+ All Categories
Home > Documents > Trends in chromosome evolution in the genus Hypostomus Lacépède, 1803 (Osteichthyes,...

Trends in chromosome evolution in the genus Hypostomus Lacépède, 1803 (Osteichthyes,...

Date post: 11-Nov-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
10
RESEARCH PAPER Trends in chromosome evolution in the genus Hypostomus Lace ´pe `de, 1803 (Osteichthyes, Loricariidae): a new perspective about the correlation between diploid number and chromosomes types Vanessa Bueno Claudio Henrique Zawadzki Vladimir Pavan Margarido Received: 17 February 2011 / Accepted: 6 April 2011 / Published online: 19 April 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Phylogenetic relationships and identifica- tion of species of the genus Hypostomus is still unclear. Considering this, cytogenetics may prove itself as an important tool in understanding the systematic of this genus. Reviews in Hypostomus indicate that the diploid number ranges from 54 to 84 chromosomes, and the increase in diploid number has been associated to higher percentages of subtelocen- tric and acrocentric chromosomes. Although there is a high number of species in the genus, there are relatively few papers concerning Hypostomus cyto- genetics, and most of the data is published as grey literature. With the aim to understand the chromo- somal evolution in the genus (correlation between diploid number x chromosomes types), H. ancistro- ides and H. topavae from the Piquiri River, Upper Parana ´ River basin, were cytogenetically analyzed, and the diploid number observed was 68 and 80 chromosomes, respectively. Additional data on the diploid number and chromosome formulae was com- piled from papers (27 analyses) and abstracts from grey literature (77 analyses). Our analysis shows no correlation between chromosome numbers and per- centages of subtelocentric and acrocentric chromo- somes for most of the species, since there is considerable variation between these percentages even between species with the same diploid number, indicating that the proportion of chromosome types is not always associated to diploid numbers. Keywords Hypostomus ancistroides Á Hypostomus topavae Á Karyotypic diversity Á Fish cytogenetics Introduction The family Loricariidae is one of the most species rich taxon among the Siluriformes, with about 700 species grouped in seven subfamilies: Delturinae, Hypoptom- atinae, Hypostominae, Lithogeneinae, Loricariinae, Neoplecostominae and Otothyrinae (Reis et al. 2006; Ferraris 2007; Chiachio et al. 2008). The phylogenetic relationships among the Hypostominae are not very clear, especially in the genus Hypostomus. The most recent study regarding the relationships within Hypos- tominae was published by Armbruster (2004). The author presented a detailed analysis about the relation- ships within Loricariidae, and synonymized the former genera contained in the tribe Hypostomini (Aphano- torulus, Cochliodon, Isorineloricaria, Squaliforma and Watawata) as Hypostomus. Montoya-Burgos V. Bueno Á V. P. Margarido (&) Centro de Cie ˆncias Biolo ´gicas e da Sau ´de, Universidade Estadual do Oeste do Parana ´, Rua Universita ´ria 2069, Cascavel, Parana ´ State 85819-110, Brazil e-mail: [email protected] C. H. Zawadzki Departamento de Biologia/Nupe ´lia, Universidade Estadual de Maringa ´, Av. Colombo, 5790, Maringa ´, Parana ´ State 87020-900, Brazil 123 Rev Fish Biol Fisheries (2012) 22:241–250 DOI 10.1007/s11160-011-9215-9
Transcript

RESEARCH PAPER

Trends in chromosome evolution in the genus HypostomusLacepede, 1803 (Osteichthyes, Loricariidae): a newperspective about the correlation between diploid numberand chromosomes types

Vanessa Bueno • Claudio Henrique Zawadzki •

Vladimir Pavan Margarido

Received: 17 February 2011 / Accepted: 6 April 2011 / Published online: 19 April 2011

� Springer Science+Business Media B.V. 2011

Abstract Phylogenetic relationships and identifica-

tion of species of the genus Hypostomus is still

unclear. Considering this, cytogenetics may prove

itself as an important tool in understanding the

systematic of this genus. Reviews in Hypostomus

indicate that the diploid number ranges from 54 to 84

chromosomes, and the increase in diploid number has

been associated to higher percentages of subtelocen-

tric and acrocentric chromosomes. Although there is a

high number of species in the genus, there are

relatively few papers concerning Hypostomus cyto-

genetics, and most of the data is published as grey

literature. With the aim to understand the chromo-

somal evolution in the genus (correlation between

diploid number x chromosomes types), H. ancistro-

ides and H. topavae from the Piquiri River, Upper

Parana River basin, were cytogenetically analyzed,

and the diploid number observed was 68 and 80

chromosomes, respectively. Additional data on the

diploid number and chromosome formulae was com-

piled from papers (27 analyses) and abstracts from

grey literature (77 analyses). Our analysis shows no

correlation between chromosome numbers and per-

centages of subtelocentric and acrocentric chromo-

somes for most of the species, since there is

considerable variation between these percentages

even between species with the same diploid number,

indicating that the proportion of chromosome types is

not always associated to diploid numbers.

Keywords Hypostomus ancistroides � Hypostomus

topavae � Karyotypic diversity � Fish cytogenetics

Introduction

The family Loricariidae is one of the most species rich

taxon among the Siluriformes, with about 700 species

grouped in seven subfamilies: Delturinae, Hypoptom-

atinae, Hypostominae, Lithogeneinae, Loricariinae,

Neoplecostominae and Otothyrinae (Reis et al. 2006;

Ferraris 2007; Chiachio et al. 2008). The phylogenetic

relationships among the Hypostominae are not very

clear, especially in the genus Hypostomus. The most

recent study regarding the relationships within Hypos-

tominae was published by Armbruster (2004). The

author presented a detailed analysis about the relation-

ships within Loricariidae, and synonymized the former

genera contained in the tribe Hypostomini (Aphano-

torulus, Cochliodon, Isorineloricaria, Squaliforma

and Watawata) as Hypostomus. Montoya-Burgos

V. Bueno � V. P. Margarido (&)

Centro de Ciencias Biologicas e da Saude, Universidade

Estadual do Oeste do Parana, Rua Universitaria 2069,

Cascavel, Parana State 85819-110, Brazil

e-mail: [email protected]

C. H. Zawadzki

Departamento de Biologia/Nupelia, Universidade

Estadual de Maringa, Av. Colombo, 5790, Maringa,

Parana State 87020-900, Brazil

123

Rev Fish Biol Fisheries (2012) 22:241–250

DOI 10.1007/s11160-011-9215-9

(2003) through D-loop sequences analysis found

Aphanotorulus, Isorineloricaria and Hypostomus

emarginatus out of the main clade of Hypostomus.

The author recognized the genera Aphanotolurus and

Isorineloricaria, and considered Hypostomus as a

paraphyletic assemblage due to not include H. emar-

ginatus. Despite these studies, a broader revision of the

genus is still needed.

Accumulated cytogenetic data can be used for the

establishment of evolutionary trends, identification of

new species and distinction of cryptic species (Artoni

et al. 2000; Bellafronte et al. 2010; Blanco et al.

2010; Perazzo et al. 2010). Considering the difficul-

ties in identifying several of the Hypostomus species

and its unclear phylogeny, cytogenetics may prove

itself as an important tool in understanding the

systematics of the genus.

Reviews on Hypostomus cytogenetics data were

presented by Artoni and Bertollo (1999; 2001),

Kavalco et al. (2005) and Alves et al. (2006). The

diploid numbers in Hypostomus range from 54 chro-

mossomes in Hypostomus plecostomus (Muramoto

et al. 1968) to 84 chromosomes in Hypostomus sp. 2

(Cereali et al. 2008). Artoni and Bertollo (2001)

consider the diploid number of 54 chromosomes basal

for Hypostominae, using Trichomycteridae as out-

group. The authors observed a higher proportion of

subtelocentric and acrocentric chromosomes in spe-

cies with higher diploid numbers, suggesting that the

chromosome evolution on Hypostomus occurred

through centric fissions. Also, a considerable structural

variation among species sharing the same diploid

number was observed, indicating karyotypic differen-

tiation through structural changes like Robertsonian

rearrangements and pericentric inversions (Kavalco

et al. 2005).

The majority of the data concerning Hypostomus

cytogenetics seems to be published as grey literature,

probably because of the complications related to the

identification of the specimens, the substantial num-

ber of new species and the high amount of cytoge-

netic variation between populations. The publication

of data on meetings and the large number of species

that are unidentified or putative new to science

hampers the compilation and analysis of these data,

preventing a wider analysis of the genus. Thus, a

broader review of the cytogenetic data on Hyposto-

mus, covering also the abstracts published on the

main meetings of fish cytogenetics, would allow a

more accurate view on the results obtained for this

fish group.

Materials and methods

Two species of the genus Hypostomus (Fig. 1) from

the Piquiri River were cytogenetically analyzed:

H. ancistroides (4 males and 11 females) from

Formosa do Oeste (Parana State, Brazil) and

H. topavae (9 males and 6 females), from Nova

Laranjeiras (Parana State, Brazil). The individuals

were sacrificed with overdoses of clove oil (Griffiths

2000). Voucher specimens were deposited in the

Colecao Ictiologica do Nucleo de Pesquisas em

Limnologia, Ictiologia e Aquicultura—Nupelia—

Universidade Estadual de Maringa, Brazil (NUP

3902—H. ancistroides and NUP 11430—H. topa-

vae). Metaphasic cells were obtained from the kidney

(Bertollo et al. 1978; Foresti et al. 1993). Chromo-

somes were classified in metacentric (m), submeta-

centric (sm), subtelocentric (st) and acrocentric (a),

according to Levan et al. (1964).

The review of the available cytogenetic data for

Hypostomus included data from published papers and

from abstracts presented on the Brazilian Sympo-

siums on Fish Cytogenetics and Genetics, from its

first edition in 1986 to the latest edition in 2009.

Inconsistent and repeated data were not included, and

analyses from different populations of the same

species were taken into account when this data was

available. The linear regression and a one-way

analysis of variance were carried out using the

software Statistica 7, considering the data in Tables 1

and 2 that had information about the chromosome

formulae. The analysis of variance was performed

considering the diploid number as the grouping

factor, and each diploid number was considered as

an individual group. The analyses were performed (1)

considering only the published data and (2) consid-

ering the published data together with the grey

literature.

Results

Hypostomus ancistroides presented 2n = 68 chromo-

somes (14 m ? 14 sm ? 8 st ? 32 a) for both sexes

242 Rev Fish Biol Fisheries (2012) 22:241–250

123

(Fig. 2a). Hypostomus topavae presented 2n = 80

chromosomes (14 m ? 10 sm ? 26 st ? 30 a) for both

sexes (Fig. 2b). Tables 1 and 2 were made consider-

ing 27 analyses compiled from manuscripts and 77

analyses from grey literature, respectively. The linear

regression for chromosome number and percentage of

subtelocentric and acrocentric chromosomes showed

correlation values of r = 0.6048, P = 0.0008, con-

sidering only the published data (Fig. 3), and

r = 0.3215, P = 0.002 considering both the pub-

lished data and the grey literature (Fig. 4). The

analysis of variance showed that the difference

between the percentage of subtelocentric and acro-

centric chromosomes is not significant between

populations with different diploid numbers, with

P-values equal to 0.05343, considering only the

published data, and 0.16714 considering both classes

of data.

Discussion

Considering the high number of species in Hypostomus,

more than 120 according to Zawadzki et al. (2010),

there is relatively few cytogenetic data available in the

literature (Table 1), and most of the data available for

the genus is presented in grey literature (Table 2). The

review presented here showed that the diploid number

for Hypostomus ranges from 54 to 84 chromosomes.

Some previous reviews consider 2n = 52 chromo-

somes in Hypostomus emarginatus the smallest diploid

number (Artoni and Bertollo 2001; Alves et al. 2006).

Although the genus Squaliforma has been considered a

synonym for Hypostomus by Armbruster (2004), his

conclusions are not consensual, and there are a number

of publications that consider Squaliforma a valid genus

(Weber 2003; Nelson 2006; Ferraris 2007; Froese and

Pauly 2010). The cytogenetic data presented herein

support the latter conclusion, once S. emarginata has a

reduced diploid number compared to all other Hypo-

stomus species.

Artoni and Bertollo (1996; 2001) observed that

species with higher diploid numbers also showed a

higher proportion of subtelocentric and acrocentric

chromosomes, when compared to species with diploid

numbers closer to 54 chromosomes. They analyzed

the linear regression between the diploid numbers and

percentage of subtelocentric and acrocentric chromo-

somes, and found significant correlation (r = 0.8122,

P \ 0.0001), proposing that centric fissions may have

been an important part of the chromosome evolution

of the genus. Since their studies, there have been no

Fig. 1 Lateral view of a Hypostomus ancistroides (255 mm SL) and b Hypostomus topavae (125 mm SL)

Rev Fish Biol Fisheries (2012) 22:241–250 243

123

Ta

ble

1C

hro

mo

som

ald

ata

for

Hyp

ost

om

us

pu

bli

shed

on

man

usc

rip

ts

Sp

ecie

s2

nC

hro

mo

som

efo

rmu

lae

st-a

%L

oca

lity

UF

Ref

eren

ces

msm

sta

Hyp

ost

om

us

affi

nis

66

14

14

12

26

57

.58

Jacu

ıst

ream

SP

Kav

alco

etal

.(2

00

4,

20

05

)

Hyp

ost

om

us

alb

op

un

cta

tus

74

10

20

44

59

.46

Pir

acic

aba

and

Mo

gi

Gu

acu

SP

Art

on

ian

dB

erto

llo

(19

96

)

Hyp

ost

om

us

an

cist

roid

es6

81

41

48

32

58

.82

Piq

uir

iri

ver

PR

Pre

sen

tst

ud

y

Hyp

ost

om

us

an

cist

roid

es6

81

61

83

45

0.0

0P

irac

icab

aan

dM

og

iG

uac

uS

PA

rto

ni

and

Ber

toll

o(1

99

6)

Hyp

ost

om

us

an

cist

roid

es6

81

81

01

22

85

8.8

2A

raq

ua

riv

erS

PA

lves

etal

.(2

00

6)

Hyp

ost

om

us

an

cist

roid

es6

81

02

83

04

4.1

2–

–M

ich

ele

etal

.(1

97

7)

Hyp

ost

om

us

aff.

au

rog

utt

atu

sa7

68

30

38

50

.00

Pir

acic

aba

and

Mo

gi

Gu

acu

SP

Art

on

ian

dB

erto

llo

(19

96

)

Hyp

ost

om

us

go

yaze

nsi

s7

21

01

61

03

66

3.8

9V

erm

elh

ori

ver

GO

Alv

eset

al.

(20

06

)

Hyp

ost

om

us

ma

cro

ps

68

10

14

44

64

.71

––

Mic

hel

eet

al.

(19

77

)

Hyp

ost

om

us

nig

rom

acu

latu

s7

68

20

48

63

.16

Mo

gi-

Gu

acu

riv

erS

PR

ub

ert

etal

.(2

00

8)

Hyp

ost

om

us

nig

rom

acu

latu

s7

66

20

50

65

.79

Tib

agi

riv

erP

RR

ub

ert

etal

.(2

00

8)

Hyp

ost

om

us

pa

uli

nu

s7

41

02

04

45

9.4

6–

–M

ich

ele

etal

.(1

97

7)

Hyp

ost

om

us

ple

cost

om

us

54

24

12

18

55

.56

––

Mu

ram

oto

etal

.(1

96

8)

Hyp

ost

om

us

reg

an

i7

21

02

04

25

8.3

3P

irac

icab

aan

dM

og

iG

uac

uS

PA

rto

ni

and

Ber

toll

o(1

99

6)

Hyp

ost

om

us

reg

an

i7

21

21

82

61

65

8.3

3A

raq

ua

riv

erS

PA

lves

etal

.(2

00

6)

Hyp

ost

om

us

stri

ga

tice

ps

74

84

62

83

.78

––

Mic

hel

eet

al.

(19

77

)

Hyp

ost

om

us

top

ava

e8

01

41

02

63

07

0.0

0P

iqu

iri

riv

erP

RP

rese

nt

stu

dy

Hyp

ost

om

us

sp.

28

46

16

62

73

.81

Per

did

ori

ver

MS

Cer

eali

etal

.(2

00

8)

Hyp

ost

om

us

sp.

38

26

12

64

78

.05

Corr

ego

Sal

ob

rin

ha

MS

Cer

eali

etal

.(2

00

8)

Hyp

ost

om

us

sp.

A7

01

81

43

85

4.2

9P

irac

icab

aan

dM

og

iG

uac

uS

PA

rto

ni

and

Ber

toll

o(1

99

6)

Hyp

ost

om

us

sp.

B7

21

21

84

25

8.3

3P

irac

icab

aan

dM

og

iG

uac

uS

PA

rto

ni

and

Ber

toll

o(1

99

6)

Hyp

ost

om

us

sp.

C7

21

01

84

46

1.1

1P

irac

icab

aan

dM

og

iG

uac

uS

PA

rto

ni

and

Ber

toll

o(1

99

6)

Hyp

ost

om

us

sp.

D1

72

10

26

36

50

.00

Pir

acic

aba

and

Mo

gi

Gu

acu

SP

Art

on

ian

dB

erto

llo

(19

96

)

Hyp

ost

om

us

sp.

D2

72

14

20

38

52

.78

Pir

acic

aba

and

Mo

gi

Gu

acu

SP

Art

on

ian

dB

erto

llo

(19

96

)

Hyp

ost

om

us

sp.

E8

08

16

56

70

.00

Pir

acic

aba

and

Mo

gi

Gu

acu

SP

Art

on

ian

dB

erto

llo

(19

96

)

Hyp

ost

om

us

sp.

F7

61

01

65

06

5.7

9S

aoF

ran

cisc

ori

ver

MG

Art

on

ian

dB

erto

llo

,(1

99

9)

Hyp

ost

om

us

sp.

G6

41

42

42

64

0.6

3A

rag

uai

ari

ver

MT

Art

on

iet

al.

(19

98

)

a(c

ited

asH

ypo

sto

mu

slu

etke

ni)

244 Rev Fish Biol Fisheries (2012) 22:241–250

123

Ta

ble

2C

hro

mo

som

ald

ata

for

Hyp

ost

om

us

pre

sen

ted

on

even

ts(g

rey

lite

ratu

re)

Sp

ecie

s2

nC

hro

mo

som

efo

rmu

lae

st-a

%L

oca

lity

UF

Ref

eren

ces

Mee

tin

gs

msm

sta

Hyp

ost

om

us

alb

op

un

cta

tus

74

81

81

43

46

4.8

6S

aoJo

aoR

iver

PR

Cas

ale

etal

.(2

00

2)

5

Hyp

ost

om

us

alb

op

un

cta

tus

74

10

20

44

59

.46

Pir

acic

aba

riv

erS

PR

ub

ert

etal

.(2

00

9a)

9

Hyp

ost

om

us

alb

op

un

cta

tus

74

10

20

44

59

.46

Mo

gi-

Gu

acu

riv

erS

PR

ub

ert

etal

.(2

00

9b

)9

Hyp

ost

om

us

alb

op

un

cta

tus

74

81

25

47

2.9

7P

aran

apan

ema

riv

er–

Pen

tead

oet

al.

(20

09

)9

Hyp

ost

om

us

an

cist

roid

es6

81

41

61

22

65

5.8

8C

amb

ira

stre

amP

RP

aiv

aet

al.

(20

08

)8

Hyp

ost

om

us

an

cist

roid

es6

88

62

62

87

9.4

1C

arra

pat

ost

ream

SP

Mar

tin

ezet

al.

(20

08

)8

Hyp

ost

om

us

an

cist

roid

es6

81

41

48

32

58

.82

Piq

uir

iri

ver

PR

Sch

nei

der

etal

.(2

00

8)

8

Hyp

ost

om

us

an

cist

roid

es6

81

41

61

22

65

5.8

8M

og

i-G

uac

uri

ver

SP

Bra

nd

aoet

al.

(20

08

)8

Hyp

ost

om

us

an

cist

roid

es6

81

41

62

21

65

5.8

8P

assa

-cin

cori

ver

SP

Tra

ldi

etal

.(2

00

9b

)9

Hyp

ost

om

us

cf.

an

cist

roid

es6

81

66

26

20

67

.65

Mar

ing

ast

ream

PR

En

do

etal

.(2

00

6a)

7

Hyp

ost

om

us

cf.

an

cist

roid

es6

88

10

16

34

73

.53

Xim

bau

va

stre

am-

En

do

etal

.(2

00

6a)

7

Hyp

ost

om

us

cf.

an

cist

roid

es6

81

11

51

62

66

1.7

6T

atu

peb

ast

ream

PR

En

do

etal

.(2

00

6b

)7

Hyp

ost

om

us

cf.

an

cist

roid

es6

81

21

41

62

66

1.7

6T

aua

stre

amP

RE

nd

oet

al.

(20

06

b)

7

Hyp

ost

om

us

cf.

an

cist

roid

es6

81

66

26

20

67

.65

Mar

ing

ast

ream

PR

En

do

etal

.(2

00

6b

)7

Hyp

ost

om

us

au

rog

utt

atu

sa7

41

44

21

82

4.3

2S

anto

An

ton

ioan

d

Cas

cari

ver

s

PR

Ele

ret

al.

(20

02

)5

Hyp

ost

om

us

coch

lio

do

n6

22

04

26

7.7

4P

lan

alto

da

Bo

do

qu

ena

MS

Cer

eali

etal

.(2

00

4)

6

Hyp

ost

om

us

coch

lio

do

n6

4–

––

––

Sal

ob

rari

ver

and

Sal

ob

rin

ha

stre

am

MS

Cer

eali

etal

.(2

00

8)

8

Hyp

ost

om

us

com

mer

son

i6

81

01

88

32

58

.82

Igu

acu

riv

erP

RC

asal

eet

al.

(20

02

)5

Hyp

ost

om

us

com

mer

son

i6

61

21

61

02

85

7.5

8P

on

taG

ross

aP

RM

auru

tto

etal

.(2

00

9)

9

Hyp

ost

om

us

der

byi

68

10

81

63

47

3.5

3Ig

uac

uri

ver

PR

Cas

ale

etal

.(2

00

2)

5

Hyp

ost

om

us

der

byi

66

––

––

–H

igh

Igu

acu

bas

inP

RM

auru

tto

etal

.(2

00

8)

8

Hyp

ost

om

us

der

byi

68

10

81

63

47

3.5

31

4ri

ver

PR

Can

dio

tto

etal

.(2

00

9)

9

Hyp

ost

om

us

aff.

der

by

80

24

56

70

.00

Kel

ler

stre

amP

RL

ara-

Kam

eian

dJu

lio

-Jun

ior

(20

02

)5

Hyp

ost

om

us

her

ald

oi

74

82

04

66

2.1

6M

og

i-G

uac

uri

ver

SP

Ru

ber

tet

al.

(20

09

b)

9

Hyp

ost

om

us

her

ald

oi

74

82

04

66

2.1

6P

irap

itin

ga

riv

erG

OR

ub

ert

etal

.(2

00

9b

)9

Hyp

ost

om

us

her

ma

nn

i6

81

21

41

03

26

1.7

6K

elle

rst

ream

PR

Lar

a-K

amei

and

Juli

o-J

un

ior

(20

02

)5

Hyp

ost

om

us

her

ma

nn

i7

28

18

46

63

.89

Pir

acic

aba

riv

erS

PR

ub

ert

etal

.(2

00

9a)

9

Hyp

ost

om

us

iher

ing

ii8

08

16

28

28

70

.00

Pas

sa-c

inco

riv

erS

PT

rald

iet

al.

(20

09

a)9

Hyp

ost

om

us

cf.

iher

ing

ii8

08

14

58

72

.50

Pir

acic

aba

riv

erS

PR

ub

ert

etal

.(2

00

9a)

9

Rev Fish Biol Fisheries (2012) 22:241–250 245

123

Ta

ble

2co

nti

nu

ed

Sp

ecie

s2

nC

hro

mo

som

efo

rmu

lae

st-a

%L

oca

lity

UF

Ref

eren

ces

Mee

tin

gs

msm

sta

Hyp

ost

om

us

ma

rga

riti

fer

72

10

16

14

32

63

.89

Piq

uir

iri

ver

PR

Lo

rsch

eid

eret

al.

(20

09

9

Hyp

ost

om

us

ma

rga

riti

fer

72

32

40

55

.56

Par

do

riv

er–

Pen

tead

oet

al.

(20

09

)9

Hyp

ost

om

us

mye

rsi

74

12

14

18

30

64

.86

Igu

acu

riv

erP

RC

asal

eet

al.

(20

02

)5

Hyp

ost

om

us

mye

rsi

74

12

14

10

38

64

.86

Igu

acu

riv

erP

RL

ui

and

Mar

gar

ido

(20

06

)7

Hyp

ost

om

us

nig

rom

acu

latu

s7

66

20

50

65

.79

Tre

sB

oca

sst

ream

PR

Ru

ber

tan

dG

iuli

ano

-Cae

tan

o(2

00

6a)

7

Hyp

ost

om

us

nig

rom

acu

latu

s7

68

20

48

63

.16

Em

asw

ater

fall

SP

Ru

ber

tan

dG

iuli

ano

-Cae

tan

o(2

00

6a)

7

Hyp

ost

om

us

nig

rom

acu

latu

s7

61

22

23

01

25

5.2

6P

assa

-cin

cori

ver

SP

Tra

ldi

etal

.(2

00

9b

)9

Hyp

ost

om

us

pa

uli

nu

s7

66

16

54

71

.05

Pir

acic

aba

riv

erS

PR

ub

ert

etal

.(2

00

9a)

9

Hyp

ost

om

us

ple

cost

om

us

68

––

––

––

–P

ileg

gi

etal

.(1

98

6)

1

Hyp

ost

om

us

reg

an

i7

21

41

28

38

63

.89

––

Lar

a-K

amei

and

Juli

o-J

un

ior

(20

00

)4

Hyp

ost

om

us

reg

an

i7

21

82

01

22

24

7.2

2P

ard

ori

ver

–P

ente

ado

etal

.(2

00

9)

9

Hyp

ost

om

us

cf.

reg

an

i7

21

21

82

61

65

8.3

3A

raq

ua

stre

amS

PIs

hid

aet

al.

(20

02

)5

Hyp

ost

om

us

stri

ga

tice

ps

72

10

16

46

63

.89

Tre

sB

oca

sst

ream

–R

ub

ert

and

Giu

lian

o-C

aeta

no

(20

06

b)

7

Hyp

ost

om

us

stri

ga

tice

ps

72

10

16

46

63

.89

Jacu

tin

ga

riv

er–

Ru

ber

tan

dG

iuli

ano

-Cae

tan

o(2

00

6b

)7

Hyp

ost

om

us

stri

ga

tice

ps

72

10

16

46

63

.89

Taq

uar

iri

ver

–R

ub

ert

and

Giu

lian

o-C

aeta

no

(20

06

b)

7

Hyp

ost

om

us

stri

ga

tice

ps

72

86

30

28

80

.56

Car

rap

ato

stre

amS

PM

arti

nez

etal

.(2

00

8)

8

Hyp

ost

om

us

aff.

stri

ga

tice

ps

72

10

12

20

30

69

.44

Itai

pu

rese

rvo

irP

RB

aum

gar

tner

etal

.(2

00

9)

9

Hyp

ost

om

us

cf.

tiet

ensi

s6

81

81

01

22

85

8.8

2A

raq

ua

stre

amS

PIs

hid

aet

al.

(20

02

)5

Hyp

ost

om

us

cf.

top

ava

e8

06

84

22

48

2.5

0C

arra

pat

ost

ream

SP

Mar

tin

ezet

al.

(20

08

)8

Hyp

ost

om

us

un

ae

76

––

––

–C

on

tas

riv

erB

AB

iten

cou

rtet

al.

(20

08

)8

Hyp

ost

om

us

cf.

wu

cher

eri

76

10

18

48

63

.16

Un

ari

ver

BA

Bit

enco

urt

etal

.(2

00

9)

9

Hyp

ost

om

us

sp.

74

14

16

63

85

9.4

6–

–L

ara-

Kam

eian

dJu

lio

-Ju

nio

r(2

00

0)

4

Hyp

ost

om

us

sp.

72

14

20

38

52

.78

Ap

erta

do

sst

ream

and

Jata

izin

ho

riv

er

PR

Su

aki

etal

.(2

00

2)

5

Hyp

ost

om

us

sp.

68

––

––

–A

per

tad

os

stre

aman

d

Jata

izin

ho

riv

er

PR

Su

aki

etal

.(2

00

2)

5

Hyp

ost

om

us

sp.

74

81

02

82

87

5.6

8C

aval

ost

ream

SC

Mar

tin

ezet

al.

(20

06

)7

Hyp

ost

om

us

sp.

74

10

61

64

27

8.3

8A

rara

sst

ream

MG

Men

des

-Net

oet

al.

(20

06

)7

Hyp

ost

om

us

sp.

66

12

16

12

26

57

.58

Par

anap

anem

ab

asin

SP

Bra

nd

aoet

al.

(20

06

a)7

Hyp

ost

om

us

sp.

68

20

16

62

64

7.0

6M

og

i-G

uac

uri

ver

SP

Bra

nd

aoet

al.

(20

06

b)

7

Hyp

ost

om

us

sp.

80

––

––

–P

assa

-cin

cori

ver

SP

Tra

ldi

etal

.(2

00

8)

8

246 Rev Fish Biol Fisheries (2012) 22:241–250

123

Ta

ble

2co

nti

nu

ed

Sp

ecie

s2

nC

hro

mo

som

efo

rmu

lae

st-a

%L

oca

lity

UF

Ref

eren

ces

Mee

tin

gs

msm

sta

Hyp

ost

om

us

sp.

68

12

12

83

66

4.7

1S

alto

Seg

red

oP

RM

auru

tto

etal

.(2

00

9)

9

Hyp

ost

om

us

sp.

76

82

04

86

3.1

6P

aran

apan

ema

riv

er–

Pen

tead

oet

al.

(20

09

)9

Hyp

ost

om

us

sp.

72

––

––

–A

rag

uar

iri

ver

MG

Co

rrei

aet

al.

(20

09

)9

Hyp

ost

om

us

sp.

16

8–

––

––

Juru

mim

rese

rvo

irS

PF

on

tan

ari

etal

.(1

99

6)

3

Hyp

ost

om

us

sp.

16

41

42

42

64

0.6

3A

rag

uai

ari

ver

MT

Oli

vei

raan

dV

ener

e(2

00

0),

Oli

vei

raet

al.

(20

02

)

4,

5

Hyp

ost

om

us

sp.

17

68

16

84

46

8.4

2K

elle

rst

ream

PR

Lar

a-K

amei

and

Juli

o-J

un

ior

(20

02

)5

Hyp

ost

om

us

sp.

27

2–

––

––

Juru

mim

rese

rvo

irS

PF

on

tan

ari

etal

.(1

99

6)

3

Hyp

ost

om

us

sp.

27

23

83

44

7.2

2A

rag

uai

ari

ver

MT

Oli

vei

raan

dV

ener

e(2

00

0)

4

Hyp

ost

om

us

sp.

27

42

64

86

4.8

6A

rag

uai

ari

ver

MT

Oli

vei

raan

dV

ener

e(2

00

0)

4

Hyp

ost

om

us

sp.

27

2–

––

––

Ara

gu

aia

riv

erM

TO

liv

eira

etal

.(2

00

2)

5

Hyp

ost

om

us

sp.

28

46

16

62

73

.81

Per

did

ori

ver

MS

Cer

eali

etal

.(2

00

6,

20

08

)7

,8

Hyp

ost

om

us

sp.

36

41

61

41

81

65

3.1

3A

rag

uai

ari

ver

MT

Oli

vei

raet

al.

(20

02

)5

Hyp

ost

om

us

sp.

37

68

61

64

68

1.5

8K

elle

rst

ream

PR

Lar

a-K

amei

and

Juli

o-J

un

ior

(20

02

)5

Hyp

ost

om

us

sp.

38

26

14

62

75

.61

Sal

ob

rari

ver

and

Sal

ob

rin

ha

stre

am

MS

Cer

eali

etal

.(2

00

6,

20

08

)7

,8

Hyp

ost

om

us

sp.

A6

8–

––

––

––

Ber

toll

oan

dS

ilv

a(1

99

0)

2

Hyp

ost

om

us

sp.

B7

4–

––

––

––

Ber

toll

oan

dS

ilv

a(1

99

0)

2

Hyp

ost

om

us

sp.

C7

2–

––

––

––

Ber

toll

oan

dS

ilv

a(1

99

0)

2

Hyp

ost

om

us

sp.

D7

2–

––

––

––

Ber

toll

oan

dS

ilv

a(1

99

0)

2

Hyp

ost

om

us

sp.

E8

0–

––

––

––

Ber

toll

oan

dS

ilv

a(1

99

0)

2

Mee

tin

gs:

1S

imp

osi

od

eci

tog

enet

ica

evo

luti

va

eap

lica

da

ap

eix

esn

eotr

op

icai

s(1

98

6),

2II

IS

imp

osi

od

eci

tog

enet

ica

evo

luti

va

eap

lica

da

ap

eix

esn

eotr

op

icai

s(1

99

0),

3V

I

Sim

po

sio

de

cito

gen

etic

aev

olu

tiv

ae

apli

cad

aa

pei

xes

neo

tro

pic

ais

(19

96

),4

VII

IS

imp

osi

od

eci

tog

enet

ica

eg

enet

ica

de

pei

xes

(20

00

),5

IXS

imp

osi

od

eci

tog

enet

ica

eg

enet

ica

de

pei

xes

(20

02

),6

XS

imp

osi

od

eci

tog

enet

ica

eg

enet

ica

de

pei

xes

(20

04

),7

XI

Bra

zili

ansy

mp

osi

um

on

fish

cyto

gen

etic

san

dg

enet

ics

(20

06

),8

XII

Sim

po

sio

de

cito

gen

etic

ae

gen

etic

ad

ep

eix

es(2

00

8),

9X

III

Sim

po

sio

de

cito

gen

etic

ae

gen

etic

ad

ep

eix

es(2

00

9)

a(c

ited

asH

ypo

sto

mu

slu

etke

ni)

Rev Fish Biol Fisheries (2012) 22:241–250 247

123

further analyses on this matter. Our analysis consid-

ering only published data includes a relatively small

amount of new data compared to the analysis

performed by Artoni and Bertollo (2001), even so,

these new data cause the correlation coefficient to

decrease to r = 0.6048, P = 0.0008. The analysis

performed considering also the grey literature shows

an even smaller correlation coefficient (r = 0.3215,

P = 0.002), suggesting that it is not possible to

associate the increase of chromosome number to

higher percentages of subtelocentric and acrocentric

chromosomes for most of the species. The restriction

to higher proportions of subtelocentric and acrocen-

tric chromosomes seems to be characteristic to the

group of species with 2n = 80 chromosomes or

higher (including H. topavae), where subtelocentric

and acrocentric chromosomes represent from 70.00 to

82.50% of the karyotype (Fig. 4), while the groups

with lower diploid numbers have a great variation on

this proportion. Moreover, the analysis of variance

performed on these data shows that these differences

are not significant in both situations (with only the

published data and with both classes of data com-

piled), indicating that percentage of chromosome

types and diploid numbers are not always associated

(P-values equal to 0.05343 and 0.16714,

respectively).Fig. 2 Giemsa stained karyotype of a Hypostomus ancistro-ides and b Hypostomus topavae. The bar represents 5 lm

Fig. 3 Linear regression

between percentage of

subtelocentric-acrocentric

chromosomes (st-a %) and

diploid numbers (2n) in

species of Hypostomus,

considering only published

data. The size of the mark

(circles) represents the

number of populations/

species that share both the

same diploid number and

percentage of subtelocentric

and acrocentric

chromosomes

248 Rev Fish Biol Fisheries (2012) 22:241–250

123

Amongst species with lower diploid numbers, the

mean percentage of subtelocentric and acrocentric

chromosomes is around 61.00%, but this percentage

varies considerably even between species that share

the same diploid number; therefore it is not possible

to correlate diploid numbers with the predominance

of certain chromosome types for most species of

Hypostomus (Fig. 4). The species with the lower

diploid number of the genus (H. plecostomus, with 54

chromosomes) has 55.56% of subtelocentric and

acrocentric chromosomes, even more than some

species like Hypostomus sp. G (40.63%), Hypostomus

ancistroides (44.12%) and Hypostomus sp. D1

(50.00%) with higher diploid numbers (64, 68 and

72 chromosomes, respectively, Table 1). These data

show that it is not possible to associate diploid

numbers to the percentage of subtelocentric and

acrocentric chromosomes in Hypostomus. The exis-

tence of variation among the karyotypes of species

with the same diploid number indicates that Robert-

sonian rearrangements and pericentric inversions

played an important part in the karyotypic differen-

tiation in Hypostomus (Kavalco et al. 2005).

Besides, the variation of the proportion of subtelocen-

tric and acrocentric chromosomes between species with

the same diploid number, such variation is also present

between populations of the same species, like in H. anci-

stroides, one of the most studied species in the genus.

Although all the analyzed populations show 2n = 68

chromosomes, the karyotypic formulae varies (Tables 1

and 2). Because of such variation, the percentage of

subtelocentric and acrocentric chromosomes in this

species ranges from 44.00% in the population analyzed

by Michele et al. (1977) to 79.00%, from a population

from Carrapato stream (Table 2).

Considering Hypostomus as a species rich genus

and their genetic and morphological variation, the

number of cytogenetically studied species is still

relatively small. Also, many of the analyzed species

are either new to science or unidentified.

Acknowledgments The authors are grateful to Instituto

Brasileiro do Meio Ambiente e Recursos Naturais

Renovaveis (MMA/IBAMA) for authorizing the capture of

the fishes. The authors thank to Unioeste and to the Nucleo de

Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupelia)

for logistical support. This study was financed by Fundacao

Araucaria (Fundacao Araucaria de Apoio ao Desenvolvimento

Cientıfico e Tecnologico do Estado do Parana), CAPES

(Coordenadoria de Aperfeicoamento de Ensino Superior) and

CNPq (Conselho Nacional de Desenvolvimento Cientıfico e

Tecnologico).

Fig. 4 Linear regression

between percentage of

subtelocentric-acrocentric

chromosomes (st-a %) and

diploid numbers (2n) in

species of Hypostomus,

considering the published

data and grey literature. The

size of the mark (circles)

represents the number of

populations/species that

share both the same diploid

number and percentage of

subtelocentric and

acrocentric chromosomes

Rev Fish Biol Fisheries (2012) 22:241–250 249

123

References

Alves AL, Oliveira C, Nirchio M, Granado A, Foresti F (2006)

Karyotypic relationships among the tribes of Hypostom-

inae (Siluriformes: Loricariidae) with description of XO

sex chromosome system in a Neotropical fish species.

Genetica 128:1–9

Armbruster JW (2004) Phylogenetic relationships of the

suckermouth armoured catfishes (Loricariidae) with

emphasis on the hypostominae and the ancistrinae. Zool J

Linn Soc 141:1–80

Artoni RF, Bertollo LAC (1996) Cytogenetic studies on Hy-

postominae (Pisces, Siluriformes, Loricariidae). Consid-

erations on karyotype evolution in the genus Hypostomus.

Caryologia 49:81–90

Artoni RF, Bertollo LAC (1999) Nature and distribution of

constitutive heterochromatin in fishes, genus Hypostomus(Loricariidae). Genetica 106:209–214

Artoni RF, Bertollo LAC (2001) Trends in the karyotype

evolution of Loricariidae fish (Siluriformes). Hereditas

134:201–210

Artoni RF, Venere PC, Bertollo LAC (1998) A heteromorphic

ZZ/ZW sex chromosome system in fish, genus Hyposto-mus (Loricariidae). Cytologia 63:421–425

Artoni RF, Vicari MR, Bertollo LAC (2000) Citogenetica de

peixes neotropicais: metodos, resultados e perspectivas.

Publicatio UEPG 6:43–60

Bellafronte E, Schemberger MO, Moreira-Filho O, Almeida

MC, Artoni RF, Margarido VP, Vicari MR (2010) Chro-

mosomal markers in Parodontidae: an analysis of new and

reviewed data with phylogenetic inferences. Rev Fish Biol

Fisheries. doi: 10.1007/s11160-010-9177-3

Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cyto-

taxonomic considerations on Hoplias lacerdae (Pisces,

Erythrinidae). Braz J Genet 1:103–120

Blanco DR, Lui RL, Bertollo LAC, Diniz D, Moreira-Filho O

(2010) Characterization of invasive fish species in a river

transposition region: evolutionary chromosome studies in

the genus Hoplias (Characiformes, Erythrinidae). Rev

Fish Biol Fisheries 20:1–8

Cereali SS, Pomini E, Rosa R, Zawadzki CH, Froehlich O,

Giuliano-Caetano L (2008) Karyotype description of two

species of Hypostomus (Siluriformes, Loricariidae) of the

Planalto da Bodoquena, Brazil. Genet Mol Res 7:583–591

Chiachio MC, Oliveira C, Montoya-Burgos JI (2008) Molec-

ular systematic and historical biogeography of the

armored Neotropical catfishes Hypoptopomatinae and

Neoplecostominae (Siluriformes: Loricariidae). Mol

Phylogenet Evol 49:606–617

Ferraris CJ (2007) Checklist of catfishes, recent and fossil

(Osteichthyes: Siluriformes) and catalogue of siluriform

primary types. Zootaxa 1418:1–628

Foresti F, Oliveira C, Almeida-Toledo LF (1993) A method for

chromosome preparations from large fish specimens using

in vitro short-term treatment with colchicine. Experientia

49:810–813

Froese R, Pauly D (2010) FishBase. World Wide Web elec-

tronic publication. http://www.fishbase.org. Accessed 18

Nov 2010

Griffiths SP (2000) The use of clove oil as an anaesthetic and

method for sampling intertidal rockpool fishes. J Fish Biol

57:1453–1464

Kavalco KF, Pazza R, Bertollo LAC, Moreira-Filho O (2004)

Heterochromatin characterization of four fish species of

the family Loricariidae (Siluriformes). Hereditas

141:237–242

Kavalco KF, Pazza R, Bertollo LAC, Moreira-Filho O (2005)

Karyotypic diversity and evolution of Loricariidae (Pis-

ces, Siluriformes). Heredity 94:180–186

Levan A, Fredga K, Sandberg AA (1964) Nomenclature for

centromeric position on chromosomes. Hereditas

52:201–220

Michele JL, Takahashu CS, Ferrari I (1977) Karyotypic study

of some species of the family Loricariidae (Pisces). Cyt-

ologia 42:539–546

Muramoto JI, Ohno S, Atkin NB (1968) On the diploid state of

the fish order Ostariophysi. Chromosoma 24:59–66

Nelson JS (2006) Fishes of the world. John Wiley & Sons, Inc.

New Jersey

Perazzo G, Noleto RB, Vicari MR, Machado PC, Gava A,

Cestari MM (2010) Chromosomal studies in Crenicichlalepidota and Australoheros facetus (Cichlidae, Percifor-

mes) from extreme Southern Brazil. Rev Fish Biol Fish-

eries. doi: 10.1007/s11160-010-9170-x

Reis RE, Pereira EHL, Armbruster JW (2006) Delturinae, a

new loricariid catfish subfamily (Teleostei, Siluriformes),

with revisions of Delturus and Hemipsilichthys. Zool J

Linn Soc 147:277–299

Rubert M, Zawadzki CH, Giuliano-Caetano L (2008) Cyto-

genetic characterization of Hypostomus nigromaculatus(Siluriformes: loricariidae). Neotrop Ichthyol 6:93–100

Weber C (2003) Subfamily Hypostominae. In: Reis RE, Kul-

lander SO, Ferraris CJ (eds) Checklist of the freshwater

fishes of South and Central America. Edipucrs, Porto

Alegre, pp 351–372

Zawadzki CH, Weber C, Pavanelli CS (2010) A new dark-

saddled species of Hypostomus (Siluriformes: Loricarii-

dae) from the upper rio Paraguay basin. Neotrop Ichthyol

8:719–725

250 Rev Fish Biol Fisheries (2012) 22:241–250

123


Recommended