+ All Categories
Transcript
Page 1: A Non-Equilibrium Thermodynamic Approach to the ...

Louisiana State UniversityLSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1967

A Non-Equilibrium Thermodynamic Approach tothe Correlation and Prediction of the ThermalConductivity of Binary Liquid SolutionsContaining Hydrogen Bonded Solutes.Willie Jon BarnetteLouisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion inLSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please [email protected].

Recommended CitationBarnette, Willie Jon, "A Non-Equilibrium Thermodynamic Approach to the Correlation and Prediction of the Thermal Conductivity ofBinary Liquid Solutions Containing Hydrogen Bonded Solutes." (1967). LSU Historical Dissertations and Theses. 1237.https://digitalcommons.lsu.edu/gradschool_disstheses/1237

Page 2: A Non-Equilibrium Thermodynamic Approach to the ...

This dissertation has been 6 7 —8 7 6 8microfilmed exactly as received

B A R N E T T E , W illie Jo n , 1940-A N O N -EQ U ILIBRIU M THERM ODYNAM IC A P ­PROACH TO TH E C O R R ELA TIO N AND PR ED IC TIO N O F TH E TH ER M A L CO NDUCTIVITY O F BINARY LIQUID SOLUTIONS CONTAINING HYDROGEN BONDED SOLU TES.

L o u is ia n a S ta te U n iv e rs i ty and A g r ic u l tu r a l and M ech an ica l C o lleg e , P h .D ., 1967 E n g in e e r in g , c h e m ic a l

University Microfilms, Inc., Ann Arbor, Michigan

Page 3: A Non-Equilibrium Thermodynamic Approach to the ...

A N o n - E q u i l i b r i u m Thermodynamic Approach t o t h e C o r r e l a t i o n and P r e d i c t i o n o f t h e

Thermal C o n d u c t i v i t y o f B i n a r y L i q u i d S o l u t i o n s C o n t a i n i n g Hydrogen Bonded S o l u t e s

A D i s s e r t a t i on

S u b m i t t e d t o t h e G r a d u a t e F a c u l t y o f t h e L o u i s i a n a S t a t e U n i v e r s i t y and

A g r i c u l t u r a l and Me cha n i ca l C o l l e g e in p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e of

Do c t o r o f P h i l o s o p h y

i n

The De pa r t me n t o f Chemical E n g i n e e r i n g

byW i l l i e Jon B a r n e t t e

B . S . , L o u i s i a n a P o l y t e c h n i c I n s t i t u t e , 1961 M. S . , L o u i s i a n a S t a t e U n i v e r s i t y , 1963

J a n u a r y , 1967

Page 4: A Non-Equilibrium Thermodynamic Approach to the ...

ACKNOWLEDGMENT

The a u t h o r w i s h e s t o e x p r e s s h i s g r a t i t u d e t o Dr. J e s s e C o a t e s ,

Head o f t h e De pa r t men t o f Chemical E n g i n e e r i n g , f o r h i s g u i d a n c e and

a s s i s t a n c e in t h i s r e s e a r c h .

The f i n a n c i a l a s s i s t a n c e o f t h e Humble Oi l Company and t h e

K a i s e r Aluminum C o r p o r a t i o n a r e a l s o a c k no w l ed g e d . G r a t e f u l

a c knowl edgme n t i s made t o t h e Dr. C h a r l e s E. C o a t e s Memor ial Fund,

d o n a t e d by George H. C o a t e s , f o r f i n a n c i a l a s s i s t a n c e in p u b l i s h i n g

t h i s d i s s e r t a t i o n .

The work o f Miss Lo i s Smyth in t y p i n g t h e f i n a l copy a l s o

d e s e r v e s s p e c i a l t h a n k s .

The a u t h o r i s d e e p l y i n d e b t e d t o h i s w i f e f o r h e r i n s p i r a t i o n

d u r i n g t i m e s o f d i s c o u r a g e m e n t f o r t h e a u t h o r .

Page 5: A Non-Equilibrium Thermodynamic Approach to the ...

T A B L E OF C O N T E N T S

ABSTRACT

CHAPTER

I INTRODUCTION

I I REVIEW OF PREVIOUS WORK

A. E x p e r i m e n t a l Methods f o r M e a s u r i n g Thermal Conduc t i v i t y

B. P r e d i c t i o n o f t h e Thermal C o n d u c t i v i t y o f Pu r e L i q u i d s

C. P r e d i c t i o n o f t h e Thermal C o n d u c t i v i t y o f B i n a r y M i x t u r e s

D. Thermal C o n d u c t i v i t y in R e a c t i n g M i x t u r e s

I I I THEORY AND APPLICATION OF NON-EQUILIBRIUM THERMODYNAMICS

A. I n t r o d u c t i o n

B. Ge ne r a l N o n - E q u i l i b r i u m Thermodynamic Theor y

C. A l t e r n a t e D e f i n i t i o n o f Thermodynamic F l u x e s

D. A p p l i c a t i o n t o T e r n a r y Sys t ems w i t h Chemical Equ i 1 i br i urn

IV THERMAL CONDUCTION IN CHEMICALLY REACTING LIQUID MIXTURES

A. I n t r o d u c t i o n

B. S i m p l i f i c a t i o n o f t h e Ge ne r a l N o n - E q u i l i b r i u m Thermodynamic R e l a t i o n s

Page 6: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R PAGE

C. E f f e c t i v e Thermal C o n d u c t i v i t y o f R e a c t i n gM i x t u r e s 27

D. Exc e s s Thermal C o n d u c t i v i t y in R e a c t i n gM i x t u r e s 28

E. R e l a t i o n o f Exc e s s Thermal C o n d u c t i v i t y t ot h e Monomer C o n c e n t r a t i o n 30

V EXPERIMENTAL APPARATUS 3k

A. Ge ne r a l 3k

B. Ge ne r a l D e s c r i p t i o n o f A p p a r a t u s 3k

C. D e t a i l e d D e s c r i p t i o n o f A p p a r a t u s k l

VI PROCEDURE ^6

VII EXPERIMENTAL RESULTS k3

A. Thermal C o n d u c t i v i t y f o r Al c oho l Sys t ems k3

B. Exces s Thermal C o n d u c t i v i t y 6k

VI I I DISCUSSION OF RESULTS 66

A. Ge ne r a l 66

B. S o u r c e s o f E r r o r 66

C. Compar i son o f P r e d i c t e d and E x p e r i m e n t a lExces s Thermal C o n d u c t i v i t y 68

D. Compar i son o f E s t i m a t e d Hydrogen BondE n e r g i e s w i t h A v a i l a b l e L i t e r a t u r e Va l ue s 32

E. U s e f u l n e s s o f t h e Method f o r P r e d i c t i n gThermal C o n d u c t i v i t y o f B i n a r y M i x t u r e s 95

IX CONCLUSIONS AND RECOMMENDATIONS 98

A. C o n c l u s i o n s 98

B. Recommendat ions f o r F u t u r e Work 98

i v

Page 7: A Non-Equilibrium Thermodynamic Approach to the ...

PAGE

SELECTED BIBLIOGRAPHY 101

APPENDIX

A REDUCED HEAT FLOW IN THERMALLY CONDUCTINGSYSTEMS 105

B RELATIONSHIP OF THE CHEMICAL POTENTIALS ATEQUILIBRIUM 108

C RELATIONSHIP OF THE PHENOMENOLOGICAL 'COEFFICIENT TO DIFFUSIVITY 112

D MODIFICATION OF THE CHAIN ASSOCIATIONTHEORY OF ALCOHOLS 115

E NON-TEMPERATURE CORRECTED EXPERIMENTALRESULTS 118

F INDEX TO LITERATURE DATA 129

G SAMPLE CALCULATION 130

H NOMENCLATURE 133

AUTOBIOGRAPHY 137

v

Page 8: A Non-Equilibrium Thermodynamic Approach to the ...

L I S T OF T A B L E S

TABLE

I Thermal C o n d u c t i v i t y Va l ue s f o r t h e M e t h a n o l - Benzene Sys t em

II Thermal C o n d u c t i v i t y Va l ues f o r t h e E t h a n o l - B e n z e n e Sys t em

I I I Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - B e n z e n e Sys t em

IV Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - B e n z e n e Sys t em

V Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C y c l o h e x a n e Sys t em

VI Thermal C o n d u c t i v i t y Va l ues f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em

VII Thermal C o n d u c t i v i t y Va l u e s f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

VII I Thermal C o n d u c t i v i t y Va l ues f o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

IX Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

X Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys tem

XI Thermal C o n d u c t i v i t y Va l ue s f o r t h eI s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

XII P r e d i c t e d Exces s Thermal C o n d u c t i v i t y f o r t h e M e t h a n o l - B e n z e n e Sys t em

XII I P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e E t h a n o l - B e n z e n e Sys t em

v i

PAGE

53

54

55

56

57

58

59

60

61

62

63

81

82

Page 9: A Non-Equilibrium Thermodynamic Approach to the ...

T A B L E

XIV

XV

XVI

XVI I

XVI I I

XIX

XX

XXI

XXI I

XXI 1 I

XXIV

XXV

XXVI

XXVI I

XXVI I I

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e P r o p a n o l - B e n z e n e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e I s o p r o p a n o l - B e n z e n e Sys tem

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e E t h a n o l - C y c l o h e x a n e System

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e P r o p a n o l - C y c l o h e x a n e Sys tem

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

P r e d i c t e d Ex c e s s Thermal C o n d u c t i v i t yf o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t yf o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

Hydrogen Bond E n e r g i e s f o r V a r i o u s Al c oho l Sys t ems

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e M e t h a n o l - B e n z e n e Sys tem

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - B e n z e n e System

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e Pr opa no l - Be n , z ene Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - B e n z e n e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C y c l o h e x a n e Sys tem

Page 10: A Non-Equilibrium Thermodynamic Approach to the ...

T A B L E

XXIX

XXX

XXXI

XXXI I

XXXI I I

XXXIV

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e Me t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

PAGE

123

124

125

126

127

128

v i i i

Page 11: A Non-Equilibrium Thermodynamic Approach to the ...

L I S T OF F I G U R E S

FIGURE ‘ PAGE

1 R e l a t i o n s h i p Between t h e F l u x e s andD r i v i n g F o r c e s in a B i n a r y Sys t em 3

2 T h e r m o c o n d u c t i m e t r i c A p p a r a t u s f o r L i q u i d s 35

3 Ge ne r a l View o f t h e A p p a r a t u s 36

k A p p a r a t u s in O p e r a t i o n 37

5 A p p a r a t u s D i s s a s s e m b 1ed 38

6 Top View o f t h e Hot Bar 39

7 Wate r Ba t hs 40

8 R e f r a c t o m e t e r Al

9 Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o no f Al c oho l f o r Benzene S o l u t i o n s 50

10 Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o no f Al c oho l f o r Cy c l o h e x a n e S o l u t i o n s 51

11 Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o no f Al cohol f o r Carbon T e t r a c h l o r i d e S o l u t i o n s 52

12 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o nMethanol f o r t h e M e t h a n o l - B e n z e n e Sys t em 69

13 Exc e s s Thermal C o n d u c t i v i t y Ve r s u s Mole F r a c t i o nEt h a n o l f o r t h e E t h a n o l - B e n z e n e Sys t em 70

1A Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o nP r o p a n o l f o r t h e P r o p a n o l - B e n z e n e Sys t em 71

15 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o nI s o p r o p a n o l f o r t h e I s o p r o p a n o l - B e n z e n e Sys t em 72

i x

Page 12: A Non-Equilibrium Thermodynamic Approach to the ...

F I G U R E

16 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n E t h a n o l f o r t h e E t h a n o l - C y c l o h e x a n e Sys t em

17 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n P r opa no l f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em

18 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

19 Exces s Thermal C o n d u c t i v i t y Ver s us Mole F r a c t i o n Methanol f o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

20 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n E t h a n o l f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

21 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n P r opa no l f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

22 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

PAGE

73

7*+

75

76

77

78

79

X

Page 13: A Non-Equilibrium Thermodynamic Approach to the ...

ABSTRACT

The t he r ma l c o n d u c t i v i t y o f p u r e l i q u i d s and l i q u i d s o l u t i o n s

i s an i m p o r t a n t p h y s i c a l q u a n t i t y b o t h f rom t h e s t a n d p o i n t o f

p r a c t i c a l i n d u s t r i a l a p p l i c a t i o n s and f o r t h e i n s i g h t t h a t i t g i v e s

i n t o o t h e r t r a n s p o r t phenomena o f l i q u i d s . I n t e r m o 1 ecu 1 a r f o r c e s

e x i s t i n g be t ween m o l e c u l e s a r e i n t i m a t e l y and c o mp l e x l y r e l a t e d t o

t h e t he r ma l c o n d u c t i v i t y . Be c a us e o f t h e d i f f i c u l t y o f even an

a p p r o x i m a t e t r e a t m e n t o f t h e i n t e r a c t i n g f o r c e f i e l d s o f n number o f

m o l e c u l e s , t h e p r ob l e m o f c o r r e l a t i n g and p r e d i c t i n g t h e t he r ma l

c o n d u c t i v i t y o f b i n a r y s o l u t i o n s has been a p p r o a c h e d in t h i s i n ­

v e s t i g a t i o n f rom a m a c r o s c o p i c p o i n t o f v i ew b a s e d on n o n - e q u i l i b ­

r ium t he r modynami c p r i n c i p l e s .

Thermal c o n d u c t i v i t y me a s u r e m e n t s we r e made w i t h a p r e v i o u s l y

d e s i g n e d and t h o r o u g h l y t e s t e d p a r a l l e l p l a t e a p p a r a t u s . The

a p p a r a t u s has been shown t o y i e l d e x p e r i m e n t a l r e s u l t s w i t h an

e s t i m a t e d e r r o r o f ± 1. 5%-

Thermal c o n d u c t i v i t i e s o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e were

mea s u r ed f o r e l e v e n a 1c o h o l - i n e r t s o l v e n t s y s t e m s . The a l c o h o l

s y s t e m s s t u d i e d in t h i s i n v e s t i g a t i o n wer e m e t h a n o l , e t h a n o l ,

p r o p a n o l , and i s o p r o p a n o l , each in c o m b i n a t i o n w i t h t h e i n e r t

s o l v e n t s : b e n z e n e , c y c l o h e x a n e , and c a r b o n t e t r a c h l o r i d e .

Page 14: A Non-Equilibrium Thermodynamic Approach to the ...

P r i n c i p l e s o f n o n - e q u i l i b r i u m t he r modynami c s we r e used t o

d e r i v e g e n e r a l r e l a t i o n s f o r d e s c r i b i n g s i m u l t a n e o u s h e a t and mass

t r a n s f e r w i t h c h e mi c a l e q u i l i b r i u m f o r t e r n a r y s y s t e m s . In t h i s

i n v e s t i g a t i o n , t h e a 1c o h o l - i n e r t s o l v e n t s y s t e m i s c o n s i d e r e d t o

e f f e c t i v e l y be a t e r n a r y s y s t e m c o n s i s t i n g o f t h e monomer a l c o h o l

in c he mi c a l e q u i l i b r i u m w i t h t h e a v e r a g e po l ymer a l c o h o l , b o t h of

whi ch a r e d i l u t e d by t h e i n e r t s o l v e n t . C e r t a i n s p e c i f i c a s s u m p t i o n s

wer e i n t r o d u c e d whi ch r e d u c e d t h e h e a t f l u x e q u a t i o n t o a r e l a t i v e l y

s i m p l e fo rm. The p h e n o me n o l og i c a l c o e f f i c i e n t in t h e s i m p l i f i e d

h e a t f l u x e q u a t i o n was t hen r e l a t e d t o t h e mutua l d i f f u s i v i t y of

t h e s y s t e m and a t he r modynami c f a c t o r , which i s d e p e n d e n t upon t h e

l i q u i d p h a s e a c t i v i t y c o e f f i c i e n t .

The e f f e c t i v e t h e r m a l c o n d u c t i v i t y , d e f i n e d by a n a l o g y t o

F o u r i e r ' s law o f h e a t c o n d u c t i o n , was r e l a t e d t o t h e d e v i a t i o n

o f t h e t he r ma l c o n d u c t i v i t y of t h e m i x t u r e f rom t h e i d e a l t he r ma l

c o n d u c t i v i t y (mole f r a c t i o n a v e r a g e o f p u r e component v a l u e s ) .

T h i s d e v i a t i o n , whi ch i s t h e e x c e s s t h e r ma l c o n d u c t i v i t y o f t h e

m i x t u r e , was t h e n shown t o be p r e d i c t a b l e by an e q u a t i o n c o n t a i n i n g

t h e mutua l d i f f u s i v i t y , hydr ogen bond e n e r g y , d e n s i t y , and o t h e r

f a c t o r s r e l a t e d t o t h e c o n c e n t r a t i o n o f t h e monomer a l c o h o l in t h e

so 1u t i o n .

The d e r i v e d e q u a t i o n was t e s t e d and f ound t o p r e d i c t t h e t he r ma l

c o n d u c t i v i t y o f a 1c o h o l - i n e r t s o l v e n t m i x t u r e s w i t h an a v e r a g e e r r o r

o f l e s s t han one pe r c e n t o v e r t h e e n t i r e c o n c e n t r a t i o n r a n g e . The

mole f r a c t i o n a t which t h e e x c e s s t he r ma l c o n d u c t i v i t y i s maximum

Page 15: A Non-Equilibrium Thermodynamic Approach to the ...

was a c c u r a t e l y p r e d i c t e d and p r o v i d e s s t r o n g s u p p o r t i n g e v i d e n c e

f o r t h e mode 1.

A p p r o p r i a t e hydr ogen bond e n e r g y d a t a f o r some o f t h e a l c o h o l

s y s t e m s s t u d i e d were no t a v a i l a b l e . The e x p e r i m e n t a l l y d e t e r m i n e d

e x c e s s t h e r ma l c o n d u c t i v i t i e s were used t o e s t i m a t e hydr ogen bond

e n e r g i e s f o r a l l s y s t e m s . E s t i m a t e d v a l u e s and l i t e r a t u r e v a l u e s

o f hydr ogen bond e n e r g y f o r s e v e r a l s y s t e m s wer e compared and shown

t o be in good a g r e e m e n t .

In c o n c l u s i o n , t h e method d e v e l o p e d in t h i s i n v e s t i g a t i o n has

been shown t o a c c u r a t e l y p r e d i c t t h e c o m p o s i t i o n d e p e n d e n c e o f

t h e r m a l c o n d u c t i v i t y f o r a 1c o h o l - i n e r t s o l v e n t s y s t e m s . The h y d r o ­

gen bond e n e r g i e s e s t i m a t e d f rom e x c e s s t h e r ma l c o n d u c t i v i t y a r e

in good a g r e e m e n t w i t h i n d e p e n d e n t d e t e r m i n a t i o n s by o t h e r me t hods .

The method d e v e l o p e d f o r p r e d i c t i n g t h e c o m p o s i t i o n d e pe nde nc e o f

t h e t h e r m a l c o n d u c t i v i t y o f a l c o h o l s y s t e ms s h o u l d a l s o be a p p l i c a b

t o o t h e r t y p e s o f s y s t e m s . Sys t ems in which i n t e r a c t i o n s a r e

d e s c r i b a b l e by a s i n g l e c he mi c a l r e a c t i o n a r e ame na b l e t o a s i m i l a r

a n a l y s i s . T e s t i n g o f t h e method f o r s y s t e ms o t h e r t ha n t h e a l c o h o l

i n e r t s o l v e n t s y s t e m was n o t p o s s i b l e b e c a u s e o f i n s u f f i c i e n t d a t a .

Page 16: A Non-Equilibrium Thermodynamic Approach to the ...

D e d i c a t e d t o my w i f e ,

my m o t h e r , and t o t h e

memory o f my f a t h e r .

x i v

Page 17: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I

INTRODUCTION

The t h e r ma l c o n d u c t i v i t y o f l i q u i d s i s an i m p o r t a n t p h y s i c a l

q u a n t i t y bo t h f rom t h e s t a n d p o i n t o f p r a c t i c a l u s e in t h e s o l u t i o n

o f h e a t t r a n s f e r p r ob l e ms and f rom t h e i n s i g h t t h a t i t g i v e s i n t o

u n d e r s t a n d i n g o t h e r t r a n s p o r t phenomena.

The laws g o v e r n i n g t r a n s p o r t phenomena can be s t a t e d in t h e

f o l l o w i n g form:

, P r o p o r t i ona 1 i t y w Dr i vi ng,. , , nF l u x = ( M r - ) •v C o n s t a n t Fo r c e

F o u r i e r ' s law o f h e a t c o n d u c t i o n , f i r s t p o s t u l a t e d in 1822, and

F i c k ' s law o f d i f f u s ion, f o r m u l a t e d in 1855; a r e b o t h d e s c r i b e d by

e q u a t i o n ( ! - ! ) • The a s s u m p t i o n t h a t t h e d r i v i n g f o r c e f o r h e a t and

mass t r a n s f e r i s , r e s p e c t i v e l y , t h e g r a d i e n t o f t e m p e r a t u r e and t h e

g r a d i e n t o f c o n c e n t r a t ion, d e f i n e s t h e t h e r ma l c o n d u c t i v i t y and t h e

d i f f u s i v i t y o f t h e f l u i d .

I t i s i m p o r t a n t t o n o t e t h a t b o t h o f t h e s e p h e n o me n o l o g i c a l

laws assume a l i n e a r r e l a t i o n s h i p be tween t h e f l u x and t h e d r i v i n g

f o r c e . The e x t e n s i o n o f t h e i dea o f l i n e a r r e l a t i o n s h i p s t o i n c l u d e

c o n t r i b u t i o n s t o e a ch f l u x f rom a l l d r i v i n g f o r c e s has l ed t o t h e

p r e d i c t i o n of t h e S o r e t and Dufour e f f e c t s in b i n a r y s y s t e m s . The

Page 18: A Non-Equilibrium Thermodynamic Approach to the ...

2

c o u p l i n g o f f l u x - f o r c e p a i r s and t h e r e l a t i o n s h i p s e x i s t i n g be tween

t h e p h e n om e n o l o g i c a l c o e f f i c i e n t s r e s u l t i n g f rom t h i s p a i r i n g i s an

i m p o r t a n t a c h i e v e m e n t o f n o n - e q u i l i b r i u m t h e r m o d y n a m i c s . The i n t e r ­

c o n n e c t i o n s o f c o e f f i c i e n t s , known as t h e O n s a g e r ' r e c i p r o c a l

r e l a t i o n s , were f o r m u l a t e d in 1931 by Ons a ge r ba s ed upon t h e c o n c e p t

o f m i c r o s c o p i c r e v e r s i b i l i t y .

The r e l a t i o n s h i p s be t ween t h e f l u x e s and d r i v i n g f o r c e s in a

2b i n a r y s y s t e m a r e i l l u s t r a t e d in F i g u r e 1. The d i ag r a m a l s o

i n d i c a t e s t h e t r a n s p o r t c o e f f i c i e n t s a s s o c i a t e d w i t h t h e v a r i o u s

f o r c e s maki ng up e a ch f l u x . The S o r e t and Dufour e f f e c t s a r e shown

t o depend upon one a d d i t i o n a l t r a n s p o r t p r o p e r t y , D^, t h e S o r e t

c o e f f i c i e n t .

The d i s c u s s i o n up t o now has i m p l i c i t l y a ssumed n o n - r e a c t i n g

m i x t u r e s . The p o s s i b i l i t y o f c h e mi c a l r e a c t i o n can be i n c l u d e d in

t h e p r e v i o u s d i s c u s s i o n by t h e us e o f c h e mi c a l a f f i n i t i e s i n t r o d u c e d 3

by de Donder . As n o t e d e a r 1 i e r , n o n - e q u i 1 ibr iurn t he r modynami c s i s

b a s e d upon l i n e a r p h e n o m e n o l o g i c a l l aws , whi ch f o r c h e mi ca l r e a c t i o n s

i s , in many c a s e s , a g r o s s a p p r o x i m a t i o n . However , when t h e c o n d i t i o n s

a r e such t h a t t h e r e a c t a n t s and p r o d u c t s a r e v e r y c l o s e t o e q u i l i b r i u m ,

kt h e a s s u m p t i o n o f a l i n e a r law becomes e x a c t .

T h i s s t u d y i n v o l v e s t h e t he r ma l c o n d u c t i v i t y o f b i n a r y m i x t u r e s

o f a s s o c i a t e d l i q u i d s ( a l c o h o l s ) w i t h i n e r t , n o n - a s s o c i a t e d s o l v e n t s .

A l c o h o l s a r e known t o form r e l a t i v e l y s t r o n g hyd r ogen bonds and can5

be v i ewed a s an e q u i l i b r i u m m i x t u r e o f monomer and p o l y m e r s . The

c o m p o s i t i o n d e p e n d e n c e o f t h e t h e r m a l c o n d u c t i v i t y o f a l c o h o l s y s t e ms

i s shown in C h a p t e r IV t o be c a u s e d by t h e s h i f t in t h e e q u i l i b r i u m

Page 19: A Non-Equilibrium Thermodynamic Approach to the ...

3

C o n c e n t r a t i on Grad i e n t

T e m p e r a t u r e Grad i e n t

F o r c e sr ] uxes

Dufour E f f e c tC d J ]

F o u r i e r ' s LawHeatF l ux

S o r e t E f f e c tMassF l ux

szszas&xswrts tessKtsissKsssKrJsssxiestxi

F i g u r e 1. R e l a t i o n s h i p Between t h e F l u x e s and D r i v i n g F o r c e s in a B i n a r y Sys t em.

Page 20: A Non-Equilibrium Thermodynamic Approach to the ...

k

c o n c e n t r a t i o n o f monomer a l c o h o l .

The n o n - e q u i l i b r i u m t he r modynami c a n a l y s i s o f t h e p r ob l em o f

s i m u l t a n e o u s h e a t and mass t r a n s f e r w i t h c h e mi c a l e q u i l i b r i u m i s t h e

b a s i s f o r t h e p r e d i c t i o n o f t h e e f f e c t o f hydr ogen b o nd i ng on t h e

t he r ma l c o n d u c t i v i t y in a l c o h o l s y s t e m s . The e x c e s s t he r ma l c on ­

d u c t i v i t y , a s d e f i n e d in C h a p t e r IV, i s shown t o depend upon t h e

s q u a r e o f t h e e n e r g y a s s o c i a t e d w i t h h y d r oge n bond c l e v a g e . T h i s

d e p e n d e n c e makes t h e e x c e s s t h e r ma l c o n d u c t i v i t y s e n s i t i v e t o t h e

m a g n i t u d e o f t h e hydr ogen bond e n e r g y a s oppos e d t o o t h e r p h y s i c a l

q u a n t i t i e s a f f e c t e d by hydr ogen b o n d i n g .

Page 21: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I R E F E R E N C E S

L. O n s a g e r , " R e c i p r o c a l R e l a t i o n s in I r r e v e r s i b l e P r o c e s s e s , " P h y s i c a l Rev i ew, XXXVII ( 1 9 3 5 ) , 405•

2R. B. B i r d , W. E. S t e w a r t , and E. N. L i g h t f o o t , T r a n s p o r t

Phenomena (New York: John Wi l e y and Sons , I 9 6 0 ) , p. 565•3

Th. de Donder , L 1A f f i n i t e ( P a r i s : G a u t h i e r - V i 1 l a r s , 1927)-

4S. R. de Gr oo t and P. Mazur , N o n - E q u i l i b r i u m Thermodynamics

(Amsterdam: Nor t h Ho l l a n d P u b l i sh i ng C o . , 1962) , p~ 13&.

^G. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond (San F r a n c i s c o : W. H. Freeman and Co . , I 9 6 0 ) , p. 5.

6 l b i d . , p. 207-

5

Page 22: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I 1

REVIEW OF PREVIOUS WORK

A. Exper i m e n t a 1 Methods f o r Measur i ng T h e r ma 1 Conduct i vi t y

The s t u d y o f t h e t h e r ma l c o n d u c t i v i t y o f l i q u i d s began in t h e

e a r l y 18001s w i t h t h e q u a l i t a t i v e me a s u r e m e n t s o f Mur r ay , Rumford,

D a l t o n , Thomson and o t h e r s . ^ S i n c e t h a t t i m e , e x p e r i m e n t a l d e t e r ­

m i n a t i o n s o f t h e r m a l c o n d u c t i v i t y have improved t o t h e p o i n t where

me a s u r e me n t s a c c u r a t e t o b e t t e r t ha n 1% a r e commonly a v a i l a b l e .

The e x p e r i m e n t a l me t hods o f m e a s u r i n g t h e r m a l c o n d u c t i v i t y

can be c l a s s i f i e d i n t o s t e a d y s t a t e and t r a n s i e n t m e t h o d s . S t e a d y

s t a t e met hods have been t h e mos t w i d e l y used and can be s u b c l a s s i f i e d

a c c o r d i n g t o c e l l g e o me t ry . Ce l l g e o m e t r i e s c o n s i s t i n g o f p a r a l l e l ,

f l a t p l a t e s , c o n c e n t r i c c y l i n d e r s , and c o n c e n t r i c s p h e r e s have a l l

been u s e d . D i s c u s s i o n o f t h e a d v a n t a g e s and d i s a d v a n t a g e s o f

2v a r i o u s c e l l g e o m e t r i e s have been g i v e n by S a k i a d i s and C o a t e s ,

3 4T s e d e r b e r g , and T y r r e l l .

T r a n s i e n t met hods f o r m e a s u r i n g t h e r m a l c o n d u c t i v i t i e s have

j u s t r e c e n t l y been d e v e l o p e d t h a t a r e a c c u r a t e t o w i t h i n 1%. The

t r a n s i e n t me t hods have g e n e r a l l y been r e s t r i c t e d t o h o t w i r e c e l l s ' ^

and a r e c h a r a c t e r i z e d by t h e a b s o l u t e method o f Gi l lam and Lamm and

t h e r e l a t i v e method o f Grassman and S t r a u m a n n . ^

6

Page 23: A Non-Equilibrium Thermodynamic Approach to the ...

7

B. Pred i c t ion o f t h e T h e r ma 1 Conduc t i v i t y o f Pu r e L i q u i d s

The p r e d i c t i o n o f t h e t h e r ma l c o n d u c t i v i t i e s o f p u r e l i q u i d s

i s d i f f i c u l t due t o t h e compl ex n a t u r e o f t h e l i q u i d s t a t e . For t h i s

r e a s o n , t h e f i r s t p r o p o s a l s f o r p r e d i c t i n g t h e r ma l c o n d u c t i v i t i e s

were e m p i r i c a l c o r r e l a t i o n s , such a s t h o s e p r e s e n t e d by Weber and

o t h e r s . ^

S e m i t h e o r e t i c a 1 p r e d i c t i o n s o f t h e r ma l c o n d u c t i v i t y began w i t h

9 10t h e s i m p l e p h y s i c a l model s o f Br idgmann and Ka r dos . The Kardos

e q u a t i o n was m o d i f i e d by S a k i a d i s and C o a t e s ' ' and s u c c e s s f u l l y used

t o p r e d i c t t h e t h e r m a l c o n d u c t i v i t i e s o f p u r e o r g a n i c l i q u i d s w i t h

12an a v e r a g e e r r o r o f 6%. R e c e n t l y , Bondi i p u b l i s h e d a n o t h e r p r e ­

d i c t i o n method ba s ed on m o l e c u l a r s t r u c t u r e c o n t r i b u t i o n s and c l a i m s

an a v e r a g e e r r o r o f l e s s t h a n 8%.

Ri g o r o u s t h e o r e t i c a l e q u a t i o n s f o r p r e d i c t i n g t h e r ma l c o n d u c ­

t i v i t y o f p u r e l i q u i d s a r e c o n s i d e r a b l y more complex t h a n t h o s e

p r e v i o u s l y d i s c u s s e d . The f i r s t s e r i o u s a t t e m p t t o r i g o r o u s l y13

p r e d i c t t h e r m a l c o n d u c t i v i t i e s was made by Enskog, who e x t e n d e d

t h e d i l u t e gas t h e o r y t o t h e r e g i o n o f d e n s e g a s e s . S u b s e q u e n t

d e v e l o p m e n t s have been e s s e n t i a l l y a l o n g two l i n e s : t h e r i g o r o u s

s t a t i s t i c a l m e c h a n i c a l t h e o r i e s o f t r a n s p o r t p r o c e s s e s and t h e

r e p r e s e n t a t i o n o f t h e r m a l c o n d u c t i v i t y in t e r ms o f t h e f r e e volume

14t h e o r y o f t h e l i q u i d s t a t e .

E x a m i n a t i o n o f t h e p r e d i c t i o n s o f t h e s t a t i s t i c a l m e c h a n i c a l

and f r e e volume t h e o r i e s r e v e a l t h a t t h e p r e d i c t e d t h e r ma l c onduc ­

t i v i t i e s o f s i m p l e l i q u i d s a r e o f t e n a s much a s 100% in e r r o r . For

t h i s r e a s o n , t h e b e s t method f o r p r e d i c t i n g t h e t h e r m a l c o n d u c t i v i t y

Page 24: A Non-Equilibrium Thermodynamic Approach to the ...

8

o f p u r e l i q u i d s a p p e a r s t o be t h e s e m i t h e o r e t i c a 1 method p r o p o s e d

by S a k i a d i s and C o a t e s . ' " ’

C. Pred i c t ion o f t h e T h e r ma 1 Conduc t i v i t y o f B i n a r y M i x t u r e s

P r e d i c t i o n o f t h e t h e r m a l c o n d u c t i v i t y o f b i n a r y l i q u i d m i x t u r e s

has p r o c e e d e d a l o n g much t h e same l i n e s a s t h o s e f o r p u r e l i q u i d s .

The e m p i r i c a l e q u a t i o n s t h a t have been mos t t h o r o u g h l y t e s t e d a r e

16 17t h o s e o f F i l l i p p o v and Novos e l ova and J o r d a n and C o a t e s .

F i l l i p p o v and Novos e l ova d e v e l o p e d t h e f o l l o w i n g e m p i r i c a l

e q u a t i o n u s i n g d a t a on f o u r b i n a r y o r g a n i c m i x t u r e s :

km = k2W2 + k l Wl " 0 , 72 ( k2 “ k l^ W1W2 - ( 2_1)

where

k - t he r ma l c o n d u c t i v i t y

w - mass f r a c t i o n ‘

S u b s c r i p t s m - m i x t u r e

1 - component 1

2 - component 2

Component 2 i s t h e component h a v i n g t h e h i g h e r t h e r m a l c o n d u c t i v i t y .

18A l a t e r r e p o r t , b a s e d on e x p e r i m e n t a l d a t a f rom n i n e m i x t u r e s o f

a s s o c i a t e d l i q u i d s , i n d i c a t e d t h a t t h e v a l u e o f t h e c o n s t a n t in

e q u a t i o n (2-1) s h o u l d be O.76 r a t h e r t ha n 0 . 7 2 .

The J o r d a n - C o a t e s e q u a t i o n i s a l s o s u c c e s s f u l in p r e d i c t i n g t he

c o m p o s i t i o n d e p e n d e n c e o f t h e t he r ma l c o n d u c t i v i t y o f b i n a r y m i x t u r e s .

In t h i s s t u d y , a m o d i f i e d A r r h e n i u s e x p r e s s i o n p r o v i d e s t h e b a s i s

f o r t h e f o l l o w i n g e m p i r i c a l e q u a t i o n s :

Page 25: A Non-Equilibrium Thermodynamic Approach to the ...

9

In k = w , I n k, + w„ l n k„ + w. w„ l n D m I I 2 2 1 2 (2- 2 )

( k2 + k ])( 2 -3)

2

wher e

k - t h e r m a l c o n d u c t i v i t y

w - mass f r a c t i o n

S u b s c r i p t s m - m i x t u r e

1 - component 1

2 - component 2

The t h e r m a l c o n d u c t i v i t y mus t be in t h e u n i t s o f BTU/ (HR) (FT) (°F) .

E q u a t i o n ( 2 - 2 ) w i t h e q u a t i o n ( 2 - 3 ) p r e d i c t s t h e t h e r ma l c o n d u c t i v i t y

o f t we l v e b i n a r y o r g a n i c m i x t u r e s t o w i t h i n ±2% and n i n e b i n a r y

w a t e r - o r g a n i c m i x t u r e s t o w i t h i n ± 3%-

s a t i s f a c t o r y b e c a u s e i t f a i l s t o p r e d i c t t h a t t h e t h e r m a l c o n d u c ­

t i v i t y o f a m i x t u r e i s a l wa ys l e s s t ha n t h e mass f r a c t i o n a v e r a g e ,

even i f t h e two p u r e component t h e r m a l c o n d u c t i v i t i e s a r e t h e same

v a l u e . The J o r d a n - C o a t e s e q u a t i o n , whi ch i s ba s ed on more e x t e n s i v e

e x p e r i m e n t a l d a t a , does n o t have t h i s l i m i t a t i o n and w i l l p r o b a b l y

have a w i d e r r an g e o f a p p l i c a t i o n t ha n t h e F i 11 i p p o v - N o v o s e l o v a

equa t i o n .

S e m i t h e o r e t i c a 1 e q u a t i o n s f o r p r e d i c t i n g t h e r m a l c o n d u c t i v i t y

20 21 o f m i x t u r e s a r e g i v e n by Bondi i and T s e d e r b e r g . R e c e n t l y , a n o t h e r

22method ba s ed on t h e Kardos e q u a t i o n was p r o p o s e d by R o d r i g u e z . The

method p r e d i c t s t h e t h e r ma l c o n d u c t i v i t y o f e i g h t b i n a r y m i x t u r e s t o

w i t h i n an a v e r a g e e r r o r o f ±k%.

Bond i i 19 s u g g e s t s t h a t t h e F i 11 i p p o v - N o v o s e 1 ova e q u a t i o n i s n o t

Page 26: A Non-Equilibrium Thermodynamic Approach to the ...

1 0

R i go r o u s t h e o r e t i c a l e q u a t i o n s f o r b i n a r y m i x t u r e s have a l s o

been d e v e l o p e d . The s e e q u a t i o n s a r e , in g e n e r a l , e x t e n s i o n s o f t h e

r i g o r o u s t h e o r e t i c a l e q u a t i o n s d e v e l o p e d f o r p u r e l i q u i d s .

One r i g o r o u s t h e o r y has been used t o p r e d i c t s e m i q u a n t a t i v e

r e s u l t s f o r t h e b e n z e n e - c a r b o n t e t r a c h l o r i d e s y s t e m . T h i s t h e o r y ,

which i s bas ed on s t a t i s t i c a l m e c h a n i c a l a r g u m e n t s , was d e r i v e d by

23Bearman. With c e r t a i n s i m p l i f y i n g a s s u m p t i o n s , which a r e c o n s i s t e n t

2kw i t h t h e o r i g i n a l d e v e l o p m e n t , t h e f o l l o w i n g e q u a t i o n r e s u l t s :

k - t h e r ma l c o n d u c t i v i t y

N - mole f r a c t i o n

v - mo 1 a r v o 1ume

- s e l f d i f f u s i o n c o e f f i c i e n t o f component 1 in t h e m i x t u r e

D° - s e l f d i f f u s i o n c o e f f i c i e n t o f p u r e component 1

CODj - s e l f d i f f u s i o n c o e f f i c i e n t o f

component 1 a t ' i n f i n i t e d i l u t i o n

S u b s c r i p t s m - m i x t u r e

Due t o t h e c o m p l e x i t y o f t h e r e l a t i o n s h i p s and t h e l a r g e

m a g n i t u d e o f e r r o r , mos t o f t h e r i g o r o u s t h e o r i e s f o r b i n a r y l i q u i d

m i x t u r e s need f u r t h e r de v e l o p m e n t b e f o r e t h e y can be o f much

p r a c t i c a l u s e .

) + N . N- B , _ - 4 + N1 2 12 2 vm

( 2 - k )

wher e

1 - component 1

2 - component 2

Page 27: A Non-Equilibrium Thermodynamic Approach to the ...

D. T h e r ma 1 Conduc t i v i t y i n Re a c t i ng M i x t u r e s

E x p e r i m e n t a l and t h e o r e t i c a l work on c h e m i c a l l y r e a c t i n g

m i x t u r e s has p r i m a r i l y been c o n c e r n e d w i t h gas p h a s e r e a c t i o n s .

The e mp h a s i s on gas p h a s e r e a c t i o n s ha s come a b o u t b e c a u s e gas

r e a c t i o n s e x h i b i t t h e i n t e r e s t i n g phenomena o f v e r y l a r g e i n c r e a s e s

25in t h e r ma l c o n d u c t i v i t y . Most o f t h e work in t h i s a r e a has been

done on s y s t e m s in whi ch t h e o n l y s p e c i e s p r e s e n t a r e t h e r e a c t a n t s

and t h e p r o d u c t s . The e f f e c t o f an i n e r t gas on t h e t h e r m a l c o n d u c ­

t i v i t y o f t h e r e a c t i n g g a s e o u s m i x t u r e has been l a r g e l y i g n o r e d .2

H i r s c h f e l d e r s t a t e s t h a t w h i l e mos t o f t h e m a t h e m a t i c a l d i s c u s s i o n s

in t h e l i t e r a t u r e have been in t e r ms o f g a s e o u s m i x t u r e s , t h e y s h o u l d

a p p l y e q u a l l y a s w e l l t o l i q u i d s .

27T y r r e l l , u s i n g p r i n c i p l e s o f n o n - e q u i l i b r i u m t he r mo d y n a mi c s ,

d e r i v e d t h e e f f e c t i v e t h e r m a l c o n d u c t i v i t y f o r t h e c a s e o f a s e r i e s

o f p o l y me r s d i s s o c i a t i n g t o form a monomer. The e q u a t i o n i s compl ex ,

b u t can be used t o q u a l i t a t i v e l y p r e d i c t t h e h i g h v a l u e s o f t h e r m a l

c o n d u c t i v i t y in hyd r ogen bonded l i q u i d s . I t i s s i g n i f i c a n t t h a t t h e

unus ua l p o s i t i v e t e m p e r a t u r e c o e f f i c i e n t o f t h e r ma l c o n d u c t i v i t y in

w a t e r can be e x p l a i n e d on t h i s b a s i s .

A t h e o r y , whi ch i s s i m i l a r in many r e s p e c t s t o t h e one a bove ,

28was p r o p o s e d by Ei gen t o e x p l a i n t h e t h e r ma l c o n d u c t i v i t y o f w a t e r .

His t h e o r y has a s i m p l e k i n e t i c b a s i s and u s e s t h e s t r u c t u r a l t h e o r y

29of w a t e r p o s t u l a t e d by Eucken. E i g e n ' s r e s u l t s f o r t h e t e m p e r a t u r e

c o e f f i c i e n t and t h e v a l u e o f t h e t h e r m a l c o n d u c t i v i t y o f w a t e r a g r e e

e x t r e m e l y w e l l w i t h e x p e r i m e n t a l v a l u e s . The r e s u l t s i n d i c a t e t h a t

t h e model i s q u a n t i t a t i v e l y c o r r e c t . One we a kne s s o f t h e t h e o r y i s

Page 28: A Non-Equilibrium Thermodynamic Approach to the ...

1 2

t h a t n u m e r i c a l c a l c u l a t i o n s a r e d e p e n d e n t upon c e r t a i n p a r a m e t e r s

30whi ch mus t be e s t i m a t e d w i t h unknown a c c u r a c y .

The s u c c e s s o f n o n - e q u i l i b r i u m t h e r mo d y n a mi c s in p r e d i c t i n g

v a l u e s o f t h e r m a l c o n d u c t i v i t y in h y d r oge n bonded l i q u i d s l e a d s t o

t h e p o s s i b i l i t y o f d e s c r i b i n g , on t h e same b a s i s , t h e o b s e r v e d

c o m p o s i t i o n d e p e n d e n c e o f t h e r m a l c o n d u c t i v i t y in a 1 coho 1 - i n e r t

s o l v e n t s y s t e m s . The a 1c o h o l - i n e r t s o l v e n t s y s t e m s wer e c ho s e n f o r

s t u d y in o r d e r t o m i n i mi z e s o l u t e - s o l v e n t i n t e r a c t i o n s and t o be

r e a s o n a b l y c e r t a i n t h a t t h e o b s e r v e d d e v i a t i o n in t h e t h e r m a l c o n ­

d u c t i v i t y i s c a u s e d p r i m a r i l y by hyd r ogen bond c l e v a g e .

Page 29: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I I R E F E R E N C E S

B. C. S a k i a d i s and J . C o a t e s , A Li t e r a t u r e S u r ve y o f t h e Thermal C o n d u c t i v i t y o f L i q u i d s (Baton Rouge, La . : E n g i n e e r i n g Expe r i me n t S t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1952) , p. 3*

2I b i d . , p. 7.

3N. V. T s e d e r b e r g , T h e r ma 1 Conduct i vi t y o f Gases and Ligu ids

(Cambr i dge , Ma s s . ; The M . I . T . P r e s s , M a s s a c h u s e t t s I n s t i t u t e o f Te c h n o l o g y , 1965) , p. 1.

kH. J . V. T y r r e l l , D i f f u s i o n and Heat Flow in L i q u i d s (London:

B u t t e r w o r t h and Co . , 19 6 1) , p. 294.5

E. McLaugh l i n , "The Thermal C o n d u c t i v i t y o f L i q u i d s and Dense G a s e s , " Chemical Re v i e ws , LXIV ( 1 9 6 4 ) , 392.

^D. G. G i l l a n and 0. Lamm, " P r e c i s i o n Me as ur emen t s o f t h e Thermal C o n d u c t i v i t y o f C e r t a i n L i q u i d s u s i n g t h e Hot Wire Me t h o d , "Acta Chemica Scand i nav i c a , IX ( 1955) , 65 7 *

^P. Grassmann and W. S t r a uma nn , " E i n Ins t a t i o n a r e s V e r f a h r e n Zur Messung Der W a r m e l e i t f a h i g k e i t Von F 1u s s e n k e i t e n und G a s e n , "I n t e r n a t i o n a 1 J o u r n a 1 o f Heat and Mass T r a n s f e r , I ( 1 9 6 0 ) , 50 .

gT s e d e r b e r g , £ g . c i t . , p. 18 5 •

9P. W. Br idgmann, "Thermal C o n d u c t i v i t y o f L i q u i d s Under

P r e s s u r e , " P r o c e e d i n g s o f t h e Amer i can Academy o f A r t s and S c i e n c e s ,l i x ( 1923) , “ W T

' ^ T s e d e r b e r g , _0£ . c i t . , p . 190.

' ' b . C. S a k i a d i s and J . C o a t e s , " S t u d i e s o f Thermal C o n d u c t i v i t y o f L i q u i d s , " A . I . C h . E . J o u r n a l , I ( 1 9 5 5 ) , 281.

12A. A. B o n d i i , "Thermal C o n d u c t i v i t y o f Non A s s o c i a t e d L i q u i d s , "

A . I . C h . E . J o u r n a l , VI I I ( 1 9 6 2 ) , 610.

13J . 0. H i r s c h f e l d e r , C. F. C u r t i s s , and R. B. B i r d , M o l e c u l a r The or y o f Gases and L i q u i d s (New York: John Wi l ey and Sons , 195^-), p- 64-5.

13

Page 30: A Non-Equilibrium Thermodynamic Approach to the ...

1 4

1 4 McLaugh l i n , j3g. c i t . , 402.

' ^ S a k i a d i s and C o a t e s , A.J_._Ch._E. J o u r n a 1, I ( 1 9 5 5 ) , 275-

16 L. P. F i l l i p p o v and N. S. N o v o s e l o v a , "The Thermal C o n d u c t i v i t y o f S o l u t i o n s o f Normal M i x t u r e s , " V e s t n i k Moskovskogo U n i v e r s i t e t a , S e r i y a F i z i k o - M a t e n a t e c h e s k i k h i E s t e s t v e n n y k k Nauk No.^ 2 , X ( 1955) ,37-

^ H . B- J o r d a n , Pred i c t ion o f T h e r ma 1 Conduc t i v i t y o f Mi s c i b l e B i n a r y L i qu i d M i x t u r e s f rom t h e Pu r e Component Va1ues ( Ma s t e r s T h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 19"6l) , p. 6.

18 L. P. F i l l i p p o v , "Thermal C o n d u c t i o n o f S o l u t i o n s o f A s s o c i a t e d L i q u i d s , " Ve s t n i k Moskovskogo Un i v e r s i t e t a , S e r i ya F i z i ko- M a t e n a t e c h - e s k i k h i E s t e s t v e n n y k k Nauk No. 5, X ( 19 5 5 ) , 6 7 .

1 9 Bondi i , _0£ . c i t . , 614.

2 0 , . ,I b i d .

21 T s e d e r b e r g , _og. c i t . , p . 218.

22 H. V. R o d r i g u e z , Mol e c u l a r F i e l d R e l a t i onsh i ps t o L i q u i d V i s c o s i t y , Compress i b i 1 i t y , and P r e d i c t i on o f T h e r ma 1 Conduc t ivi t y o f B i na r y L i q u i d M i x t u r e s (Ph.D. D i s s e r t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1962) , p. 10.

23 R. J . Bearman, " S t a t i s t i c a l Me c ha n i c a l The o r y o f t h e Thermal C o n d u c t i v i t y o f B i n a r y L i q u i d S o l u t i o n s , " J o u r n a 1 o f Chem i c a 1 Phys i c s , XXIX ( 1 9 5 8 ) , 1278 .

24Mc La ugh l i n , _og. c i t . , 416 .

25 J . N. B u t l e r and R. S. Brokaw, "Thermal C o n d u c t i v i t y o f Gas M i x t u r e s in Chemical E q u i l i b r i u m , " J o u r n a l o f Chemica l P h y s i c s ,XXVI ( 1 9 5 7 ) , 1641.

26 J . 0. H i r s c h f e 1d e r , " He a t T r a n s f e r in C h e m i c a l l y R e a c t i n g M i x t u r e s , " Jou r n a 1 o f C h e m i c a 1 Phys i c s , XXVI ( 1 9 5 7 ) , 274.

27T y r r e l l , og . c i t . , p . 303 -

28 M. E i g e n , " Zur T h e o r i e d e r W a r m e l e i t f a h i g k e i t de s W a s s e r , " Z e i t s c h r i f t f u r E l e k t r o c h e m i e , LVI ( 1 9 5 2 ) , 17 6 .

29 A. Eucken, " A s s o z i a t i o n in F 1u s s e n k e i t e n , " Z e i t s c h r i f t f u r E 1e k t r o c h e m i e , L l l ( 1 9 4 8 ) , 255-

30T y r r e l l , j}g. c i t . , p. 306.

Page 31: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I I I

THEORY AND APPLICATION OF NON-EQUILIBRIUM THERMODYNAMICS

A. I n t r o d u c t i on

T h i s c h a p t e r d e a l s w i t h t h e t h e o r y and a p p l i c a t i o n o f non­

e q u i l i b r i u m t he r modynami c s t o t h e p r ob l e m o f s i m u l t a n e o u s h e a t and

mass t r a n s f e r . In p a r t i c u l a r , g e n e r a l e q u a t i o n s a r e g i v e n whi ch a r e

a p p l i c a b l e f o r t e r n a r y s ys t e ms , w i t h c he mi ca l e q u i l i b r i u m be tween

two o f t h e c o mpone n t s . The s e g e n e r a l r e l a t i o n s h i p s a r e s i m p l i f i e d

in C h a p t e r IV by c e r t a i n a s s u m p t i o n s , whi ch w i l l p e r m i t a t e s t of

t h e i r v a l i d i t y f o r t h e a 1c o h o l - i n e r t s o l v e n t s y s t e m s .

B. Genera 1 Non- Egu i 1 i b r i urn Thermodynami c The or y

The t h e o r y o f n o n - e q u i l i b r i u m t he r modynami c s has been d e v e l o p e d

t o p r o v i d e a m a c r o s c o p i c d e s c r i p t i o n o f i r r e v e r s i b l e p r o c e s s e s .

Heat c o n d u c t i o n , d i f f u s i o n , c he mi c a l r e a c t i o n , and v i s c o u s f low^

a r e a few o f t h e i r r e v e r s i b l e phenomena f o r wh i c h t h e t h e o r y i s

a p p 1 i ca b 1e.

The f o u n d a t i o n o f n o n - e q u i l i b r i u m t he r modynami c s i s a g e n e r a l i ­

z a t i o n o f t h e s econd law o f t he r mo d y n a mi c s , whi ch a s s e r t s t h a t t h e

r a t e o f e n t r o p y p r o d u c t i o n in a c l o s e d s y s t e m u n d e r g o i n g i r r e v e r s i b l e

2t r a n s f o r m a t i o n s i s p o s i t i v e . Modern t h e o r i e s a l s o make t h e a d ­

d i t i o n a l h y p o t h e s e s o f l i n e a r p h e n o me n o l o g i c a l laws and t h e v a l i d i t y

3o f t h e Ons age r r e c i p r o c a l r e l a t i o n s .

Page 32: A Non-Equilibrium Thermodynamic Approach to the ...

The l i n e a r p h e n o m e n o l o g i c a l laws a s used in t h e modern t h e o r y

o f t r a n s p o r t - p r o c e s s e s a r e l o g i c a l e x t e n s i o n s o f F o u r i e r ' s law o f

h e a t c o n d u c t i o n and F i c k ' s law o f d i f f u s i o n . They a r e r e p r e s e n t e d

by t h e f o l l o w i n g e q u a t i o n ;

NJ = £ L, X (k = 1 , 2 . . . N) • ( 3 -1 )

k j = 1 kj j

In e q u a t i o n ( 3 - 1 ) ; r e p r e s e n t s t h e f l u x o f m a t e r i a l and t h e X^ 1s

r e p r e s e n t t h e t he r modynami c f o r c e s c a u s i n g t h e f l ow , J ^ . The q u a n t i t i e s

L^. a r e c a l l e d t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s and a r e r e l a t e d

t o t h e c o e f f i c i e n t s o f t h e r ma l c o n d u c t i v i t y and d i f f u s i o n . The

r e l a t i o n ( 3 - 1 ) i s r e f e r r e d t o a s a p h e n o m e n o l o g i c a l e q u a t i o n .

I t w i l l be more c o n v e n i e n t in l a t e r d i s c u s s i o n s t o d i f f e r e n t i a t e

be t ween t h e t h e r ma l t he r modynami c f o r c e and t h e t he r modynami c f o r c e s

a r i s i n g f rom t h e c he mi c a l p o t e n t i a l s . The t h e r ma l f l u x , ; t h e

t h e r ma l f o r c e , X ; and t h e a s s o c i a t e d p h e n o m e n o l o g i c a l c o e f f i c i e n t s4

may be i n t r o d u c e d i n t o e q u a t i o n ( 3 -1 ) t o g i v e t h e f o l l o w i n g r e s u l t :

NFlow o f M a t e r i a l = J. = £ L. .X. + L. X , ( 3 -2 )

k j _ , k_l J kq q

NFlow o f Heat = J = £ L .X. + L X . ( 3-3)

q j =1 q j j qq q

A f t e r t h e i n t r o d u c t i o n o f l i n e a r p h e n o m e n o l o g i c a l e q u a t i o n s ,

t h e Ons age r r e c i p r o c a l r e l a t i o n s a r e g i v e n by;

Page 33: A Non-Equilibrium Thermodynamic Approach to the ...

T h i s r e c i p r o c a l r e l a t i o n i s v a l i d p r o v i d e d t h e c o r r e c t c h o i c e s o f

t he r modynami c f o r c e s , X^, and t h e mass f l o w , J ^ , a r e made.

T y r r e l l ^ shows t h a t t h e c o r r e c t c h o i c e s o f f o r c e t e r ms f o r t h e

Ons age r r e l a t i o n s t o be v a l i d i s g i v e n by:

Xq = - ( g r a d T ) / T , ( 3 - 5 )

Xj = - g r a d ( p V T ) , ( 3- 6 )

wher e T i s t h e a b s o l u t e t e m p e r a t u r e and p,. i s t h e c he mi ca l p o t e n t i a l

o f component j on a mass b a s i s .

The t he r modynami c f o r c e s g i v e n by e q u a t i o n s ( 3 -5 ) and ( 3 -6)

a r e p r o p e r c h o i c e s o n l y i f t h e f l u x e s , and J , a r e r e f e r e n c e d

t o a f i x e d c o - o r d i n a t e s y s t e m . For c e r t a i n a p p l i c a t i o n s , i t may be

more c o n v e n i e n t t o d e f i n e t h e f l u x e s on a d i f f e r e n t b a s i s . A change

in f l u x b a s i s w i l l n e c e s s i t a t e a change in t he r modynami c f o r c e s in

o r d e r t o keep t h e r a t e o f e n t r o p y p r o d u c t i o n i n v a r i a n t and t h e

Ons age r r e c i p r o c a l r e l a t i o n s v a l i d .

C. A 1 t e r n a t e Def i n i t ion o f Thermodynamic F 1uxes

As s t a t e d in s e c t i o n B, f o r c e r t a i n a p p l i c a t i o n s a change in

f l u x b a s i s i s c o n v e n i e n t . For most h e a t and mass t r a n s f e r p r o b l e ms ,

new f l u x e s can be d e f i n e d a s f o l l o w s :

Page 34: A Non-Equilibrium Thermodynamic Approach to the ...

1 8

The s e new f l u x e s r e s u l t in t h e f o l l o w i n g d e f i n i t i o n s f o r t h e new

c o n j u g a t e t he r modynami c f o r c e s : "

X' = - ( g r a d T ) / T , ( 3-9)H

X! = - ( g r a d M - j ^ p / T , ( 3 -10)

whe r e t h e ( g r a d u , . ) _ „ i n d i c a t e s t h a t t h e d e r i v a t i v e i s t a k e n a tJ T,P

c o n s t a n t t e m p e r a t u r e and p r e s s u r e . The symbol h^ in e q u a t i o n ( 3 -7)

r e p r e s e n t s t h e p a r t i a l e n p h a l p y o f component k on a mass b a s i s . The

the r modynami c f o r c e s , and X j , a r e t o be used in f l u x e q u a t i o n s

e x a c t l y a n a l o g o u s t o e q u a t i o n s ( 3 -2 ) and ( 3 - 3 ) •

When t h e c a s e o f z e r o b u l k f l o w i s c o n s i d e r e d , t h e f l u x e q u a t i o n s

w r i t t e n in t e r ms o f t h e t he r modynami c f o r c e s , d e f i n e d by e q u a t i o n s

6 7( 3 - 9 ) and ( 3 - 1 0 ) , a r e g i v e n by f o l l o w i n g e q u a t i o n s : ;

Jk " ~ j S i Lk j [ ( g r a d |1j ) T , R - (9ral i N) TJ P > Lkq ' CaL T ' T> ' <3- n )

55 ~ T | Lq j [ ( 9 r a d k,j ) T , p ' ( g r a d T> ’ <3- | 2 )

wher e t h e d e f i n i t i o n o f t h e r e d u c e d h e a t f l u x , J ^ , i s g i v e n by

e q u a t i o n ( 3 - 7 ) * E q u a t i o n s (3-11) and ( 3 - 12 ) a r e t h e g e n e r a l m u l t i -

component e x p r e s s i o n s r e l a t i n g t h e f l o w s o f h e a t and mass t o t h e

a p p r o p r i a t e p h e n o me n o l o g i c a l c o e f f i c i e n t s .

D. Appl i c a t ion t o T e r n a r y Sys t ems w i t h Chem i c a 1 Equ i 1 i b r i urn

The a p p l i c a t i o n o f t h e g e n e r a l m u l t i c o m p o n e n t e x p r e s s i o n s f o r

"See Appendi x A f o r d e r i v a t i o n .

Page 35: A Non-Equilibrium Thermodynamic Approach to the ...

h e a t and mass t r a n s f e r t o t h e s p e c i f i c c a s e o f a t e r n a r y s y s t e m

w i t h c h e mi ca l e q u i l i b r i u m i s d e v e l o p e d in t h i s s e c t i o n . In a l l

d e v e 1opmen t s , t h e s u b s c r i p t s 1 and 2 r e p r e s e n t s o l u t e s whi ch a r e

d i l u t e d by an i n e r t s o l v e n t , component 3- Components 1 and 2 a r e

assumed t o be in c h e mi c a l e q u i l i b r i u m a s r e p r e s e n t e d by t h e c he mi c a l

r e a c t i o n :

A, - a A2 . ( 3 -13)

For t e r n a r y s y s t e m s , t h e g e n e r a l r e l a t i o n s h i p s d e v e l o p e d in s e c t i o n

C o f t h i s c h a p t e r r e d u c e t o t h e f o l l o w i n g s e r i e s o f e q u a t i o n s ;

J 2 “ " L 2 q ( g r a d T ) / T " L 2 2 ^ 9 r a d ^ T , P “ ^ 9 r a d ^ P t ^

- L 2 3 [ ( g r a d M-3 ) T ^ p - ( g r a d jj. 1) T p ] , ( 3 - 1 * 0

J 3 = - L 3 q ( g r a d T ) / T - L3 2 [ ( g r a d |X2 ) T ^ p - ( g r a d M-! ) T p ]

- L 3 3 [ ( g r a d |J.3 ) T p - ( g r a d | J . , )T p ] , ( 3 - 1 5 )

J j = - J 2 ~ d 3 ’ ( 3 - 1 6 )

J q = “ Lq q ( g r a d T ) / T - Lq 2 [ ( g r a d P 2 ) - ^ p - ( g r a d | ^ ) T ^ p ]

- L q 3 [ ( g r a d ^ 3 ) T ^ p - ( g r a d • ( 3 - 1 7 )

The mass f l u x o f component 1 can be w r i t t e n in t h e s i m p l i f i e d form

g i v e n by e q u a t i o n ( 3 -16) b e c a u s e o f t h e c o n d i t i o n o f z e r o b u l k f l o w .

The Gibbs-Duhem r e l a t i o n a t c o n s t a n t t e m p e r a t u r e and p r e s s u r e ,

W, ( g r a d | i j ) + W2 ( g r a d H2) T p + W ^ g r a d P<3) T p = 0 , ( 3 -18 )

Page 36: A Non-Equilibrium Thermodynamic Approach to the ...

2 0

and t h e Ons a ge r r e l a t i o n , e q u a t i o n (3-^+), w i l l a l l o w s i m p l i f i c a t i o n

o f e q u a t i o n s ( 3 - 1^ ) t h r o u g h ( 3 - 1 7 ) - The Gibbs-Duhem r e l a t i o n ,

e q u a t i o n ( 3 - 1 8 ) , i s w r i t t e n in t e r ms o f t h e mass f r a c t i o n , W, o f

t h e compone n t s . Us i ng t h e Gibbs-Duhem and Ons age r r e l a t i o n s a l l o w s

t h e h e a t and mass f l u x e s t o be w r i t t e n in t h e f o l l o w i n g forms;.

J 2 = - L 2 q ( g r a d T ) / T - [ L 2 2 - L2 3 W2 / W 3 ] ( g r a d lx2 ) T ^ p

+ [ L 2 2 + L2 3 + L2 3 Wj / W 3 ] ( g r a d p ^ ) . ^ , ( 3 - 1 9 )

J 3 = - ( gr a d T ) / T - [ L23 - ( g r a d P2 ) - ^ p

+ [ L 2 3 + L3 3 + L3 3 W] / W 3 ] ( g r a d m-1 ) t p , ( 3 - 2 0 )

J q " - Lq q < g r a d T ) / T - [ L 2 q ‘ L3 q W2 / W 3 ] ( g r a d

+ ^ L2q + L3qW| /W3 ] ( 9 r ad ' ( 3 -21)

With t h e a s s u m p t i o n o f c he mi c a l e q u i l i b r i u m be t ween component sm.1*

1 a n d 2 , t h e ( g r a d P 2 ) y ( 9 r a c * M' ] ) y p a n c * ( g r a d T) a r e r e l a t e d b y "

AH( g r a d p 2 ) T p - ( g r a d p , ^ p = — - ■ (■■9--a-d- U ( 3 -22 )

3 3 ckM2 T

whe r e AHD i s t h e s t a n d a r d mo l a r h e a t o f r e a c t i o n a p p r o p r i a t e f o r t h e

c h e mi c a l r e a c t i o n d e f i n e d by e q u a t i o n ( 3 - 1 3 ) - The s t o i c h i o m e t r i c

c o e f f i c i e n t , a , and m o l e c u l a r w e i g h t , M2 , a r e a l s o d e f i n e d by t h e

same c h e mi c a l r e a c t i o n .

See Appendi x B f o r d e r i v a t i o n .

Page 37: A Non-Equilibrium Thermodynamic Approach to the ...

The ( g r a d (j,, ) may be e l i m i n a t e d f rom t h e e q u a t i o n s (3 -19)I I ; r

t h r o u g h ( 3 - 21 ) t o g i v e t h e g e n e r a l r e l a t i o n s a p p r o p r i a t e f o r h e a t

and mass t r a n s f e r in a t e r n a r y s y s t e m w i t h c he mi c a l e q u i l i b r i u m .

The s e r e l a t i o n s a r e summar i zed by t h e f o l l o w i n g s e t o f e q u a t i o n s :

L „ A H d A H d W, , ,

J 2 = — ( g r a d ^ 2 ) T , P “ [ L 2q+(~ ) L22+(~ ) ( , + T ) L33] ' ( 3 -23)

L „ A H d AH W, , ,J = — ( g r a d p ) [ L +(— * ) ! _ + ( — ^) (1+ , ( 3. 2/f)

W3 att2 ^ qM2 W3 T

L -= A H d A H d W, , , T xJ , = ^ ( g r a d p 2 ) [L + ( * ) L +(- 5 ) 0 + - i ) L 3 . ( 3 - 25 )

W3 -i W3 T

S i m p l i f i c a t i o n o f t h e s e e q u a t i o n s and a p p l i c a t i o n t o p r e d i c t i n g

t h e c o m p o s i t i o n d e p e n d e n c e o f t he r ma l c o n d u c t i v i t y in a l c o h o l s y s t e ms

i s d i s c u s s e d in C h a p t e r IV. I t i s i m p o r t a n t t o n o t e t h a t t h e

e q u a t i o n s g i v e n a bove a r e e x a c t d e s c r i p t i o n s f o r h e a t and mass

t r a n s f e r in t e r n a r y s y s t e m s and t h a t no a s s u m p t i o n s beyond t h o s e

n e c e s s a r y f o r t h e d e v e l o p m e n t o f n o n - e q u i l i b r i u m t he r modynami c s

have been made. The m a j o r d i f f i c u l t y in t h e u s e o f t h e s e e q u a t i o n s

l i e s in r e l a t i n g t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s w i t h t h e e x p e r i ­

m e n t a l l y m e a s u r a b l e q u a n t i t i e s o f t he r ma l c o n d u c t i v i t y , d i f f u s i v i t y ,

and v a r i o u s c r o s s c o e f f i c i e n t s .

Page 38: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R 1 I 1 R E F E R E N C E S

' s . R. de Gr oo t and P. Mazur , Non- E q u i l i b r i u m Thermodynamics (Amsterdam: Nor t h Ho l l a n d P u b l i s h i n g C o . , 1962) , p. 6.

2H. J . V. T y r r e l l , D i f f u s i o n and Heat Flow in L i q u i d s (London:

B u t t e r w o r t h and Co . , 1961) , p~. i l .

3The t he r modynami c s o f t r a n s p o r t p r o p e r t i e s has been d e v e l o p e d

w i t h o u t t h e a s s u m p t i o n o f O n s a g e r ' s r e c i p r o c a l r e l a t i o n s . See R. J . Bearman, " S t a t i s t i c a l Me c ha n i c a l The o r y o f T r a n s p o r t P r o c e s s e s , " J o u r n a l o f Chemical P h y s i c s , XXVIII ( 1958 ) , 662.

4T y r r e l l , _op. c 11 . , p. 9-

^ I b i d . , p . 16.g

R. B. B i r d , W. E. S t e w a r t , and E. N. L i g h t f o o t , T r a n s p o r t Phenomena (New York: John Wi l ey and Sons , I 9 6 0 ) , p. 501 .

^ T y r r e l l , c i t . , p. 33-

2 2

Page 39: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R IV

THERMAL CONDUCTION IN CHEMICALLY REACTING LIQUID MIXTURES

A• I n t r o d u c t i on

In C h a p t e r I I I , g e n e r a l e q u a t i o n s f o r t h e d e s c r i p t i o n o f h e a t

and mass t r a n s f e r f o r t e r n a r y s y s t e m s were d e v e l o p e d . The s i m p l i ­

f i c a t i o n o f t h e g e n e r a l r e l a t i o n s o f h e a t and mass f l u x t o t h e

p h e n o me n o l o g i c a l c o e f f i c i e n t s and a p p l i c a t i o n s t o p r e d i c t i n g t h e

v a r i a t i o n o f t h e r m a l c o n d u c t i v i t y in a l c o h o l s y s t e m s i s t h e o b j e c t

o f t h i s c h a p t e r .

B. S imp!i f i c a t ion o f t h e Genera 1 Non- Equ i 1 i br i urn Thermodynam i c

R e l a t i ons

The g e n e r a l e q u a t i o n s r e l a t i n g t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s

a r e complex and a r e n o t r e a d i l y u s e a b l e f o r most p r o b l e m s . T h i s

s e c t i o n d e a l s w i t h c e r t a i n a s s u m p t i o n s whi ch r e d u c e t h e g e n e r a l

r e l a t i o n s h i p s t o much s i m p l e r e x p r e s s i o n s and w i l l p e r m i t a s u b s e ­

q u e n t t e s t f o r t h e i r v a l i d i t y w i t h e x p e r i m e n t a l t h e r m a l c o n d u c t i v i t y

d a t a f rom a 1c o h o l - i n e r t s o l v e n t s y s t e m s . The a s s u m p t i o n s t h a t w i l l

be made do n o t have a r i g o r o u s b a s i s , b u t seems t o r e p r e s e n t a

r e a s o n a b l e a p p r o x i m a t i o n t o t h e t r u e p i c t u r e o f t h e r m a l c o n d u c t i o n

in a l c o h o l s y s t e m s .

The f i r s t a s s u m p t i o n w i l l be t o s e t t h e mass f l u x and t h e g r a d i e n t

of t h e c he mi ca l p o t e n t i a l o f t h e s o l v e n t e q u a l t o z e r o . Us i ng t h i s

2 3

Page 40: A Non-Equilibrium Thermodynamic Approach to the ...

a s s u m p t i o n , t h e r e l a t i o n s h i p be tween t h e g r a d i e n t s o f t h e c he mi ca l

p o t e n t i a l s and t e m p e r a t u r e r e d u c e s t o

AHd W, / , T\( g r a d * , ) - R— I— _ ( a r a d _ Q _ (1|_ ])

’ aM2 (W]+W2) T

I t may a l s o be a r g u e d t h a t t h e c o e f f i c i e n t s , and |_2 , can be

assumed z e r o . The s e c o e f f i c i e n t s a r e c l o s e l y r e l a t e d t o t h e e x p e r i

m e n t a l l y m e a s u r a b l e S o r e t and Dufour c o e f f i c i e n t s . Both o f t h e s e

c o e f f i c i e n t s u s u a l l y r e p r e s e n t n e g l i g i b l e e f f e c t s in l i q u i d s y s t e ms

I n t r o d u c i n g t h e s e a s s u m p t i o n s i n t o t h e e q u a t i o n f o r t h e mass

f l u x o f t h e s o l v e n t y i e l d s t h e f o l l o w i n g r e s u l t :

W, W./W- AHd , _j = 0 = 3 )] — B _arad_T . . (1|_ 2)

3 Wj Wj - t Wj aH2 T

The mass f l u x o f t h e s o l v e n t , J ^ , w i l l be z e r o i f t h e b r a c k e t

t e r m in e q u a t i o n ( 4 - 2 ) i s z e r o . T h i s c o n d i t i o n l e a d s t o t h e

r e l a t i o n s h i p be t ween t h e p h e n o me n o l o g i c a l c o e f f i c i e n t s , and

L33 : W Ll2, - - - 2 - a ■ ( v 3)

° w ]+w2

The mass f l u x o f component 2 may now be a p p r o x i m a t e d by t h e

f o l l o w i n g e q u a t i o n ;

j 2 = _ n . sw + p ( , . p)Wb] i a r s l l i ; (h_k)T

Page 41: A Non-Equilibrium Thermodynamic Approach to the ...

2 5

wher e t h e a d d i t i o n a l a s s u m p t i o n t h a t ' s a p p r o x i m a t e l y z e r o has

been made. The f o l l o w i n g c h a n g e s in v a r i a b l e s ha ve a l s o been

i n t r o d u c e d :

u = W + WA 1 2 ’

WB = W3 , ( 4 -5 )

P = w2 / w A

The v a r i a b l e (3 i s t h e mass f r a c t i o n o f component 2 on a s o l v e n t f r e e

bas i s .

Wi th t h e a s s u m p t i o n s t h a t have been i n t r o d u c e d , t h e r e d u c e d

h e a t f l u x , J ^ , i s g i v e n by

J 1 = -L ( g r a d T ) / T . ( 4-6)q qq

The a c t u a l h e a t f l u x , J , may be w r i t t e n by u s i n g t h e d e f i n i t i o n o f

t h e r e d u c e d h e a t f l u x . R e a r r a n g i n g t h a t d e f i n i n g e q u a t i o n w i l l

r e s u l t in t h e f o l l o w i n g e q u a t i o n f o r t h e a c t u a l h e a t f l u x , J ^ :

J = J 1 + Z h, J. . ( 4 -7 )q q k k

The a s s u m p t i o n s t h a t have been i n t r o d u c e d s i m p l i f y e q u a t i o n ( 4 -7) t o

t h e r e s u l t :

J q = J q + ( h2 “ h P J 2 '

i t may be shown t h a t t h e e n p h a l p y d i f f e r e n c e in e q u a t i o n (4-8)

i s r e l a t e d t o t h e s t a n d a r d e n p h a l p y d i f f e r e n c e o f t h e c hemi ca l

Page 42: A Non-Equilibrium Thermodynamic Approach to the ...

2 6

r e a c t i o n b y '

h 2 - h ] = AHr/ qM2 • ( 4 -9)

Usi ng e q u a t i o n s ( 4 -4 ) t h r o u g h ( 4 - 9 ) a l l o w s t h e a c t u a l h e a t

f l u x , J , t o be w r i t t e n in t e r ms o f t h e p h e n o me n o l o g i c a l c o e f f i c i e n t s ,

L and L0 0 :q q 33

L L A H ? [ l - M ( l - g ) W ]J a B “ t“ 3 3 + J U T r ------------------ } ( g r a d T) . ( 4-10)

q T cv M2WbT

2As shown in Appendi x C and a l s o by a s i m i l a r p r ob l e m in T y r r e l l ,

t h e p h e n om e n o l o g i c a l c o e f f i c i e n t , > ' s r e l a t e d t o t h e mutua l d i f f u s i o n

c o e f f i c i e n t , D , by Ad

■ . V w , (4_ M)

BBRT(V Y NBMB>

wher e D^g i s t h e mutua l d i f f u s i v i t y o f t h e s y s t e m , p i s t h e d e n s i t y ,

M2 and Mg a r e t h e m o l e c u l a r w e i g h t s o f component 2 and t h e s o l v e n t ,

and N. and ND a r e t h e o v e r a l l mole f r a c t i o n s o f t h e s o l u t e and t h e A ts

s o l v e n t . Bg i s a t he r modynami c f a c t o r r e l a t e d t o t h e a c t i v i t y

c o e f f i c i e n t o f t h e s o l v e n t and i s d e f i n e d by t h e f o l l o w i n g e q u a t i o n :

a ln y bB = 1 + ----------5 . (4- 12)

3 1 n Ng

See Appendi x A f o r d e r i v a t i o n .

Page 43: A Non-Equilibrium Thermodynamic Approach to the ...

2 7

The s i m p l i f i e d e q u a t i o n f o r h e a t f l u x in a t e r n a r y s y s t e m w i t h

c h e mi c a l e q u i 1 ibr iurn may t h e r e f o r e be w r i t t e n as

. f Lc<, , . T.J = + ------------- z - z -------------------------------- } ( g r a d T) . ( 4-13)q T BBR a V M 2 (NAM2+NBMB)

Compar i son o f e q u a t i o n ( 4 - 13 ) t o t h e e x a c t d e r i v a t i o n o f J1

3 4f o r t h e two component c a s e ’ shows t h a t t h e two e x p r e s s i o n s a r e

v e r y s i m i l a r in a p p e a r a n c e and d i f f e r p r i m a r i l y by t h e b r a c k e t e d

(3 t e r m p r e s e n t in e q u a t i o n ( 4 - 1 3 ) - T h i s r e s u l t i s n o t u n e x p e c t e d

b e c a u s e t h e a s s u m p t i o n s l e a d i n g t o e q u a t i o n (4 -13) e s s e n t i a l l y

r e d u c e s t h e t e r n a r y s y s t e m t o a d i l u t e d two component s y s t e m .

A n o t h e r way t o p i c t u r e t h e c o n s e q u e n c e s o f t h e a s s u m p t i o n s on t h e

b e h a v i o r o f t h e s y s t e m i s t o v i s u a l i z e t h e s o l v e n t a s b e i n g c o m p l e t e l y

s t a t i o n a r y . T h e r e f o r e , t h e o n l y f u n c t i o n o f t h e s o l v e n t i s t h e

d i l u t i o n o f t h e s o l u t e s . T h i s model , w h i l e a d m i t t e d l y c r u d e , i s no t

c o m p l e t e l y u n r e a s o n a b l e and s h o u l d be a f i r s t a p p r o x i m a t i o n t o t h e

t r u e p i c t u r e .

C. E f f e c t i ve The r ma 1 Conduc t i v i t y o f Re a c t i ng M i x t u r e s

The s i m p l i f i e d h e a t f l u x e x p r e s s i o n d e r i v e d in t h e p r e v i o u s

s e c t i o n may be compared w i t h F o u r i e r ' s law o f h e a t c o n d u c t i o n :

J = - k g r ad T , ( 4-14)q

where k i s t h e t h e r ma l c o n d u c t i v i t y o f t h e f l u i d . Compar i son o f

e q u a t i o n s ( 4 - 13 ) and ( 4 -14) l e a d s t o t h e d e f i n i t i o n o f t h e e f f e c t i v e

t he r ma l c o n d u c t i v i t y o f a r e a c t i n g mi x t u re . ;

Page 44: A Non-Equilibrium Thermodynamic Approach to the ...

, Lqq . ^ R DABPWAMB t | - g V g < l. - P )WB3p p p 9 9 * 10 )

T bbr t V m 2 (nam2+nbmb)

T y r r e l l ' * shows t h a t t h e t e r m L / T i s e q u i v a l e n t t o t h e normal

t h e r ma l c o n d u c t i v i t y o f a f l u i d . Normal can be c o n s t r u e d t o mean

u n d e r c o n d i t i o n s o f no c h e mi c a l r e a c t i o n s . The o t h e r t e r m making

up t h e e f f e c t i v e t h e r ma l c o n d u c t i v i t y a r i s e s f rom t h e c he mi c a l

e q u i l i b r i u m e x i s t i n g be t ween componen t s 1 and 2. D e f i n i n g t h e

/V Rsymbol k ' t o be t h e normal t h e r ma l c o n d u c t i v i t y and t h e symbol k

t o be t h e c o n t r i b u t i o n a r i s i n g f rom t h e c h e mi ca l r e a c t i o n , a l l o w s

e q u a t i o n ( 4 - 15 ) t o be more c o m p a c t l y w r i t t e n a s

k , _ = k ' + k^ . ( 4 -16)h r r

D. Exces s T h e r ma 1 Conduct i v i t y i n Re a c t i ng M i x t u r e s

As has been i n d i c a t e d in e a r l i e r c h a p t e r s , a p r i m a r y a l c o h o l

may be c o n s i d e r e d t o be an e q u i l i b r i u m m i x t u r e o f po l ymer and

monomer. I f i t i s assumed t h a t t h i s e q u i l i b r i u m m i x t u r e can be

r e p r e s e n t e d by one r e a c t i o n i n v o l v i n g an a v e r a g e a l c o h o l p o l yme r ,

t h e n t h e s i m p l i f i e d e q u a t i o n s t h a t have been d e v e l o p e d f o r a t e r n a r y

s y s t e m can be used t o d e s c r i b e h e a t t r a n s f e r in a l c o h o l s y s t e m s .

S i n c e c he mi c a l r e a c t i o n i n v o l v e s o n l y t h e a l c o h o l , i t i s p e r ­

m i s s i b l e t o a s s o c i a t e t h e c h e mi c a l r e a c t i o n t e r m in e q u a t i o n (4-16)

w i t h component A, t h e a l c o h o l . The t h e r m a l c o n d u c t i v i t y o f t h e

a l c o h o l , k n, and t h a t o f t h e s o l v e n t , k D, may be w r i t t e n as A b

Page 45: A Non-Equilibrium Thermodynamic Approach to the ...

where k. and kD r e p r e s e n t t h e normal v a l u e s o f t h e t h e r ma l c onduc - A D

t i v i t y o f t h e a l c o h o l and t h e s o l v e n t . The s e q u a n t i t i e s may a l s o

be t h o u g h t o f a s t h e monomer t he r ma l c o n d u c t i v i t i e s . The v a l u e o f

t h e t h e r m a l c o n d u c t i v i t y o f t h e a l c o h o l i s shown t o be d e p e n d e n t

upon c o m p o s i t i o n b e c a u s e o f t h e c o m p o s i t i o n d e p e n d e n c e o f t h e

i s n o t a f f e c t e d by c o m p o s i t i o n .

I t i s p o s t u l a t e d t h a t t h e t h e r m a l c o n d u c t i v i t y o f a m i x t u r e o f

a l c o h o l and an i n e r t s o l v e n t can be w r i t t e n as

o v e r a l l mole f r a c t i o n s o f t h e a l c o h o l and t h e s o l v e n t .

The i d e a l v a l u e o f t h e t he r ma l c o n d u c t i v i t y o f a m i x t u r e can

be s i m i l a r l y d e f i n e d by

t he r ma l c o n d u c t i v i t y o f p u r e s o l v e n t . S i n c e t h e s o l v e n t i s assumed

t o u n de r go no c he mi c a l i n t e r a c t i o n s , t h e t e r ms monomer t h e r ma l c on ­

d u c t i v i t y , normal t h e r m a l c o n d u c t i v i t y , and t h e t h e r m a l c o n d u c t i v i t y

o f p u r e s o l v e n t a l l r e f e r t o t h e same p h y s i c a l q u a n t i t y .

The e x c e s s t h e r m a l c o n d u c t i v i t y , d e f i n e d in t h e u s u a l manner

o f e x c e s s q u a n t i t i e s , i s :

c he mi ca l r e a c t i o n t e r m, k . The t h e r ma l c o n d u c t i v i t y o f t h e s o l v e n t

( 4 -19)

where k i s t h e m i x t u r e t h e r ma l c o n d u c t i v i t y and N„ and a r e t h e m A B

( 4-20)

where k° i s t h e t he r ma l c o n d u c t i v i t y o f p u r e a l c o h o l and k° i s t h e A D

Page 46: A Non-Equilibrium Thermodynamic Approach to the ...

3 0

where t h e e q u a l i t y o f t h e normal and t h e monomer t h e r m a l c o n d u c t i v i t y

o f t h e s o l v e n t has been used t o e l i m i n a t e t h e s o l v e n t t he r ma l

c o n d u c t i v i t y f rom t h e e x p r e s s i o n .

E . R e l a t ion o f Exces s The r ma 1 Conduc t i vi t y t o t h e Monomer

C o n c e n t r a t i on

The t h e r ma l c o n d u c t i v i t i e s k° and k a r e d i r e c t l y d e p e n d e n t onM M

t h e a p p r o p r i a t e c h e mi c a l r e a c t i o n c o n t r i b u t i o n s . As shown by

e q u a t i o n ( 4 - 17) * t h e c he mi c a l r e a c t i o n c o n t r i b u t i o n i s w r i t t e n in

t e r ms o f s t a n d a r d m o l a r h e a t o f r e a c t i o n , AHD, and a s t o i c h i o m e t r i c

c o e f f i c i e n t , ct, whi ch a r e bo t h d e p e n d e n t on p, t h e mass f r a c t i o n of

monomer a l c o h o l on a s o l v e n t f r e e b a s i s .

The r e l a t i o n s h i p o f p t o cv and AHD can be q u a l i t a t i v e l y r e a s o n e d

by c o n s i d e r a t i o n o f t h e mode l . The s t o i c h i o m e t r i c c o e f f i c i e n t i s a

m e a s u r e o f t h e a s s o c i a t i o n o f t h e a l c o h o l m o l e c u l e s . I t r e p r e s e n t s

t h e number o f a l c o h o l m o l e c u l e s in t h e a v e r a g e po l ymer c l u s t e r . As

pu r e a l c o h o l i s d i l u t e d in an i n e r t s o l v e n t , t h e a v e r a g e a s s o c i a t i o n

o f t h e a l c o h o l m o l e c u l e s w i l l be r e d u c e d u n t i l t h e c he mi c a l r e a c t i o n

i s r e p r e s e n t e d by d i me r d i s s o c i a t i o n . T h e r e f o r e , t h e s t o i c h i o m e t r i c

c o e f f i c i e n t w i l l c ha nge w i t h t h e o v e r a l l a l c o h o l c o n c e n t r a t i o n

u n t i l t h e d i me r l i m i t i s r e a c h e d . S i m i l a r r e a s o n i n g can a l s o be

a p p l i e d t o t h e h e a t o f r e a c t i o n .

The n u m e r i c a l v a l u e o f p depe nds upon t h e m a g n i t u d e o f t h e

e q u i l i b r i u m c o n s t a n t r e l a t i n g t h e c o n c e n t r a t i o n o f t h e v a r i o u s

p o l yme r s in a l c o h o l . P r i g o g i n e and Def ay^ d e r i v e e q u a t i o n s whi ch

a r e a p p l i c a b l e t o c h a i n a s s o c i a t i o n in a l c o h o l s . T h e i r r e s u l t s can

Page 47: A Non-Equilibrium Thermodynamic Approach to the ...

31

be used t o d e f i n e t h e a p p r o p r i a t e v a l u e s f o r t h e s t o i c h i o m e t r i c

c o e f f i c i e n t and t h e mo l a r h e a t o f r e a c t i o n used in t h i s d i s c u s s i o n .

The d e r i v a t i o n (Appendix D) o f t h e a p p r o p r i a t e s t o i c h i o m e t r i c

c o e f f i c i e n t and h e a t o f r e a c t i o n may be summar i zed by t h e f o l l o w i n g

e q u a t i o n s :

2/ P = ---------- , ( 4 - 2 2 )

1 + J \ +

a = 1 + — , (4 -23)/ p

AHrAH = — , (4-24)

R / e

where e q u a t i o n ( 4 -22) r e l a t e s p t o t h e e q u i l i b r i u m c o n s t a n t , K^, and

t o t h e o v e r a l l mo l a r c o n c e n t r a t i o n o f t h e a l c o h o l , C . . E q u a t i o nA

( 4-23) and ( 4 - 24 ) r e l a t e t h e s t o i c h i o m e t r i c c o e f f i c i e n t , a , and t h e

h e a t o f r e a c t i o n , AHD, t o t h e n u m e r i c a l v a l u e o f p. The q u a n t i t y

AHD i s t h e m o l a r e n e r g y a s s o c i a t e d w i t h b r e a k i n g a hyd r ogen bond.D

The v a l u e o f AH i s e q u i l i v a l e n t t o t h e h e a t o f r e a c t i o n f o r d i mer B

d i s s o c i a t i on .

The r e l a t i o n s h i p o f p t o t h e e q u i l i b r i u m c o n s t a n t , K^, i s e x a c t

o n l y f o r d i l u t e s y s t e m s . A much more g e n e r a l e x p r e s s i o n r e l a t i n g

P t o t h e a c t i v i t y c o e f f i c i e n t s has a l s o been d e r i v e d by P r i g o g i n e

7and Defay:

P =e » , ( ^ 25)

Page 48: A Non-Equilibrium Thermodynamic Approach to the ...

3 2

where y ^ and yg a r e , r e s p e c t i v e l y , t h e a c t i v i t y c o e f f i c i e n t s o f t h e

a l c o h o l and t h e s o l v e n t . The s e a c t i v i t y c o e f f i c i e n t s a r e t h e sym­

m e t r i c a l t y p e in whi ch e a ch a p p r o a c h e s u n i t y a s t h e a p p r o p r i a t e mole

f r a c t i o n a p p r o a c h e s u n i t y . The a c t i v i t y c o e f f i c i e n t o f t h e a l c o h o l

a t i n f i n i t e d i l u t i o n i s r e p r e s e n t e d by y°°. E q u a t i o n ( 4 -25) has beenn

shown t o be a c c u r a t e o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e f o r mostg

a 1 coho 1 - i n e r t s o l v e n t s y s t e m s .

E x p r e s s i o n s ( 4 -23) and ( 4 -24) may be combined w i t h t h e d e f i n i n g

e q u a t i o n f o r e x c e s s t h e r ma l c o n d u c t i v i t y t o g e t

I E ,, „ nk = --------- {------------------------------------------------- -------------- } ; ( 4-26)RT m2 1 + / T D“ Bp “ ( i + / P ) b b

where t h e s u p e r s c r i p t z e r o i n d i c a t e s t h e q u a n t i t y i s t h a t f o r p u r e

a l c o h o l . The q u a n t i t i e s (3 and p° a r e c a l c u l a t e d by t h e u s e o f

e q u a t i o n ( 4 -25) * In d i l u t e s o l u t i o n s , p may be c a l c u l a t e d by

e q u a t i o n ( 4 -22) p r o v i d e d t h e e q u i l i b r i u m c o n s t a n t i s known.

E q u a t i o n (4 -26) wi l l a l l o w t h e p r e d i c t i o n o f t h e c o m p o s i t i o n

d e p e n d e n c e of t h e t h e r m a l c o n d u c t i v i t y o f a 1c o h o l - i n e r t s o l v e n t

s y s t e m s p r o v i d e d t h e n e c e s s a r y d a t a a r e a v a i l a b l e . Hydrogen bond

e n e r g i e s and e q u i l i b r i u m c o n s t a n t s a r e a v a i l a b l e and may be d e t e r m i n e dg

by s e v e r a l i n d e p e n d e n t m e t ho d s . D i f f u s i v i t y d a t a a r e a l s o a v a i l a b l e

f o r s e v e r a l s y s t e ms and may be e s t i m a t e d by s t a n d a r d m e t h o d s . ' ^

Page 49: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER I V REFERENCES

' h . J . V. T y r r e 11, D i f f u s ion and Heat Flow in L i q u i d s (London: B u t t e r w o r t h and Co . , 1 9 6 1 ) / p. 52.

^ 1b i d . , p . 48 .

3 I b i d . , p. 53-4

S. R. de Gr oo t and P. Mazur , Non Equ i 1 i b r i um Thermodynam i cs (Amsterdam: Nor t h H o l l a n d P u b l i s h i n g C o . , 1962) , p. 299*

^ T y r r e l l , c £ . c i t . , p. 52 .g

I . P r i g o g i n e and R. Def ay , Chem i c a 1 Thermodynami cs (London: Longman, Green and Co . , 1954) , p . 424 .

^ I b i d . , p . 414 .o

I b i d . , p . 415 .g

G. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond (SanF r a n c i s c o : W. H. Freeman and Co . , I 9 6 0 ) , p. 6 7 .

^ R . C. Reid and T. K. Sherwood, The P r o p e r t i e s o f Gases andL i q u i d s (New York: McGraw-Hi l l Book Co . , 1966 ) , p7 *548.

3 3

Page 50: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER V

EXPERIMENTAL APPARATUS

A. Genera 1

The p r i n c i p a l e x p e r i m e n t a l q u a n t i t y me a s u r e d in t h i s i n v e s t i ­

g a t i o n i s t h e r m a l c o n d u c t i v i t y . The a p p a r a t u s used f o r m e a s u r i n g

t h e r ma l c o n d u c t i v i t y was d e s i g n e d by S a k i a d i s and C o a t e s ' and has

been t h o r o u g h l y t e s t e d . The d e s i g n c h a r a c t e r i s t i c s i n c o r p o r a t e d in

t h i s a p p a r a t u s a r e a s f o l l o w s ;

a) S t e a d y s t a t e meas u r emen t

b) H o r i z o n a l , p a r a l l e l i s o t h e r m a l p l a n e s w i t h downward h e a t i n g

t o e l i m i n a t e c o n v e c t i o n e f f e c t s

c) V a r i a b l e l i q u i d t h i c k n e s s

The a p p a r a t u s i s shown in F i g u r e 2. P h o t o g r a p h s o f t h e i n s t a l l a t i o n

a r e p r e s e n t e d in F i g u r e s 3 t h r o u g h 8.

B. Genera 1 Des c r i p t ion o f A p p a r a t u s

The a p p a r a t u s c o n s i s t s o f a ho t b a r and a c o l d b a r mounted

v e r t i c a l l y w i t h i n a p y r ex g l a s s p i p e . The l i q u i d s ampl e i s p l a c e d

be t ween t h e two b a r s and f orms a l i q u i d l a y e r . The l i q u i d l a y e r i s

h e a t e d a t t h e t op and c o o l e d a t t h e b o t t o m, he nc e t h e d e s i g n a t i o n o f

t h e t op b a r a s t h e h o t b a r and t h e bo t t om b a r a s t h e c o l d b a r . The

l i q u i d f i l m t h i c k n e s s may be a d j u s t e d t o t h e d e s i r e d v a l u e by r a i s i n g

o r l o w e r i n g t h e ho t b a r by means o f j a c k s c r e w s . T e m p e r a t u r e s w i t h i n

3 ^

Page 51: A Non-Equilibrium Thermodynamic Approach to the ...

M ol W oter Outlet

W a te rin le t

Test Liquid ln l«t -v

J S l o t ! Do r

,^ -R u fcU r f l ln g i' nr :V7v7V-;/}T //' -"7V/;r.mnamnjLrtctzn-Jhf.'ii/u iii/ii ■•

(5-3/4 * flfc)

k__

C o l d W a l t r 8 p f a y # r , s

C o l d W a t a r I n t o! Cold W aU r O u tU I

FIGURE 2

THERMOCONDUCTI METRIC APPARATUS

FOR LIQUIDS

Page 52: A Non-Equilibrium Thermodynamic Approach to the ...

Gener a l View

F i g u r e 3

woON

Page 53: A Non-Equilibrium Thermodynamic Approach to the ...

3 7

A"

A p p a r a t u s in O p e r a t i o n

F i g u r e 4

Page 54: A Non-Equilibrium Thermodynamic Approach to the ...

3 8

A p p a r a t u s D i s a s s e m b l e d

F i g u r e 5

Page 55: A Non-Equilibrium Thermodynamic Approach to the ...

3 9

Top View o f t h e Hot Bar

F i g u r e 6

Page 56: A Non-Equilibrium Thermodynamic Approach to the ...

Water Baths

F i g u r e 7

Page 57: A Non-Equilibrium Thermodynamic Approach to the ...

R e f r a c t o m e t e r

F i g u r e 8

Page 58: A Non-Equilibrium Thermodynamic Approach to the ...

4 2

t h e b a r s a r e m a i n t a i n e d by c i r c u l a t i n g w a t e r f rom c o n s t a n t t e m p e r a ­

t u r e b a t h s . Measur ement o f t h e t e m p e r a t u r e d i s t r i b u t i o n in t h e b a r s

i s by c a l i b r a t e d t h e r m o c o u p l e s and a s t a n d a r d p o t e n t i o m e t e r .

C . Deta i 1ed Des c r i p t ion o f A p p a r a t u s

The h o t b a r , 5*731 in . in d i a m e t e r and 1.25 i n . l ong, i s c on ­

s t r u c t e d o f n i c k e l p l a t e d s t e e l . The b a r i s c o n n e c t e d t o a s h o r t

s e c t i o n o f s t e e l p i p e o f t h e same d i a m e t e r . A s t e e l p l a t e i s b o l t e d

t o t h e p i p e , t h u s f o r m i n g a c hamber . Hot w a t e r , f r c m a c o n s t a n t

t e m p e r a t u r e b a t h , i s i n t r o d u c e d i n t o and removed f rom t h e chamber by

a c o n c e n t r i c p i p i n g a r r a n g e m e n t . The w a t e r e n t e r s t h r o u g h t h e c e n t e r

p i p e , c i r c u l a t e s w i t h i n t h e chamber and l e a v e s t h r o u g h t h e a n n u l a r

s p a c e formed by t h e o u t e r p i p e . To p r omot e u n i f o r m d i s t r i b u t i o n o f

w a t e r o v e r t h e i n s i d e s u r f a c e o f t h e h o t b a r , a t h i n p e r f o r a t e d

s t a i n l e s s s t e e l d i s k i s a t t a c h e d t o t h e end o f t h e i n l e t p i p e . F i v e

c a l i b r a t e d c o p p e r - c o n s t a n t a n t h e r m o c o u p l e s a r e s o l d e r e d in two t a p e r

p i n s whi ch a r e imbedded in t h e h o t b a r ( F i g u r e 2 ) . The d i s t a n c e

f rom t h e o u t e r s u r f a c e o f t h e h o t b a r t o t h e t h e r m o c o u p l e p l a n e is

0 . 4 0 0 in .

in o r d e r t o a d j u s t t h e l i q u i d l a y e r t h i c k n e s s , t h r e e j a c k

s c r e ws s p a c e d 120° a p a r t a r e t h r e a d e d t h r o u g h t h e s t e e l p l a t e f o r m i n g

t h e h o t w a t e r chamber ( F i g u r e 2 ) . In a d d i t i o n , t h r e e m i c r o m e t e r s

a r e s p a c e d midway be tween e a ch j a c k s c r e w . The j a c k s c r e ws b e a r

upon a s t e e l r i n g whi ch in t u r n i s b o l t e d t o t h e p y r ex p i p e . The

m i c r o m e t e r s e x t e n d t h r o u g h t h e s t e e l p l a t e and a r e used t o me a s u r e

l i q u i d t h i c k n e s s by d i f f e r e n c e in r e a d i n g s o b t a i n e d w i t h t h e h o t

Page 59: A Non-Equilibrium Thermodynamic Approach to the ...

^ 3

b a r r e s t i n g on t h e c o l d b a r .

The c o l d b a r , 5-731 i n . in d i a m e t e r and 5 - 000 i n . l ong , was

mac h i ned f rom t h e same s t e e l s h a f t a s t h e h o t b a r . A s e c t i o n o f

s t e e l p i p e o f t h e same d i a m e t e r and e n c l o s e d on one end by a s t e e l

p l a t e i s a t t a c h e d t o t h e c o l d b a r . A s p r a y n o z z l e , e x t e n d i n g t h r o u g h

t h e s t e e l p l a t e and i n t o t h e chamber , d i s t r i b u t e s t h e c o l d w a t e r

e v e n l y o v e r t h e i n n e r s u r f a c e o f t h e c o l d b a r . The w a t e r i s removed

by an o u t l e t a t t h e bo t t om o f t h e chamber . Ten c a l i b r a t e d c o p p e r -

c o n s t a n t a n t h e r m o c o u p l e s a r e imbedded w i t h i n t h e c o l d b a r in two

p l a n e s a s shown in F i g u r e 2. The d i s t a n c e be t ween t h e two t h e r m o ­

c o u p l e p l a n e s in t h e c o l d b a r i s 3 - 7 ^ 3 2 i n . ; w h i l e , t h a t be tween

t h e o u t e r s u r f a c e o f t h e c o l d b a r and t h e m i d d l e l a y e r o f t he r mo­

c o u p l e s i s 0 . 7 3 in .

To e l i m i n a t e h e a t l o s s e s f rom t h e s t e e l b a r , a c o l d w a t e r

c i r c u l a t i o n j a c k e t i s a t t a c h e d t o t h e o u t s i d e o f t h e p y r ex g l a s s

p i p e . T h r e e c o p p e r - c o n s t a n t a n t h e r m o c o u p l e s were p l a c e d on t h e

o u t e r s u r f a c e o f t h e p y r ex p i p e . The ho t j u n c t i o n s o f two t h e r m o ­

c o u p l e s a r e o p p o s i t e t h e two t h e r m o c o u p l e p l a n e s in t h e c o l d b a r ,

and t h e o t h e r h o t j u n c t i o n i s h a l f wa y b e t w e e n . The f l o w o f w a t e r

t h r o u g h t h e w a t e r j a c k e t i s c o n t r o l l e d by a n e e d l e v a l v e , whi ch i s

a d j u s t e d so t h a t , on t h e a v e r a g e , r a d i a l h e a t l o s s f rom t h e c o l d ba r

i s n e g l i g i b 1e .

Two c e n t r i f u g a l pumps c i r c u l a t e ho t and c o l d w a t e r f rom t h e

c o n s t a n t t e m p e r a t u r e b a t h s t o t h e a p p a r a t u s . T e m p e r a t u r e s o f t h e

b a t h s a r e c o n t r o l l e d t o ± 0 . 01°C by S a r g e n t Mercury T h e r m o r e g u l a t o r s .

The pump d i s c h a r g e s a r e c o n n e c t e d t o t h e a p p a r a t u s by f l e x i b l e r u b b e r

t u b i n g r a t h e r t ha n met a l p i p e t o e l i m i n a t e pump v i b r a t i o n .

Page 60: A Non-Equilibrium Thermodynamic Approach to the ...

k k

The e . m . f . r e a d i n g s o f t h e t h e r m o c o u p l e s a r e made w i t h a t yp e

K-2 Leeds and N o r t h r u p P o t e n t i o m e t e r r e a d a b l e t o 0.1 m i c r o v o l t .

A Brown ELECTRON IK Nu11 I n d i c a t o r w i t h a r a t e d s e n s i t i v i t y o f

1 m i c r o v o l t / m m . i s used in c o n j u n c t i o n w i t h t h e t y p e K-2 p o t e n t i o m e t e r .

An Epp l e y s t a n d a r d c e l l and a Leeds and N o r t h r u p c o n s t a n t v o l t a g e

s o u r c e f o r t h e p o t e n t i o m e t e r c o m p l e t e t h e n e c e s s a r y e q u i p m e n t .

S o l u t i o n c o m p o s i t i o n i s d e t e r m i n e d by r e f r a c t i v e i ndex m e a s u r e ­

ment a t 25°C. A Bausch and Lomb p r e c i s i o n r e f r a c t o m e t e r e q u i p p e d

w i t h a S a r g e n t c o n s t a n t t e m p e r a t u r e b a t h i s used f o r r e f r a c t i v e

i ndex d e t e r m i n a t i o n s .

Page 61: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER V REFERENCES

B. C. S a k i a d i s and J . C o a t e s , S t ud i e s o f T h e r ma 1 Conduct i v i t y o f L i q u i d s (Baton Rouge, La . : E n g i n e e r i n g E x p e r i m e n t S t a t i o n ,L o u i s i a n a S t a t e U n i v e r s i t y , 1954) B u l l e t i n No. 45, p. 28.

4 5

Page 62: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER V I

PROCEDURE

1. A d j u s t me r c u r y t h e r m o m e t e r s o f t h e t h e r m o r e g u l a t o r s t o t h e

d e s i r e d t e m p e r a t u r e s o f e a ch w a t e r b a t h .

2. Turn on t h e r m o r e g u l a t o r r e l a y s , h e a t i n g e l e m e n t s , and r e f r i g e r a t o r ,

and a l l o w t h e w a t e r b a t h s t o r e a c h r e g u l a t e d t e m p e r a t u r e s .

3 . A d j u s t p o w e r s t a t s e t t i n g s f o r h e a t i n g e l e m e n t s and f l o w r a t e o f

r e f r i g e r a t o r c o o l a n t so t h a t e a ch t h e r m o r e g u l a t o r has a p p r o x i ­

m a t e l y e q u a l o f f and on t i m e .

4 . Turn on v o l t a g e s u p p l y f o r p o t e n t i o m e t e r and t h e n u l l b a l a n c e

m e t e r . The s e u n i t s must warm up f o r a p e r i o d o f a t l e a s t

t h i r t y mi n u t e s .

5. Turn on w a t e r c i r c u l a t i n g pumps and a l l o w b a r s t o r e a c h d e s i r e d

t e m p e r a t u r e s .

6. D e t e r mi n e t h e i n i t i a l r e f r a c t i v e i ndex o f t h e l i q u i d s a mp l e .

7- A f t e r t h e b a r s have r e a c h e d t h e d e s i r e d t e m p e r a t u r e s , pour

a p p r o x i m a t e l y 100 ml . o f l i q u i d i n t o t h e a p p a r a t u s .

8 . S l owl y lower t h e h o t b a r u n t i l i t r e s t s upon t h e c o l d b a r . The

l o w e r i n g s h o u l d be done a t an a n g l e so t h a t any t r a p p e d a i r

b u b b l e s w i l l be swept o u t .

9- A f t e r v i s u a l i n s p e c t i o n shows t h a t no b u b b l e s a r e p r e s e n t in t h e

l i q u i d , lower t h e h o t ba r and t a k e m i c r o m e t e r r e a d i n g s .

Page 63: A Non-Equilibrium Thermodynamic Approach to the ...

10. R a i s e t h e h o t b a r u n t i l d e s i r e d l i q u i d t h i c k n e s s i s o b t a i n e d as

d e t e r m i n e d by m i c r o m e t e r s . S l i d e t h e r u b b e r s e a l i n g g a s k e t

down. Not e t h a t t h i s l i q u i d t h i c k n e s s s e t t i n g i s a p p r o x i m a t e

b e c a u s e a p p a r a t u s i s n o t y e t a t e q u i l i b r i u m .

11. A d j u s t f l o w r a t e o f w a t e r i n t o w a t e r j a c k e t t o an a p p r o x i m a t e

s e t t i ng.

12. Al l ow t h i r t y m i n u t e s f o r t h e a p p a r a t u s t o a p p r o a c h e q u i l i b r i u m .

13. Lower t h e h o t b a r r a p i d l y u n t i l i t r e s t s on t h e c o l d b a r and

t a k e m i c r o m e t e r r e a d i n g s .

}k . R a i s e t h e h o t b a r and a d j u s t t o t h e d e s i r e d l i q u i d t h i c k n e s s

as d e t e r m i n e d by m i c r o m e t e r r e a d i n g s . S l i d e r u b b e r s e a l i n g

g a s k e t down.

15* Al l ow one hour f o r t h e a p p a r a t u s t o come t o e q u i l i b r i u m . Dur i ng

t h i s t i m e a d j u s t t h e f l o w r a t e i n t o t h e w a t e r j a c k e t s o t h a t

t h e r e i s n e g l i g i b l e r a d i a l h e a t f l o w . T h i s i s a c h i e v e d when

t h e a l g e b r a i c sum o f d i f f e r e n c e s be t ween t h e j a c k e t t h e r m o ­

c o u p l e s and t h e i r r e s p e c t i v e l a y e r s i s l e s s t h a n 20 m i c r o v o l t s .

16. Begin t h e r m o c o u p l e r e a d i n g s and c o n t i n u e u n t i l e q u i l i b r i u m is

a c h i e v e d . The c r i t e r i o n o f e q u i l i b r i u m i s t h a t t h e t h e r mo ­

c o u p l e r e a d i n g s o f e a ch l a y e r a g r e e w i t h i n a 0 . 5 m i c r o v o l t

r a nge o v e r a p e r i o d o f t h i r t y m i n u t e s .

17- A f t e r e q u i l i b r i u m has been r e a c h e d , t a k e m i c r o m e t e r r e a d i n g s

wi t h h o t b a r up.

18. Lower t h e h o t b a r r a p i d l y and t a k e m i c r o m e t e r r e a d i n g s . The

a v e r a g e d i f f e r e n c e o f m i c r o m e t e r r e a d i n g s as d e t e r m i n e d in

Page 64: A Non-Equilibrium Thermodynamic Approach to the ...

4 8

(17) and ( 1 8 ) , and (13) and (14) i s t h e f i l m t h i c k n e s s t o be

used in c a l c u l a t i o n s .

19- Remove a s ampl e o f l i q u i d f rom t h e a p p a r a t u s and d e t e r m i n e t h e

f i n a l r e f r a c t i v e i ndex . The c o m p o s i t i o n c o m p a r ab l e t o t h i s is

t h e c o m p o s i t i o n t o be used in c a l c u l a t i o n s .

20. A f t e r c o m p l e t i o n o f t h e r u n , remove and c a r e f u l l y c l e a n a l l

me t a l s u r f a c e s t o p r e v e n t c o r r o s i o n . I n s p e c t and r e p l a c e i f

n e c e s s a r y t h e r u b b e r s e a l i n g g a s k e t be t ween t h e c o l d ba r and

t h e p y r e x g l a s s p i p e .

Page 65: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER VI I

EXPERIMENTAL RESULTS

A. T h e r ma 1 Conduct i v i t y f o r A1cohol Sys t ems

Thermal c o n d u c t i v i t y v a l u e s o v e r t h e e n t i r e c o n c e n t r a t i o n

r a n g e wer e e x p e r i m e n t a l l y m e a s u r e d f o r t h e f o l l o w i n g s y s t e m s ;

m e t h a n o l - b e n z e n e , e t h a n o l - b e n z e n e , p r o p a n o l - b e n z e n e , i s o p r o p a n o l -

b e n z e n e , e t h a n o l - c y c l o h e x a n e , p r o p a n o l - c y c l o h e x a n e , i s o p r o p a n o l -

c y c l o h e x a n e , m e t h a n o l - c a r b o n t e t r a c h l o r i d e , e t h a n o l - c a r b o n t e t r a ­

c h l o r i d e , p r o p a n o l - c a r b o n t e t r a c h l o r i d e , and i s o p r o p a n o l - c a r b o n

t e t r a c h l o r i d e . Al l l i q u i d s were r e a g e n t o r s p e c t r o q u a l i t y and were

used w i t h o u t f u r t h e r p u r i f i c a t i o n . Thermal c o n d u c t i v i t y v a l u e s f o r

t h e a bove s y s t e m s were c o r r e c t e d t o 25°C and a r e shown in F i g u r e s

9 t h r o u g h 11. Smoothed e x p e r i m e n t a l r e s u l t s f o r t h e t he r ma l c on ­

d u c t i v i t y and t h e e x c e s s t h e r ma l c o n d u c t i v i t y a r e g i v e n in T a b l e s

I t h r o u g h X I .

As i n d i c a t e d a bove , t h e e x p e r i m e n t a l t h e r ma l c o n d u c t i v i t y d a t a

was c o r r e c t e d t o 25°C. T h i s was n e c e s s a r y in o r d e r t o compare

e x p e r i m e n t a l r e s u l t s w i t h t h o s e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . The

t e m p e r a t u r e c o e f f i c i e n t o f t h e t h e r m a l c o n d u c t i v i t y o f t h e m i x t u r e

was e s t i m a t e d t o be t h e mole f r a c t i o n a v e r a g e o f t h e p u r e component

c o e f f i c i e n t s . ^ E x p e r i m e n t a l l y d e t e r m i n e d t he r ma l c o n d u c t i v i t y v a l u e s

t h a t a r e n o t c o r r e c t e d t o 25°C a r e t a b u l a t e d in Appendi x E.

4 9

Page 66: A Non-Equilibrium Thermodynamic Approach to the ...

5 0

oq*s

u3" Ocoo

(UEi_0)

-C

0

0 . 0 9

0 .08

0. 80 . 6 1 . 0

Mole F r a c t i o n Al cohol

F i g u r e 9- Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n o f Al cohol f o r Benzene S o l u t i o n s . Al c oho l component s a r e : f o r c u r v e A - m e t h a n o l ,B - e t h a n o l , C - p r o p a n o l , D - i s o p r o p a n o l .

Page 67: A Non-Equilibrium Thermodynamic Approach to the ...

5 1

ccm

-MU"DCoo

fDEu(U

_ c

0 . 0 9

0.08

0 . 0 7

0.80 . 4 0 . 60 0 . 2 1. 0

Mole F r a c t i o n Al c oho l

F i g u r e 10. Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n o f Al c oho l f o r Cy c l o h e x a n e S o l u t i o n s . Al cohol component s a r e : f o r c u r v e A - e t h a n o l ,B - p r o p a n o l , C - i s o p r o p a n o l .

Page 68: A Non-Equilibrium Thermodynamic Approach to the ...

5 2

cC31

:d h— CO

o3~DCoo

03E

Q)_C

2

0

0 . 0 9

0.08

0 . 0 7

0.06

0 . 05 I I I I I I0 0. 2 0 . 4 0 . 6 1 . 0

Mole F r a c t i o n Al cohol

F i g u r e 11. Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n o f Al cohol f o r Carbon T e t r a c h l o r i d e S o l u t i o n s . Al c oho l component s a r e : f o r c u r v eA - m e t h a n o l , B - e t h a n o l , C - p r o p a n o l , D - i s o p r o p a n o l .

Page 69: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eM e t h a n o l - B e n z e n e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n M e t h a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Th Conduc t iv i t y

0 . 0 0 . 08 3 7 0 . 0 0

0 . 1 0 . 0 8 4 4 - 2 . 4 8

0 . 2 0 . 0855 - 4 . 5 6

0 . 3 0 . 08 6 9 - 6 . 3 4

0 . 4 0 . 0 8 8 6 - 7 . 8 2

0 . 5 0 . 09 0 7 - 8 . 9 0

0 . 6 0 . 0 9 3 3 - 9 . 4 8

0 . 7 0 . 0 9 6 7 - 9 . 2 6

0 . 8 0 . 1 0 1 0 - 8 . 1 4

0 . 9 0.1071 - 5 . 2 2

1.0 0.1 155 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 3

Page 70: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eE t h a n o 1 - B e n z e n e S y s t e m

C o r r e c t e d t o 25°C

l e F r a c t i o n E t h a n o 1

M i x t u r e Thermal Conduct i v i t y

Exc e s s Thermal C o n d u c t i v i t y X 1000

0 . 0 0 . 0 8 3 7 0 . 0 0

0 . 1 0 . 0 8 3 9 - 1.06

0 . 2 0 . 0 8 4 3 - 1 .92

0 . 3 0 . 0 8 4 9 - 2 . 5 8

0 . 4 0 . 0 8 5 8 - 2 . 9 4

0 . 5 0 . 08 7 0 - 3 . 0 0

0 . 6 0 . 0885 - 2 . 7 6

0 . 7 0.0901 - 2 . 4 2

0 . 8 0 . 0 9 2 0 - 1 . 7 8

0 . 9 0.0941 - 0 . 9 4

1.0 0 . 0963 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

54

Page 71: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eP r o p a n o 1 - B e n z e n e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n Pr opano l

M i x t u r e Thermal Conduct i v i t y

Exces s Thermal Conduc t i v i t y X 1000

0 . 0 0 . 0 8 3 7 0 . 0 0

0 . 1 0 . 0 8 3 7 - 0 . 5 3

0 . 2 0 . 08 3 8 -1 . 06

0 . 3 0 . 08 3 9 - 1 . 5 4

0 . 4 0 . 0 8 4 2 - 1.82

0 . 5 0 . 0 8 4 6 - 2 . 0 0

0 . 6 0 . 0 8 5 3

CO

OOi

0 . 7 0.0861 - 1.66

0 . 8 0.0871 - 1 . 2 4

0 . 9 0 . 0 8 8 2 - 0 . 7 2

1.0 0 . 0895 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 5

Page 72: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I V

Thermal C o n d u c t i v i t y Va l ue s f o r 1 s o p r o p a n o l - Benzene Sys t em

t h e

C o r r e c t e d t o 25°C

F r a c t i on ' o p a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exces s Thermal C o n d u c t i v i t y X 1000

0 . 0 0 . 0 8 3 7 0 . 0 0

0. 1 0 .0831 - 0 . 3 3

0 . 2 0 . 0 8 2 6 - 0 . 5 6

0 . 3 0 . 08 2 2 - 0 . 6 9

0 . 4 0 . 08 1 8 - 0 . 8 2

0 . 5 0 . 0815 - 0 . 8 5

0 . 6 0 . 0813 - 0 . 7 8

0 . 7 0.0811 - 0 . 7 1

0 . 8 0.0811 - 0 . 4 8

0 . 9 0 . 0 8 1 0 - 0 . 2 4

1.0 0 . 08 1 0 0 . 0 0 :

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 6

Page 73: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eE t h a n o l - C y c l o h e x a n e S y s t e m

C o r r e c t e d t o 25°C

l e F r a c t i o n E t ha no l

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Thermal Conduc t i v i t y X 1000

0 . 0 0 . 0 7 0 3 0 . 0 0

0. 1 0 . 0 7 0 5 - 2 . 4 0

0 . 2 0 . 0 7 1 0 - 4 . 5 0

0 . 3 0 . 0 7 1 8 - 6 . 3 0

0 . 4 0 . 0 7 2 9 - 7 . 8 0

0 . 5 0 . 0 7 4 5 - 8 . 8 0

0 . 6 0 . 0 7 6 5 - 9 - 4 0

0 . 7 0 . 0 7 9 0 - 9 . 5 0

0 . 8 0 . 0 8 2 5 - 8 . 6 0

0 . 9 0 . 08 7 5 - 6 . 2 0

1.0 0 . 0 9 6 3 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) •

5 7

Page 74: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eP r o p a n o l - C y c l o h e x a n e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n P r o p a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Thermal C o n d u c t i v i t y X 1000

0 . 0 0 . 0703 0 . 0 0

0. 1 0 . 0705 - 1 . 7 2

0 . 2 0 . 0 7 1 0 - 3 . 1 4

0 . 3 0 . 0 7 1 8 - 4 . 2 6

0 . 4 0 . 0 7 2 8 - 5 . 1 8

0 . 5 0 . 0 7 4 2 - 5 . 7 0

0 . 6 0 . 0 7 5 7 - 6 . 12

0 . 7 0 . 0 7 7 7 - 6 . 0 4

0 . 8 0 . 0803 - 5 . 3 6

0 . 9 0.0841 - 3 . 4 8

1.0 0 . 0895 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) •

5 8

Page 75: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eI s o p r o p a n o l - C y c l o h e x a n e S y s t e m

C o r r e c t e d t o 25°C

F r a c t i on opanol

M i x t u r e Thermal - C o n d u c t i v i t y

Exces s Thermal Conduc t i v i t y X 1000

0 . 0 0 . 0 7 0 3 0 . 0 0

0. 1 0 . 0 7 0 4 - 1 .02

0 . 2 0 . 0 7 0 4 - 2 . 0 4

0 . 3 0 . 0 7 0 6 - 2 . 9 1

0 . 4 0 . 0 7 1 0 - 3 . 5 8

0 . 5 0 . 0 7 1 6 - 4 . 0 5

0 . 6 0 . 0725 - 4 . 2 2

0 . 7 0 . 0 7 3 9 - 3 . 8 9

0 . 8 0 . 0 7 5 8 - 3 . 0 6

0 . 9 0.0781 - 1 . 8 3

1.0 0 . 0 8 1 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 9

Page 76: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V I I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eM e t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n Methanol

M i x t u r e Thermal Conduc t i v i t y

Exc e s s The Conduct i v i t y

0 . 0 0 . 0 6 0 6 0 . 0 0

0. 1 0 . 0 6 0 8 - 5 - 2 9

0 . 2 0 . 0 6 1 0 - 1 0 . 5 8

0 . 3 0 . 0 6 1 6 - 1 5 . 4 7

0 . 4 0 . 0 6 2 9 - 1 9 - 6 6

0 . 5 0 . 0 6 4 9 - 2 3 . 1 5

0 . 6 0 . 0 6 7 8 - 2 5 . 7 4

0 . 7 0 . 0 7 2 3 - 2 6 . 7 0

0 . 8 0 . 0 7 9 6 - 2 4 . 9 2

0 . 9 O.0919 - 1 8 . 1 1

1.0 0 . 1155 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

6 0

Page 77: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I X

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eE t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n E t h a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Th< Conduc t i v i t y

0 . 0 0 . 0 6 0 6 0 . 0 0

0. 1 0 . 0 6 0 8 - 3 . 3 7

0 . 2 0 . 0 6 1 0 - 6 . 7 4

0 . 3 0 . 0 6 1 6 - 9 . 7 1

0 . 4 0 . 0 6 2 9 - 11.98

0 . 5 0 . 0 6 4 9 - 1 3 . 5 5

0 . 6 0 . 0 6 7 7 - 1 4 . 3 2

0 . 7 0 . 07 1 5 - 1 4 . 0 9

0 . 8 O.0767 - 1 2 . 4 6

0 . 9 0 . 0 8 3 9 - 8 . 8 3

1.0 0 . 0 9 6 3 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

61

Page 78: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eP r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n P r opa no l

M i x t u r e Thermal Conduc t iv i t y

Exc e s s Tl Conduc t ivi

0 . 0 0 . 0 6 0 6 0 . 0 0

0. 1 0 . 06 0 8 - 2 . 6 9

0 . 2 0 . 06 1 0 - 5 . 3 8

0 . 3 0 . 0 6 1 6 - 7 . 6 7

0 . 4 0 . 0 6 2 9 - 9 - 2 6

0 . 5 0 . 0 6 4 9 - 10.15

0 . 6 0 . 06 7 7 - 1 0 . 2 4

0 . 7 0 . 0 7 1 4 - 9 . 4 3

0 . 8 0 . 07 6 2 - 7 . 5 2

0 . 9 0 . 0 8 2 4 - 4 . 2 6

1.0 0 . 0895 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

62

Page 79: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eI s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

F r a c t ion o p a n o 1

M i x t u r e Thermal Conduct i v i t y

Exc e s s Tl Conduct i v i

0 . 0 0 . 0 6 0 6 0 . 0 0

0.1 0 . 06 0 8 - 1 . 8 4

0 . 2 0 . 0 6 1 0 - 3 . 6 8

0 . 3 0 . 0615 - 5 - 2 2

0 . 4 0 . 0625 - 6 . 2 6

0 . 5 0 . 06 4 0 - 6 . 8 0

0 . 6 0 . 06 6 0 - 6 . 8 4

0 . 7 0 . 0685 - 6 . 3 8

0 . 8 0 . 07 1 8 -5* 12

0 . 9 0 . 07 5 9 - 3 - 0 6

1.0 0 . 08 1 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

6 3

Page 80: A Non-Equilibrium Thermodynamic Approach to the ...

6 4

B. Exc e s s T h e r ma 1 Conduc t iv i t y

T a b u l a r d a t a on t h e e x c e s s t h e r ma l c o n d u c t i v i t y have been

c a l c u l a t e d f rom t h e d e f i n i t i o n o f e x c e s s t h e r m a l c o n d u c t i v i t y

[ e q u a t i o n ( 4 - 2 1 ) ] . The s e v a l u e s a r e e x p e r i m e n t a l l y d e t e r m i n e d ,

in t h e s e n s e t h a t t h e y a r e d e r i v e d f rom smoot hed e x p e r i m e n t a l

d e t e r m i n a t i o n s o f m i x t u r e t h e r ma l c o n d u c t i v i t i e s .

Page 81: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R V I ! R E F E R E N C E S

B. C. S a k i a d i s and J . C o a t e s , A L i t e r a t u r e S u r v e y o f t h e Thermal C o n d u c t i v i t y o f L i q u i d s (Baton Rouge, La . : E n g i n e e r i n gE x p e r i m e n t a l S t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1952) B u l l e t i n No. 34, p. 26.

6 5

Page 82: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER VI I I

DISCUSSION OF RESULTS

A. Genera 1

Compar i son o f t h e e x p e r i m e n t a l r e s u l t s and p r e d i c t e d v a l u e s f o r

t h e e x c e s s t h e r ma l c o n d u c t i v i t y i s t h e o b j e c t o f t h i s c h a p t e r . The

c o mp a r i s o n can b e s t be a p p r o a c h e d by c o n s i d e r i n g t h e s o u r c e s o f

e r r o r f o r t h e e x p e r i m e n t a l r e s u l t s and f o r t h e p r e d i c t e d e x c e s s

t h e r m a l c o n d u c t i v i t y .

B. S o u r c e s o f E r r o r

The e x p e r i m e n t a l d e t e r m i n a t i o n o f t h e r ma l c o n d u c t i v i t y by t h e

a p p a r a t u s g i v e s r i s e t o an a v e r a g e e r r o r o f ±1.5%. A c c o r d i n g l y ,

t h i s w i l l i n t r o d u c e an e r r o r i n t o t h e e x p e r i m e n t a l e x c e s s t he r ma l

c o n d u c t i v i t y . T a b u l a t e d e x p e r i m e n t a l e x c e s s t h e r m a l c o n d u c t i v i t i e s ,

p r e s e n t e d in C h a p t e r VI I , a r e c a l c u l a t e d by t h e us e o f e q u a t i o n

( 4 -21) u s i n g t h e smoothed t h e r m a l c o n d u c t i v i t y v a l u e s f o r t h e

m i x t u r e .

Us ing a t y p i c a l l i q u i d t h e r ma l c o n d u c t i v i t y o f 0 . 0 8 BTU/(HR)

( FT) ( °F) l e a d s t o an u n c e r t a i n t y o f ±0.001 BTU/ (HR) (FT) ( °F) in t h e

e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t y . The e x c e s s t h e r ma l c o n ­

d u c t i v i t y f o r t h e i s o p r o p a n o l - b e n z e n e s y s t e m l i e s e n t i r e l y w i t h i n

t h e r ange o f t h e e x p e r i m e n t a l e r r o r . For t h e o t h e r s y s t e m s s t u d i e d ,

t h e r ange o f e x p e r i m e n t a l e r r o r was l e s s t h a n t h e e x p e r i m e n t a l l y

6 6

Page 83: A Non-Equilibrium Thermodynamic Approach to the ...

d e t e r m i n e d e x c e s s t he r ma l c o n d u c t i v i t i e s .

P r e d i c t i o n o f e x c e s s t h e r ma l c o n d u c t i v i t i e s i s a c h i e v e d by t h e

u s e o f e q u a t i o n ( 4 - 2 6 ) . The p r i n c i p a l t e r ms in t h i s e x p r e s s i o n a r e

t h e d i f f u s i v i t y , D^g, and t h e hyd r ogen bond e n e r g y , AHg. A l i t e r a t u r e

s e a r c h y i e l d e d d a t a f o r t h e d i f f u s i v i t y o f t h e m e t h a n o l - b e n z e n e , ^

2 . 3e t h a n o 1 - b e n z e n e , m e t h a n o 1- c a r b o n t e t r a c h l o r i d e , and e t h a n o 1- c a r b o n

4t e t r a c h l o r i d e s y s t e m s . The s e d a t a a r e g e n e r a l l y a c c u r a t e t o

±2%. D i f f u s i v i t y d a t a f o r t h e o t h e r s y s t e m s s t u d i e d were e s t i m a t e d5

by t h e t e c h n i q u e o u t l i n e d by G a i n e r .

Hydrogen bond e n e r g i e s f o r many s y s t e m s have been summar i zed £

by P i m e n t e l . I t i s u n f o r t u n a t e , however , t h a t a r e l a t i v e l y s ma l l

amount o f work on hydr ogen bond e n e r g y in a l c o h o l s y s t e m s has been

done . Most i n v e s t i g a t i o n s have been g e n e r a l l y c o n f i n e d t o e i t h e r

me t ha no l o r e t h a n o l s y s t e m s . In a d d i t i o n , many v a l u e s f o r hydr ogen

bond e n e r g y a r e b a s e d upon d o u b t f u l mea s u r eme n t and a n a l y s i s t e c h n i q u e s .

R e p o r t e d v a l u e s f o r t h e same s y s t e m f r e q u e n t l y d i f f e r by a s much a s

2000 c a l o r i e s p e r mole o f monomer a l c o h o l . A f u r t h e r d i s c u s s i o n o f

hyd r ogen bond e n e r g y i s g i v e n l a t e r in t h i s c h a p t e r un d e r s e c t i o n D.

Because o f t h e wi de s c a t t e r in r e p o r t e d hydr ogen bond e n e r g i e s ,

t h e e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t i e s have been used t o back-

c a l c u l a t e a b e s t f i t v a l u e o f hyd r ogen bond e n e r g y f o r e a c h s y s t e m .

Hydrogen bond e n e r g i e s e s t i m a t e d in t h i s manner w i l l o b v i o u s l y be

s e n s i t i v e t o t h e e x p e r i m e n t a l e r r o r i n h e r e n t in t h e t h e r m a l c on ­

d u c t i v i t y d e t e r m i n a t i o n s . For s y s t e m s h a v i n g s ma l l d e v i a t i o n s in

m i x t u r e t h e r ma l c o n d u c t i v i t y , t h e p o s s i b l e e r r o r in e s t i m a t e d hydr ogen

bond e n e r g y can be q u i t e l a r g e . For t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e

Page 84: A Non-Equilibrium Thermodynamic Approach to the ...

6 8

s y s t e m , t h e e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t y can be used t o

e s t i m a t e hydr ogen bond e n e r g y w i t h an e s t i m a t e d u n c e r t a i n t y o f a b o u t

f i v e p e r c e n t . Th i s e r r o r c o r r e s p o n d s t o an e n e r g y r an g e o f ±200

c a l o r i e s p e r mole o f monomer a l c o h o l .

C. Compar i son o f Pr ed i c t e d and E x p e r i m e n t a l Exces s T h e r ma 1 Conduc t iv i t y

In o r d e r t o f a c i l i t a t e c o m p a r i s o n o f p r e d i c t e d and e x p e r i m e n t a l

v a l u e s f o r t h e e x c e s s t h e r m a l c o n d u c t i v i t y , a l l d a t a n e c e s s a r y f o r t h e

c a l c u l a t i o n s wer e r e d u c e d t o t a b u l a r fo rm, g i v i n g d a t a a t i n t e r v a l s

o f 0 .1 mole f r a c t i o n a l c o h o l . T h i s p r o c e d u r e i n v o l v e d i n t e r p o l a t i o n

o f d a t a r e p o r t e d in t h e l i t e r a t u r e t o even mole f r a c t i o n s . L i n e a r

i n t e r p o l a t i o n o f t h e r e p o r t e d p h y s i c a l p r o p e r t i e s f o r e a ch s y s t e m

was used t o d e r i v e t h e t a b u l a r d a t a . In a d d i t i o n , t h e t he r modynami c

f a c t o r , Bd, was e s t i m a t e d by n u m e r i c a l d i f f e r e n t a t i o n o f t a b u l a rD

a c t i v i t y c o e f f i c i e n t d a t a . L i t e r a t u r e r e f e r e n c e s f o r a l l p h y s i c a l

p r o p e r t i e s a r e g i v e n in Appendi x F.

C a l c u l a t e d v a l u e s o f t h e e x c e s s t h e r ma l c o n d u c t i v i t y a t 200

c a l o r i e s p e r mole i n c r e m e n t s in hyd r ogen bond e n e r g y wer e compared

w i t h t h e e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t y v a l u e s u n t i l a

l e a s t s q u a r e minimum in e r r o r was a t t a i n e d . The e x c e s s t h e r m a l

c o n d u c t i v i t i e s p r e d i c t e d by e q u a t i o n (4-26) , a l o n g w i t h e x p e r i m e n t a l l y

d e t e r m i n e d v a l u e s f o r t h e v a r i o u s s y s t e m s , a r e shown in F i g u r e s 12

t h r o u g h 22. The hyd r ogen bond e n e r g i e s whi ch b e s t f i t t h e e x p e r i ­

ment a l e x c e s s t h e r m a l c o n d u c t i v i t i e s have been used in t h e c a l c u l a ­

t i o n s and a r e i n d i c a t e d f o r e a ch s y s t e m on t h e a p p r o p r i a t e f i g u r e s .

T a b u l a t e d r e s u l t s f o r t h e p r e d i c t e d e x c e s s t h e r ma l c o n d u c t i v i t i e s

Page 85: A Non-Equilibrium Thermodynamic Approach to the ...

Exce

ss

The

rmal

C

ondu

ctiv

ity

X 10

, B

TU

/(H

R)(

FT)(

°F)

6 9

15

4

3

2

0

9

8

7

6

AHd = 3800 c a l / m o l e5

4

3

2

0 . 2

0

0. 6 0.80 1 . 0

Mole F r a c t i o n Methanol

F i g u r e 12. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Methanol f o r t h e M e t h a n o l - Benzene Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a po i n t s .

Page 86: A Non-Equilibrium Thermodynamic Approach to the ...

7 0

h-Ll.

al

CQ

roO

X

>*

oD~ocoo

ruEL.0)

I/)tf)0)u><

5

k

3

2

AHD = 4600 c a l / m o l e

0

0.80 . 60 0 . 2 . 0

Mole F r a c t i o n E t ha no l

F i g u r e 13* Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n E t ha no l f o r t h e E t h a n o l - Benzene Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown a s d a t a p o i n t s .

Page 87: A Non-Equilibrium Thermodynamic Approach to the ...

71

cCX

COo

X

>s

u13“Ocoo

<uEL.(U

-C

inincuuX

5

4

3

2

AHd = 5200 c a l / m o l e

0

0 . 80 . 6 . 00 0 . 2

Mole F r a c t i o n P r opa no l

F i g u r e 14. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Pr opano l f o r t h e P r o p a n o l - B e n z e n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 88: A Non-Equilibrium Thermodynamic Approach to the ...

7 2

H

cdZE

mo

x

oZi"Dcoo

<L>_ c

l/>ur<DUX

5

4

3

2

AHD = 3800 c a l / m o l e

0

0 . 80 . 60 . 4 . 00 . 20

Mole F r a c t i o n I s o p r o p a n o l

F i g u r e 15- Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - Benzene Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 89: A Non-Equilibrium Thermodynamic Approach to the ...

7 3

O—m

cr\O

X

>•

o3TJCoo

03E

<D_CI—to(/>(UOX

5

k

3

2

0

9

8

7

6

AH = 6600 c a l / m o l e5

4

3

2

0

0.80 . 60 0 . 2 . 0

Mole F r a c t i o n E t ha no l

F i g u r e 16. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n E t ha no l f o r t h e E t h a n o l - C y c l o h e x a n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown a s d a t a po i n t s .

Page 90: A Non-Equilibrium Thermodynamic Approach to the ...

cd

cr\O

X>•

on~ucoo

fDEL.<u

(/)to<UoX

7 4

AHd = 7400 c a l / m o l e

0 . 4 0 . 6 0.80 0 . 2 1 . 0

Mole F r a c t i o n Pr opano l

F i g u r e 17- Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Pr opano l f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a po i n t s .

Page 91: A Non-Equilibrium Thermodynamic Approach to the ...

7 5

H-

zrz

o

x>s

oD-ocoo

03EL-<D

(/>Q)UX

5

3

AHd = 6000 c a l / m o l e2

0

0. 6 0.8 . 00 . 20

Mole F r a c t i o n I s o p r o p a n o l

F i g u r e 18. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - Cy c l o h e x a n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown a s d a t a p o i n t s .

Page 92: A Non-Equilibrium Thermodynamic Approach to the ...

5r;

7 6

cC

cr\O

X

o3"Ocoo

03£L-Q)

(/)V)0)oX

UJ

30

25

20

5

AHD = 4400 c a l / m o l e

0

5

0

0. 6 0 . 80 0 . 2 1 . 0

Mole F r a c t i o n Methanol

F i g u r e 19. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Methanol f o r t h e M e t h a n o l -C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e i s c u r v e p r e ­d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 93: A Non-Equilibrium Thermodynamic Approach to the ...

Exce

ss

The

rmal

C

ondu

ctiv

ity

X 10

, B

TU

/(H

R)(

FT)(

°F)

7 7

5

4

3

2

0

9

8

AHD = 6600 c a l / m o l e7

6

5

4

3

2

0

0 0 . 2 0 . 4 0 . 6 0 . 8 1 .0

Mole F r a c t i o n E t ha no l

F i g u r e 20. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n E t ha no l f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e - i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 94: A Non-Equilibrium Thermodynamic Approach to the ...

7 8

ZDh“CQ

coo

X

>-

oD"DCoo

HJEL .(U

I/)<DOX

5

14

13

1 0

9

8

7

6

AH = 7800 c a l / m o l e5

4

3

2

I I I ]

0 . 6

0

0 . 4 0 . 80 0 . 2 1 . 0

Mole F r a c t i o n P r opa no l

F i g u r e 21. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Pr opano l f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 95: A Non-Equilibrium Thermodynamic Approach to the ...

7 9

CCX

cr\O

X

o3“acoo

mEu<DX

t/><uuX

LU

7

6

5

4

AHD = 6400 c a l / m o l e3

2

0

0 . 4 0 . 6 0.80 0 . 2 1 . 0

Mole F r a c t i o n I s o p r o p a n o l

F i g u r e 22. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 96: A Non-Equilibrium Thermodynamic Approach to the ...

8 0

a r e g i v e n in T a b l e s XII t h r o u g h XXII . The p e r c e n t e r r o r in p r e d i c t i n g

t h e t h e r m a l c o n d u c t i v i t y o f t h e m i x t u r e i s a l s o t a b u l a t e d .

The e x c e s s t h e r m a l c o n d u c t i v i t y r e s u l t s f o r t h e i s o p r o p a n o l -

b e n z e n e s y s t e m l i e s e n t i r e l y w i t h i n t h e e x p e r i m e n t a l e r r o r o f t h e

t he r m a l c o n d u c t i v i t y d e t e r m i n a t i o n s . The d e v i a t i o n o f t h e t he r ma l

c o n d u c t i v i t y f rom t h e i d e a l v a l u e i s n o t l a r g e enough t o a c c u r a t e l y

e s t i m a t e t h e hydr ogen bond e n e r g y f o r t h i s s y s t e m . Whi l e t h e p o s s i b l e

e r r o r in t h e e s t i m a t e d h y d r oge n bond e n e r g y f o r t h i s s y s t e m i s q u i t e

l a r g e , t h e a c t u a l r e s u l t o f 3800 c a l o r i e s p e r mole i s q u i t e r e a s o n a b l e

and has t h e r e f o r e been i n c l u d e d in t h e r e s u l t s .

S i m i l a r l y , t h e h y d r oge n bond e n e r g i e s f o r t h e e t h a n o l - b e n z e n e

and p r o p a n o l - b e n z e n e a r e e s t i m a t e d t o have maximum p o s s i b l e e r r o r s

o f ±50%. The e s t i m a t e d hydr ogen bond e n e r g i e s o f 4600 and 5200

c a l o r i e s p e r mole f o r t h e s e s y s t e m s a r e a l s o q u i t e r e a s o n a b l e . Al l

o t h e r r e s u l t s a r e e s t i m a t e d t o be c o n s i d e r a b l y more a c c u r a t e , a v e r a g i n g

a b o u t ±10% f o r t h e p o s s i b l e hyd r ogen bond e n e r g y e r r o r , w i t h a low

o f ±5% f o r t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m .

As can be s e e n in F i g u r e s 12 t h r o u g h 22, t h e p r e d i c t e d e x c e s s

t h e r ma l c o n d u c t i v i t i e s f o l l o w t h e e x p e r i m e n t a l v a l u e s q u i t e w e l l f o r

r e a s o n a b l e v a l u e s o f hydr ogen bond e n e r g y . P e r c e n t e r r o r in p r e ­

d i c t i n g t h e t h e r ma l c o n d u c t i v i t y o f t h e m i x t u r e i s g e n e r a l l y l e s s

t h a n ±1% o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e f o r a l l s y s t e m s . S i n c e

t h e p r e d i c t e d v a l u e s have been c a l c u l a t e d on a b e s t f i t b a s i s f o r

h y d r o g e n bond e n e r g y , t h e low p e r c e n t a g e e r r o r i s t o be e x p e c t e d .

I t i s s i g n i f i c a n t , however , t h a t f o r a l l s y s t e m s t h e mole f r a c t i o n a t

whi ch t h e e x c e s s t h e r m a l c o n d u c t i v i t y i s maximum i s a c c u r a t e l y p r e d i c t e d .

Page 97: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XI 1

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e M e t h a n o l - B e n z e n e S y s t e m

AHd = 3800 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n

MethanolThermal C o n d u c t i v i t y

X 1000Pe r Cent

E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 2 . 5 9 - 0 . 14

0 . 2 - 5 . 0 5 - 0 . 5 7

0 . 3 - 7 . 1 0 - 0 . 8 8

0 . 4 - 8 . 5 7 - 0 . 8 5

0 . 5 - 9 - 41 - 0 . 5 6

0 . 6 - 9 - 5 2 - 0 . 0 5

0 . 7 - 9 . 7 2 - 0 . 4 8

0 . 8 - 7 . 5 2 + 0 . 6 2

0 . 9 - 5 - 9 7 - 0 . 7 0

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 1

Page 98: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I I I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e E t h a n o l - B e n z e n e S y s t e m

AH = 4600 c a l / m o l e 8

P r e d i c t e d Exc e s s Per CentMole F r a c t i o n Thermal C o n d u c t i v i t y E r r o r

E t h a n o l X 1000

0 . 0 0 . 0 0 0 . 00

0.1 - 1 . 0 8 - 0 . 0 2

0 . 2 - 2 . 0 2 - 0 . 12

0 . 3 - 2 . 7 0 - 0 . 14

0 . 4 - 2 . 9 8 - 0 . 0 5

0 . 5 - 2 . 9 1 +0. 10

0 . 6 - 2 . 6 0 +0. 18

0 . 7 - 2 . 2 2 + 0 . 23

0 . 8 - 1 . 7 5 + 0 . 03

0 . 9 - 1 . 0 1 - 0 . 0 8

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 2

Page 99: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I V

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e P r o p a n o l - B e n z e n e S y s t e m

AHD = 5200 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n

P r opa no lThermal C o n d u c t i v i t y

X 1000Per Cent

E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 0 . 6 9 - 0 . 19

0 . 2 - 1 . 2 8 - 0 . 2 6

0 . 3 - 1 . 7 4 - 0 . 2 4

0 . 4 - 2 . 0 1 - 0 . 2 3

0 . 5 - 2 . 0 8 - 0 . 1 0

0 . 6 - 1 . 8 5 + 0 . 0 4

0 . 7 - 1 . 3 8 + 0 . 32

0 . 8 - 0 . 9 3 + 0 . 35

0 . 9 - 0 . 4 0 + 0 . 3 6

1.0 0 . 00 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 3

Page 100: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XV

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - B e n z e n e S y s t e m

AHd = 3800 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n Thermal C o n d u c t i v i t y Pe r Centi s o p r o p a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 0 . 3 9 - 0 . 0 8

0 . 2 - 0.71 - 0 . 18

0 . 3 - 0 . 8 6 - 0 . 2 1

0 . 4 - 0 . 8 1 +0.01

0 . 5 - 0 . 7 2 + 0 . 1 6

0 . 6 - 0 . 6 1 + 0 . 2 0

0 . 7 - 0 . 5 0 + 0 . 2 6

0 . 8 - 0 . 4 1 + 0 . 0 8

0 . 9 - 0 . 2 4 - 0 . 0 0

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 4

Page 101: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XVI

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e E t h a n o l - C y c l o h e x a n e S y s t e m

AHD = 6600 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

E t h a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 2 . 0 4 + 0 . 5 0

0 . 2 - 4 . 0 3 + 0 . 6 6

0 . 3 - 5 - 9 3 + 0 . 5 2

0 . 4 - 7 . 6 8 + 0 . 17

0 . 5 - 9 - 1 6 - 0 . 4 8

0 . 6 - 1 0 . 0 5 - 0 . 8 4

0 . 7 - 1 0 . 0 4 - 0 . 6 8

0 . 8 - 8 . 9 4 - 0 . 4 1

0 . 9 - 5*93 + 0 . 3 0

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 5

Page 102: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XVI I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e P r o p a n o l - C y c l o h e x a n e S y s t e m

AHD = 7400 c a l / m o l eD

P r e d i c t e d Exces s Hol e F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

P r opa no l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 1 . 4 0 + 0 . 45

0 . 2 - 2 . 7 4 + 0 . 5 6

0 . 3 - 3 . 9 9 +0 . 3 8

0 . 4 - 5 . 0 9 +0 . 1 2

0 . 5 - 5 - 9 7 - 0 . 3 6

0 . 6 - 6 . 3 8 - 0 . 3 4

0 . 7 - 6 . 1 7 - 0 . 1 7

0 . 8 - 5 . 2 8 + 0 . 0 9

0 . 9 - 3 - 3 4 + 0 . 17

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 6

Page 103: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XVI I I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - C y c l o h e x a n e S y s t e m

AHD = 6000 c a l / m o l eD

P r e d i c t e d Exces s Mole F r a c t i o n Thermal C o n d u c t i v i t y Per CentI s o p r o p a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 0 . 9 2 + 0 . 1 4

0 . 2 -1 . 80 + 0 . 3 4

0 . 3 - 2 . 6 2 +0.41

0 . 4 - 3 - 3 5 + 0 . 3 2

0 . 5 - 3 . 9 4 + 0 . 1 6

0 . 6 - 4 . 2 0 + 0 . 0 2

0 . 7 - 4 . 0 4 - 0 . 2 0

0 . 8 - 3 - 4 6 - 0 . 5 3

0 . 9 - 2 . 1 9 - 0 . 4 6

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 7

Page 104: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I X

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

AHD = 4400 c a l / m o l eD

P r e d i c t e d Exces s Mole F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

Methanol X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 6 . 0 3 - 1 .22

0 . 2 - 1 1 . 8 7 - 2 . 1 2

0 . 3 - 1 7 . 1 5 - 2 . 7 3

0 . 4 - 2 1 . 71 - 2 . 3 6

0 . 5 - 2 4 . 2 3 -1 . 67

0 . 6 - 2 6 . 4 4

O•1

0 . 7 - 27-41 - 0 . 5 7

0 . 8 - 2 6 . 3 8 - 1 . 8 4

0 . 9 - 1 9 . 0 9 - 1 . 0 7

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 8

Page 105: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XX

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

AHD = 6600 c a l / m o l eD

P r e d i c t e d Exces s Mole F r a c t i o n Thermal C o n d u c t i v i t y Pe r Cent

Et ha no l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 3 . 7 7 - 0 . 6 6

0 . 2 - 7 . 1 9 - 0 . 7 5

0 . 3 - 1 0 . 0 6 - 0 . 5 7

0 . 4 - 1 2 . 4 2 I O O

0 . 5 - 1 4 . 0 5 - 0 . 7 7

0 . 6 - 1 4 . 7 7 - 0 . 6 6

0 . 7 - 1 4 . 4 3 - 0 . 4 7

0 . 8 - 1 2 . 4 2 + 0 . 0 6

0 . 9 - 7 - 9 4 + 1 .06

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 9

Page 106: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXI

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

AHD = 7800 c a l / m o l eD

P r e d i c t e d Exc e s s Mole F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

Pr o p a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 2 . 6 6 + 0 . 0 4

0 . 2 - 5 . 0 5 + 0 .5 5

0 . 3 - 7 . 0 1 + 1.07

0 . 4 - 8 . 6 9 + 0.91

0 . 5 - 9 . 7 9 + 0 .5 6

0 . 6 - 1 0 . 3 3 - 0 . 1 4

0 . 7 - 9 . 9 5 - 0 .7 3

0 . 8 - 8 . 3 3 - 1 . 0 6

0 . 9 - 5 . 0 9 -1 .01

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

9 0

Page 107: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXI I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

Mole F r a c t i o n I s o p r o p a n o l

AHD = 6400 c a l / m o l eD

P r e d i c t e d Excess Thermal C o n d u c t i v i t y

X 1000P e r Cent

E r r o r

0 . 0

0. 1

0. 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0.8

0 . 9

1 . 0

0 . 00

- 1 . 8 8

- 3 . 6 1

- 5 . 13

-6 . 3 6

- 7 . 0 0

- 6.80

- 6 . 12

-4 . 7 6

-2 . 6 0

0 . 0 0

0 . 0 0

- 0 . 0 6

+ 0 . 12

+ 0 . 1 4

- 0 . 1 6

- 0 . 3 0

+ 0 . 0 6

+ 0 . 3 8

+ 0.51

+ 0 .6 0

0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n s .

9 1

Page 108: A Non-Equilibrium Thermodynamic Approach to the ...

9 2

The s t r o n g e s t e v i d e n c e f o r t h e c o r r e c t n e s s o f t h e c o r r e l a t i o n

comes f rom t h e r e s u l t s f o r t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m .

T h i s s y s t e m e x h i b i t e d t h e w i d e s t d e v i a t i o n f rom i d e a l b e h a v i o r . The

maximum e x c e s s t h e r m a l c o n d u c t i v i t y was e x p e r i m e n t a l l y d e t e r m i n e d

t o o c c u r a t 0 . 7 mole f r a c t i o n o f m e t h a n o l . F i g u r e 19 and T a b l e XIX

show t h a t t h e c a l c u l a t e d maximum p o i n t i s a l s o 0 . 7 mole f r a c t i o n .

The mole f r a c t i o n f o r maximum e x c e s s t h e r m a l c o n d u c t i v i t y f o r t h e

m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m i s much d i f f e r e n t f rom t h e

u s ua l maximum p o i n t o f a b o u t 0 . 5 mole f r a c t i o n f o r most s y s t e m s .

Ot he r s u p p o r t i n g d a t a f o r t h e c o r r e c t n e s s o f t h e model a r e t h e

c a l c u l a t e d maximum p o i n t s f o r t h e m e t h a n o l - b e n z e n e , e t h a n o l - c y c l o h e x a n e ,

p r o p a n o l - c y c l o h e x a n e , e t h a n o l - c a r b o n t e t r a c h l o r i d e and t h e p r o p a n o l -

c a r b o n t e t r a c h l o r i d e s y s t e m s .

D. Compar i son o f Es t i mat ed Hydrogen Bond Energ i e s w i t h Ava i l a b l e

L i t e r a t u r e Va1ues

The e x c e s s t h e r m a l c o n d u c t i v i t i e s wer e u s e d t o c a l c u l a t e e s t i ­

mated v a l u e s f o r hydr ogen bond e n e r g i e s . As i n d i c a t e d e a r l i e r , t h i s

was done b e c a u s e o f t h e wi de s c a t t e r in a v a i l a b l e hydr ogen bond

e n e r g i e s and l a c k o f d a t a f o r some o f t h e s y s t e m s s t u d i e d . P i m e n t e l ^

has summar i zed t h e r e p o r t e d hydr ogen bond e n e r g i e s f o r a l c o h o l

s y s t e m s . T a b u l a t e d r e s u l t s f o r v a r i o u s s y s t e m s a r e g i v e n in T a b l e

XX I I 1 . 8

As T a b l e XXIII i n d i c a t e s t h e r e a r e a number o f me t hods a v a i l a b l e

f o r m e a s u r i n g hydr ogen bond e n e r g i e s . The n u m e r i c a l v a l u e s f o r

hydr ogen bond e n e r g i e s g i v e n in T a b l e XXIII a r e d e p e n d e n t upon t h e

Page 109: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXI I 1

H y d r o g e n B o n d E n e r g i e s f o r V a r i o u s A l c o h o l S y s t e m s

Sys t em T e m p e r a t u r e Hydrogen Bond Measurement°C Ene r gy , c a l / m o l e Method

M e t h a n o l - C a r b o n 20- 30 4720 (1) |RT e t r a c h l o r i d e - 15 t o 60 4600 ± 1200 (2) IR

M e t h a n o l - B e n z e n e 20 4250 (1) HSL20 3670 (1) 1R

M e t h a n o 1- He xa ne 10-45 5800 (2) HM

E t h a n o l - C a r b o nT e t r a c h l o r i d e - 15 t o 60 3600 ± 800 (2) IR

E t h a n o l - M e t h y 1-Cy c l o h e x a n e 35-55 5400 ± 1000 (1) VP

P r o p a n o l - H e x a n e 10-45 5800 (2) HM

( t ) B u t a n o l - C a r b o n 20-40 5300 ± 500 (1) IRT e t r a c h l o r i d e - 1 5 t o 60 2400 ± 600 (2) IR

( t ) B u t a n o l -C y c l o h e x a n e 27 3850 (4) UA

Numbers in p a r e n t h e s e s a r e t h e assumed number o f hydr ogen bonds b r o k e n p e r mol e . Measur ement method a b b r e v i a t i o n s a r e : IR - I n f r a r e d ,HSL - Heat o f S o l u t i o n , HM - Heat o f Mi x i ng , VP - Vapor P r e s s u r e , and UA - U l t r a s o n i c Sound A b s o r p t i o n .

9 3

Page 110: A Non-Equilibrium Thermodynamic Approach to the ...

assumed number o f hyd r ogen bonds b r o k e n p e r mole . The d a t a in T a b l e

XXIII i s q u i t e s p a r s e and c a n n o t be used t o even i n d i c a t e q u a l i t a t i v e

t r e n d s f o r a l c o h o l s y s t e m s . The d a t a does show t h a t hyd r ogen bond

e n e r g i e s r an g e f rom a b o u t 3000 t o 7000 c a l o r i e s p e r mole f o r a l c o h o l

s y s t e m s .

E s t i m a t e d v a l u e s o f h y d r oge n bond e n e r g y f rom e x c e s s t h e r m a l

c o n d u c t i v i t y v a l u e s a r e in t h e same r a n g e a s t h o s e i n d i c a t e d in T a b l e

XXI I I . The e s t i m a t e d v a l u e o f 4400 c a l o r i e s p e r mole f o r t h e m e t h a n o l -

c a r b o n t e t r a c h l o r i d e s y s t e m s a g r e e s e x t r e m e l y w e l l w i t h t h e l i t e r a t u r e

v a l u e o f 4700 c a l o r i e s p e r mol e . T h i s s y s t e m s h o u l d y i e l d t h e most

a c c u r a t e e s t i m a t e o f hydr ogen bond e n e r g y b e c a u s e o f i t s l a r g e

d e v i a t i o n f rom i d e a l i t y . E a r l i e r d i s c u s s i o n s in t h i s c h a p t e r

( s e c t i o n s B and C) p l a c e d t h e a c c u r a c y o f t h e e s t i m a t e d hydr ogen

bond e n e r g y f o r t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m a t ±5%.

The e s t i m a t e d h y d r oge n bond e n e r g y o f 6600 c a l o r i e s p e r mole

f o r t h e e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m a g r e e s we l l w i t h t h e

q u o t ed v a l u e , i f t h e q u o t e d v a l u e i s r e e v a l u a t e d a s s u mi n g t h a t one

hyd r ogen bond i s b r o k e n , r a t h e r t ha n two. The e s t i m a t e d v a l u e o f

3800 c a l o r i e s p e r mole and t h e q u o t e d v a l u e o f 3670 c a l o r i e s p e r

mole f o r t h e hyd r ogen bond e n e r g i e s o f t h e m e t h a n o l - b e n z e n e s y s t e m

a l s o a r e in q u i t e c l o s e a g r e e m e n t . The o n l y o t h e r s y s t e m f o r whi ch

a c o m p a r i s o n can be made i s be t ween t h e e s t i m a t e d h y d r o g e n bond

e n e r g y f o r t h e e t h a n o l - c y c l o h e x a n e s y s t e m and t h e q u o t e d hyd r ogen

bond e n e r g y f o r t h e e t h a n o l - m e t h y I c y c l o h e x a n e s y s t e m . The e s t i m a t e d

v a l u e f o r t h e e t h a n o l - c y c l o h e x a n e s y s t e m i s 6600 c a l o r i e s p e r mole ;

wh i l e , t h e q u o t e d v a l u e f o r t h e e t h a n o 1- m e t h y 1 eye 1ohe xa ne s y s t e m is

Page 111: A Non-Equilibrium Thermodynamic Approach to the ...

9 5

5400 ±1000 c a l o r i e s p e r mole .

In g e n e r a l , i t has been shown t h a t t h e hydr ogen bond e n e r g y

e s t i m a t e d f rom e x c e s s t h e r ma l c o n d u c t i v i t y d a t a a r e in good a g r e e ­

ment w i t h a v a i l a b l e r e s u l t s f rom o t h e r met hods o f m e a s u r e me n t .

F u r t h e r c o m p a r i s o n s c o u l d n o t be made b e c a u s e o f t h e s p a r s i t y o f

d a t a f o r t h e h y d r oge n bond e n e r g y o f h i g h e r a l c o h o l s .

E. U s e f u 1 n e s s o f t h e Method f o r Pr ed i c t ing T h e r ma 1 Conduc t i v i t y o f

B i n a r y M i x t u r e s

The u s e f u l n e s s o f t h i s method f o r p r e d i c t i n g t h e t h e r m a l

c o n d u c t i v i t y o f b i n a r y m i x t u r e s i s somewhat l i m i t e d b e c a u s e o f t h e

l a r g e amount o f d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n s . Some o f t h e

d a t a , p a r t i c u l a r l y t h e d i f f u s i v i t y and t h e h y d r oge n bond e n e r g y ,

a r e n o t r e a d i l y a v a i l a b l e f o r s y s t e m s o t h e r t h a n t h o s e s t u d i e d .

A n o t h e r l i m i t a t i o n , n o t so o b v i o u s , i s t h a t imposed by t h e mode l .

I t has been assumed t h a t s o l u t e - s o l v e n t i n t e r a c t i o n s a r e u n i m p o r t a n t

and t h a t s o l u t e - s o l u t e i n t e r a c t i o n s can be r e p r e s e n t e d by a c h e mi c a l

r e a c t i o n . A d d i t i o n a l a s s u m p t i o n s s p e c i f i c t o a l c o h o l s y s t e m s have

a l s o been i n t r o d u c e d . In p r i n c i p l e , t h i s method s h o u l d be a p p l i c a b l e

w i t h mi nor c ha n g e s t o s y s t e m s in which t h e c h e mi c a l e q u i l i b r i u m i s a

known reac t ion_, such a s t h e d i m e r i z a t i o n r e a c t i o n t h a t o c c u r s in

p h e n y l a c e t i c a c i d - n i t r o b e n z e n e s o l u t i o n s . A s p e c i f i c s t r o n g i n t e r ­

a c t i o n be tween t h e s o l u t e and t h e s o l v e n t , such a s t h a t o c c u r r i n g in

t h e a c e t o n e - c h 1o r o f o r m s y s t e m ! ^ s h o u l d a l s o be d e s c r i b a b l e by a

s i m i l a r a n a l y s i s t o t h e one d e v e l o p e d in t h i s s t u d y . Data n e c e s s a r y

f o r t e s t i n g t h i s t y p e o f a n a l y s i s f o r such s y s t e m s a r e no t a v a i l a b l e .

Page 112: A Non-Equilibrium Thermodynamic Approach to the ...

9 6

In a d d i t i o n , s y s t e m s w i t h a s t r o n g i n t e r a c t i o n be t ween s o l u t e and

s o l v e n t , w i t h n e g l i g i b l e s o l u t e - s o l u t e and s o l v e n t - s o l v e n t i n t e r ­

a c t i o n s , a r e r a r e .

In c o n c l u s i o n , t h i s method w i l l v e r y a c c u r a t e l y p r e d i c t t h e

t h e r ma l c o n d u c t i v i t y o f a l c o h o l - i n e r t s o l v e n t s y s t e m s p r o v i d e d t h e

n e c e s s a r y d a t a a r e a v a i l a b l e . The method i s cumbersome in t h a t a

l a r g e amount o f d a t a i s n e c e s s a r y . The e m p i r i c a l r e l a t i o n s d e v e l o p e d

11 1 2 by F i 1 1 i p p o v - N o v o s e l o v a and J o r d a n - C o a t e s a r e recommended where

d a t a i s n o t a v a i l a b l e f o r t h e t y p e o f a n a l y s i s d e v e l o p e d in t h i s

s t u d y .

Page 113: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R V I I I R E F E R E N C E S

^C. S. Ca l dwe l l and A. L. Babb, " D i f f u s i o n in t h e Sys t em M e t h a n o l - B e n z e n e , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LIX (1955).) 1114.

2D. K. Ande r s on , J . R. H a l l , and A. L. Babb, "Mutua l D i f f u s i o n

in No n - I d e a l B i n a r y L i q u i d M i x t u r e s , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LXI I ( 1958 ) , 405 .

3D. K. Ander son and A. L. Babb, "Mutua l D i f f u s i o n in No n - I d e a l

L i q u i d M i x t u r e s , " J o u r n a 1 o f Phys i c a 1 Chemi s t r y , LXVI I ( 1963) ; 1363-4

B. R. Hammond and R. H. S t o k e s , " D i f f u s i o n in B i n a r y L i q u i d M i x t u r e s , " T r a n s a c t i o n s o f t h e F a r a d a y S o c i e t y , LI I ( 1 9 5 6 ) , 783-

'’j . L. G a i n e r , " E f f e c t o f M o l e c u l a r P r o p e r t i e s on B i n a r y L i q u i d D i f f u s i o n C o e f f i c i e n t s , " I n d u s t r i a l and E n g i n e e r i n g C h e mi s t r y F u n d a m e n t a I s , V ( 1966 ) , 436 .

gG. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond (San

F r a n c i s c o : W. H. Freeman and Co . , I 9 6 0 ) , p. 35*4)

7 I b i d . , p. 350.

^ I b i d . , p. 3 5 6 .Q

I. P r i g o g i n e and R. Defay , Chemical Thermodynami cs (London: Longmans, Green and Co . , 1954) , p. 423.

10_ilb_id., p. 427*

n L. P. F i l l i p p o v and N. S. N o vo s e l o v a , "The Thermal C o n d u c t i v i t y o f S o l u t i o n s o f Normal M i x t u r e s , " V e s t n i k Moskovskogo U n i v e r s i t e t a , S e r i y a F i z i k o - M a t e n a t e c h e s k i k h i E s t e s t v e n n y k k Nauk No. 2, X ( 1955) ) 37-

1 2H. B. J o r d a n , Pred i c t ion o f T h e r ma 1 Conduc t i v i t y o f Mi sc i b 1e B i n a r y L i q u i d M i x t u r e s f rom t h e P u r e Component Va 1ues ( M a s t e r s T h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 19 6 1) , p . 5.

9 7

Page 114: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

A. Cone 1 us ions

As a r e s u l t o f t h i s i n v e s t i g a t i o n , a v a l i d method f o r p r e d i c t i n g

t h e t he r ma l c o n d u c t i v i t y o f a 1 coho 1 - i n e r t s o l v e n t s y s t e m s has been

d e v e l o p e d . The method c a n , in p r i n c i p l e , be used f o r p r e d i c t i o n o f

t h e c o m p o s i t i o n d e p e n d e n c e o f t he r ma l c o n d u c t i v i t y f o r o t h e r t y p e s

o f s y s t e m s , p r o v i d i n g t h e s y s t e m i n t e r a c t i o n s can be d e s c r i b e d by a

s i n g l e c h e mi c a l r e a c t i o n . Wi th a p p r o p r i a t e d a t a , t h e t he r ma l c on­

d u c t i v i t y o f b i n a r y a l c o h o l m i x t u r e s can be p r e d i c t e d w i t h an e r r o r

o f l e s s t ha n ±1% o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e .

For t h e s y s t e m s s t u d i e d , t h e e x p e r i m e n t a l e x c e s s t he r ma l c on­

d u c t i v i t i e s have been used t o e s t i m a t e hydr ogen bond e n e r g i e s f o r a

s e r i e s o f a l c o h o l - i n e r t s o l v e n t s y s t e m s . A v a i l a b l e l i t e r a t u r e d a t a

on hydr ogen bond e n e r g y f o r s e v e r a l s y s t e m s ha s been shown t o be in

q u i t e c l o s e a g r e e m e n t w i t h t h e e x c e s s t he r ma l c o n d u c t i v i t y e s t i m a t e s .

B. Recommendat i ons f o r F u t u r e Work

As a r e s u l t o f t h i s i n v e s t i g a t i o n , s e v e r a l a r e a s o f a d d i t i o n a l

r e s e a r c h and i n v e s t i g a t i o n have o pe ne d .

F i r s t , t h e method s h o u l d be f u r t h e r t e s t e d a s a d d i t i o n a l and

more a c c u r a t e d a t a on p h y s i c a l p r o p e r t i e s f o r a 1c o h o l - i n e r t s o l v e n t

9 8

Page 115: A Non-Equilibrium Thermodynamic Approach to the ...

9 9

s y s t e m s becomes a v a i l a b l e . In p a r t i c u l a r , more a c c u r a t e d a t a f o r

hyd r ogen bond e n e r g y i s needed t o t e s t t h e mode l . D i f f u s i v i t y d a t a

f o r t h e s e s y s t e m s i s a n o t h e r l i m i t i n g f a c t o r .

Second , t h e s u c c e s s o f t h i s m a c r o s c o p i c d e s c r i p t i o n o f t h e

c o m p o s i t i o n d e p e n d e n c e o f t h e r m a l c o n d u c t i v i t y in a l c o h o l s y s t e m s

l e a d s t o t h e p o s s i b i l i t y o f d e s c r i b i n g o t h e r s t r o n g l y i n t e r a c t i n g

s y s t e m s by a s i m i l a r a n a l y s i s . in p a r t i c u l a r , t h e method s h o u l d be

d i r e c t l y a p p l i c a b l e t o d i m e r i z a t i o n r e a c t i o n s , such as t h a t o c c u r r i n g

in t h e p h e n y l a c e t i c a c i d - n i t r o b e n z e n e s y s t e m , ' and t o s t r o n g s o l u t e -

s o l v e n t i n t e r a c t i o n s , such a s t h a t o c c u r r i n g in t h e a c e t o n e - c h l o r o -

2fo rm s y s t e m . T e s t i n g o f t h e method f o r o t h e r s t r o n g l y i n t e r a c t i n g

s y s t e m s has n o t been a t t e m p t e d b e c a u s e o f t h e l a c k o f s u f f i c i e n t d a t a .

F i n a l l y , i t i s b e l i e v e d t h a t t h e r m a l c o n d u c t i v i t y d e v i a t i o n s

t h a t o c c u r in s l i g h t l y i n t e r a c t i n g s y s t e m s can a l s o be d e s c r i b e d by

an a n a l y s i s s i m i l a r t o t h e one d e v e l o p e d in t h i s i n v e s t i g a t i o n . Such

an a n a l y s i s would p r o c e e d on t h e a s s u m p t i o n o f t h e f o r m a t i o n o f a

compl ex be tween t h e s o l u t e and t h e s o l v e n t . The d i f f i c u l t y w i t h

such an a n a l y s i s would be in d e t e r m i n i n g t h e p r o p e r complex formed

and in r e l a t i n g t h i s model t o t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s and

t h e m a c r o s c o p i c p r o p e r t i e s o f t h e s o l u t i o n .

Page 116: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER I X REFERENCES

' l . P r i g o g i n e and R. Def ay , Chemical Thermodynamics (London: Longmans, Green and Co . , 1954) , p. 423-

^ I b i d . , p. 427 •

1 0 0

Page 117: A Non-Equilibrium Thermodynamic Approach to the ...

SELECTED BIBLIOGRAPHY

1. An d e r s o n , D. K. , and A. L. Babb. "Mutua l D i f f u s i o n in Non-Idea l L i q u i d M i x t u r e s , " J o u r n a l o f P h y s i c a l C h e m i s t r y ,LXVII ( 1 9 6 3 ) , 1363.

2. An d e r s o n , D. K. , J . R. H a l l , and A. L. Babb. "Mut ua l D i f f u s i o nin N o n - I d e a l B i n a r y L i q u i d M i x t u r e s , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LXIi ( 1 9 5 8 ) , 405 .

3. Bearman, R. J . " S t a t i s t i c a l Me cha n i ca l Theory o f t h e ThermalC o n d u c t i v i t y o f B i na r y L i q u i d S o l u t i o n s , " J o u r n a l o f Chemica l P h y s i c s , XXIX ( 1 9 5 8 ) , 1278.

4. Bearman, R. J . " S t a t i s t i c a l Me c ha n i c a l The or y o f T r a n s p o r tP r o c e s s e s , " J o u r n a 1 o f C h e mi c a 1 P h y s i c s , XXVI I I ( 1958 ) ,6 6 2 .

5. B i r d , R. B. , W. E. S t e w a r t , and E. N. L i g h t f o o t . T r a n s p o r tPhenomena . New York: John Wi l ey and Sons , i 9 6 0 .

6 . B o n d i i , A. A. , "Thermal C o n d u c t i v i t y o f Non A s s o c i a t e d L i q u i d s , "A. I . Ch . E . J o u r n a l , VI I I ( 1962 ) , 610.

7. Br idgmann, P. W. "Thermal C o n d u c t i v i t y o f L i q u i d s Under P r e s s u r e , "P r o c e e d i n g s o f t h e Amer i can Academy o f A r t s and S c i e n c e s ,LIX ( 1 9 2 3 ) , T 4 l .

8. B u t l e r , J . N. , and R. S. Brokaw. "Thermal C o n d u c t i v i t y o f GasM i x t u r e s in Chemica l E q u i l i b r i u m , " J o u r n a l o f Chemica l P h y s i c s , XXVI ( 1 9 5 7 ) , 1641.

9- C a l d w e l l , C. S . , and A. L. Babb. " D i f f u s i o n in t h e Sys t emM e t h a n o 1 - B e n z e n e , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LIX ( 1 9 5 5 ) , 1114.

10. C a r l e y , J . F . , and L. W. B e r t e l s e n , I I I . " V a p o r - L i q u i d E q u i l i b ­r ium D a t a , " I n d u s t r i a l and E n g i n e e r i n g C h e m i s t r y , XLI( 1949) , 2806 .

1 0 1

Page 118: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 2

11. de Donder , Th. L ' A f f in i t e . P a r i s ; G a u t h i e r - V i 1 l a s s , 1927*

12. de G r o o t , S. R. , and P. Mazur . N o n - E q u i l i b r i u m Thermodynami cs .Amsterdam: Nor t h H o l l a n d P u b l i s h i n g Co . , 1962.

13- E i ge n , M. "Zur T h e o r i e d e r Warme1e i t f a h i g k e i t des W a s s e r , "Ze i t s c h r i f t f u r E 1e k t r o c h e m i e , LVI ( 1 9 5 2 ) , 176.

14. Eucken, A. " A s s o z i a t i o n in F 1u s s e n k e i t e n , " Z e i t s c h r i f t f u rE l e k t r o c h e m i e , LI I ( 1 9 4 8 ) , 255-

15- F i l l i p p o v , L. P . , and N. S. N o v o s e l o v a . "The Thermal Conduc­t i v i t y o f S o l u t i o n s o f Normal M i x t u r e s , " V e s t n i k Moskovskogo U n i v e r s i t e t a , S e r i y a F i z i k o - M a t e n a t e c h e s k i k h i E s t e s t v e n n y k k Nauk, No. 2, X ' ( 1 9 5 5 ) 37-

16. F i l l i p p o v , L. P. "Thermal C o n d u c t i o n in S o l u t i o n s o f A s s o c i a t e dL i q u i d s , " Ve s t n i k Moskovskogo Un i v e r s i t e t a , Se r i ya F i z i ko- M a t e n a t e c h e s k i kh i E s t e s t v e n n y k k Nauk, No. 5 ~X ( 195"5T", 57.

17- G a i n e r , J . L. " E f f e c t o f M o l e c u l a r P r o p e r t i e s on B i n a r y L i q u i dD i f f u s i o n C o e f f i c i e n t s , " I n d u s t r i a 1 and Eng i n e e r i ng Chem i s t r y - F u n d a m e n t a 1s , V ( 1 9 6 6 ) , 436 .

18. G a u t r e a u x , M. F . , J r . A Thermodynamic A n a l y s i s o f C o r r e l a t i o n sf o r Vapor - Liqu id Equ i 1 i b r ia in Non- I d e a 1 S o l u t i o n s , M a s t e r sT h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 1951.

19- G i l l a n , D. G. , and 0. Lamm. " P r e c i s i o n Me as ur e me n t s o f t h eThermal C o n d u c t i v i t y o f C e r t a i n L i q u i d s u s i n g t h e Hot Wire Me t h o d , " Ac t a Chemica S c a n d i n a v i c a , IX ( 1955 ) ; 657•

20. Grassmann, P . , and W. S t r a u ma n n . " E i n I n s t a t i o n a r e s V e r f a h r e nZur Messung Der W a r m e l e i t f a h i g k e i t Von F I u s s e n k e i t e n und G a s e n , " I n t e r n a t i o n a l J o u r n a l o f Heat and Mass T r a n s f e r ,I ( I 9 6 0 ) , 50 .

21. Hammond, B. R. , and R. H. S t o k e s . " D i f f u s i o n in B i n a r y L i q u i dM i x t u r e s , " T r a n s a c t i o n s of t h e F a r a d a y S o c i e t y , LI I ( 1956 ) ,783-

22. H i p k i n , Howard, and H. S. Myer . " V a p o r - R e c i r c u l a t i n g E q u i l i b ­r ium S t i l l , " I n d u s t r i a l and E n g i n e e r i n g C h e m i s t r y , XLVI ( 1 9 5 4 ) , 2524.

23- H i r s c h f e 1d e r , J . 0 . , C. F. C u r t i s s , and R. B. B i r d . M o l e c u l a rTheor y o f Gases and L i q u i d s . New York: John Wi l ey andSons , 1954.

Page 119: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 3

24. H i r s c h f e 1d e r , J . 0. " He a t T r a n s f e r in C h e m i c a l l y R e a c t i n gM i x t u r e s / 1 J o u r n a l o f Chemical P h y s i c s , XXVI (1957). , 21k .

25- Jordan; , H. B. Pred i c t ion o f Therma 1 Conduct ivi t y o f Misc i b l eB i n a r y L i q u i d M i x t u r e s f rom t h e Pur e Component Va 1u e s .M a s t e r s T h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 1961.

26. Ki rkwood, J . G. , and 1. Oppenheim. Chemical The r modyna mi c s .New York: McGraw-Hi l l Book Co . , 19 6 1•

21. McLaugh l i n , E. "The Thermal C o n d u c t i v i t y o f L i q u i d s and Dense G a s e s , " Chemical Re v i e ws , LXIV ( 1 9 6 4 ) , 392.

28. N a g a t a , I. "Vapor L i q u i d E q u i l i b r i u m D a t a , " J o u r n a l o f Chemical and E n g i n e e r i n g Da t a , X ( 1965 ) ; 106.

29- O l s e n , A. L . , and E. R. Washburn. "Vapor P r e s s u r e o f Bi na r yS o l u t i o n s o f I s o p r o p y l Al c oho l and Benzene a t 2 5 ° C , "J o u r n a l o f P h y s i c a l C h e m i s t r y , XLI ( 1937 ) ; 457*

30. On s a g e r , L. " R e c i p r o c a l R e l a t i o n s in I r r e v e r s i b l e P r o c e s s e s , "P h y s i c a l Review, XXXVII ( 1931 ) ; 405 .

31. P i m e n t e l , G. C. , and A. L. M c C l e l l a n . The Hydrogen Bond.San F r a n c i s c o : W. H. Freeman and C o . , 19 6 0 *

32. P r i g o g i n e , I . , and R. Defay . Chemical The r mo d y n a mi c s . London:Longmans, Green and Co . , 1954.

33- Re i d , R. C . , and T. K. Sherwood. The P r o p e r t i e s o f Gases andL i q u i d s . New York: McGraw-Hi l l Book Co . , 19 6 6 .

34. R o d r i g u e z , H. V. M o l e c u l a r F i e l d R e l a t i o n s h i p s t o L i q u i dV i s c o s i t y , Compress i b i 1 i t y , and Pr ed i c t ion o f T h e r ma 1 Conduct i v i t y o f B i na r y L i qu i d M i x t u r e s . Ph.D. D i s s e r t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 19*52"!

35* S a k i a d i s , B. C. , and J . C o a t e s . A L i t e r a t u r e Sur ve y o f t h eThermal C o n d u c t i v i t y o f L i q u i d s . Baton Rouge, L o u i s i a n a : E n g i n e e r i n g Ex p e r i m e n t S t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1952.

3 6 . S a k i a k i s , B. C. , and J . C o a t e s . " S t u d i e s o f Thermal C o n d u c t i v i t yo f L i q u i d s , " A._[._Ch._E. J o u r n a 1, I ( 1955 ) ; 281.

37. Timmerans , J . The Phys i c o - C h e m i c a 1 C o n s t a n t s o f Bi n a r y Sys t emsin C o n c e n t r a t e d So 1u t i o n s , Vol I 1. New York: I n t e r s c i e n c eP u b l i s h e r s , I n c . , 1959-

Page 120: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 4

38. T s e d e r b e r g , N. V. Thermal C o n d u c t i v i t y o f Gases and L i q u i d s .Cambr i dge , M a s s a c h u s e t t s : The M. I . T . P r e s s , M a s s a c h u s e t t sI n s t i t u t e o f T e c h n o l o g y , 1965-

39. T y r r e l l , H. J . V. D i f f u s i o n and Heat Flow in L i q u i d s . London:B u t t e r w o r t h and Co . , T ^ l .

40 . Washburn, E. R . , and B. H. Ha ndo r f . "Vapor P r e s s u r e o f B i na r yS o l u t i o n s o f E t hy l A l c oho l and Cy c l o h e x a n e a t 2 5 ° C , " J o u r n a 1 o f t h e Amer i can Chemica l S o c i e t y , LVI I ( 1935 ) , 4 4 l .

41 . Wehe, A. H. , and J . C o a t e s . " V a p o r - L i q u i d E q u i l i b r i u m R e l a t i o n sP r e d i c t e d by Thermodynamic E x a m i n a t i o n o f A c t i v i t y C o e f f i c i e n t s , "A._[._Ch.E. J o u r n a l , I ( 1 9 5 5 ) , 241.

42 . Wehe, A. H. A Thermodynam i c E x a mi n a t i o n o f Act i v i t y Co e f f i c i e n t so f S o l u t i ons o f A1coho 1s and Benzene . M a s t e r s T h e s i s ,L o u i s i a n a S t a t e U n i v e r s i t y , 1953-

43- Yuan, K. S . , and B. C. Y. Lu. "Vapor L i q u i d E q u i l i b r i a , "J o u r n a 1 o f C h e mi c a 1 and E n g i n e e r i n g D a t a , VI I I ( 1 9 ^ 3 ) , 549-

Page 121: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X A

REDUCED HEAT FLOW IN THERMALLY CONDUCTING SYSTEMS

The n o n - e q u i l i b r i u m t h e r m o d y n a m i c a n a l y s i s o f s i m u l t a n e o u s

h e a t and mass t r a n s f e r a l l o w s t h e a r b i t r a r y d e f i n i t i o n o f f l u x e s

and t he r modyna mi c f o r c e s . T h e r e f o r e , w h i l e e q u a t i o n s a r e u s u a l l y

w r i t t e n w i t h t h e f l u x e s r e f e r e n c e d t o a s t a t i o n a r y s e t of

c a r t e s i a n c o o r d i n a t e s , o t h e r r e f e r e n c e c o o r d i n a t e s may j u s t as

r i g o r o u s l y be u s e d . The r a t e o f e n t r o p y p r o d u c t i o n , wh i ch depe nds

upon t h e sum o f t h e p r o d u c t s o f t h e f l u x e s and c o n j u g a t e f o r c e s ,

1 2mus t be i n d e p e n d e n t o f t h e c o o r d i n a t e s y s t e m . DeGroot and Mazur

g i v e an e x c e l l e n t d i s c u s s i o n o f t h e p r i n c i p l e o f e n t r o p y p r o d u c t i o n

i n v a r i a n c e .

For p a r t i c u l a r a p p l i c a t i o n s , a r e d u c e d h e a t f l u x , J ^ , may be

d e f i n e d ;

J ' = J ’ - Zh. J. . (A.A-1)q q k k v '

The sum o f t h e p r o d u c t s o f f l u x e s a nd f o r c e s mus t be i n v a r i a n t ,

whi ch l e a d s t o t h e e q u a l i t y ;

J X + ZJ . X. = J ' X' + Z J ' X ' . (A.A-2)q q k k q q k k ' '

3Use o f t h e d e f i n i t i o n o f t h e t h e r mo d y n a mi c f o r c e s X^ and X^,

a l o n g w i t h e q u a t i o n ( A - A- 1) y i e l d s . -

1 0 5

Page 122: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 6

( A . A - 3 )

The g r a d ((jl /T) may be t r a n s f o r m e d by t h e t he r modynami c r e l a t i o n :

T grad( | j , k/ T) = ( g r a d (j.k) T p- ( h k/ T) ( g r a d T) , (A.A-4)

wher e t h e s u b s c r i p t s T and P i n d i c a t e t h a t t h e d e r i v a t i v e i s t a k e n

a t c o n s t a n t t e m p e r a t u r e and p r e s s u r e .

I n s p e c t i o n o f e q u a t i o n (A.A-3) and t h e t he r modynami c r e l a t i o n

(A.A-4) shows t h a t t h e e n t r o p y p r o d u c t i o n wi l l be i n v a r i a n t i f t h e

new t he r modynami c f o r c e s a r e t a k e n t o be

A l t e r n a t e c h o i c e s o f h e a t f l u x wi l l a l t e r t h e c o n j u g a t e t he r modynami c

f o r c e s

= - ( g r a d T ) / T ( A . A - 5 )

(A.A-6)

Page 123: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X A REFERENCES

^S. R. d e G r o o t a n d p. M a z u r , No n E q u i l i b r i u m T h e r m o d y n a m i c s ( A m s t e r d a m : N o r t h H o l l a n d P u b l i s h i n g C o . , 1962)7 P* 2 5 -

2 I b i d . , p . 2 3 .

^ I b i d . , p . 2k .

I b i d . , p . 2 7 -

1 0 7

Page 124: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X B

RELATIONSHIP OF THE CHEMICAL POTENTIALS AT EQUILIBRIUM

The r e l a t i o n s h i p be t ween t h e c he mi c a l p o t e n t i a l s f o r t h e

d i s s o c i a t i o n r e a c t i o n ,

A] - oA2 , (A.B-1)

may be e x p r e s s e d by t h e e q u a l i t y ,

pj = op^ , (A. B-2)

whe r e t h e q u a n t i t i e s pj and p^ a r e t h e mola l c he mi c a l p o t e n t i a l s

o f c omponent s 1 and 2.

The mo l a r h e a t o f r e a c t i o n i s d e f i n e d in t e r ms o f t h e p a r t i a l

mola l e n p h a l p i e s o f e a ch component by t h e f o l l o w i n g e q u a t i o n :

AHR = aU2 “ h l ’ (A.B-3)

where AHD i s t h e mo l a r h e a t o f r e a c t i o n , a i s t h e s t o i c h i o m e t r i c

c o e f f i c i e n t , h^ i s t h e p a r t i a l mola l e n p h a l p y o f component 2, and

hj i s t h e p a r t i a l mola l e n p h a l p y o f component 1.

The p a r t i a l mola l e n p h a l p i e s may be e l i m i n a t e d t o y i e l d an

e q u i v a l e n t e x p r e s s i o n d e r i v a b l e f rom c l a s s i c a l t he r modynami c

p r i nc i p 1es : '

1 0 8

Page 125: A Non-Equilibrium Thermodynamic Approach to the ...

The t o t a l d i f f e r e n t i a l s o f t h e c h e mi c a l p o t e n t i a l s may be

wr i t t e n in t h e f o r m s :

dp, | = (— i ) pdT + ( d p p - ^ p 3T

(A.B-5)

(A.B-6)

wher e t h e s u b s c r i p t s T and P i n d i c a t e t h e d e r i v a t i v e i s t a k e n a t

c o n s t a n t t e m p e r a t u r e and p r e s s u r e .

Combining e q u a t i o n s (A.B-5) and (A.B-6) w i t h t he d i f f e r e n t i a l

f orm o f e q u a t i o n (A.B-2) and s u b s t i t u t i n g t h e r e s u l t i n t o e q u a t i o n

(A.B-4) y i e l d s ;

where t h e g r a d i e n t s y m b o l i z a t i o n has been used t o g e n e r a l i z e t h e

d i f f e r e n t i a l e q u a t i o n .

The e x p r e s s i o n s t h a t have been d e v e l o p e d may be s i m p l i f i e d by

t h e us e o f c he mi ca l p o t e n t i a l s and p a r t i a l e n p h a l p i e s on a mass

b a s i s r a t h e r t han t h e m o l a r b a s i s . With t h e c ha nge t o a mass b a s i s ,

t h e e q u a t i o n s become;

Q-Cgrad p p T^ p- ( g r a d p | ) T^ p= (AHr/ T) ( g r a d T) , (A.B-7)

Page 126: A Non-Equilibrium Thermodynamic Approach to the ...

11 0

AHR = QfM2^ h2 " h l^ ' (A.B-8)

( g r a d jj. ) - ( g r a d p, ) = (— B)AHd ( g r a d T)

where t h e non p r i med p a r t i a l q u a n t i t i e s i n d i c a t e t h e mass b a s i s .

M2 i s t h e m o l e c u l a r w e i g h t o f component 2.

Page 127: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X B R E F E R E N C E S

^ J . G. Ki rkwood and I. Oppenheim, Chemical Thermodynamics (New York: McGraw-Hi l l Book Co . , 1961) , p. 107.

Page 128: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X C

RELATIONSHIP OF THE PHENOMENOLOGICAL COEFFICIENT TO DIFFUSIVITY

The r e l a t i o n s h i p o f t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t t o t h e

d i f f u s i v i t y c a n n o t be r e a d i l y d e r i v e d f rom t h e g e n e r a l n o n - e q u i l i b ­

r ium t he r modynami c e x p r e s s i o n s . The r e l a t i o n s h i p i s mos t e a s i l y

a p p r o a c h e d by c o n s i d e r i n g i s o t h e r m a l d i f f u s i o n . Wi th t h e a s s u m p t i o n

o f c o n s t a n t t e m p e r a t u r e , t h e g e n e r a l r e l a t i o n f o r a t e r n a r y s y s t e m

w i t h c h e mi c a l e q u i l i b r i u m r e d u c e s t o

( J 3 ) T = ( L ^ / W ^ ) ( g r a d p,2 ) T^ p . (A.C-1)

The e q u i l i b r i u m c o n d i t i o n r e d u c e s t h e Gibbs-Duhem r e l a t i o n t o

WA ( g r a d H-2 ) T^p+ wB( 9 rad P = 0 > (A.C-2)

whe r e t h e f o l l o w i n g s u b s t i t u t i o n s have been made:

W = W + W A 1 2

W = W B 3

(A.C-3)

Use o f t h e Gibbs-Duhem r e l a t i o n a l l o w s t h e mass f l u x o f t h e

s o l v e n t t o be w r i t t e n in t h e f o l l o w i n g form:

( J 3 ) T = - (L33/WA) ( g r a d p 3 ) T^ p . (A.C-4)

1 12

Page 129: A Non-Equilibrium Thermodynamic Approach to the ...

1 1 3

The mass f l u x w r i t t e n in t e r ms o f t h e p h e n o me n o l og i c a l c o e f f i c i e n t ,

|_33 , a n d t h e c hemi ca l p o t e n t i a l g r a d i e n t may be compared w i t h t he

u s u a l d e f i n i n g e q u a t i o n f o r t h e d i f f u s i v i t y : '

( J 3 ) T = -DABp ( g r a d WB) T^ p . (A.C-5)

The g r a d i e n t o f t h e s o l v e n t c he mi ca l p o t e n t i a l can be w r i t t e n in

t e r ms o f t h e g r a d i e n t o f t h e mass f r a c t i o n o f t h e s o l v e n t in t h e

f o l l o w i n g ma n n e r ; ^

BBRT(NAM2+NBMB) ( g r a d WB)( g r a d p, ) = i - . ( A.C- 6 )

W b

The r e l a t i o n s h i p o f t h e c he mi c a l p o t e n t i a l g r a d i e n t t o t h e mass

f r a c t i o n g r a d i e n t l e a d s t o t h e i d e n t i f i c a t i o n o f t h e e x p r e s s i o n

r e l a t i n g t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t , *-33* t o d i f f u s i v i t y ,

°AB:

°ABpWAWBM2L = JP. , A B 2 - - - - - - - - ( A C _ 7 )rt b b ( nam2+n bMb )

whe r e p i s t h e d e n s i t y , W. and WD a r e mass f r a c t i o n s , M„ and MDA d z d

a r e m o l e c u l a r w e i g h t s , R i s t h e gas c o n s t a n t , and T i s t h e a b s o l u t e

t e m p e r a t u r e . The q u a n t i t y BD i s a t e r m r e l a t e d t o t h e a c t i v i t yD

c o e f f i c i e n t o f t h e s o l v e n t . I t i s d e f i n e d by t h e f o l l o w i n g e q u a t i o n :

Bi n yB = 1 + (----------?) . (A.C-8)

Bln Nb

The the r modynamic f a c t o r , BD, i s i m p o r t a n t o n l y f o r non i d e a l s o l u t i o n s .B

Page 130: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X C R E F E R E N C E S

H. J . V. T y r r e l l , Pi f f u s i on and Heat F 1ow i n L i q u i d s (London B u t t e r w o r t h a nd Co . , 1961) , p. AS.

Page 131: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X D

MODIFICATION OF THE CHAIN ASSOCIATION THEORY OF ALCOHOLS

P r i g o g i n e and Defay^ d e r i v e e q u a t i o n s whi ch a r e a p p l i c a b l e f o r

c h a i n a s s o c i a t i o n in a l c o h o l s . T h e i r d e v e l o p m e n t i s b a s e d on t h e

a s s u m p t i o n t h a t t h e e q u i l i b r i u m c o n s t a n t f o r t h e r e a c t i o n ,

Ai + A, - A. +1 , (A.D-1)

i s g i v e n by

Kc = — U J — (A.D-2)

SSThe e q u i l i b r i u m c o n s t a n t , Kc , i s assumed t o be a f u n c t i o n o f

t e m p e r a t u r e and i n d e p e n d e n t o f i . The P r i g o g i n e - D e f a y model a s sumes

t h a t a l c o h o l i s a m u l t i p o l y m e r l i q u i d wi t h a c o m p l e x i t y r a n g i n g f rom

t h e monomer u n i t t o a c h a i n o f i n f i n i t e l e n g t h . R e s u l t s f o r t h i s

model show t h a t t h e mass f r a c t i o n o f t h e monomer a l c o h o l on a

s o l v e n t f r e e b a s i s i s r e l a t e d t o t h e e q u i l i b r i u m c o n s t a n t and t h e

m o l a r c o n c e n t r a t i o n o f t h e a l c o h o l by t h e f o l l o w i n g e x p r e s s i o n ;

/ P = ----------2 .......... - . (A.D-3)1 + v / l + ^ K c C ^

To d e f i n e an a p p r o p r i a t e v a l u e f o r t h e a v e r a g e s t o i c h i o m e t r i c

c o e f f i c i e n t , t h e i n f i n i t e sums used by P r i g o g i n e and Defay a r e

r e p l a c e d by t h e e q u a t i o n s below:

Page 132: A Non-Equilibrium Thermodynamic Approach to the ...

wher e a i s t h e a v e r a g e s t o i c h i o m e t r i c c o e f f i c i e n t and i s t h e m o l a ra

c o n c e n t r a t i o n o f t h e a v e r a g e a l c o h o l p o l y me r .

Us i ng (3, t h e mass f r a c t i o n o f monomer a l c o h o l on a s o l v e n t

f r e e b a s i s , and e q u a t i o n s (A.D-4) and (A.D-5) w i l l g i v e t h e f o l l o w i n g

e x p r e s s i o n f o r t h e s t o i c h i o m e t r i c c o e f f i c i e n t , a:

a = 1 + l / / p . (A.D-6)

I f t h e a s s u m p t i o n i s made t h a t t h e e n e r g y r e q u i r e d t o b r e a k

a h y d r oge n bond i s c o n s t a n t , t h e h e a t o f r e a c t i o n can be w r i t t e n in

t e r ms o f t h e s t o i c h i o m e t r i c c o e f f i c i e n t and t h e h y d r oge n bond e n e r g y ,

AHb :

AHr = ( a - l ) A H B = AHB/ / p • (A.D-7)

The a s s u m p t i o n o f c o n s t a n t hyd r ogen bond e n e r g y i s an a p p r o x i ­

m a t i o n whi ch i s o f unknown v a l i d i t y . I t i s known t h a t hyd r ogen bond

2e n e r g i e s v a r y d e p e n d i n g upon t h e s y s t e m ; b u t v a r i a t i o n o v e r t h e

c o n c e n t r a t i o n r an g e has n o t been c o n s i d e r e d in mos t i n v e s t i g a t i o n s .

Ex a c t c a l c u l a t i o n s o f hyd r ogen bond e n e r g i e s f rom e x p e r i m e n t a l d a t a

a r e t oo complex t o be c o n s i d e r e d e x c e p t in v e r y d i l u t e a l c o h o l

s y s t e m s .

Page 133: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X D R E F E R E N C E S

P r i g o g i n e and R. Defay , Chemical Thermodynamics (London: Longmans, Green and Co . , 195^0, p. ^+23*

2G. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond

(San F r a n c i s c o : W. H. Freeman and Co . , 1960) , p. 217-

1 1 7

Page 134: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X E

NON TEMPERATURE CORRECTED EXPERIMENTAL RESULTS

T a b l e XXIV

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ues f o r t h e M e t h a n o l - B e n z e n e Sys t em

Mole F r a c t i o n M e t h a n o 1

0 .0000

0 . 3 1 2 2

0 . 5 8 8 4

0 . 7827

0 . 9293

1.0000

M i x t u r e Thermal Conduct i v i t y

0 . 0817

0 . 0 8 6 8

0 . 0913

0.0988

0 . 1 0 9 1

0 . 1 1 3 6

LiquidT e m p e r a t u r e ,

9 8 . 2 2 9

9 8 . 37 6

98.421

9 8 . 7 3 8

9 8 . 95 0

99- 047

Thermal Con- °F d u c t i v i t y a t

25° C

0 . 0 8 3 7

0 . 0885

0 . 0 9 3 2

0 . 1 0 0 7

0 . 1 1 1 3

0 . 1155

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ ( H R) ( F T ) ( ° F ) .

1 1 8

Page 135: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXV

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e E t h a n o l - B e n z e n e S y s t e m

M o l e F r a c t i o nE t h a n o l

M i x t u r e Therma Conduc t i v i t y

Liquid T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0.0000

0.2668

0 . 5343

0 . 7 0 5 7

0.8761

1 . 0000

0 . 0 8 1 7

o . 0 8 3 4

0 . 0 8 5 8

0.0886

0 . 0 9 1 8

0 . 0 9 4 7 .

9 8 . 2 2 9

9 8 . 2 3 9

9 8 . 3 6 9

9 8 . 2 8 2

9 8 . 4 5 6

9 8 . 3 4 6

0 . 0 8 3 7

0 . 0 8 5 2

O .O 8 7 6

0 . 0903

0 . 0 9 3 7

0 . 0963

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

1 1 9

Page 136: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXVI

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e P r o p a n o l - B e n z e n e S y s t e m

M o l e F r a c t i o nP r o p a n o l

0 . 00 0 0

0 . 2 4 1 9

0 . 4675

0 . 6 6 8 4

0 . 8 4 3 7

1.0000

M i x t u r e Thermal Conduct i v i t y

0 . 0 8 1 7

0.0822

0 . 08 3 8

0 . 0 8 4 5

0 . 0 8 6 9

0 . 08 8 9

L i q u i dT e m p e r a t u r e ,

9 8 . 22 9

98.302

98.401

98 . 425

9 8 . 3 5 9

98.360

T h e r m a 1° F C o n d u c t i v i t y

a t 2 5 ° C

0 . 0837

0 . 0 8 4 0

0.0852

0 . 0857

0 .0878

0 . 0895

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ (H R ) ( F T ) ( ° F ) .

1 2 0

Page 137: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXVI I

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e I s o p r o p a n o l - B e n z e n e S y s t e m

M o l e F r a c t i o nI s o p r o p a n o 1

M i x t u r e Thermai Conduc t i v i t y

L i qu i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0

0 . 2 2 8 7

0 . 4 5 8 6

0 .6 6 7 6

0 . 8 4 8 6

1.0000

0 . 0 8 1 7

0 .0 7 8 8

0 . 0777

0 . 0 7 7 0

0 . 0 7 7 9

0 . 0 8 0 2

9 8 . 2 2 9

9 8 . 32 0

98 .061

9 8 . 05 6

9 8 . 0 5 4

9 8 . 1 4 2

0 . 0 8 3 7

0 . 0833

0 .0 8 2 0

0 .0 8 1 2

0 . 0817

0 .0 8 1 0

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BTU/(HR)(FT) ( ° F ) .

1 2 1

Page 138: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXV I I I

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e E t h a n o l - C y c l o h e x a n e S y s t e m

T h e r ma 1Mole F r a c t i o n M i x t u r e Thermal L i q u i d C o n d u c t i v i t y

E t h a n o l C o n d u c t i v i t y T e m p e r a t u r e , °F a t 25°C

0 . 0 0 0 0 0 . 06 8 5 97 - 807 0 .0 703

0 . 3 0 6 0 0 . 0 7 0 5 9 7 . 8 3 8 0 . 07 2 2

0 . 5 6 5 0 0 . 0 7 4 2 9 8 . 0 4 0 0 . 0 7 5 8

0 . 7^71 0 . 0 7 8 6 9 8 . 0 4 9 0 . 0 8 0 2

0 . 8 8 5 2 0 .0851 9 8 . 22 3 0 . 0867

1 .0000 0 .0 9 4 7 9 8 . 3 4 6 0 .0 9 6 3

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ ( H R) ( F T ) ( ° F ) .

1 2 2

Page 139: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X X I X

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e P r o p a n o l - C y c l o h e x a n e S y s t e m

Th e r ma 1Mole F r a c t i o n M i x t u r e Thermal L i q u i d C o n d u c t i v i t y

Pr opa no l C o n d u c t i v i t y T e m p e r a t u r e , °F a t 25°C

0 . 0 0 0 0 0 . 0685 97 - 807 0 .0 7 0 3

0 . 2 6 2 3 0 . 0 6 9 9 9 7 - 8 4 9 0 . 0 7 1 4

0 . 5 0 3 4 0 . 0731 97- 955 0 . 0743

0 . 69 7 0 0 .0 7 6 5 9 8 . 07 3 0 . 0 7 7 6

0.8541 0 . 0811 98.141 0 . 0 8 1 9

1.0000 0 .0 8 8 9 9 8 .3 6 0 0 . 0895

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

1 2 3

Page 140: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXX

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e I s o p r o p a n o l - C y c l o h e x a n e S y s t e m

M o l e F r a c t i o n1 s o p r o p a n o l

M i x t u r e Thermal Conduc t i v i t y

L i q u i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0

0 . 2 5 0 2

0 . 4971

0 . 6 9 3 9

0 . 8 4 6 5

1 . 0000

0 . 0685

0 . 0 6 8 9

0 .0701

0 . 0 7 2 5

0 . 07 5 7

0 .0802

9 7 . 8 0 7

97- 700

9 7 - 777

9 7 - 8 4 4

9 7 . 8 9 8

9 8 . 1 4 2

0 . 0 7 0 3

0 . 0705

0 . 0 7 1 4

0 . 0735

0 . 0 7 6 7

0 .0 8 1 0

Thermal c o n d u c t i v i t y v a l u e s r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

1 2 4

Page 141: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXXI

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

M o l e F r a c t i o nM e t h a n o l

0 . 0 0 0 0

0 . 3677

0 . 6 1 3 2

0.7861

019125

1.0000

M i x t u r e T h e r ma 1 Conduc t i v i t y

0 . 0 5 9 3

0 . 0 6 1 2

0 . 0 6 6 7

0 . 0 7 7 8

0 . 1 0 5 2

0 .1 1 3 6

L i qu i d T e m p e r a t u r e , °F

9 7 . 62 9

97- 520

9 7 . 69 8

9 8 . 0 1 0

98 . 825

99- 047

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 .0 6 0 6

0 . 0 6 2 4

0.0680

0 . 0793

0 . 1073

0 . 1155

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ ( H R) ( F T ) ( ° F ) .

1 2 5

Page 142: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXX I I

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

M o l e F r a c t i o nE t h a n o l

M i x t u r e Therma Conduc t iv i t y

L i q u i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0 0 .0 5 9 3 9 7 .6 2 9 0 .0 6 0 6

0 .2 9 3 0 0 . 0 6 1 0 9 7 .5 8 7 0 .0 6 2 3

0 .5 3 1 6 0 .0 6 5 2 9 7 .7 2 5 0 .0 6 6 5

0 .7 1 5 7 0 .0 7 0 6 9 7 .6 9 2 0 .0 7 1 9

0 .8 7 6 7 0 .0 8 0 5 - 98 .021 0 . 0 8 1 8

1 .0000 0 .0 9 4 7 9 8 . 3 4 6 0 .0 9 6 3

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BTU/ ( HR) ( FT) ( °F) .

1 2 6

Page 143: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X X X I 11

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

Mole F r a c t i o n M i x t u r e Thermal P r opa no l C o n d u c t i v i t y

0 . 0000 0 . 0593

0.2521 0.0601

0 . 5 0 3 7 0 . 0 6 3 7

0 . 7 5 1 9 0 . 0 7 0 2

0 .8 5 6 6 0 .0 7 8 2

1.0000 0 . 0 8 8 9

The r ma 1L i q u i d C o n d u c t i v i t y

T e m p e r a t u r e , °F a t 25°C

9 7 . 6 2 9 0 .0 6 0 6

97- 756 0 .0 6 1 2

9 7 . 4 8 6 0 . 0 6 4 8

97 . 6 9 2 0 .0 7 0 8

98.021 0 . 0 7 9 0

9 8 .3 6 0 0 . 0895

Thermal c o n d u c t i v i t y v a l u e s r e p o r t e d in u n i t s o f B T U/ (H R ) ( F T ) ( ° F ) .

Page 144: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X X X I V

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

M o l e F r a c t i o nI s o p r o p a n o l

M i x t u r e Thermal Conduc t i v i t y

L i q u i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0 0 . 0 5 9 3 9 7 . 6 2 9 0 . 0 6 0 6

0 . 2 5 1 7 0. 0601 97 . 41 3 0 . 0 6 0 9

0 . 4 0 3 7 0 . 0 6 1 3 97- 475 0 . 0 6 2 4

0 . 8045 0 .0 7 1 2 97 - 486 0 . 0 7 2 0

1. 0000 0 . 08 0 2 9 8 . 14 2 0 . 0 8 1 0

Thermal c o n d u c t i v i t y v a l u e s r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

128

Page 145: A Non-Equilibrium Thermodynamic Approach to the ...

APP ENDI X F

INDEX TO LITERATURE DATA

Act i v i t ySys t em D i f f u s i v i t y D e n s i t y C o e f f i c i e n t

M e t h a n o 1- Benzene 9 37 18

E t h a n o 1 - Benzene 2 37 ^1

P r o p a n o l - B e n z e n e * 37 ^2

I s o p r o p a n o l - B e n z e n e * 37 29

E t h a n o l - C y c l o h e x a n e * 37 ^0

P r o p a n o l - C y c l o h e x a n e * 37 28

I s o p r o p a n o l - C y c l o h e x a n e * *** 28

Me t h a n o l - C a r b o nT e t r a c h l o r i d e 1 37 22

E t h a n o l - C a r b o nT e t r a c h l o r i d e 21 37 37

P r o p a n o l - C a r b o nT e t r a c h l o r i d e ** 37 10

I s o p r o p a n o l - C a r b o nT e t r a c h l o r i d e ** ** /f 3

E s t i m a t e d f r o m d a t a o n t h e E t h a n o l - B e n z e n e S y s t e m .

E s t i m a t e d f r o m d a t a o n t h e E t h a n o l - C a r b o n T e t r a c h l o r i d

E s t i m a t e d f r o m d a t a o n t h e E t h a n o l - C y c l o h e x a n e S y s t e m .

1 2 9

Page 146: A Non-Equilibrium Thermodynamic Approach to the ...

APPENDIX G

SAMPLE CALCULATION

The m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m a t 0 . 7 mole f r a c t i o n

met hano l w i l l be used t o i l l u s t r a t e t h e c a l c u l a t i o n s .

A. I dea l M i x t u r e Thermal C o n d u c t i v i t y

k ,D = NAkJ + NBk B

k jD = ( 0 . 7 ) ( 0 . 1 1 5 ) + ( 0 . 3 ) ( 0 . 0 6 0 6 )

k D = 0 . 0 9 9 0 BTU/ (HR)(FT) (°F)

B. E x p e r i m e n t a l Excess Thermal C o n d u c t i v i t y

kE = k - k m m ID

kE = 0 . 0 7 2 3 - 0 . 0 9 9 0

kE = - 2 6 . 7 X 10"3 BTU/ (HR)(FT)(°F)

C. F r a c t i o n o f Monomer Al cohol in Pur e Al cohol

13° - CO 00

Y Y B A

(3° = -------- !---------( 7 . ^ 5 ) (23)

p° = 0 . 00583

1 3 0

Page 147: A Non-Equilibrium Thermodynamic Approach to the ...

131

D. F r a c t i o n o f Monomer Al c oho l in S o l u t i o n

•Ya0 =

Y Y B A

1 . 20

( 2 . 6 0 ) (23)

p = 0 . 02 0 1

E. P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y

Data n e c e s s a r y f o r t h i s c a l c u l a t i o n was i n t e r p o l a t e d f rom

l i t e r a t u r e d a t a r e p o r t e d f o r t h i s s y s t e m . See Appendi x F f o r

r e f e r e n c e s . The t he r modynami c f a c t o r , BD, was d e t e r m i n e d by

n u m e r i c a l d i f f e r e n t a t i o n o f t a b u l a r a c t i v i t y c o e f f i c i e n t d a t a . Al l

c a l c u l a t i o n s wer e p e r f o r me d on an IBM 7040 c ompu t e r programmed t o

d e t e r m i n e t h e b e s t f i t v a l u e f o r t h e hydr ogen bond e n e r g y . Data

n e c e s s a r y f o r t h e c a l c u l a t i o n i s summar i zed be low:

AHD = 4400 c a l / m o l e MD = 153*84 g / mo l eD D

D°b = 2 . 2 6 X 10"5cm2/ s e c p° = 0 .7 8 6 5 g / c c

R = 1 .987 c a l / m o l e °K T = 298°K

M = 3 2 . 0 4 g / mo l e p = 1 . 188 g / c c

D^g = 1 . 036 X 10 3 cm2/ s e c Bg = 0 . 2 7

E AHBMB°ABPA r NA ^ 1-^ DABPwAn - P W A+ p ( l - p ) W g ]|< = D D MD M £

RT2M2 i + / p ° dabpa ( 1 + / p ) 2 bb

kE = - ( 7 0 . 1 X 10“ 3 ) ( 0 . 6 0 3 0 - 0 . 21 1 0 )

kE = - 27 * 4 0 X 10“ 3 BTU/(HR)(FT) (°F)

Page 148: A Non-Equilibrium Thermodynamic Approach to the ...

1 3 2

F. P r e d i c t i o n o f M i x t u r e Thermal C o n d u c t i v i t y

k = kE + k m m 1D

k = - 0 . 0 2 7 ^ + 0 . 0 9 9 0m

km = 0 . 07 1 6 BTU/ (HR)(FT)(°F)

G. Per Cent E r r o r in P r e d i c t i n g M i x t u r e Thermal C o n d u c t i v i t y

k - k_ P r e d i c t e d Ac t ua l lnnE r r o r = ------------------------------------- X 100

^ A c t u a 1

( 0 . 0 7 1 6 - 0 . 0 7 2 3 ) (100) E r r o r = - --------- —-------—----------- —

0 . 0 7 2 3

E r r o r = - 0 . 57%

Page 149: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X H

NOMENCLATURE

Thermodynamic f a c t o r , d i me n s i o n 1 e s s

3O v e r a l l m o l a r c o n c e n t r a t i o n o f a l c o h o l , m o l e s / f t

Molar c o n c e n t r a t i o n o f a l c o h o l po l ymer o f c o m p l e x i t y i ,3

mo 1e s / f t3

Molar c o n c e n t r a t i o n o f monomer a l c o h o l , m o l e s / f t

3Molar c o n c e n t r a t i o n o f a v e r a g e a l c o h o l p o l yme r , m o l e s / f t

D e v i a t i o n c o n s t a n t o f t h e J o r d a n - C o a t e s e q u a t i o n , d i m e n s i o n -

l e s s

2Mutual d i f f u s i v i t y o f a b i n a r y m i x t u r e , FT /HR

Mutual d i f f u s i v i t y o f t h e s o l v e n t a t i n f i n i t e d i l u t i o n

in a l c o h o l , FT^/HR

S o r e t c o e f f i c i e n t , LB/HR FT°F

S e l f d i f f u s i o n c o e f f i c i e n t o f component 1 in a b i n a r y

m i x t u r e , FT2/HR

S e l f d i f f u s i o n c o e f f i c i e n t o f component 1 a t i n f i n i t e

2d i l u t i o n in component 2, FT /HR

2S e l f d i f f u s i o n c o e f f i c i e n t o f p u r e component 1, FT /HR

P a r t i a l e n p h a l p y o f component k on a mass b a s i s , BTU/LB

P a r t i a l mola l e n p h a l p y o f component k, BTU/mole

Page 150: A Non-Equilibrium Thermodynamic Approach to the ...

Molal hydr ogen bond e n e r g y , BTU/mole

Molal h e a t o f r e a c t i o n , BTU/mole

2G e n e r a l i z e d f l u x o f mas s , LB/HR FT

Reduced mass f l u x , LB/HR FT^

G e n e r a l i z e d f l u x o f h e a t , BTU/HR FT^

Reduced h e a t f l u x , BTU/HR FT^

Thermal c o n d u c t i v i t y , BTU/HR FT°F

Thermal c o n d u c t i v i t y o f t h e a l c o h o l and o f t h e s o l v e n t ,

r e s p e c t i v e l y , BTU/HR FT°F

Normal o r monomer t h e r ma l c o n d u c t i v i t y , BTU/HR FT°F

Monomer t he r ma l c o n d u c t i v i t y o f t h e a l c o h o l and of t h e

s o l v e n t , r e s p e c t i v e l y , BTU/HR FT°F

Pur e component t h e r m a l c o n d u c t i v i t y o f t h e a l c o h o l and

o f t h e s o l v e n t , r e s p e c t i v e l y , BTU/HR FT°F3

Chemical e q u i l i b r i u m c o n s t a n t , FT / mo l e

Exces s t he r ma l c o n d u c t i v i t y o f b i n a r y m i x t u r e , BTU/HR FT°F

E f f e c t i v e t he r ma l c o n d u c t i v i t y , BTU/HR FT°F

I dea l t he r ma l c o n d u c t i v i t y o f a b i n a r y m i x t u r e , BTU/HR FT°F

Thermal c o n d u c t i v i t y o f t h e l i q u i d m i x t u r e , BTU/HR FT°F

C o n t r i b u t i o n o f c h e mi c a l r e a c t i o n t o t h e e f f e c t i v e

t h e r ma l c o n d u c t i v i t y , BTU/HR FT°F

Thermal c o n d u c t i v i t i e s o f c omponent s 1 and 2 o f a b i n a r y

m i x t u r e , BTU/HR FT°F

C o n j u g a t e p h e n o m e n o l o g i c a l c o e f f i c i e n t s t o t h e t h e r mo ­

dynamic f o r c e s X. f o r t h e f l u x J.J k

Page 151: A Non-Equilibrium Thermodynamic Approach to the ...

C o n j u g a t e p h e n o m e n o l o g i c a l c o e f f i c i e n t s t o t h e t h e r m o ­

dynamic f o r c e s X. f o r t h e f l u x J J q

M o l e c u l a r w e i g h t o f t h e s o l v e n t , LB/mole

M o l e c u l a r w e i g h t o f component 2 o r t h e monomer a l c o h o l ,

LB/mo1e

Mole f r a c t i o n , d i me n s i o n 1 e s s

O v e r a l l mole f r a c t i o n o f t h e a l c o h o l and o f t h e s o l v e n t ,

r e s p e c t i v e l y , d i me n s i o n 1 e s s

Mole f r a c t i o n o f b i n a r y m i x t u r e componen t s 1 and 2,

r e s p e c t i v e l y , d i me n s i o n 1 e s s

Gas c o n s t a n t , 1 . 987 BTU/mole °R

A b s o l u t e t e m p e r a t u r e , °R 3

Molar vol ume, FT / mo l e

Mola r volume o f c omponent s 1 and 2 o f a b i n a r y m i x t u r e ,3

and o f t h e m i x t u r e , r e s p e c t i v e l y , FT / mo l e

Mass f r a c t i o n , d i m e n s i o n 1 e s s

Mass f r a c t i o n o f t h e a l c o h o l and o f t h e s o l v e n t , r e s p e c ­

t i v e l y , d i m e n s i o n 1 e s s

Mass f r a c t i o n o f c omponent s 1, 2 and Z, r e s p e c t i v e l y ,

d imens i on 1 e s s

Thermodynamic f o r c e a s s o c i a t e d w i t h c he mi c a l p o t e n t i a l

g r ad i e n t s

Reduced t he r modynami c f o r c e a s s o c i a t e d w i t h c he mi c a l

p o t e n t i a l g r a d i e n t s

Thermodynamic f o r c e a s s o c i a t e d w i t h t e m p e r a t u r e g r a d i e n t s

Page 152: A Non-Equilibrium Thermodynamic Approach to the ...

1 3 6

Reduced t he r modynami c f o r c e a s s o c i a t e d w i t h t e m p e r a t u r e

g r a d i e n t s

Greek Symbols

q ? Aver age s t o i c h e o me t r i c c o e f f i c i e n t

p Mass f r a c t i o n o f monomer a l c o h o l on a s o l v e n t f r e e

b a s i s , d i me n s i o n 1 e s s

P° Mass f r a c t i o n o f monomer a l c o h o l in p u r e a l c o h o l ,

d imens ion 1 e s s

y L i q u i d a c t i v i t y c o e f f i c i e n t

Y^ Yg L i q u i d a c t i v i t y c o e f f i c i e n t o f t h e a l c o h o l and o f t h e

s o l v e n t , r e s p e c t i v e l y

Y? L i q u i d a c t i v i t y c o e f f i c i e n t o f a l c o h o l a t i n f i n i t en

d i 1u t i on

A D i f f e r e n c e o r change in

p . Chemical p o t e n t i a l o f component j on a mass b a s i s ,

BTU/LB

pi Molal c h e mi c a l p o t e n t i a l o f component j , BTU/mole

3p D e n s i t y o f m i x t u r e , LB/FT

3p° D e n s i t y o f p u r e a l c o h o l , LB/FTr\

Page 153: A Non-Equilibrium Thermodynamic Approach to the ...

AUTOBIOGRAPHY

The a u t h o r was born J a n u a r y 13, 19^0, in S h r e v e p o r t , L o u i s i a n a ,

t h e y o u n g e s t o f t wi n son and d a u g h t e r t o W i l l i e Ga r l a n d and Edna

R u s s e l l B a r n e t t e . He a t t e n d e d grammar s c h o o l s in Minden and Co t t o n

V a l l e y , L o u i s i a n a . In 1957; he g r a d u a t e d f rom C o t t o n V a l l e y High

S c h o o 1.

In Se p t em b e r , 1957; he e n r o l l e d in L o u i s i a n a P o l y t e c h n i c

I n s t i t u t e . Whi l e an u n d e r g r a d u a t e , t h e a u t h o r was i n i t i a t e d i n t o

t h e honor s o c i e t i e s o f Tau Beta P i , Omicron D e l t a Kappa, and Phi

Kappa P h i . In Augus t o f 1961, he was g r a d u a t e d Cum Laude w i t h t h e

d e g r e e o f B a c h e l o r o f S c i e n c e in Chemical E n g i n e e r i n g .

The f o l l o w i n g S e p t e mb e r , t h e a u t h o r e n t e r e d g r a d u a t e s c hoo l a t

L o u i s i a n a S t a t e U n i v e r s i t y . In Augus t o f 1963; he r e c e i v e d t h e

M a s t e r o f S c i e n c e d e g r e e in t h e f i e l d o f Chemical E n g i n e e r i n g .

Whi l e c o m p l e t i n g c a n d i d a t e r e q u i r e m e n t s f o r t h e d e g r e e o f Doc t o r

o f P h i l o s o p h y , he met t h e f o r m e r Mis s Mary Ann Ross o f E s c a t a wp a ,

M i s s i s s i p p i . They were m a r r i e d in Au g u s t , 1965- The a u t h o r i s

c u r r e n t l y a c a n d i d a t e f o r t h e d e g r e e o f Do c t o r o f P h i l o s o p h y in

Chemical E n g i n e e r i n g .

Upon c o m p l e t i o n o f d e g r e e r e q u i r e m e n t s , t h e a u t h o r p l a n s t o

j o i n t h e r e s e a r c h s t a f f o f t h e E. I . Du Pont Chemical Company,

P l a s t i c s De pa r t me n t - Nylon I n t e r m e d i a t e s in Or ange , Te xa s .

1 3 7

Page 154: A Non-Equilibrium Thermodynamic Approach to the ...

E X A M I N A T I O N A N D T H E S I S R E P O R T

Candidate:

Major Field:

Title of Thesis

W i l l i e Jon B a r n e t te

Chem ical E n g in e e r in g

A N on-E qulibrium Thermodynamic Approach to the C o r r e la t io n and P r e d i c t i o n o f the Thermal C o n d u c t iv i ty o f B inary L iq u id S o lu t io n s C o n ta in in g Hydrogen Bonded S o lu t e s

Approved:

Q £ ...(£n. .LS .-1-' Major Prolessor andj Major Prolessor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

[ L i U ,

Date of Examination: January 9 , 1967


Top Related