological Phase Boundary Nguyen Dinh Tung Luan, 1 Le Dai Vuong, 1,2 Truong Van Chuong, 2 and Nguyen Truong Tho 2 1 e Fundamental Science Department, Hue Industry College, Hue City, Vietnam 2 Department of Physics, College of Sciences, Hue University, Hue City, Vietnam Correspondence should be addressed to Nguyen Dinh Tung Luan; [email protected] Received 1 August 2013; Accepted 11 December 2013; Published 20 January 2014 Academic Editor: Mohammad Mahroof-Tahir Copyright © 2014 Nguyen Dinh Tung Luan et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e 0.9Pb(Zr x Ti 1−x )O 3 -0.07Pb(Mn 1/3 Nb 2/3 )O 3 -0.03Pb(Sb 1/2 Nb 1/2 )O 3 (PZT-PMnN-PSN) ceramics were prepared by columbite method. e phase structure of the ceramic samples was analyzed. Results show that the pure perovskite phase is in all ceramics specimens. e effect of the Zr/Ti ratio on the region of morphotropic phase boundary for PZT-PMnN-PSN ceramics was studied. Experimental results show that the phase structure of ceramics changes from tetragonal to rhombohedral with the increase of the content of Zr/Ti ratio in the system. e composition of PZT-PMnN-PSN ceramics near the morphotropic phase boundary obtained is the ratio of Zr/Ti:49/51. At this ratio, the ceramic has the optimal electromechanical properties: the = 0.61, the max = 29520, the 31 = −236 pC/N, the = 2400, high remanent polarization ( = 49.2 Ccm −2 ), and low coercive field = 10.28 kVcm −1 . 1. Introduction Lead zirconate titanate (PZT) is one of the most commonly used ferroelectric ceramic materials. e material has been studied intensively since discovery of the miscibility of lead titanate and lead zirconate in the 1950s [15]. Due to their excellent dielectric, pyroelectric, piezoelectric, and electrooptic properties, they have a variety of applications in high energy capacitors, nonvolatile memories (FRAM), ultrasonic sensors, infrared detectors, electrooptic devices, and step-down multilayer piezoelectric transformers for AC- DC converter applications [5, 6]. Until now, many ternary and quaternary systems, such as Pb(Ni 1/3 Nb 2/3 )O 3 -PZT, Pb(Y 2/3 W 1/3 )O 3 -PZT, Pb(Mn 1/3 Sb 2/3 )O 3 -PZT, Pb(Mg 1/3 Nb 2/3 )O 3 -Pb(Ni 1/3 Nb 2/3 )O 3 -PZT, Pb(Ni 1/2 W 1/2 )O 3 -Pb(Mn 1/3 Nb 2/3 )O 3 -PZT, and PZT-PMnSbN, [4, 5, 711] have been synthesized by modifications or substitutions to satisfy the requirements of practical applications of piezoelectric transformer. In ceramics manufacturing technology, piezoelectric PZT system ceramics compositions are mostly near the tetragonal- rhombohedral (T-R) morphotropic phase boundary (MPB). e electromechanical response of these ceramics is known to be most pronounced at the MPB. So, there have been many investigations on the coexistence of two phases near MPB in PZT system [3]. e reports suggested the existence of a range of compositions where both tetragonal and rhombohedral phases are thermodynamically stable [7, 12]. In this study, 0.9Pb(Zr x Ti 1−x )O 3 -0.07Pb(Mn 1/3 Nb 2/3 ) O 3 -0.03Pb(Sb 1/2 Nb 1/2 )O 3 (PZT-PMnN-PSN)ceramics in the vicinity of MPB were investigated according to the Zr/Ti ratio content. e purpose of this work is to study structure and ferroelectric and piezoelectric properties in the vicinity of the MPB in detail. Furthermore, the width of coexistence of Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2014, Article ID 821404, 8 pages http://dx.doi.org/10.1155/2014/821404
Transcript

Research ArticleStructure and Physical Properties of PZT-PMnN-PSNCeramics Near the Morphological Phase Boundary

Nguyen Dinh Tung Luan1 Le Dai Vuong12 Truong Van Chuong2

and Nguyen Truong Tho2

1 The Fundamental Science Department Hue Industry College Hue City Vietnam2Department of Physics College of Sciences Hue University Hue City Vietnam

Correspondence should be addressed to Nguyen Dinh Tung Luan ntungluanyahoocom

Received 1 August 2013 Accepted 11 December 2013 Published 20 January 2014

Academic Editor Mohammad Mahroof-Tahir

Copyright copy 2014 Nguyen Dinh Tung Luan et al This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

The 09Pb(ZrxTi1minusx)O3-007Pb(Mn13Nb23)O3-003Pb(Sb

12Nb12)O3(PZT-PMnN-PSN) ceramics were prepared by columbite

method The phase structure of the ceramic samples was analyzed Results show that the pure perovskite phase is in all ceramicsspecimensThe effect of the ZrTi ratio on the region of morphotropic phase boundary for PZT-PMnN-PSN ceramics was studiedExperimental results show that the phase structure of ceramics changes from tetragonal to rhombohedral with the increase ofthe content of ZrTi ratio in the system The composition of PZT-PMnN-PSN ceramics near the morphotropic phase boundaryobtained is the ratio of ZrTi 4951 At this ratio the ceramic has the optimal electromechanical properties the 119896

119901= 061 the

120576max = 29520 the 11988931 = minus236 pCN the 119876119898 = 2400 high remanent polarization (119875119903= 492 120583Csdotcmminus2) and low coercive field

119864119888= 1028 kVsdotcmminus1

1 Introduction

Lead zirconate titanate (PZT) is one of the most commonlyused ferroelectric ceramic materials The material has beenstudied intensively since discovery of the miscibility oflead titanate and lead zirconate in the 1950s [1ndash5] Due totheir excellent dielectric pyroelectric piezoelectric andelectrooptic properties they have a variety of applicationsin high energy capacitors nonvolatile memories (FRAM)ultrasonic sensors infrared detectors electrooptic devicesand step-down multilayer piezoelectric transformers for AC-DC converter applications [5 6] Until now many ternaryand quaternary systems such as Pb(Ni

13Nb23

)O3-PZT

Pb(Y23

W13

)O3-PZT Pb(Mn

13Sb23

)O3-PZT Pb(Mg

13

Nb23)O3-Pb(Ni

13Nb23)O3-PZT Pb(Ni

12W12)O3-Pb(Mn

13

Nb23

)O3-PZT and PZT-PMnSbN [4 5 7ndash11] have been

synthesized by modifications or substitutions to satisfy

the requirements of practical applications of piezoelectrictransformer

In ceramicsmanufacturing technology piezoelectric PZTsystem ceramics compositions aremostly near the tetragonal-rhombohedral (T-R) morphotropic phase boundary (MPB)The electromechanical response of these ceramics is known tobe most pronounced at the MPB So there have been manyinvestigations on the coexistence of two phases near MPB inPZT system [3]The reports suggested the existence of a rangeof compositions where both tetragonal and rhombohedralphases are thermodynamically stable [7 12]

In this study 09Pb(ZrxTi1minusx)O3-007Pb(Mn13

Nb23

)O3-003Pb(Sb

12Nb12

)O3(PZT-PMnN-PSN)ceramics in the

vicinity ofMPBwere investigated according to the ZrTi ratiocontent The purpose of this work is to study structure andferroelectric and piezoelectric properties in the vicinity ofthe MPB in detail Furthermore the width of coexistence of

Hindawi Publishing CorporationAdvances in Materials Science and EngineeringVolume 2014 Article ID 821404 8 pageshttpdxdoiorg1011552014821404

2 Advances in Materials Science and Engineering

40 42 44 46 48

406080

100120140160 R(200)

2120579 (deg)

Inte

nsity

(Cps

)

(a)

20406080

100120140 R(200)

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(b)

20406080

100120140 R(200)

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(c)

T(002)

R(200)T(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(d)

T(002) T(200)

R(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(e)

T(002)

R(200)

T(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(f)

T(002)

T(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(g)

T(002)

T(200)

20406080

100120140160

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(h)

T(002)

T(200)

20406080

100120140

Inte

nsity

(Cps

)

40 42 44 46 482120579 (deg)

(i)

Figure 1 XRD patterns for compositions at (a) 5446 (b) 5347 (c) 5248 (d) 5149 (e) 5050 (f) 4951 (g) 4852 (h) 4753 (i) 4654

Advances in Materials Science and Engineering 3

46 48 50 52 540

20

40

60

80

100

0

20

40

60

80

100

T-R

T R

MBP

x = Zr(Zr + Ti)

MT

()

MR

()

Figure 2 Variations of relative content of the tetragonal andrhombohedra phases with ZrTi ratio

tetragonal and rhombohedra phases and the exact compo-sition of the MPB in chemically homogeneous PZT-PMnN-PSN ceramics were determined

2 Experimentals

The polycrystalline samples of PZT-PMnN-PSN were syn-thesized by columbite precursor method The raw materialsincluding powders (high purity) of PbO (99) ZrO

2(999)

TiO2(99) MnCO

3(99) Sb

2O3(99) and Nb

2O5

(999) for the given composition were weighted by moleratio First the finely mixed powder of MnCO

3and Nb

2O5

Sb2O3and Nb

2O5are mixed in a Teflon-mortar for about

10 h in an acetone medium and then calcined at 1200∘C inan alumina crucible for 3 h The calcined powder was thengrinded andmixed bymortar againwith PbO ZrO

2andTiO

2

for 30 h The finely mixed powder was calcined at 850∘C for2 h

The ground materials were pressed into disk 12mmin diameter and 15mm in thickness under 100MPa Thesamples were sintered in a sealed alumina crucible withPbZrO

3coated powder at temperature 1150∘C for 2 h

Scanning electron micrograph of the sample was taken atroom temperature The sintered pellet was polished andsilver electroded and connected to an LCR meter (HiokiJapan) for dielectric measurement The frequency depen-dence of dielectric constant and loss tangent were obtainedusing the LCR meter in the frequency range from 01 kHzto 500 kHz The polarization-electric field (P-E) hystere-sis loops were measured by a Sawyer-Tower circuit at50Hz

As-sintered samples were ground and polished to removethe surface layer for X-ray diffraction (XRD DMAX-RBRigaku Japan) CuK120572 radiationwith a step of 001 s was usedThe microstructure of the samples was examined by using ascanning electron microscope (SEM)The electromechanicalcoupling factor (119896

119901) mechanical quality factor (119876

119898) and

piezoelectric coefficient (11988931) were calculated by using the

resonance-antiresonance method The dielectric constant

was calculated from the capacitance and the dimension of thesamples

3 Results and Discussion

31 Structure and Microstructure It is reported that tetrag-onal rhombohedra and T-R phases were identified by ananalysis of the peaks (002 (tetragonal) 200 (tetragonal) and200 (rhombohedra)) in the 2120579 range 43∘ndash47∘ The splitting of(002) and (200) peaks indicates that they are the ferroelectrictetragonal phase (FT) while the single (200) peak showsthe ferroelectric rhombohedra phase (FR) [1 6 13] Figure 1shows the XRD patterns of PZT-PMnN-PSNwith ZrTi ratioat 5446 up to 4654 Triplet peaks indicate that the samplesconsist of a mixture of tetragonal and rhombohedra phases

A transition from tetragonal phase to rhombohedra phaseis observed as ZrTi ratio increases The multiple peakseparation method was used to estimate the relative fractionof coexisting phases The relative phase fraction was thencalculated by the following equations [14]

119872119877=

119868119877(200)

119868119877(200)+ 119868119879(002)+ 119868119879(200)

119872119877=119868119879(002)+ 119868119879(200)

119868119877(200)+ 119868119879(002)+ 119868119879(200)

(1)

With increasing ZrTi ratio tetragonal relative fractiondecreases and rhombohedra relative fraction increases Theanalysis of the relative phase fraction in the PZT-PMnN-PSNsystem indicates that tetragonal and rhombohedra phasescoexist in the composition range for 048 le 119909 le 052 as shownin Figure 2

Figure 3 shows the SEM image of the fractured surfaceof PZT-PMnN-PSN ceramics at different ZrTi ratios It isobserved from the micrographs that the average grain size ofsamples are increased with the increasing amount of ZrTiratio However when further increasing the ZrTi ratio to5149 the average grain size is reduced These results are ingood agreement with the reported in the literature [15]

32 Dielectric and Ferroelectric Properties

321 The Influence of ZrTi Ratio on the Dielectric PropertiesFigure 4 shows the temperature dependence of dielectricpermittivity and dielectric loss tan 120575 of PZT-PMnN-PSNsystem (1 kHz) with ZrTi ratios 4654 up to 5446 respec-tively As shown in Figure 4 all the samples in morphotropicphase boundary region (ZrTi = 4852minus5248) exhibit typ-ical relaxor ferroelectric behavior around The dielectricresponses are characterized by diffuse dielectric peaks anda slight shift of permittivity of maximum toward highertemperature with increasing frequencies

By comparing the curves in Figure 1 we see that thebroadness of dielectric response increases with an increase inZrTi ratio and the largest is at ZrTi = 4951 The tempera-ture of dielectric permittivity maximum also increases withincrease of ZrTi ratio All samples have a temperature called

4 Advances in Materials Science and Engineering

MZ46 MZ47

MZ48 MZ49

MZ50 MZ51

MZ52 MZ53

Figure 3 Surface morphologies observed by SEM of PZT-PMnN-PSN ceramics at various ratios of ZrTi

Burn temperature at which dielectric response starts comply-ing Curie-Weiss law and the system starts the transition intoparaelectric phase

Figure 5 shows Curie-Weiss dependence of the permit-tivity of the samples at temperatures start to 119879

119861 The fitting

parameters [14] are given in Table 1From Table 1 we can see that all the temperature values

extend to decrease with the increase of ZrTi ratio

322 The Influence of ZrTi Ratio on the Ferroelectric Proper-ties Figure 6 shows 119875-119864 hysteresis loops of all samples Thewell-saturated hysteresis loops were observed and the values

of remanent polarization (119875119903) and coercive field (119864

119888) were

presented in Table 2Itrsquos demonstrated that the hysteresis loops of all samples

are of typical forms characterizing ferroelectric materialsThe remanent polarization (119875

119903) reaches the maximum value

of 492 120583Ccm2 and The coercive field (119864119888) reaches the

minimum value of 1028 kVsdotcmminus1 at ZrTi = 4951 (Figure 7)

4 Piezoelectric Properties

Figure 8 shows the piezoelectric and dielectric propertiesas a function of ZrTi ratio PZT-PMnN-PSN exhibits high

Advances in Materials Science and Engineering 5

100 150 200 250 300 350 400 4500

5000

10000

15000

20000

25000

30000

M046M047

M048

M049M050

M051

M052M053

M054120576

T (∘C)

(a)

50 100 150 200 250 300 350 400 450000

005

010

015

M046

M047

M048

M049M051

M050M052

M053

M054

T (∘C)

tan120575

(b)

Figure 4 (a) Dielectric constant and (b) loss tangent of PZT-PMnN-PSN at various ZrTi ratios

200 250 300 350 400 45000

200 250 300 350 400 45

Experimental dataFitting linear

M046 M047 M048

M049 M050

M052

M051

M053 M054

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

Figure 5 Curie-Weiss dependence of the permittivity of the samples at temperatures start to 119879119861

6 Advances in Materials Science and Engineering

0 10 20 30 40 50 60

0

20

40

60

80

0 10101010100101001010100001010011 20 30 400

0

2000002000202020000020002

M046 M047 M048

M049 M050 M051

M052 M053 M054

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

Figure 6 119875-119864 hysteresis loops of PZT-PMnN-PSN samples

Table 1 Dielectric properties and fitting parameters of PZT-PMnN-PSN ceramics

Sample 120576 tan 120575 1205761015840

max119879119898

(∘C)119879119861

(∘C)119879119862

(∘C)M046 674 0023 21343 343 3903 3474M047 699 0035 21447 337 3802 3423M048 735 0041 23050 325 3758 3308M049 899 0044 29520 312 3704 3155M050 887 0046 29018 298 3669 3046M051 756 0022 27609 289 3483 3001M052 739 0023 22348 280 3425 2924M053 692 0014 21349 271 3327 2819M054 554 0013 19875 266 3253 2744

piezoelectric coefficient and electromechanical coupling fac-tor around the MPB From the trend of the variation ofpiezoelectricity it reaches the maximum values of 119889

31=

minus236 pCN 119896119901= 061 at ZrTi = 4951

Table 2 Calculated 119875119903and 119864

119888values of samples

Sample 119864119888(kVcm) 119875

119903(120583Ccm2)

M046 1132 230M047 1107 270M048 1037 320M049 1028 492M050 1088 460M051 1185 280M052 1240 250M053 1266 197M054 1345 173

Simple diagram phase of PZT-PMnN-PSN ceramicsnear MPB which is attractive system displaying excellentpiezoelectric and dielectric properties good electrostrictiveeffects and relaxation of ferroelectric phase transition isshown in Figure 9

Advances in Materials Science and Engineering 7

10

11

12

13

14

046 048 050 052 05416

20

24

28

32

36

40

44

48

52

x = Zr(Zr + Ti)

Pr

(120583C

cm2)

Pr

Ec

Ec

(kV

cm

)

Figure 7 The 119875119903and the 119864

119888as a function of ZrTi ratios

2200

2400

2600

2800

3000

3200

3400

040

045

050

055

060

065

070

45 46 47 48 49 50 51 52 53 54 55100

120

140

160

180

200

220

240

T RMPB

x = Zr(Zr + Ti)

Qm

Qm

kp

kp

minusd31

minusd31

(pC

N)

Figure 8 Piezoelectric properties of PZT-PMnN-PSN at variousZrTi ratios

0

50

100

150

200

250

300

350

400

450

500

46 48 50 52 54

Ferroelectric rhombohedral

Ferroelectric relaxor

Paraelectric

Ferroelectric tetragonal Ferroelectric

x = Zr(Zr + Ti)

TBTCTm

Tem

pera

ture

(∘C)

tetragonal + rhombohedral

Figure 9 Simple diagram phase of PZT-PMnN-PSN system nearMPB

5 Conclusion

The results obtained from the experiment are as follows

(1) PZT-PMnN-PSN ceramics with 7 wt excess PbOwere prepared by columbite method

(2) The structure of ceramics sintered at 1150∘C shows thepure perovskite structure in all ceramics specimensthe structure of PZT-PMnN-PSN ceramics was trans-formed from tetragonal to rhombohedra with ZrTiratio increased in system

(3) The composition of PZT-PMnN-PSN ceramics nearthe morphotropic phase boundary obtained is theratio of ZrTi = 4951 At this ratio the ceramichas the optimal electromechanical properties the119896119901= 061 the 120576max = 29520 the 11988931 = minus236

pCN the 119876119898= 2400 high remanent polarization

(119875119903= 492 120583Csdotcmminus2) and low coercive field 119864

119888=

1028 kVsdotcmminus1(4) The piezoelectric ceramic with ZrTi ratio of 4951

may be suitable for piezoelectric transformer applica-tions and other high power devices

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work is supported by the National Foundation for Sci-ence and Technology Development (NAFOSTED) no103020609

References

[1] F Gao L Cheng RHong J Liu CWang andC Tian ldquoCrystalstructure and piezoelectric properties of xPb(Mn

13Nb23)O3ndash

(02-x)Pb(Zn13Nb23)O3ndash08Pb(Zr

052Ti048

)O3

ceramicsrdquoCeramics International vol 35 no 5 pp 1719ndash1723 2009

[2] Z Necira A Boutarfaia M Abba H Menasra and NAbdessalem ldquoEffects of thermal conditions in the phase for-mation of undoped and doped Pb(Zr

1minusxTix)O3 solid solutionsrdquoMaterials Sciences and Applications vol 4 no 5 pp 319ndash3232013

[3] Y Xu Ferroelctric Materials and Their Applications North-Holland London UK 1991

[4] J Yoo Y Lee K Yoon et al ldquoMicrostructural electricalproperties and temperature stability of resonant frequencyin Pb(Ni

12W12)O3ndashPb(Mn

13Nb23)O3ndashPb(ZrTi)O

3ceramics

for high-power piezoelectric transformerrdquo Japanese Journal ofApplied Physics A vol 40 no 5 pp 3256ndash3259 2001

[5] R Muanghlua S Niemchareon W C Vittayakorn and NVittayakorn ldquoEffects of ZrTi ratio on the structure andferroelectric properties in PZTndashPZNndashPMN ceramics near themorphotropic phase boundaryrdquo Advanced Materials Researchvol 55-57 pp 125ndash128 2008

[6] F Kahoul L Hamzioui N Abdessalem and A Boutar-faia ldquoSynthesis and piezoelectric properties of Pb

098Sm002

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

2 Advances in Materials Science and Engineering

40 42 44 46 48

406080

100120140160 R(200)

2120579 (deg)

Inte

nsity

(Cps

)

(a)

20406080

100120140 R(200)

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(b)

20406080

100120140 R(200)

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(c)

T(002)

R(200)T(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(d)

T(002) T(200)

R(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(e)

T(002)

R(200)

T(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(f)

T(002)

T(200)

20406080

100120140

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(g)

T(002)

T(200)

20406080

100120140160

40 42 44 46 482120579 (deg)

Inte

nsity

(Cps

)

(h)

T(002)

T(200)

20406080

100120140

Inte

nsity

(Cps

)

40 42 44 46 482120579 (deg)

(i)

Figure 1 XRD patterns for compositions at (a) 5446 (b) 5347 (c) 5248 (d) 5149 (e) 5050 (f) 4951 (g) 4852 (h) 4753 (i) 4654

Advances in Materials Science and Engineering 3

46 48 50 52 540

20

40

60

80

100

0

20

40

60

80

100

T-R

T R

MBP

x = Zr(Zr + Ti)

MT

()

MR

()

Figure 2 Variations of relative content of the tetragonal andrhombohedra phases with ZrTi ratio

tetragonal and rhombohedra phases and the exact compo-sition of the MPB in chemically homogeneous PZT-PMnN-PSN ceramics were determined

2 Experimentals

The polycrystalline samples of PZT-PMnN-PSN were syn-thesized by columbite precursor method The raw materialsincluding powders (high purity) of PbO (99) ZrO

2(999)

TiO2(99) MnCO

3(99) Sb

2O3(99) and Nb

2O5

(999) for the given composition were weighted by moleratio First the finely mixed powder of MnCO

3and Nb

2O5

Sb2O3and Nb

2O5are mixed in a Teflon-mortar for about

10 h in an acetone medium and then calcined at 1200∘C inan alumina crucible for 3 h The calcined powder was thengrinded andmixed bymortar againwith PbO ZrO

2andTiO

2

for 30 h The finely mixed powder was calcined at 850∘C for2 h

The ground materials were pressed into disk 12mmin diameter and 15mm in thickness under 100MPa Thesamples were sintered in a sealed alumina crucible withPbZrO

3coated powder at temperature 1150∘C for 2 h

Scanning electron micrograph of the sample was taken atroom temperature The sintered pellet was polished andsilver electroded and connected to an LCR meter (HiokiJapan) for dielectric measurement The frequency depen-dence of dielectric constant and loss tangent were obtainedusing the LCR meter in the frequency range from 01 kHzto 500 kHz The polarization-electric field (P-E) hystere-sis loops were measured by a Sawyer-Tower circuit at50Hz

As-sintered samples were ground and polished to removethe surface layer for X-ray diffraction (XRD DMAX-RBRigaku Japan) CuK120572 radiationwith a step of 001 s was usedThe microstructure of the samples was examined by using ascanning electron microscope (SEM)The electromechanicalcoupling factor (119896

119901) mechanical quality factor (119876

119898) and

piezoelectric coefficient (11988931) were calculated by using the

resonance-antiresonance method The dielectric constant

was calculated from the capacitance and the dimension of thesamples

3 Results and Discussion

31 Structure and Microstructure It is reported that tetrag-onal rhombohedra and T-R phases were identified by ananalysis of the peaks (002 (tetragonal) 200 (tetragonal) and200 (rhombohedra)) in the 2120579 range 43∘ndash47∘ The splitting of(002) and (200) peaks indicates that they are the ferroelectrictetragonal phase (FT) while the single (200) peak showsthe ferroelectric rhombohedra phase (FR) [1 6 13] Figure 1shows the XRD patterns of PZT-PMnN-PSNwith ZrTi ratioat 5446 up to 4654 Triplet peaks indicate that the samplesconsist of a mixture of tetragonal and rhombohedra phases

A transition from tetragonal phase to rhombohedra phaseis observed as ZrTi ratio increases The multiple peakseparation method was used to estimate the relative fractionof coexisting phases The relative phase fraction was thencalculated by the following equations [14]

119872119877=

119868119877(200)

119868119877(200)+ 119868119879(002)+ 119868119879(200)

119872119877=119868119879(002)+ 119868119879(200)

119868119877(200)+ 119868119879(002)+ 119868119879(200)

(1)

With increasing ZrTi ratio tetragonal relative fractiondecreases and rhombohedra relative fraction increases Theanalysis of the relative phase fraction in the PZT-PMnN-PSNsystem indicates that tetragonal and rhombohedra phasescoexist in the composition range for 048 le 119909 le 052 as shownin Figure 2

Figure 3 shows the SEM image of the fractured surfaceof PZT-PMnN-PSN ceramics at different ZrTi ratios It isobserved from the micrographs that the average grain size ofsamples are increased with the increasing amount of ZrTiratio However when further increasing the ZrTi ratio to5149 the average grain size is reduced These results are ingood agreement with the reported in the literature [15]

32 Dielectric and Ferroelectric Properties

321 The Influence of ZrTi Ratio on the Dielectric PropertiesFigure 4 shows the temperature dependence of dielectricpermittivity and dielectric loss tan 120575 of PZT-PMnN-PSNsystem (1 kHz) with ZrTi ratios 4654 up to 5446 respec-tively As shown in Figure 4 all the samples in morphotropicphase boundary region (ZrTi = 4852minus5248) exhibit typ-ical relaxor ferroelectric behavior around The dielectricresponses are characterized by diffuse dielectric peaks anda slight shift of permittivity of maximum toward highertemperature with increasing frequencies

By comparing the curves in Figure 1 we see that thebroadness of dielectric response increases with an increase inZrTi ratio and the largest is at ZrTi = 4951 The tempera-ture of dielectric permittivity maximum also increases withincrease of ZrTi ratio All samples have a temperature called

4 Advances in Materials Science and Engineering

MZ46 MZ47

MZ48 MZ49

MZ50 MZ51

MZ52 MZ53

Figure 3 Surface morphologies observed by SEM of PZT-PMnN-PSN ceramics at various ratios of ZrTi

Burn temperature at which dielectric response starts comply-ing Curie-Weiss law and the system starts the transition intoparaelectric phase

Figure 5 shows Curie-Weiss dependence of the permit-tivity of the samples at temperatures start to 119879

119861 The fitting

parameters [14] are given in Table 1From Table 1 we can see that all the temperature values

extend to decrease with the increase of ZrTi ratio

322 The Influence of ZrTi Ratio on the Ferroelectric Proper-ties Figure 6 shows 119875-119864 hysteresis loops of all samples Thewell-saturated hysteresis loops were observed and the values

of remanent polarization (119875119903) and coercive field (119864

119888) were

presented in Table 2Itrsquos demonstrated that the hysteresis loops of all samples

are of typical forms characterizing ferroelectric materialsThe remanent polarization (119875

119903) reaches the maximum value

of 492 120583Ccm2 and The coercive field (119864119888) reaches the

minimum value of 1028 kVsdotcmminus1 at ZrTi = 4951 (Figure 7)

4 Piezoelectric Properties

Figure 8 shows the piezoelectric and dielectric propertiesas a function of ZrTi ratio PZT-PMnN-PSN exhibits high

Advances in Materials Science and Engineering 5

100 150 200 250 300 350 400 4500

5000

10000

15000

20000

25000

30000

M046M047

M048

M049M050

M051

M052M053

M054120576

T (∘C)

(a)

50 100 150 200 250 300 350 400 450000

005

010

015

M046

M047

M048

M049M051

M050M052

M053

M054

T (∘C)

tan120575

(b)

Figure 4 (a) Dielectric constant and (b) loss tangent of PZT-PMnN-PSN at various ZrTi ratios

200 250 300 350 400 45000

200 250 300 350 400 45

Experimental dataFitting linear

M046 M047 M048

M049 M050

M052

M051

M053 M054

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

Figure 5 Curie-Weiss dependence of the permittivity of the samples at temperatures start to 119879119861

6 Advances in Materials Science and Engineering

0 10 20 30 40 50 60

0

20

40

60

80

0 10101010100101001010100001010011 20 30 400

0

2000002000202020000020002

M046 M047 M048

M049 M050 M051

M052 M053 M054

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

Figure 6 119875-119864 hysteresis loops of PZT-PMnN-PSN samples

Table 1 Dielectric properties and fitting parameters of PZT-PMnN-PSN ceramics

Sample 120576 tan 120575 1205761015840

max119879119898

(∘C)119879119861

(∘C)119879119862

(∘C)M046 674 0023 21343 343 3903 3474M047 699 0035 21447 337 3802 3423M048 735 0041 23050 325 3758 3308M049 899 0044 29520 312 3704 3155M050 887 0046 29018 298 3669 3046M051 756 0022 27609 289 3483 3001M052 739 0023 22348 280 3425 2924M053 692 0014 21349 271 3327 2819M054 554 0013 19875 266 3253 2744

piezoelectric coefficient and electromechanical coupling fac-tor around the MPB From the trend of the variation ofpiezoelectricity it reaches the maximum values of 119889

31=

minus236 pCN 119896119901= 061 at ZrTi = 4951

Table 2 Calculated 119875119903and 119864

119888values of samples

Sample 119864119888(kVcm) 119875

119903(120583Ccm2)

M046 1132 230M047 1107 270M048 1037 320M049 1028 492M050 1088 460M051 1185 280M052 1240 250M053 1266 197M054 1345 173

Simple diagram phase of PZT-PMnN-PSN ceramicsnear MPB which is attractive system displaying excellentpiezoelectric and dielectric properties good electrostrictiveeffects and relaxation of ferroelectric phase transition isshown in Figure 9

Advances in Materials Science and Engineering 7

10

11

12

13

14

046 048 050 052 05416

20

24

28

32

36

40

44

48

52

x = Zr(Zr + Ti)

Pr

(120583C

cm2)

Pr

Ec

Ec

(kV

cm

)

Figure 7 The 119875119903and the 119864

119888as a function of ZrTi ratios

2200

2400

2600

2800

3000

3200

3400

040

045

050

055

060

065

070

45 46 47 48 49 50 51 52 53 54 55100

120

140

160

180

200

220

240

T RMPB

x = Zr(Zr + Ti)

Qm

Qm

kp

kp

minusd31

minusd31

(pC

N)

Figure 8 Piezoelectric properties of PZT-PMnN-PSN at variousZrTi ratios

0

50

100

150

200

250

300

350

400

450

500

46 48 50 52 54

Ferroelectric rhombohedral

Ferroelectric relaxor

Paraelectric

Ferroelectric tetragonal Ferroelectric

x = Zr(Zr + Ti)

TBTCTm

Tem

pera

ture

(∘C)

tetragonal + rhombohedral

Figure 9 Simple diagram phase of PZT-PMnN-PSN system nearMPB

5 Conclusion

The results obtained from the experiment are as follows

(1) PZT-PMnN-PSN ceramics with 7 wt excess PbOwere prepared by columbite method

(2) The structure of ceramics sintered at 1150∘C shows thepure perovskite structure in all ceramics specimensthe structure of PZT-PMnN-PSN ceramics was trans-formed from tetragonal to rhombohedra with ZrTiratio increased in system

(3) The composition of PZT-PMnN-PSN ceramics nearthe morphotropic phase boundary obtained is theratio of ZrTi = 4951 At this ratio the ceramichas the optimal electromechanical properties the119896119901= 061 the 120576max = 29520 the 11988931 = minus236

pCN the 119876119898= 2400 high remanent polarization

(119875119903= 492 120583Csdotcmminus2) and low coercive field 119864

119888=

1028 kVsdotcmminus1(4) The piezoelectric ceramic with ZrTi ratio of 4951

may be suitable for piezoelectric transformer applica-tions and other high power devices

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work is supported by the National Foundation for Sci-ence and Technology Development (NAFOSTED) no103020609

References

[1] F Gao L Cheng RHong J Liu CWang andC Tian ldquoCrystalstructure and piezoelectric properties of xPb(Mn

13Nb23)O3ndash

(02-x)Pb(Zn13Nb23)O3ndash08Pb(Zr

052Ti048

)O3

ceramicsrdquoCeramics International vol 35 no 5 pp 1719ndash1723 2009

[2] Z Necira A Boutarfaia M Abba H Menasra and NAbdessalem ldquoEffects of thermal conditions in the phase for-mation of undoped and doped Pb(Zr

1minusxTix)O3 solid solutionsrdquoMaterials Sciences and Applications vol 4 no 5 pp 319ndash3232013

[3] Y Xu Ferroelctric Materials and Their Applications North-Holland London UK 1991

[4] J Yoo Y Lee K Yoon et al ldquoMicrostructural electricalproperties and temperature stability of resonant frequencyin Pb(Ni

12W12)O3ndashPb(Mn

13Nb23)O3ndashPb(ZrTi)O

3ceramics

for high-power piezoelectric transformerrdquo Japanese Journal ofApplied Physics A vol 40 no 5 pp 3256ndash3259 2001

[5] R Muanghlua S Niemchareon W C Vittayakorn and NVittayakorn ldquoEffects of ZrTi ratio on the structure andferroelectric properties in PZTndashPZNndashPMN ceramics near themorphotropic phase boundaryrdquo Advanced Materials Researchvol 55-57 pp 125ndash128 2008

[6] F Kahoul L Hamzioui N Abdessalem and A Boutar-faia ldquoSynthesis and piezoelectric properties of Pb

098Sm002

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Advances in Materials Science and Engineering 3

46 48 50 52 540

20

40

60

80

100

0

20

40

60

80

100

T-R

T R

MBP

x = Zr(Zr + Ti)

MT

()

MR

()

Figure 2 Variations of relative content of the tetragonal andrhombohedra phases with ZrTi ratio

tetragonal and rhombohedra phases and the exact compo-sition of the MPB in chemically homogeneous PZT-PMnN-PSN ceramics were determined

2 Experimentals

The polycrystalline samples of PZT-PMnN-PSN were syn-thesized by columbite precursor method The raw materialsincluding powders (high purity) of PbO (99) ZrO

2(999)

TiO2(99) MnCO

3(99) Sb

2O3(99) and Nb

2O5

(999) for the given composition were weighted by moleratio First the finely mixed powder of MnCO

3and Nb

2O5

Sb2O3and Nb

2O5are mixed in a Teflon-mortar for about

10 h in an acetone medium and then calcined at 1200∘C inan alumina crucible for 3 h The calcined powder was thengrinded andmixed bymortar againwith PbO ZrO

2andTiO

2

for 30 h The finely mixed powder was calcined at 850∘C for2 h

The ground materials were pressed into disk 12mmin diameter and 15mm in thickness under 100MPa Thesamples were sintered in a sealed alumina crucible withPbZrO

3coated powder at temperature 1150∘C for 2 h

Scanning electron micrograph of the sample was taken atroom temperature The sintered pellet was polished andsilver electroded and connected to an LCR meter (HiokiJapan) for dielectric measurement The frequency depen-dence of dielectric constant and loss tangent were obtainedusing the LCR meter in the frequency range from 01 kHzto 500 kHz The polarization-electric field (P-E) hystere-sis loops were measured by a Sawyer-Tower circuit at50Hz

As-sintered samples were ground and polished to removethe surface layer for X-ray diffraction (XRD DMAX-RBRigaku Japan) CuK120572 radiationwith a step of 001 s was usedThe microstructure of the samples was examined by using ascanning electron microscope (SEM)The electromechanicalcoupling factor (119896

119901) mechanical quality factor (119876

119898) and

piezoelectric coefficient (11988931) were calculated by using the

resonance-antiresonance method The dielectric constant

was calculated from the capacitance and the dimension of thesamples

3 Results and Discussion

31 Structure and Microstructure It is reported that tetrag-onal rhombohedra and T-R phases were identified by ananalysis of the peaks (002 (tetragonal) 200 (tetragonal) and200 (rhombohedra)) in the 2120579 range 43∘ndash47∘ The splitting of(002) and (200) peaks indicates that they are the ferroelectrictetragonal phase (FT) while the single (200) peak showsthe ferroelectric rhombohedra phase (FR) [1 6 13] Figure 1shows the XRD patterns of PZT-PMnN-PSNwith ZrTi ratioat 5446 up to 4654 Triplet peaks indicate that the samplesconsist of a mixture of tetragonal and rhombohedra phases

A transition from tetragonal phase to rhombohedra phaseis observed as ZrTi ratio increases The multiple peakseparation method was used to estimate the relative fractionof coexisting phases The relative phase fraction was thencalculated by the following equations [14]

119872119877=

119868119877(200)

119868119877(200)+ 119868119879(002)+ 119868119879(200)

119872119877=119868119879(002)+ 119868119879(200)

119868119877(200)+ 119868119879(002)+ 119868119879(200)

(1)

With increasing ZrTi ratio tetragonal relative fractiondecreases and rhombohedra relative fraction increases Theanalysis of the relative phase fraction in the PZT-PMnN-PSNsystem indicates that tetragonal and rhombohedra phasescoexist in the composition range for 048 le 119909 le 052 as shownin Figure 2

Figure 3 shows the SEM image of the fractured surfaceof PZT-PMnN-PSN ceramics at different ZrTi ratios It isobserved from the micrographs that the average grain size ofsamples are increased with the increasing amount of ZrTiratio However when further increasing the ZrTi ratio to5149 the average grain size is reduced These results are ingood agreement with the reported in the literature [15]

32 Dielectric and Ferroelectric Properties

321 The Influence of ZrTi Ratio on the Dielectric PropertiesFigure 4 shows the temperature dependence of dielectricpermittivity and dielectric loss tan 120575 of PZT-PMnN-PSNsystem (1 kHz) with ZrTi ratios 4654 up to 5446 respec-tively As shown in Figure 4 all the samples in morphotropicphase boundary region (ZrTi = 4852minus5248) exhibit typ-ical relaxor ferroelectric behavior around The dielectricresponses are characterized by diffuse dielectric peaks anda slight shift of permittivity of maximum toward highertemperature with increasing frequencies

By comparing the curves in Figure 1 we see that thebroadness of dielectric response increases with an increase inZrTi ratio and the largest is at ZrTi = 4951 The tempera-ture of dielectric permittivity maximum also increases withincrease of ZrTi ratio All samples have a temperature called

4 Advances in Materials Science and Engineering

MZ46 MZ47

MZ48 MZ49

MZ50 MZ51

MZ52 MZ53

Figure 3 Surface morphologies observed by SEM of PZT-PMnN-PSN ceramics at various ratios of ZrTi

Burn temperature at which dielectric response starts comply-ing Curie-Weiss law and the system starts the transition intoparaelectric phase

Figure 5 shows Curie-Weiss dependence of the permit-tivity of the samples at temperatures start to 119879

119861 The fitting

parameters [14] are given in Table 1From Table 1 we can see that all the temperature values

extend to decrease with the increase of ZrTi ratio

322 The Influence of ZrTi Ratio on the Ferroelectric Proper-ties Figure 6 shows 119875-119864 hysteresis loops of all samples Thewell-saturated hysteresis loops were observed and the values

of remanent polarization (119875119903) and coercive field (119864

119888) were

presented in Table 2Itrsquos demonstrated that the hysteresis loops of all samples

are of typical forms characterizing ferroelectric materialsThe remanent polarization (119875

119903) reaches the maximum value

of 492 120583Ccm2 and The coercive field (119864119888) reaches the

minimum value of 1028 kVsdotcmminus1 at ZrTi = 4951 (Figure 7)

4 Piezoelectric Properties

Figure 8 shows the piezoelectric and dielectric propertiesas a function of ZrTi ratio PZT-PMnN-PSN exhibits high

Advances in Materials Science and Engineering 5

100 150 200 250 300 350 400 4500

5000

10000

15000

20000

25000

30000

M046M047

M048

M049M050

M051

M052M053

M054120576

T (∘C)

(a)

50 100 150 200 250 300 350 400 450000

005

010

015

M046

M047

M048

M049M051

M050M052

M053

M054

T (∘C)

tan120575

(b)

Figure 4 (a) Dielectric constant and (b) loss tangent of PZT-PMnN-PSN at various ZrTi ratios

200 250 300 350 400 45000

200 250 300 350 400 45

Experimental dataFitting linear

M046 M047 M048

M049 M050

M052

M051

M053 M054

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

Figure 5 Curie-Weiss dependence of the permittivity of the samples at temperatures start to 119879119861

6 Advances in Materials Science and Engineering

0 10 20 30 40 50 60

0

20

40

60

80

0 10101010100101001010100001010011 20 30 400

0

2000002000202020000020002

M046 M047 M048

M049 M050 M051

M052 M053 M054

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

Figure 6 119875-119864 hysteresis loops of PZT-PMnN-PSN samples

Table 1 Dielectric properties and fitting parameters of PZT-PMnN-PSN ceramics

Sample 120576 tan 120575 1205761015840

max119879119898

(∘C)119879119861

(∘C)119879119862

(∘C)M046 674 0023 21343 343 3903 3474M047 699 0035 21447 337 3802 3423M048 735 0041 23050 325 3758 3308M049 899 0044 29520 312 3704 3155M050 887 0046 29018 298 3669 3046M051 756 0022 27609 289 3483 3001M052 739 0023 22348 280 3425 2924M053 692 0014 21349 271 3327 2819M054 554 0013 19875 266 3253 2744

piezoelectric coefficient and electromechanical coupling fac-tor around the MPB From the trend of the variation ofpiezoelectricity it reaches the maximum values of 119889

31=

minus236 pCN 119896119901= 061 at ZrTi = 4951

Table 2 Calculated 119875119903and 119864

119888values of samples

Sample 119864119888(kVcm) 119875

119903(120583Ccm2)

M046 1132 230M047 1107 270M048 1037 320M049 1028 492M050 1088 460M051 1185 280M052 1240 250M053 1266 197M054 1345 173

Simple diagram phase of PZT-PMnN-PSN ceramicsnear MPB which is attractive system displaying excellentpiezoelectric and dielectric properties good electrostrictiveeffects and relaxation of ferroelectric phase transition isshown in Figure 9

Advances in Materials Science and Engineering 7

10

11

12

13

14

046 048 050 052 05416

20

24

28

32

36

40

44

48

52

x = Zr(Zr + Ti)

Pr

(120583C

cm2)

Pr

Ec

Ec

(kV

cm

)

Figure 7 The 119875119903and the 119864

119888as a function of ZrTi ratios

2200

2400

2600

2800

3000

3200

3400

040

045

050

055

060

065

070

45 46 47 48 49 50 51 52 53 54 55100

120

140

160

180

200

220

240

T RMPB

x = Zr(Zr + Ti)

Qm

Qm

kp

kp

minusd31

minusd31

(pC

N)

Figure 8 Piezoelectric properties of PZT-PMnN-PSN at variousZrTi ratios

0

50

100

150

200

250

300

350

400

450

500

46 48 50 52 54

Ferroelectric rhombohedral

Ferroelectric relaxor

Paraelectric

Ferroelectric tetragonal Ferroelectric

x = Zr(Zr + Ti)

TBTCTm

Tem

pera

ture

(∘C)

tetragonal + rhombohedral

Figure 9 Simple diagram phase of PZT-PMnN-PSN system nearMPB

5 Conclusion

The results obtained from the experiment are as follows

(1) PZT-PMnN-PSN ceramics with 7 wt excess PbOwere prepared by columbite method

(2) The structure of ceramics sintered at 1150∘C shows thepure perovskite structure in all ceramics specimensthe structure of PZT-PMnN-PSN ceramics was trans-formed from tetragonal to rhombohedra with ZrTiratio increased in system

(3) The composition of PZT-PMnN-PSN ceramics nearthe morphotropic phase boundary obtained is theratio of ZrTi = 4951 At this ratio the ceramichas the optimal electromechanical properties the119896119901= 061 the 120576max = 29520 the 11988931 = minus236

pCN the 119876119898= 2400 high remanent polarization

(119875119903= 492 120583Csdotcmminus2) and low coercive field 119864

119888=

1028 kVsdotcmminus1(4) The piezoelectric ceramic with ZrTi ratio of 4951

may be suitable for piezoelectric transformer applica-tions and other high power devices

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work is supported by the National Foundation for Sci-ence and Technology Development (NAFOSTED) no103020609

References

[1] F Gao L Cheng RHong J Liu CWang andC Tian ldquoCrystalstructure and piezoelectric properties of xPb(Mn

13Nb23)O3ndash

(02-x)Pb(Zn13Nb23)O3ndash08Pb(Zr

052Ti048

)O3

ceramicsrdquoCeramics International vol 35 no 5 pp 1719ndash1723 2009

[2] Z Necira A Boutarfaia M Abba H Menasra and NAbdessalem ldquoEffects of thermal conditions in the phase for-mation of undoped and doped Pb(Zr

1minusxTix)O3 solid solutionsrdquoMaterials Sciences and Applications vol 4 no 5 pp 319ndash3232013

[3] Y Xu Ferroelctric Materials and Their Applications North-Holland London UK 1991

[4] J Yoo Y Lee K Yoon et al ldquoMicrostructural electricalproperties and temperature stability of resonant frequencyin Pb(Ni

12W12)O3ndashPb(Mn

13Nb23)O3ndashPb(ZrTi)O

3ceramics

for high-power piezoelectric transformerrdquo Japanese Journal ofApplied Physics A vol 40 no 5 pp 3256ndash3259 2001

[5] R Muanghlua S Niemchareon W C Vittayakorn and NVittayakorn ldquoEffects of ZrTi ratio on the structure andferroelectric properties in PZTndashPZNndashPMN ceramics near themorphotropic phase boundaryrdquo Advanced Materials Researchvol 55-57 pp 125ndash128 2008

[6] F Kahoul L Hamzioui N Abdessalem and A Boutar-faia ldquoSynthesis and piezoelectric properties of Pb

098Sm002

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

4 Advances in Materials Science and Engineering

MZ46 MZ47

MZ48 MZ49

MZ50 MZ51

MZ52 MZ53

Figure 3 Surface morphologies observed by SEM of PZT-PMnN-PSN ceramics at various ratios of ZrTi

Burn temperature at which dielectric response starts comply-ing Curie-Weiss law and the system starts the transition intoparaelectric phase

Figure 5 shows Curie-Weiss dependence of the permit-tivity of the samples at temperatures start to 119879

119861 The fitting

parameters [14] are given in Table 1From Table 1 we can see that all the temperature values

extend to decrease with the increase of ZrTi ratio

322 The Influence of ZrTi Ratio on the Ferroelectric Proper-ties Figure 6 shows 119875-119864 hysteresis loops of all samples Thewell-saturated hysteresis loops were observed and the values

of remanent polarization (119875119903) and coercive field (119864

119888) were

presented in Table 2Itrsquos demonstrated that the hysteresis loops of all samples

are of typical forms characterizing ferroelectric materialsThe remanent polarization (119875

119903) reaches the maximum value

of 492 120583Ccm2 and The coercive field (119864119888) reaches the

minimum value of 1028 kVsdotcmminus1 at ZrTi = 4951 (Figure 7)

4 Piezoelectric Properties

Figure 8 shows the piezoelectric and dielectric propertiesas a function of ZrTi ratio PZT-PMnN-PSN exhibits high

Advances in Materials Science and Engineering 5

100 150 200 250 300 350 400 4500

5000

10000

15000

20000

25000

30000

M046M047

M048

M049M050

M051

M052M053

M054120576

T (∘C)

(a)

50 100 150 200 250 300 350 400 450000

005

010

015

M046

M047

M048

M049M051

M050M052

M053

M054

T (∘C)

tan120575

(b)

Figure 4 (a) Dielectric constant and (b) loss tangent of PZT-PMnN-PSN at various ZrTi ratios

200 250 300 350 400 45000

200 250 300 350 400 45

Experimental dataFitting linear

M046 M047 M048

M049 M050

M052

M051

M053 M054

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

Figure 5 Curie-Weiss dependence of the permittivity of the samples at temperatures start to 119879119861

6 Advances in Materials Science and Engineering

0 10 20 30 40 50 60

0

20

40

60

80

0 10101010100101001010100001010011 20 30 400

0

2000002000202020000020002

M046 M047 M048

M049 M050 M051

M052 M053 M054

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

Figure 6 119875-119864 hysteresis loops of PZT-PMnN-PSN samples

Table 1 Dielectric properties and fitting parameters of PZT-PMnN-PSN ceramics

Sample 120576 tan 120575 1205761015840

max119879119898

(∘C)119879119861

(∘C)119879119862

(∘C)M046 674 0023 21343 343 3903 3474M047 699 0035 21447 337 3802 3423M048 735 0041 23050 325 3758 3308M049 899 0044 29520 312 3704 3155M050 887 0046 29018 298 3669 3046M051 756 0022 27609 289 3483 3001M052 739 0023 22348 280 3425 2924M053 692 0014 21349 271 3327 2819M054 554 0013 19875 266 3253 2744

piezoelectric coefficient and electromechanical coupling fac-tor around the MPB From the trend of the variation ofpiezoelectricity it reaches the maximum values of 119889

31=

minus236 pCN 119896119901= 061 at ZrTi = 4951

Table 2 Calculated 119875119903and 119864

119888values of samples

Sample 119864119888(kVcm) 119875

119903(120583Ccm2)

M046 1132 230M047 1107 270M048 1037 320M049 1028 492M050 1088 460M051 1185 280M052 1240 250M053 1266 197M054 1345 173

Simple diagram phase of PZT-PMnN-PSN ceramicsnear MPB which is attractive system displaying excellentpiezoelectric and dielectric properties good electrostrictiveeffects and relaxation of ferroelectric phase transition isshown in Figure 9

Advances in Materials Science and Engineering 7

10

11

12

13

14

046 048 050 052 05416

20

24

28

32

36

40

44

48

52

x = Zr(Zr + Ti)

Pr

(120583C

cm2)

Pr

Ec

Ec

(kV

cm

)

Figure 7 The 119875119903and the 119864

119888as a function of ZrTi ratios

2200

2400

2600

2800

3000

3200

3400

040

045

050

055

060

065

070

45 46 47 48 49 50 51 52 53 54 55100

120

140

160

180

200

220

240

T RMPB

x = Zr(Zr + Ti)

Qm

Qm

kp

kp

minusd31

minusd31

(pC

N)

Figure 8 Piezoelectric properties of PZT-PMnN-PSN at variousZrTi ratios

0

50

100

150

200

250

300

350

400

450

500

46 48 50 52 54

Ferroelectric rhombohedral

Ferroelectric relaxor

Paraelectric

Ferroelectric tetragonal Ferroelectric

x = Zr(Zr + Ti)

TBTCTm

Tem

pera

ture

(∘C)

tetragonal + rhombohedral

Figure 9 Simple diagram phase of PZT-PMnN-PSN system nearMPB

5 Conclusion

The results obtained from the experiment are as follows

(1) PZT-PMnN-PSN ceramics with 7 wt excess PbOwere prepared by columbite method

(2) The structure of ceramics sintered at 1150∘C shows thepure perovskite structure in all ceramics specimensthe structure of PZT-PMnN-PSN ceramics was trans-formed from tetragonal to rhombohedra with ZrTiratio increased in system

(3) The composition of PZT-PMnN-PSN ceramics nearthe morphotropic phase boundary obtained is theratio of ZrTi = 4951 At this ratio the ceramichas the optimal electromechanical properties the119896119901= 061 the 120576max = 29520 the 11988931 = minus236

pCN the 119876119898= 2400 high remanent polarization

(119875119903= 492 120583Csdotcmminus2) and low coercive field 119864

119888=

1028 kVsdotcmminus1(4) The piezoelectric ceramic with ZrTi ratio of 4951

may be suitable for piezoelectric transformer applica-tions and other high power devices

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work is supported by the National Foundation for Sci-ence and Technology Development (NAFOSTED) no103020609

References

[1] F Gao L Cheng RHong J Liu CWang andC Tian ldquoCrystalstructure and piezoelectric properties of xPb(Mn

13Nb23)O3ndash

(02-x)Pb(Zn13Nb23)O3ndash08Pb(Zr

052Ti048

)O3

ceramicsrdquoCeramics International vol 35 no 5 pp 1719ndash1723 2009

[2] Z Necira A Boutarfaia M Abba H Menasra and NAbdessalem ldquoEffects of thermal conditions in the phase for-mation of undoped and doped Pb(Zr

1minusxTix)O3 solid solutionsrdquoMaterials Sciences and Applications vol 4 no 5 pp 319ndash3232013

[3] Y Xu Ferroelctric Materials and Their Applications North-Holland London UK 1991

[4] J Yoo Y Lee K Yoon et al ldquoMicrostructural electricalproperties and temperature stability of resonant frequencyin Pb(Ni

12W12)O3ndashPb(Mn

13Nb23)O3ndashPb(ZrTi)O

3ceramics

for high-power piezoelectric transformerrdquo Japanese Journal ofApplied Physics A vol 40 no 5 pp 3256ndash3259 2001

[5] R Muanghlua S Niemchareon W C Vittayakorn and NVittayakorn ldquoEffects of ZrTi ratio on the structure andferroelectric properties in PZTndashPZNndashPMN ceramics near themorphotropic phase boundaryrdquo Advanced Materials Researchvol 55-57 pp 125ndash128 2008

[6] F Kahoul L Hamzioui N Abdessalem and A Boutar-faia ldquoSynthesis and piezoelectric properties of Pb

098Sm002

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Advances in Materials Science and Engineering 5

100 150 200 250 300 350 400 4500

5000

10000

15000

20000

25000

30000

M046M047

M048

M049M050

M051

M052M053

M054120576

T (∘C)

(a)

50 100 150 200 250 300 350 400 450000

005

010

015

M046

M047

M048

M049M051

M050M052

M053

M054

T (∘C)

tan120575

(b)

Figure 4 (a) Dielectric constant and (b) loss tangent of PZT-PMnN-PSN at various ZrTi ratios

200 250 300 350 400 45000

200 250 300 350 400 45

Experimental dataFitting linear

M046 M047 M048

M049 M050

M052

M051

M053 M054

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

200 250 300 350 400 45000

Experimental dataFitting linear

T (∘C)

20 times 10minus4

15 times 10minus4

10 times 10minus4

50 times 10minus5

1120576

998400

Figure 5 Curie-Weiss dependence of the permittivity of the samples at temperatures start to 119879119861

6 Advances in Materials Science and Engineering

0 10 20 30 40 50 60

0

20

40

60

80

0 10101010100101001010100001010011 20 30 400

0

2000002000202020000020002

M046 M047 M048

M049 M050 M051

M052 M053 M054

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

Figure 6 119875-119864 hysteresis loops of PZT-PMnN-PSN samples

Table 1 Dielectric properties and fitting parameters of PZT-PMnN-PSN ceramics

Sample 120576 tan 120575 1205761015840

max119879119898

(∘C)119879119861

(∘C)119879119862

(∘C)M046 674 0023 21343 343 3903 3474M047 699 0035 21447 337 3802 3423M048 735 0041 23050 325 3758 3308M049 899 0044 29520 312 3704 3155M050 887 0046 29018 298 3669 3046M051 756 0022 27609 289 3483 3001M052 739 0023 22348 280 3425 2924M053 692 0014 21349 271 3327 2819M054 554 0013 19875 266 3253 2744

piezoelectric coefficient and electromechanical coupling fac-tor around the MPB From the trend of the variation ofpiezoelectricity it reaches the maximum values of 119889

31=

minus236 pCN 119896119901= 061 at ZrTi = 4951

Table 2 Calculated 119875119903and 119864

119888values of samples

Sample 119864119888(kVcm) 119875

119903(120583Ccm2)

M046 1132 230M047 1107 270M048 1037 320M049 1028 492M050 1088 460M051 1185 280M052 1240 250M053 1266 197M054 1345 173

Simple diagram phase of PZT-PMnN-PSN ceramicsnear MPB which is attractive system displaying excellentpiezoelectric and dielectric properties good electrostrictiveeffects and relaxation of ferroelectric phase transition isshown in Figure 9

Advances in Materials Science and Engineering 7

10

11

12

13

14

046 048 050 052 05416

20

24

28

32

36

40

44

48

52

x = Zr(Zr + Ti)

Pr

(120583C

cm2)

Pr

Ec

Ec

(kV

cm

)

Figure 7 The 119875119903and the 119864

119888as a function of ZrTi ratios

2200

2400

2600

2800

3000

3200

3400

040

045

050

055

060

065

070

45 46 47 48 49 50 51 52 53 54 55100

120

140

160

180

200

220

240

T RMPB

x = Zr(Zr + Ti)

Qm

Qm

kp

kp

minusd31

minusd31

(pC

N)

Figure 8 Piezoelectric properties of PZT-PMnN-PSN at variousZrTi ratios

0

50

100

150

200

250

300

350

400

450

500

46 48 50 52 54

Ferroelectric rhombohedral

Ferroelectric relaxor

Paraelectric

Ferroelectric tetragonal Ferroelectric

x = Zr(Zr + Ti)

TBTCTm

Tem

pera

ture

(∘C)

tetragonal + rhombohedral

Figure 9 Simple diagram phase of PZT-PMnN-PSN system nearMPB

5 Conclusion

The results obtained from the experiment are as follows

(1) PZT-PMnN-PSN ceramics with 7 wt excess PbOwere prepared by columbite method

(2) The structure of ceramics sintered at 1150∘C shows thepure perovskite structure in all ceramics specimensthe structure of PZT-PMnN-PSN ceramics was trans-formed from tetragonal to rhombohedra with ZrTiratio increased in system

(3) The composition of PZT-PMnN-PSN ceramics nearthe morphotropic phase boundary obtained is theratio of ZrTi = 4951 At this ratio the ceramichas the optimal electromechanical properties the119896119901= 061 the 120576max = 29520 the 11988931 = minus236

pCN the 119876119898= 2400 high remanent polarization

(119875119903= 492 120583Csdotcmminus2) and low coercive field 119864

119888=

1028 kVsdotcmminus1(4) The piezoelectric ceramic with ZrTi ratio of 4951

may be suitable for piezoelectric transformer applica-tions and other high power devices

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work is supported by the National Foundation for Sci-ence and Technology Development (NAFOSTED) no103020609

References

[1] F Gao L Cheng RHong J Liu CWang andC Tian ldquoCrystalstructure and piezoelectric properties of xPb(Mn

13Nb23)O3ndash

(02-x)Pb(Zn13Nb23)O3ndash08Pb(Zr

052Ti048

)O3

ceramicsrdquoCeramics International vol 35 no 5 pp 1719ndash1723 2009

[2] Z Necira A Boutarfaia M Abba H Menasra and NAbdessalem ldquoEffects of thermal conditions in the phase for-mation of undoped and doped Pb(Zr

1minusxTix)O3 solid solutionsrdquoMaterials Sciences and Applications vol 4 no 5 pp 319ndash3232013

[3] Y Xu Ferroelctric Materials and Their Applications North-Holland London UK 1991

[4] J Yoo Y Lee K Yoon et al ldquoMicrostructural electricalproperties and temperature stability of resonant frequencyin Pb(Ni

12W12)O3ndashPb(Mn

13Nb23)O3ndashPb(ZrTi)O

3ceramics

for high-power piezoelectric transformerrdquo Japanese Journal ofApplied Physics A vol 40 no 5 pp 3256ndash3259 2001

[5] R Muanghlua S Niemchareon W C Vittayakorn and NVittayakorn ldquoEffects of ZrTi ratio on the structure andferroelectric properties in PZTndashPZNndashPMN ceramics near themorphotropic phase boundaryrdquo Advanced Materials Researchvol 55-57 pp 125ndash128 2008

[6] F Kahoul L Hamzioui N Abdessalem and A Boutar-faia ldquoSynthesis and piezoelectric properties of Pb

098Sm002

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

6 Advances in Materials Science and Engineering

0 10 20 30 40 50 60

0

20

40

60

80

0 10101010100101001010100001010011 20 30 400

0

2000002000202020000020002

M046 M047 M048

M049 M050 M051

M052 M053 M054

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

0 10 20 30 40 50 60

0

20

40

60

80

minus20

minus40

minus60

minus80

minus10

minus20

minus30

minus40

minus50

minus60

P(120583

Ccm

2)

E (kVcm)

Figure 6 119875-119864 hysteresis loops of PZT-PMnN-PSN samples

Table 1 Dielectric properties and fitting parameters of PZT-PMnN-PSN ceramics

Sample 120576 tan 120575 1205761015840

max119879119898

(∘C)119879119861

(∘C)119879119862

(∘C)M046 674 0023 21343 343 3903 3474M047 699 0035 21447 337 3802 3423M048 735 0041 23050 325 3758 3308M049 899 0044 29520 312 3704 3155M050 887 0046 29018 298 3669 3046M051 756 0022 27609 289 3483 3001M052 739 0023 22348 280 3425 2924M053 692 0014 21349 271 3327 2819M054 554 0013 19875 266 3253 2744

piezoelectric coefficient and electromechanical coupling fac-tor around the MPB From the trend of the variation ofpiezoelectricity it reaches the maximum values of 119889

31=

minus236 pCN 119896119901= 061 at ZrTi = 4951

Table 2 Calculated 119875119903and 119864

119888values of samples

Sample 119864119888(kVcm) 119875

119903(120583Ccm2)

M046 1132 230M047 1107 270M048 1037 320M049 1028 492M050 1088 460M051 1185 280M052 1240 250M053 1266 197M054 1345 173

Simple diagram phase of PZT-PMnN-PSN ceramicsnear MPB which is attractive system displaying excellentpiezoelectric and dielectric properties good electrostrictiveeffects and relaxation of ferroelectric phase transition isshown in Figure 9

Advances in Materials Science and Engineering 7

10

11

12

13

14

046 048 050 052 05416

20

24

28

32

36

40

44

48

52

x = Zr(Zr + Ti)

Pr

(120583C

cm2)

Pr

Ec

Ec

(kV

cm

)

Figure 7 The 119875119903and the 119864

119888as a function of ZrTi ratios

2200

2400

2600

2800

3000

3200

3400

040

045

050

055

060

065

070

45 46 47 48 49 50 51 52 53 54 55100

120

140

160

180

200

220

240

T RMPB

x = Zr(Zr + Ti)

Qm

Qm

kp

kp

minusd31

minusd31

(pC

N)

Figure 8 Piezoelectric properties of PZT-PMnN-PSN at variousZrTi ratios

0

50

100

150

200

250

300

350

400

450

500

46 48 50 52 54

Ferroelectric rhombohedral

Ferroelectric relaxor

Paraelectric

Ferroelectric tetragonal Ferroelectric

x = Zr(Zr + Ti)

TBTCTm

Tem

pera

ture

(∘C)

tetragonal + rhombohedral

Figure 9 Simple diagram phase of PZT-PMnN-PSN system nearMPB

5 Conclusion

The results obtained from the experiment are as follows

(1) PZT-PMnN-PSN ceramics with 7 wt excess PbOwere prepared by columbite method

(2) The structure of ceramics sintered at 1150∘C shows thepure perovskite structure in all ceramics specimensthe structure of PZT-PMnN-PSN ceramics was trans-formed from tetragonal to rhombohedra with ZrTiratio increased in system

(3) The composition of PZT-PMnN-PSN ceramics nearthe morphotropic phase boundary obtained is theratio of ZrTi = 4951 At this ratio the ceramichas the optimal electromechanical properties the119896119901= 061 the 120576max = 29520 the 11988931 = minus236

pCN the 119876119898= 2400 high remanent polarization

(119875119903= 492 120583Csdotcmminus2) and low coercive field 119864

119888=

1028 kVsdotcmminus1(4) The piezoelectric ceramic with ZrTi ratio of 4951

may be suitable for piezoelectric transformer applica-tions and other high power devices

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work is supported by the National Foundation for Sci-ence and Technology Development (NAFOSTED) no103020609

References

[1] F Gao L Cheng RHong J Liu CWang andC Tian ldquoCrystalstructure and piezoelectric properties of xPb(Mn

13Nb23)O3ndash

(02-x)Pb(Zn13Nb23)O3ndash08Pb(Zr

052Ti048

)O3

ceramicsrdquoCeramics International vol 35 no 5 pp 1719ndash1723 2009

[2] Z Necira A Boutarfaia M Abba H Menasra and NAbdessalem ldquoEffects of thermal conditions in the phase for-mation of undoped and doped Pb(Zr

1minusxTix)O3 solid solutionsrdquoMaterials Sciences and Applications vol 4 no 5 pp 319ndash3232013

[3] Y Xu Ferroelctric Materials and Their Applications North-Holland London UK 1991

[4] J Yoo Y Lee K Yoon et al ldquoMicrostructural electricalproperties and temperature stability of resonant frequencyin Pb(Ni

12W12)O3ndashPb(Mn

13Nb23)O3ndashPb(ZrTi)O

3ceramics

for high-power piezoelectric transformerrdquo Japanese Journal ofApplied Physics A vol 40 no 5 pp 3256ndash3259 2001

[5] R Muanghlua S Niemchareon W C Vittayakorn and NVittayakorn ldquoEffects of ZrTi ratio on the structure andferroelectric properties in PZTndashPZNndashPMN ceramics near themorphotropic phase boundaryrdquo Advanced Materials Researchvol 55-57 pp 125ndash128 2008

[6] F Kahoul L Hamzioui N Abdessalem and A Boutar-faia ldquoSynthesis and piezoelectric properties of Pb

098Sm002

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Advances in Materials Science and Engineering 7

10

11

12

13

14

046 048 050 052 05416

20

24

28

32

36

40

44

48

52

x = Zr(Zr + Ti)

Pr

(120583C

cm2)

Pr

Ec

Ec

(kV

cm

)

Figure 7 The 119875119903and the 119864

119888as a function of ZrTi ratios

2200

2400

2600

2800

3000

3200

3400

040

045

050

055

060

065

070

45 46 47 48 49 50 51 52 53 54 55100

120

140

160

180

200

220

240

T RMPB

x = Zr(Zr + Ti)

Qm

Qm

kp

kp

minusd31

minusd31

(pC

N)

Figure 8 Piezoelectric properties of PZT-PMnN-PSN at variousZrTi ratios

0

50

100

150

200

250

300

350

400

450

500

46 48 50 52 54

Ferroelectric rhombohedral

Ferroelectric relaxor

Paraelectric

Ferroelectric tetragonal Ferroelectric

x = Zr(Zr + Ti)

TBTCTm

Tem

pera

ture

(∘C)

tetragonal + rhombohedral

Figure 9 Simple diagram phase of PZT-PMnN-PSN system nearMPB

5 Conclusion

The results obtained from the experiment are as follows

(1) PZT-PMnN-PSN ceramics with 7 wt excess PbOwere prepared by columbite method

(2) The structure of ceramics sintered at 1150∘C shows thepure perovskite structure in all ceramics specimensthe structure of PZT-PMnN-PSN ceramics was trans-formed from tetragonal to rhombohedra with ZrTiratio increased in system

(3) The composition of PZT-PMnN-PSN ceramics nearthe morphotropic phase boundary obtained is theratio of ZrTi = 4951 At this ratio the ceramichas the optimal electromechanical properties the119896119901= 061 the 120576max = 29520 the 11988931 = minus236

pCN the 119876119898= 2400 high remanent polarization

(119875119903= 492 120583Csdotcmminus2) and low coercive field 119864

119888=

1028 kVsdotcmminus1(4) The piezoelectric ceramic with ZrTi ratio of 4951

may be suitable for piezoelectric transformer applica-tions and other high power devices

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work is supported by the National Foundation for Sci-ence and Technology Development (NAFOSTED) no103020609

References

[1] F Gao L Cheng RHong J Liu CWang andC Tian ldquoCrystalstructure and piezoelectric properties of xPb(Mn

13Nb23)O3ndash

(02-x)Pb(Zn13Nb23)O3ndash08Pb(Zr

052Ti048

)O3

ceramicsrdquoCeramics International vol 35 no 5 pp 1719ndash1723 2009

[2] Z Necira A Boutarfaia M Abba H Menasra and NAbdessalem ldquoEffects of thermal conditions in the phase for-mation of undoped and doped Pb(Zr

1minusxTix)O3 solid solutionsrdquoMaterials Sciences and Applications vol 4 no 5 pp 319ndash3232013

[3] Y Xu Ferroelctric Materials and Their Applications North-Holland London UK 1991

[4] J Yoo Y Lee K Yoon et al ldquoMicrostructural electricalproperties and temperature stability of resonant frequencyin Pb(Ni

12W12)O3ndashPb(Mn

13Nb23)O3ndashPb(ZrTi)O

3ceramics

for high-power piezoelectric transformerrdquo Japanese Journal ofApplied Physics A vol 40 no 5 pp 3256ndash3259 2001

[5] R Muanghlua S Niemchareon W C Vittayakorn and NVittayakorn ldquoEffects of ZrTi ratio on the structure andferroelectric properties in PZTndashPZNndashPMN ceramics near themorphotropic phase boundaryrdquo Advanced Materials Researchvol 55-57 pp 125ndash128 2008

[6] F Kahoul L Hamzioui N Abdessalem and A Boutar-faia ldquoSynthesis and piezoelectric properties of Pb

098Sm002

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

8 Advances in Materials Science and Engineering

[(ZryTi1minusy)098(Fe3+

12Nb5+12)002

]O3

ceramicsrdquo Materials Sci-ences and Applications vol 3 pp 50ndash58 2012

[7] N D T Luan L D Vuong and B C Chanh ldquoMicrostructureferroelectric and piezoelectric properties of PZTndashPMnSbNceramicsrdquo International Journal ofMaterials and Chemistry vol3 pp 51ndash58 2013

[8] M Kobune Y Tomoyoshi A Mineshige and S Fujii ldquoEffectsof MnO

2addition on piezoelectric and ferroelectric properties

of PbNi13Nb23O3ndashPbTiO

3ndashPbZrO

3ceramicsrdquo Journal of the

Ceramic Society of Japan vol 108 no 7 pp 633ndash637 2000[9] S J Yoon A Joshi and K Uchino ldquoEffect of additives on the

electromechanical properties of Pb(ZrTi)O3ndashPb(Y

23W13)O3

ceramicsrdquo Journal of the American Ceramic Society vol 80 no4 pp 1035ndash1039 1997

[10] Y K Gao Y H Chen J H Ryu K J Uchino and DViehland ldquoEu and Yb substituent effects on the propertiesof Pb(ZrM

052Ti048

)O3ndashPb(Mn

13Sb23)O3ceramics develop-

ment of a new high-power piezoelectric with enhanced vibra-tional velocityrdquo Japanese Journal of Applied Physics vol 40 no2 pp 687ndash693 2001

[11] Z L Gui L T Li H Q Lin and X W Zhang ldquoLow tem-perature sintering of lead magnesium nickel niobate zirconatetitanate (PMNndashPNNndashPZT) piezoelectric ceramic with highperformancesrdquo Ferroelectrics vol 101 no 1 pp 93ndash99 1990

[12] Z Yang H Li X Zong and Y Chang ldquoStructure and electricalproperties of PZTndashPMSndashPZN piezoelectric ceramicsrdquo Journalof the European Ceramic Society vol 26 no 15 pp 3197ndash32022006

[13] H Fan and H Kim ldquoPerovskite stabilization and electrome-chanical properties of polycrystalline lead zinc niobate-leadzirconate titanaterdquo Journal of Applied Physics vol 91 no 1 pp317ndash322 2002

[14] A Quintana-Nedelcos A Fundora H Amorın and J MSiqueiros ldquoEffects of Mg addition on phase transition anddielectric properties of Ba(Zr

005Ti095

)O3systemrdquo The Open

Condensed Matter Physics Journal vol 2 pp 1ndash8 2009[15] L D Vuong P D Gio T Van Chuong D T H Trang D

V Hung and N T Duong ldquoEffect of ZrTi ratio content onsome physical properties of the low temperature sintering PZTndashPZNndashPMnN ceramicsrdquo International Journal of Materials andChemistry vol 3 no 2 pp 39ndash43 2013

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials


Recommended