+ All Categories
Home > Documents > Weighted automata and weighted logics with discounting

Weighted automata and weighted logics with discounting

Date post: 21-Nov-2023
Category:
Upload: uni-leipzig1
View: 0 times
Download: 0 times
Share this document with a friend
112
Weighted Automata and Weighted Logics with Discounting Manfred Droste 1 and George Rahonis 2 1 Leipzig University, Germany 2 Aristotle University of Thessaloniki, Greece CIAA 2007 Prague, July 16-18, 2007 CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 1 / 19
Transcript

Weighted Automata and Weighted Logicswith Discounting

Manfred Droste1 and George Rahonis2

1Leipzig University, Germany2Aristotle University of Thessaloniki, Greece

CIAA 2007Prague, July 16-18, 2007

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 1 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?

Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, Aω = fall in�nite words over Ag

Theorem (Büchi �62)

Let L � Aω. The following are equivalent:

L is Büchi recognizable

L is MSO-de�nable

L is ω-rational

L is Muller recognizable (McNaughton �66)

Goal of this work:Generalization to weighted automata

Question: Is this task just a simple generalization?Answer: No

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 2 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state set

in : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distribution

wt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mapping

out : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :

Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)

weight(Pw ) := in(q0) � ∏0�i�n�1

wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! K

w 7! ∑Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :

Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)

Problem: weight(Pw ) =?

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

A alphabet, K semiring

Weighted automaton over A and K (Schützenberger �61)

A = (Q, in,wt, out)

Q : �nite state setin : Q ! K initial distributionwt : Q � A�Q ! K weight transition mappingout : Q ! K �nal distribution

a path of A over w = a0a1 . . . an�1 2 A� :Pw = (ti )0�i�n�1, ti = (qi , ai , qi+1) (0 � i � n� 1)weight(Pw ) := in(q0) � ∏

0�i�n�1wt(ti ) � out(qn)

behavior of A: kAk : A� ! Kw 7! ∑

Pwweight(Pw )

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)Problem: weight(Pw ) =?CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 3 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäki

real functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)

min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

SolutionConsider complete semirings

S. Eilenberg, Z. Ésik & W. Kuich, M. Droste & G. Rahonis

Very particular automata

K. Culik II & J. Karhumäkireal functions, digital image processing

Discounting as inmathematical economics, game theory, Markov processes

M. Droste & D. Kuske

We adopt the discounting method

Underlying semirings:

max-plus: Rmax = (R+ [ f�∞g,_,+,�∞, 0)min-plus: Rmin = (R+ [ f∞g,min,+,∞, 0)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 4 / 19

p 2 R+, p � (�∞) = �∞

the mapping p : Rmax ! Rmax, x 7! p � xis an endomorphism of Rmax

Each endomorphism of Rmax is of the above form(Droste and Kuske �06)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 5 / 19

p 2 R+, p � (�∞) = �∞the mapping p : Rmax ! Rmax, x 7! p � xis an endomorphism of Rmax

Each endomorphism of Rmax is of the above form(Droste and Kuske �06)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 5 / 19

p 2 R+, p � (�∞) = �∞the mapping p : Rmax ! Rmax, x 7! p � xis an endomorphism of Rmax

Each endomorphism of Rmax is of the above form(Droste and Kuske �06)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 5 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )

Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state set

in : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )

Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distribution

wt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )

Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mapping

F � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )

Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )

Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )

Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )Q, in, wt as above

F � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)

let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1

weight(Pw ) := in(q0) + ∑i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qg

weight(Pw ) � C + C � 11�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

De�nitionA weighted Büchi automaton over A and Rmax : A = (Q, in,wt,F )

Q : �nite state setin : Q ! Rmax initial distributionwt : Q � A�Q ! Rmax weight transition mappingF � Q : �nal state set

A weighted Muller automaton over A and Rmax : A = (Q, in,wt,F )Q, in, wt as aboveF � P(Q) �nal state sets.

a path of A over w = a0a1 . . . 2 Aω :Pw = (ti )i�0, ti = (qi , ai , qi+1) (i � 0)let 0 � p < 1weight(Pw ) := in(q0) + ∑

i�0pi � wt(ti )

C = maxfin(q),wt(t) j q 2 Q, t 2 Q � A�Qgweight(Pw ) � C + C � 1

1�p < ∞

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 6 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)Then w 7! k � ∑

i2ω,ai=api

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)Then w 7! k � ∑

i2ω,ai=api

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)Then w 7! k � ∑

i2ω,ai=api

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)Then w 7! k � ∑

i2ω,ai=api

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)

in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)Then w 7! k � ∑

i2ω,ai=api

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)Then w 7! k � ∑

i2ω,ai=api

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)

Then w 7! k � ∑i2ω,ai=a

pi

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

InQ (Pw ) = fq 2 Q j 9ωi : ti = (q, ai , qi+1)g

Pw is successful if�InQ (Pw ) \ F 6= ∅ BüchiInQ (Pw ) 2 F Muller

The p-behavior of A : kAk : Aω ! Rmax

w 7!_

Pw successful

weight(Pw )

Example a 2 A, k 2 Rmax, Büchi automaton A = (fqg, in,wt, fqg)in(q) = 0

wt(q, a, q) = k, wt(q, a0, q) = 0 (a0 2 A, a0 6= a)Then w 7! k � ∑

i2ω,ai=api

gives the discounted cost of a�s in w

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 7 / 19

Rp�ω�recmax hhAωii = fall Büchi (or ω-) recognizable seriesg

Rp�M�recmax hhAωii = fall Muller recognizable seriesg

Theorem (�rst main result)

Rp�ω�recmax hhAωii = Rp�M�rec

max hhAωii

Rp�ω�recmax hhAωii is closed under max, sum and scalar sum and

application of strict alphabetic homomorphisms h : Aω ! Bω andtheir inverses

Let L 2 ω� Rec(A). Then 1L 2 Rp�ω�recmax hhAωii.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 8 / 19

Rp�ω�recmax hhAωii = fall Büchi (or ω-) recognizable seriesg

Rp�M�recmax hhAωii = fall Muller recognizable seriesg

Theorem (�rst main result)

Rp�ω�recmax hhAωii = Rp�M�rec

max hhAωii

Rp�ω�recmax hhAωii is closed under max, sum and scalar sum and

application of strict alphabetic homomorphisms h : Aω ! Bω andtheir inverses

Let L 2 ω� Rec(A). Then 1L 2 Rp�ω�recmax hhAωii.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 8 / 19

Rp�ω�recmax hhAωii = fall Büchi (or ω-) recognizable seriesg

Rp�M�recmax hhAωii = fall Muller recognizable seriesg

Theorem (�rst main result)

Rp�ω�recmax hhAωii = Rp�M�rec

max hhAωii

Rp�ω�recmax hhAωii is closed under max, sum and scalar sum and

application of strict alphabetic homomorphisms h : Aω ! Bω andtheir inverses

Let L 2 ω� Rec(A). Then 1L 2 Rp�ω�recmax hhAωii.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 8 / 19

Rp�ω�recmax hhAωii = fall Büchi (or ω-) recognizable seriesg

Rp�M�recmax hhAωii = fall Muller recognizable seriesg

Theorem (�rst main result)

Rp�ω�recmax hhAωii = Rp�M�rec

max hhAωii

Rp�ω�recmax hhAωii is closed under max, sum and scalar sum and

application of strict alphabetic homomorphisms h : Aω ! Bω andtheir inverses

Let L 2 ω� Rec(A). Then 1L 2 Rp�ω�recmax hhAωii.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 8 / 19

Rp�ω�recmax hhAωii = fall Büchi (or ω-) recognizable seriesg

Rp�M�recmax hhAωii = fall Muller recognizable seriesg

Theorem (�rst main result)

Rp�ω�recmax hhAωii = Rp�M�rec

max hhAωii

Rp�ω�recmax hhAωii is closed under max, sum and scalar sum and

application of strict alphabetic homomorphisms h : Aω ! Bω andtheir inverses

Let L 2 ω� Rec(A). Then 1L 2 Rp�ω�recmax hhAωii.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 8 / 19

Weighted MSO logic with discounting

De�nitionThe syntax of the weighted MSO-formulas over A and Rmax is given byϕ := k j Pa(x) j :Pa(x) j S(x , y) j :S(x , y) j x � y j :(x � y)

j x 2 X j :(x 2 X ) j ϕ _ ψ j ϕ ^ ψ j 9x � ϕ j 9X � ϕ j 8x � ϕk 2 Rmax, a 2 A.

MSO(Rmax,A) = fall weighted MSO-formulas over A and Rmaxg.

Representation of w = a0a1 . . . 2 Aω, by w :=�ω,�, (Ra)a2A

�where Ra := fi 2 ω j ai = ag (a 2 A)Consider ϕ 2 MSO(Rmax,A), Aϕ = A� Free(ϕ)w 2 Aω, σ : assignment of free variables of ϕ to positions /sets of positions in w(w , σ) 2 Aω

ϕ

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 9 / 19

Weighted MSO logic with discounting

De�nitionThe syntax of the weighted MSO-formulas over A and Rmax is given byϕ := k j Pa(x) j :Pa(x) j S(x , y) j :S(x , y) j x � y j :(x � y)

j x 2 X j :(x 2 X ) j ϕ _ ψ j ϕ ^ ψ j 9x � ϕ j 9X � ϕ j 8x � ϕk 2 Rmax, a 2 A.

MSO(Rmax,A) = fall weighted MSO-formulas over A and Rmaxg.Representation of w = a0a1 . . . 2 Aω, by w :=

�ω,�, (Ra)a2A

�where Ra := fi 2 ω j ai = ag (a 2 A)

Consider ϕ 2 MSO(Rmax,A), Aϕ = A� Free(ϕ)w 2 Aω, σ : assignment of free variables of ϕ to positions /sets of positions in w(w , σ) 2 Aω

ϕ

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 9 / 19

Weighted MSO logic with discounting

De�nitionThe syntax of the weighted MSO-formulas over A and Rmax is given byϕ := k j Pa(x) j :Pa(x) j S(x , y) j :S(x , y) j x � y j :(x � y)

j x 2 X j :(x 2 X ) j ϕ _ ψ j ϕ ^ ψ j 9x � ϕ j 9X � ϕ j 8x � ϕk 2 Rmax, a 2 A.

MSO(Rmax,A) = fall weighted MSO-formulas over A and Rmaxg.Representation of w = a0a1 . . . 2 Aω, by w :=

�ω,�, (Ra)a2A

�where Ra := fi 2 ω j ai = ag (a 2 A)Consider ϕ 2 MSO(Rmax,A), Aϕ = A� Free(ϕ)

w 2 Aω, σ : assignment of free variables of ϕ to positions /sets of positions in w(w , σ) 2 Aω

ϕ

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 9 / 19

Weighted MSO logic with discounting

De�nitionThe syntax of the weighted MSO-formulas over A and Rmax is given byϕ := k j Pa(x) j :Pa(x) j S(x , y) j :S(x , y) j x � y j :(x � y)

j x 2 X j :(x 2 X ) j ϕ _ ψ j ϕ ^ ψ j 9x � ϕ j 9X � ϕ j 8x � ϕk 2 Rmax, a 2 A.

MSO(Rmax,A) = fall weighted MSO-formulas over A and Rmaxg.Representation of w = a0a1 . . . 2 Aω, by w :=

�ω,�, (Ra)a2A

�where Ra := fi 2 ω j ai = ag (a 2 A)Consider ϕ 2 MSO(Rmax,A), Aϕ = A� Free(ϕ)w 2 Aω, σ : assignment of free variables of ϕ to positions /sets of positions in w(w , σ) 2 Aω

ϕ

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 9 / 19

De�nition (Semantics of MSO(Rmax,A)-formulas)

Semantics of ϕ 2 MSO(Rmax,A) : kϕk : Aωϕ ! Rmax.

The coe¢ cient (kϕk , (w , σ)) 2 Rmax is de�ned inductively (σ a validassignment) by:

(kkk , (w , σ)) = k

(kPa(x)k , (w , σ)) =�

0 if ai = a for i = σ(x)�∞ otherwise

(kS(x , y)k , (w , σ)) =�

0 if σ(x) + 1 = σ(y)�∞ otherwise

(kx � yk , (w , σ)) =�

0 if σ(x) � σ(y)�∞ otherwise

(kx 2 Xk , (w , σ)) =�

0 if σ(x) 2 σ(X )�∞ otherwise

(k:ϕk , (w , σ)) =�

0 if (kϕk , (w , σ)) = �∞�∞ if (kϕk , (w , σ)) = 0 , provided that

ϕ is of the form Pa(x), S(x , y), x � y or x 2 X

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 10 / 19

De�nition (Semantics of MSO(Rmax,A)-formulas)

Semantics of ϕ 2 MSO(Rmax,A) : kϕk : Aωϕ ! Rmax.

The coe¢ cient (kϕk , (w , σ)) 2 Rmax is de�ned inductively (σ a validassignment) by:

(kkk , (w , σ)) = k

(kPa(x)k , (w , σ)) =�

0 if ai = a for i = σ(x)�∞ otherwise

(kS(x , y)k , (w , σ)) =�

0 if σ(x) + 1 = σ(y)�∞ otherwise

(kx � yk , (w , σ)) =�

0 if σ(x) � σ(y)�∞ otherwise

(kx 2 Xk , (w , σ)) =�

0 if σ(x) 2 σ(X )�∞ otherwise

(k:ϕk , (w , σ)) =�

0 if (kϕk , (w , σ)) = �∞�∞ if (kϕk , (w , σ)) = 0 , provided that

ϕ is of the form Pa(x), S(x , y), x � y or x 2 X

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 10 / 19

De�nition (Semantics of MSO(Rmax,A)-formulas)

Semantics of ϕ 2 MSO(Rmax,A) : kϕk : Aωϕ ! Rmax.

The coe¢ cient (kϕk , (w , σ)) 2 Rmax is de�ned inductively (σ a validassignment) by:

(kkk , (w , σ)) = k

(kPa(x)k , (w , σ)) =�

0 if ai = a for i = σ(x)�∞ otherwise

(kS(x , y)k , (w , σ)) =�

0 if σ(x) + 1 = σ(y)�∞ otherwise

(kx � yk , (w , σ)) =�

0 if σ(x) � σ(y)�∞ otherwise

(kx 2 Xk , (w , σ)) =�

0 if σ(x) 2 σ(X )�∞ otherwise

(k:ϕk , (w , σ)) =�

0 if (kϕk , (w , σ)) = �∞�∞ if (kϕk , (w , σ)) = 0 , provided that

ϕ is of the form Pa(x), S(x , y), x � y or x 2 X

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 10 / 19

De�nition (Semantics of MSO(Rmax,A)-formulas)

Semantics of ϕ 2 MSO(Rmax,A) : kϕk : Aωϕ ! Rmax.

The coe¢ cient (kϕk , (w , σ)) 2 Rmax is de�ned inductively (σ a validassignment) by:

(kkk , (w , σ)) = k

(kPa(x)k , (w , σ)) =�

0 if ai = a for i = σ(x)�∞ otherwise

(kS(x , y)k , (w , σ)) =�

0 if σ(x) + 1 = σ(y)�∞ otherwise

(kx � yk , (w , σ)) =�

0 if σ(x) � σ(y)�∞ otherwise

(kx 2 Xk , (w , σ)) =�

0 if σ(x) 2 σ(X )�∞ otherwise

(k:ϕk , (w , σ)) =�

0 if (kϕk , (w , σ)) = �∞�∞ if (kϕk , (w , σ)) = 0 , provided that

ϕ is of the form Pa(x), S(x , y), x � y or x 2 X

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 10 / 19

De�nition (Semantics of MSO(Rmax,A)-formulas)

Semantics of ϕ 2 MSO(Rmax,A) : kϕk : Aωϕ ! Rmax.

The coe¢ cient (kϕk , (w , σ)) 2 Rmax is de�ned inductively (σ a validassignment) by:

(kkk , (w , σ)) = k

(kPa(x)k , (w , σ)) =�

0 if ai = a for i = σ(x)�∞ otherwise

(kS(x , y)k , (w , σ)) =�

0 if σ(x) + 1 = σ(y)�∞ otherwise

(kx � yk , (w , σ)) =�

0 if σ(x) � σ(y)�∞ otherwise

(kx 2 Xk , (w , σ)) =�

0 if σ(x) 2 σ(X )�∞ otherwise

(k:ϕk , (w , σ)) =�

0 if (kϕk , (w , σ)) = �∞�∞ if (kϕk , (w , σ)) = 0 , provided that

ϕ is of the form Pa(x), S(x , y), x � y or x 2 X

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 10 / 19

De�nition (Semantics of MSO(Rmax,A)-formulas)

Semantics of ϕ 2 MSO(Rmax,A) : kϕk : Aωϕ ! Rmax.

The coe¢ cient (kϕk , (w , σ)) 2 Rmax is de�ned inductively (σ a validassignment) by:

(kkk , (w , σ)) = k

(kPa(x)k , (w , σ)) =�

0 if ai = a for i = σ(x)�∞ otherwise

(kS(x , y)k , (w , σ)) =�

0 if σ(x) + 1 = σ(y)�∞ otherwise

(kx � yk , (w , σ)) =�

0 if σ(x) � σ(y)�∞ otherwise

(kx 2 Xk , (w , σ)) =�

0 if σ(x) 2 σ(X )�∞ otherwise

(k:ϕk , (w , σ)) =�

0 if (kϕk , (w , σ)) = �∞�∞ if (kϕk , (w , σ)) = 0 , provided that

ϕ is of the form Pa(x), S(x , y), x � y or x 2 XCIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 10 / 19

De�nition (Semantics continued)

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) _ (kψk , (w , σ))

(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ))(k9x � ϕk , (w , σ)) =

_i2ω

(kϕk , (w , σ[x ! i ]))

(k9X � ϕk , (w , σ)) =_I�ω

(kϕk , (w , σ[X ! I ]))

(k8x � ϕk , (w , σ)) = ∑i2ω

pi � (kϕk , (w , σ[x ! i ])) .

Example Let ϕ = 8x � (Pa(x)! k), k 2 Rmax.

Then (kϕk ,w) = k � ∑i2ω,ai=a

pi

returns the discounted cost of a�s in w .

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 11 / 19

De�nition (Semantics continued)

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) _ (kψk , (w , σ))(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ))

(k9x � ϕk , (w , σ)) =_i2ω

(kϕk , (w , σ[x ! i ]))

(k9X � ϕk , (w , σ)) =_I�ω

(kϕk , (w , σ[X ! I ]))

(k8x � ϕk , (w , σ)) = ∑i2ω

pi � (kϕk , (w , σ[x ! i ])) .

Example Let ϕ = 8x � (Pa(x)! k), k 2 Rmax.

Then (kϕk ,w) = k � ∑i2ω,ai=a

pi

returns the discounted cost of a�s in w .

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 11 / 19

De�nition (Semantics continued)

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) _ (kψk , (w , σ))(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ))(k9x � ϕk , (w , σ)) =

_i2ω

(kϕk , (w , σ[x ! i ]))

(k9X � ϕk , (w , σ)) =_I�ω

(kϕk , (w , σ[X ! I ]))

(k8x � ϕk , (w , σ)) = ∑i2ω

pi � (kϕk , (w , σ[x ! i ])) .

Example Let ϕ = 8x � (Pa(x)! k), k 2 Rmax.

Then (kϕk ,w) = k � ∑i2ω,ai=a

pi

returns the discounted cost of a�s in w .

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 11 / 19

De�nition (Semantics continued)

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) _ (kψk , (w , σ))(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ))(k9x � ϕk , (w , σ)) =

_i2ω

(kϕk , (w , σ[x ! i ]))

(k9X � ϕk , (w , σ)) =_I�ω

(kϕk , (w , σ[X ! I ]))

(k8x � ϕk , (w , σ)) = ∑i2ω

pi � (kϕk , (w , σ[x ! i ])) .

Example Let ϕ = 8x � (Pa(x)! k), k 2 Rmax.

Then (kϕk ,w) = k � ∑i2ω,ai=a

pi

returns the discounted cost of a�s in w .

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 11 / 19

De�nition (Semantics continued)

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) _ (kψk , (w , σ))(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ))(k9x � ϕk , (w , σ)) =

_i2ω

(kϕk , (w , σ[x ! i ]))

(k9X � ϕk , (w , σ)) =_I�ω

(kϕk , (w , σ[X ! I ]))

(k8x � ϕk , (w , σ)) = ∑i2ω

pi � (kϕk , (w , σ[x ! i ])) .

Example Let ϕ = 8x � (Pa(x)! k), k 2 Rmax.

Then (kϕk ,w) = k � ∑i2ω,ai=a

pi

returns the discounted cost of a�s in w .

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 11 / 19

De�nition (Semantics continued)

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) _ (kψk , (w , σ))(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ))(k9x � ϕk , (w , σ)) =

_i2ω

(kϕk , (w , σ[x ! i ]))

(k9X � ϕk , (w , σ)) =_I�ω

(kϕk , (w , σ[X ! I ]))

(k8x � ϕk , (w , σ)) = ∑i2ω

pi � (kϕk , (w , σ[x ! i ])) .

Example Let ϕ = 8x � (Pa(x)! k), k 2 Rmax.

Then (kϕk ,w) = k � ∑i2ω,ai=a

pi

returns the discounted cost of a�s in w .

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 11 / 19

De�nition (Semantics continued)

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) _ (kψk , (w , σ))(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ))(k9x � ϕk , (w , σ)) =

_i2ω

(kϕk , (w , σ[x ! i ]))

(k9X � ϕk , (w , σ)) =_I�ω

(kϕk , (w , σ[X ! I ]))

(k8x � ϕk , (w , σ)) = ∑i2ω

pi � (kϕk , (w , σ[x ! i ])) .

Example Let ϕ = 8x � (Pa(x)! k), k 2 Rmax.

Then (kϕk ,w) = k � ∑i2ω,ai=a

pi

returns the discounted cost of a�s in w .

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 11 / 19

De�nitionA formula ϕ 2 MSO(Rmax,A) is almost existential if whenever ϕcontains a subformula 8x � ψ,then ψ does not contain any universal quanti�er.

Purely syntactic de�nition!

Rp�aemsomax hhAωii) : all series in Rmax hhAωii

which are de�nable by some almost existential sentence inMSO(Rmax,A)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 12 / 19

De�nitionA formula ϕ 2 MSO(Rmax,A) is almost existential if whenever ϕcontains a subformula 8x � ψ,then ψ does not contain any universal quanti�er.

Purely syntactic de�nition!

Rp�aemsomax hhAωii) : all series in Rmax hhAωii

which are de�nable by some almost existential sentence inMSO(Rmax,A)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 12 / 19

De�nitionA formula ϕ 2 MSO(Rmax,A) is almost existential if whenever ϕcontains a subformula 8x � ψ,then ψ does not contain any universal quanti�er.

Purely syntactic de�nition!

Rp�aemsomax hhAωii) : all series in Rmax hhAωii

which are de�nable by some almost existential sentence inMSO(Rmax,A)

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 12 / 19

Theorem (second main result)

Rp�ω�recmax hhAωii = Rp�aemso

max hhAωii

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 13 / 19

Proof.By induction on the structure of weighted MSO-formulaswe show R

p�aemsomax hhAωii � R

p�ω�recmax hhAωii .

Crucial steps:If kϕk takes on only �nitely many values, then

so do k9x � ϕk and k9X � ϕk , andk8x � ϕk is ω-recognizable.

Conversely, given any weighted Muller automaton Awe can e¤ectively construct an almost existential sentence ϕ suchthat kAk = kϕk .

In the paper we have shown corresponding results for �nitary series(over �nite words).

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 14 / 19

Proof.By induction on the structure of weighted MSO-formulaswe show R

p�aemsomax hhAωii � R

p�ω�recmax hhAωii .

Crucial steps:If kϕk takes on only �nitely many values, then

so do k9x � ϕk and k9X � ϕk , andk8x � ϕk is ω-recognizable.

Conversely, given any weighted Muller automaton Awe can e¤ectively construct an almost existential sentence ϕ suchthat kAk = kϕk .

In the paper we have shown corresponding results for �nitary series(over �nite words).

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 14 / 19

Proof.By induction on the structure of weighted MSO-formulaswe show R

p�aemsomax hhAωii � R

p�ω�recmax hhAωii .

Crucial steps:If kϕk takes on only �nitely many values, then

so do k9x � ϕk and k9X � ϕk , and

k8x � ϕk is ω-recognizable.

Conversely, given any weighted Muller automaton Awe can e¤ectively construct an almost existential sentence ϕ suchthat kAk = kϕk .

In the paper we have shown corresponding results for �nitary series(over �nite words).

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 14 / 19

Proof.By induction on the structure of weighted MSO-formulaswe show R

p�aemsomax hhAωii � R

p�ω�recmax hhAωii .

Crucial steps:If kϕk takes on only �nitely many values, then

so do k9x � ϕk and k9X � ϕk , andk8x � ϕk is ω-recognizable.

Conversely, given any weighted Muller automaton Awe can e¤ectively construct an almost existential sentence ϕ suchthat kAk = kϕk .

In the paper we have shown corresponding results for �nitary series(over �nite words).

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 14 / 19

Proof.By induction on the structure of weighted MSO-formulaswe show R

p�aemsomax hhAωii � R

p�ω�recmax hhAωii .

Crucial steps:If kϕk takes on only �nitely many values, then

so do k9x � ϕk and k9X � ϕk , andk8x � ϕk is ω-recognizable.

Conversely, given any weighted Muller automaton Awe can e¤ectively construct an almost existential sentence ϕ suchthat kAk = kϕk .

In the paper we have shown corresponding results for �nitary series(over �nite words).

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 14 / 19

Proof.By induction on the structure of weighted MSO-formulaswe show R

p�aemsomax hhAωii � R

p�ω�recmax hhAωii .

Crucial steps:If kϕk takes on only �nitely many values, then

so do k9x � ϕk and k9X � ϕk , andk8x � ϕk is ω-recognizable.

Conversely, given any weighted Muller automaton Awe can e¤ectively construct an almost existential sentence ϕ suchthat kAk = kϕk .

In the paper we have shown corresponding results for �nitary series(over �nite words).

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 14 / 19

Semiring (K+, �, 0, 1): additively locally �niteif for all x 2 K , fnx j n � 0g is �nite

Examplesany idempotent semiring

any �eld of prime characteristic

the semiring of polynomials (K [X ],+, �, 0, 1) over a variable X andan additively locally �nite semiring K .

CorollaryLet K be a computable, additively locally �nite, commutative semiring, orlet K = Rmax or K = Rmin. Let 0 � p < 1. Given an almost existentialMSO(K ,A)-formula ϕ whose atomic entries from K are e¤ectively given,we can e¤ectively compute a weighted automaton, resp. a weighted Mullerautomaton, A such that kϕk = kAk.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 15 / 19

Semiring (K+, �, 0, 1): additively locally �niteif for all x 2 K , fnx j n � 0g is �niteExamples

any idempotent semiring

any �eld of prime characteristic

the semiring of polynomials (K [X ],+, �, 0, 1) over a variable X andan additively locally �nite semiring K .

CorollaryLet K be a computable, additively locally �nite, commutative semiring, orlet K = Rmax or K = Rmin. Let 0 � p < 1. Given an almost existentialMSO(K ,A)-formula ϕ whose atomic entries from K are e¤ectively given,we can e¤ectively compute a weighted automaton, resp. a weighted Mullerautomaton, A such that kϕk = kAk.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 15 / 19

Semiring (K+, �, 0, 1): additively locally �niteif for all x 2 K , fnx j n � 0g is �niteExamplesany idempotent semiring

any �eld of prime characteristic

the semiring of polynomials (K [X ],+, �, 0, 1) over a variable X andan additively locally �nite semiring K .

CorollaryLet K be a computable, additively locally �nite, commutative semiring, orlet K = Rmax or K = Rmin. Let 0 � p < 1. Given an almost existentialMSO(K ,A)-formula ϕ whose atomic entries from K are e¤ectively given,we can e¤ectively compute a weighted automaton, resp. a weighted Mullerautomaton, A such that kϕk = kAk.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 15 / 19

Semiring (K+, �, 0, 1): additively locally �niteif for all x 2 K , fnx j n � 0g is �niteExamplesany idempotent semiring

any �eld of prime characteristic

the semiring of polynomials (K [X ],+, �, 0, 1) over a variable X andan additively locally �nite semiring K .

CorollaryLet K be a computable, additively locally �nite, commutative semiring, orlet K = Rmax or K = Rmin. Let 0 � p < 1. Given an almost existentialMSO(K ,A)-formula ϕ whose atomic entries from K are e¤ectively given,we can e¤ectively compute a weighted automaton, resp. a weighted Mullerautomaton, A such that kϕk = kAk.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 15 / 19

Semiring (K+, �, 0, 1): additively locally �niteif for all x 2 K , fnx j n � 0g is �niteExamplesany idempotent semiring

any �eld of prime characteristic

the semiring of polynomials (K [X ],+, �, 0, 1) over a variable X andan additively locally �nite semiring K .

CorollaryLet K be a computable, additively locally �nite, commutative semiring, orlet K = Rmax or K = Rmin. Let 0 � p < 1. Given an almost existentialMSO(K ,A)-formula ϕ whose atomic entries from K are e¤ectively given,we can e¤ectively compute a weighted automaton, resp. a weighted Mullerautomaton, A such that kϕk = kAk.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 15 / 19

Semiring (K+, �, 0, 1): additively locally �niteif for all x 2 K , fnx j n � 0g is �niteExamplesany idempotent semiring

any �eld of prime characteristic

the semiring of polynomials (K [X ],+, �, 0, 1) over a variable X andan additively locally �nite semiring K .

CorollaryLet K be a computable, additively locally �nite, commutative semiring, orlet K = Rmax or K = Rmin. Let 0 � p < 1. Given an almost existentialMSO(K ,A)-formula ϕ whose atomic entries from K are e¤ectively given,we can e¤ectively compute a weighted automaton, resp. a weighted Mullerautomaton, A such that kϕk = kAk.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 15 / 19

Other workWeighted automata and weighted logics on

�nite words

M. Droste, P. Gastin, Weighted automata and weighted logics,Theoret. Comput. Sci. 380(2007) 69-86; extended abstract in:32nd ICALP, LNCS 3580(2005) 513-525.

in�nite words over complete semirings

M. Droste, G. Rahonis, Weighted automata and weighted logics onin�nite words. Special issue on "Workshop on words and automata,WOWA�2006" (M. Volkov, ed.) Russian Mathematics (Iz. VUZ), toappear; extended abstract in:Proceedings of DLT�06, LNCS 4036(2006) 49-58.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 16 / 19

Other workWeighted automata and weighted logics on

�nite words

M. Droste, P. Gastin, Weighted automata and weighted logics,Theoret. Comput. Sci. 380(2007) 69-86; extended abstract in:32nd ICALP, LNCS 3580(2005) 513-525.

in�nite words over complete semirings

M. Droste, G. Rahonis, Weighted automata and weighted logics onin�nite words. Special issue on "Workshop on words and automata,WOWA�2006" (M. Volkov, ed.) Russian Mathematics (Iz. VUZ), toappear; extended abstract in:Proceedings of DLT�06, LNCS 4036(2006) 49-58.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 16 / 19

Other workWeighted automata and weighted logics on

�nite words

M. Droste, P. Gastin, Weighted automata and weighted logics,Theoret. Comput. Sci. 380(2007) 69-86; extended abstract in:32nd ICALP, LNCS 3580(2005) 513-525.

in�nite words over complete semirings

M. Droste, G. Rahonis, Weighted automata and weighted logics onin�nite words. Special issue on "Workshop on words and automata,WOWA�2006" (M. Volkov, ed.) Russian Mathematics (Iz. VUZ), toappear; extended abstract in:Proceedings of DLT�06, LNCS 4036(2006) 49-58.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 16 / 19

Other workWeighted automata and weighted logics on

�nite words

M. Droste, P. Gastin, Weighted automata and weighted logics,Theoret. Comput. Sci. 380(2007) 69-86; extended abstract in:32nd ICALP, LNCS 3580(2005) 513-525.

in�nite words over complete semirings

M. Droste, G. Rahonis, Weighted automata and weighted logics onin�nite words. Special issue on "Workshop on words and automata,WOWA�2006" (M. Volkov, ed.) Russian Mathematics (Iz. VUZ), toappear; extended abstract in:Proceedings of DLT�06, LNCS 4036(2006) 49-58.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 16 / 19

Other work (continued)Weighted automata and weighted logics on

�nite trees

M. Droste, H. Vogler, Weighted tree automata and weighted logics,Theoret. Comput. Sci. 366(2006) 228-247.

in�nite trees

G. Rahonis, Weighted Muller tree automata and weighted logics.Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.)J. of Automata Languages and Combinatorics, accepted.

pictures

I. Mäurer, Weighted picture automata and weighted logics, in:Proceedings of STACS 2006, LNCS 3884(2006).I. Fichtner, Characterizations of Recognizable Picture Series,PhD Thesis, Leipzig University, 2006.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 17 / 19

Other work (continued)Weighted automata and weighted logics on

�nite trees

M. Droste, H. Vogler, Weighted tree automata and weighted logics,Theoret. Comput. Sci. 366(2006) 228-247.

in�nite trees

G. Rahonis, Weighted Muller tree automata and weighted logics.Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.)J. of Automata Languages and Combinatorics, accepted.

pictures

I. Mäurer, Weighted picture automata and weighted logics, in:Proceedings of STACS 2006, LNCS 3884(2006).I. Fichtner, Characterizations of Recognizable Picture Series,PhD Thesis, Leipzig University, 2006.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 17 / 19

Other work (continued)Weighted automata and weighted logics on

�nite trees

M. Droste, H. Vogler, Weighted tree automata and weighted logics,Theoret. Comput. Sci. 366(2006) 228-247.

in�nite trees

G. Rahonis, Weighted Muller tree automata and weighted logics.Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.)J. of Automata Languages and Combinatorics, accepted.

pictures

I. Mäurer, Weighted picture automata and weighted logics, in:Proceedings of STACS 2006, LNCS 3884(2006).I. Fichtner, Characterizations of Recognizable Picture Series,PhD Thesis, Leipzig University, 2006.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 17 / 19

Other work (continued)Weighted automata and weighted logics on

�nite trees

M. Droste, H. Vogler, Weighted tree automata and weighted logics,Theoret. Comput. Sci. 366(2006) 228-247.

in�nite trees

G. Rahonis, Weighted Muller tree automata and weighted logics.Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.)J. of Automata Languages and Combinatorics, accepted.

pictures

I. Mäurer, Weighted picture automata and weighted logics, in:Proceedings of STACS 2006, LNCS 3884(2006).I. Fichtner, Characterizations of Recognizable Picture Series,PhD Thesis, Leipzig University, 2006.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 17 / 19

Other work (continued)Weighted automata and weighted logics on

�nite trees

M. Droste, H. Vogler, Weighted tree automata and weighted logics,Theoret. Comput. Sci. 366(2006) 228-247.

in�nite trees

G. Rahonis, Weighted Muller tree automata and weighted logics.Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.)J. of Automata Languages and Combinatorics, accepted.

pictures

I. Mäurer, Weighted picture automata and weighted logics, in:Proceedings of STACS 2006, LNCS 3884(2006).I. Fichtner, Characterizations of Recognizable Picture Series,PhD Thesis, Leipzig University, 2006.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 17 / 19

Other work (continued)Weighted automata and weighted logics on

�nite trees

M. Droste, H. Vogler, Weighted tree automata and weighted logics,Theoret. Comput. Sci. 366(2006) 228-247.

in�nite trees

G. Rahonis, Weighted Muller tree automata and weighted logics.Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.)J. of Automata Languages and Combinatorics, accepted.

pictures

I. Mäurer, Weighted picture automata and weighted logics, in:Proceedings of STACS 2006, LNCS 3884(2006).

I. Fichtner, Characterizations of Recognizable Picture Series,PhD Thesis, Leipzig University, 2006.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 17 / 19

Other work (continued)Weighted automata and weighted logics on

�nite trees

M. Droste, H. Vogler, Weighted tree automata and weighted logics,Theoret. Comput. Sci. 366(2006) 228-247.

in�nite trees

G. Rahonis, Weighted Muller tree automata and weighted logics.Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.)J. of Automata Languages and Combinatorics, accepted.

pictures

I. Mäurer, Weighted picture automata and weighted logics, in:Proceedings of STACS 2006, LNCS 3884(2006).I. Fichtner, Characterizations of Recognizable Picture Series,PhD Thesis, Leipzig University, 2006.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 17 / 19

Other work (continued)Weighted automata and weighted logics on

traces

I. Meinecke, Weighted logics for traces, in: Proceedings of CSR 2006,LNCS 3967(2006) 235-246.

texts

C. Mathissen, De�nable transductions and weighted logics for texts,11th International Conference on Developments in Language Theory(DLT) 2007, Turku.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 18 / 19

Other work (continued)Weighted automata and weighted logics on

traces

I. Meinecke, Weighted logics for traces, in: Proceedings of CSR 2006,LNCS 3967(2006) 235-246.

texts

C. Mathissen, De�nable transductions and weighted logics for texts,11th International Conference on Developments in Language Theory(DLT) 2007, Turku.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 18 / 19

Other work (continued)Weighted automata and weighted logics on

traces

I. Meinecke, Weighted logics for traces, in: Proceedings of CSR 2006,LNCS 3967(2006) 235-246.

texts

C. Mathissen, De�nable transductions and weighted logics for texts,11th International Conference on Developments in Language Theory(DLT) 2007, Turku.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 18 / 19

Other work (continued)Weighted automata and weighted logics on

traces

I. Meinecke, Weighted logics for traces, in: Proceedings of CSR 2006,LNCS 3967(2006) 235-246.

texts

C. Mathissen, De�nable transductions and weighted logics for texts,11th International Conference on Developments in Language Theory(DLT) 2007, Turku.

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 18 / 19

Thank you

CIAA 2007 (Prague) M. Droste, G. Rahonis July 16, 2007 19 / 19


Recommended