+ All Categories
Home > Documents > A Non-Equilibrium Thermodynamic Approach to the ...

A Non-Equilibrium Thermodynamic Approach to the ...

Date post: 21-Dec-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
154
Louisiana State University LSU Digital Commons LSU Historical Dissertations and eses Graduate School 1967 A Non-Equilibrium ermodynamic Approach to the Correlation and Prediction of the ermal Conductivity of Binary Liquid Solutions Containing Hydrogen Bonded Solutes. Willie Jon Barnee Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: hps://digitalcommons.lsu.edu/gradschool_disstheses is Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and eses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Recommended Citation Barnee, Willie Jon, "A Non-Equilibrium ermodynamic Approach to the Correlation and Prediction of the ermal Conductivity of Binary Liquid Solutions Containing Hydrogen Bonded Solutes." (1967). LSU Historical Dissertations and eses. 1237. hps://digitalcommons.lsu.edu/gradschool_disstheses/1237
Transcript
Page 1: A Non-Equilibrium Thermodynamic Approach to the ...

Louisiana State UniversityLSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1967

A Non-Equilibrium Thermodynamic Approach tothe Correlation and Prediction of the ThermalConductivity of Binary Liquid SolutionsContaining Hydrogen Bonded Solutes.Willie Jon BarnetteLouisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion inLSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please [email protected].

Recommended CitationBarnette, Willie Jon, "A Non-Equilibrium Thermodynamic Approach to the Correlation and Prediction of the Thermal Conductivity ofBinary Liquid Solutions Containing Hydrogen Bonded Solutes." (1967). LSU Historical Dissertations and Theses. 1237.https://digitalcommons.lsu.edu/gradschool_disstheses/1237

Page 2: A Non-Equilibrium Thermodynamic Approach to the ...

This dissertation has been 6 7 —8 7 6 8microfilmed exactly as received

B A R N E T T E , W illie Jo n , 1940-A N O N -EQ U ILIBRIU M THERM ODYNAM IC A P ­PROACH TO TH E C O R R ELA TIO N AND PR ED IC TIO N O F TH E TH ER M A L CO NDUCTIVITY O F BINARY LIQUID SOLUTIONS CONTAINING HYDROGEN BONDED SOLU TES.

L o u is ia n a S ta te U n iv e rs i ty and A g r ic u l tu r a l and M ech an ica l C o lleg e , P h .D ., 1967 E n g in e e r in g , c h e m ic a l

University Microfilms, Inc., Ann Arbor, Michigan

Page 3: A Non-Equilibrium Thermodynamic Approach to the ...

A N o n - E q u i l i b r i u m Thermodynamic Approach t o t h e C o r r e l a t i o n and P r e d i c t i o n o f t h e

Thermal C o n d u c t i v i t y o f B i n a r y L i q u i d S o l u t i o n s C o n t a i n i n g Hydrogen Bonded S o l u t e s

A D i s s e r t a t i on

S u b m i t t e d t o t h e G r a d u a t e F a c u l t y o f t h e L o u i s i a n a S t a t e U n i v e r s i t y and

A g r i c u l t u r a l and Me cha n i ca l C o l l e g e in p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e of

Do c t o r o f P h i l o s o p h y

i n

The De pa r t me n t o f Chemical E n g i n e e r i n g

byW i l l i e Jon B a r n e t t e

B . S . , L o u i s i a n a P o l y t e c h n i c I n s t i t u t e , 1961 M. S . , L o u i s i a n a S t a t e U n i v e r s i t y , 1963

J a n u a r y , 1967

Page 4: A Non-Equilibrium Thermodynamic Approach to the ...

ACKNOWLEDGMENT

The a u t h o r w i s h e s t o e x p r e s s h i s g r a t i t u d e t o Dr. J e s s e C o a t e s ,

Head o f t h e De pa r t men t o f Chemical E n g i n e e r i n g , f o r h i s g u i d a n c e and

a s s i s t a n c e in t h i s r e s e a r c h .

The f i n a n c i a l a s s i s t a n c e o f t h e Humble Oi l Company and t h e

K a i s e r Aluminum C o r p o r a t i o n a r e a l s o a c k no w l ed g e d . G r a t e f u l

a c knowl edgme n t i s made t o t h e Dr. C h a r l e s E. C o a t e s Memor ial Fund,

d o n a t e d by George H. C o a t e s , f o r f i n a n c i a l a s s i s t a n c e in p u b l i s h i n g

t h i s d i s s e r t a t i o n .

The work o f Miss Lo i s Smyth in t y p i n g t h e f i n a l copy a l s o

d e s e r v e s s p e c i a l t h a n k s .

The a u t h o r i s d e e p l y i n d e b t e d t o h i s w i f e f o r h e r i n s p i r a t i o n

d u r i n g t i m e s o f d i s c o u r a g e m e n t f o r t h e a u t h o r .

Page 5: A Non-Equilibrium Thermodynamic Approach to the ...

T A B L E OF C O N T E N T S

ABSTRACT

CHAPTER

I INTRODUCTION

I I REVIEW OF PREVIOUS WORK

A. E x p e r i m e n t a l Methods f o r M e a s u r i n g Thermal Conduc t i v i t y

B. P r e d i c t i o n o f t h e Thermal C o n d u c t i v i t y o f Pu r e L i q u i d s

C. P r e d i c t i o n o f t h e Thermal C o n d u c t i v i t y o f B i n a r y M i x t u r e s

D. Thermal C o n d u c t i v i t y in R e a c t i n g M i x t u r e s

I I I THEORY AND APPLICATION OF NON-EQUILIBRIUM THERMODYNAMICS

A. I n t r o d u c t i o n

B. Ge ne r a l N o n - E q u i l i b r i u m Thermodynamic Theor y

C. A l t e r n a t e D e f i n i t i o n o f Thermodynamic F l u x e s

D. A p p l i c a t i o n t o T e r n a r y Sys t ems w i t h Chemical Equ i 1 i br i urn

IV THERMAL CONDUCTION IN CHEMICALLY REACTING LIQUID MIXTURES

A. I n t r o d u c t i o n

B. S i m p l i f i c a t i o n o f t h e Ge ne r a l N o n - E q u i l i b r i u m Thermodynamic R e l a t i o n s

Page 6: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R PAGE

C. E f f e c t i v e Thermal C o n d u c t i v i t y o f R e a c t i n gM i x t u r e s 27

D. Exc e s s Thermal C o n d u c t i v i t y in R e a c t i n gM i x t u r e s 28

E. R e l a t i o n o f Exc e s s Thermal C o n d u c t i v i t y t ot h e Monomer C o n c e n t r a t i o n 30

V EXPERIMENTAL APPARATUS 3k

A. Ge ne r a l 3k

B. Ge ne r a l D e s c r i p t i o n o f A p p a r a t u s 3k

C. D e t a i l e d D e s c r i p t i o n o f A p p a r a t u s k l

VI PROCEDURE ^6

VII EXPERIMENTAL RESULTS k3

A. Thermal C o n d u c t i v i t y f o r Al c oho l Sys t ems k3

B. Exces s Thermal C o n d u c t i v i t y 6k

VI I I DISCUSSION OF RESULTS 66

A. Ge ne r a l 66

B. S o u r c e s o f E r r o r 66

C. Compar i son o f P r e d i c t e d and E x p e r i m e n t a lExces s Thermal C o n d u c t i v i t y 68

D. Compar i son o f E s t i m a t e d Hydrogen BondE n e r g i e s w i t h A v a i l a b l e L i t e r a t u r e Va l ue s 32

E. U s e f u l n e s s o f t h e Method f o r P r e d i c t i n gThermal C o n d u c t i v i t y o f B i n a r y M i x t u r e s 95

IX CONCLUSIONS AND RECOMMENDATIONS 98

A. C o n c l u s i o n s 98

B. Recommendat ions f o r F u t u r e Work 98

i v

Page 7: A Non-Equilibrium Thermodynamic Approach to the ...

PAGE

SELECTED BIBLIOGRAPHY 101

APPENDIX

A REDUCED HEAT FLOW IN THERMALLY CONDUCTINGSYSTEMS 105

B RELATIONSHIP OF THE CHEMICAL POTENTIALS ATEQUILIBRIUM 108

C RELATIONSHIP OF THE PHENOMENOLOGICAL 'COEFFICIENT TO DIFFUSIVITY 112

D MODIFICATION OF THE CHAIN ASSOCIATIONTHEORY OF ALCOHOLS 115

E NON-TEMPERATURE CORRECTED EXPERIMENTALRESULTS 118

F INDEX TO LITERATURE DATA 129

G SAMPLE CALCULATION 130

H NOMENCLATURE 133

AUTOBIOGRAPHY 137

v

Page 8: A Non-Equilibrium Thermodynamic Approach to the ...

L I S T OF T A B L E S

TABLE

I Thermal C o n d u c t i v i t y Va l ue s f o r t h e M e t h a n o l - Benzene Sys t em

II Thermal C o n d u c t i v i t y Va l ues f o r t h e E t h a n o l - B e n z e n e Sys t em

I I I Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - B e n z e n e Sys t em

IV Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - B e n z e n e Sys t em

V Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C y c l o h e x a n e Sys t em

VI Thermal C o n d u c t i v i t y Va l ues f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em

VII Thermal C o n d u c t i v i t y Va l u e s f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

VII I Thermal C o n d u c t i v i t y Va l ues f o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

IX Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

X Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys tem

XI Thermal C o n d u c t i v i t y Va l ue s f o r t h eI s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

XII P r e d i c t e d Exces s Thermal C o n d u c t i v i t y f o r t h e M e t h a n o l - B e n z e n e Sys t em

XII I P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e E t h a n o l - B e n z e n e Sys t em

v i

PAGE

53

54

55

56

57

58

59

60

61

62

63

81

82

Page 9: A Non-Equilibrium Thermodynamic Approach to the ...

T A B L E

XIV

XV

XVI

XVI I

XVI I I

XIX

XX

XXI

XXI I

XXI 1 I

XXIV

XXV

XXVI

XXVI I

XXVI I I

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e P r o p a n o l - B e n z e n e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e I s o p r o p a n o l - B e n z e n e Sys tem

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e E t h a n o l - C y c l o h e x a n e System

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e P r o p a n o l - C y c l o h e x a n e Sys tem

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

P r e d i c t e d Ex c e s s Thermal C o n d u c t i v i t yf o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t yf o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

Hydrogen Bond E n e r g i e s f o r V a r i o u s Al c oho l Sys t ems

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e M e t h a n o l - B e n z e n e Sys tem

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - B e n z e n e System

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e Pr opa no l - Be n , z ene Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - B e n z e n e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C y c l o h e x a n e Sys tem

Page 10: A Non-Equilibrium Thermodynamic Approach to the ...

T A B L E

XXIX

XXX

XXXI

XXXI I

XXXI I I

XXXIV

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e Me t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ue s f o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

PAGE

123

124

125

126

127

128

v i i i

Page 11: A Non-Equilibrium Thermodynamic Approach to the ...

L I S T OF F I G U R E S

FIGURE ‘ PAGE

1 R e l a t i o n s h i p Between t h e F l u x e s andD r i v i n g F o r c e s in a B i n a r y Sys t em 3

2 T h e r m o c o n d u c t i m e t r i c A p p a r a t u s f o r L i q u i d s 35

3 Ge ne r a l View o f t h e A p p a r a t u s 36

k A p p a r a t u s in O p e r a t i o n 37

5 A p p a r a t u s D i s s a s s e m b 1ed 38

6 Top View o f t h e Hot Bar 39

7 Wate r Ba t hs 40

8 R e f r a c t o m e t e r Al

9 Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o no f Al c oho l f o r Benzene S o l u t i o n s 50

10 Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o no f Al c oho l f o r Cy c l o h e x a n e S o l u t i o n s 51

11 Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o no f Al cohol f o r Carbon T e t r a c h l o r i d e S o l u t i o n s 52

12 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o nMethanol f o r t h e M e t h a n o l - B e n z e n e Sys t em 69

13 Exc e s s Thermal C o n d u c t i v i t y Ve r s u s Mole F r a c t i o nEt h a n o l f o r t h e E t h a n o l - B e n z e n e Sys t em 70

1A Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o nP r o p a n o l f o r t h e P r o p a n o l - B e n z e n e Sys t em 71

15 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o nI s o p r o p a n o l f o r t h e I s o p r o p a n o l - B e n z e n e Sys t em 72

i x

Page 12: A Non-Equilibrium Thermodynamic Approach to the ...

F I G U R E

16 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n E t h a n o l f o r t h e E t h a n o l - C y c l o h e x a n e Sys t em

17 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n P r opa no l f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em

18 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - C y c l o h e x a n e Sys t em

19 Exces s Thermal C o n d u c t i v i t y Ver s us Mole F r a c t i o n Methanol f o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

20 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n E t h a n o l f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

21 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n P r opa no l f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

22 Exc e s s Thermal C o n d u c t i v i t y Ve r s us Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em

PAGE

73

7*+

75

76

77

78

79

X

Page 13: A Non-Equilibrium Thermodynamic Approach to the ...

ABSTRACT

The t he r ma l c o n d u c t i v i t y o f p u r e l i q u i d s and l i q u i d s o l u t i o n s

i s an i m p o r t a n t p h y s i c a l q u a n t i t y b o t h f rom t h e s t a n d p o i n t o f

p r a c t i c a l i n d u s t r i a l a p p l i c a t i o n s and f o r t h e i n s i g h t t h a t i t g i v e s

i n t o o t h e r t r a n s p o r t phenomena o f l i q u i d s . I n t e r m o 1 ecu 1 a r f o r c e s

e x i s t i n g be t ween m o l e c u l e s a r e i n t i m a t e l y and c o mp l e x l y r e l a t e d t o

t h e t he r ma l c o n d u c t i v i t y . Be c a us e o f t h e d i f f i c u l t y o f even an

a p p r o x i m a t e t r e a t m e n t o f t h e i n t e r a c t i n g f o r c e f i e l d s o f n number o f

m o l e c u l e s , t h e p r ob l e m o f c o r r e l a t i n g and p r e d i c t i n g t h e t he r ma l

c o n d u c t i v i t y o f b i n a r y s o l u t i o n s has been a p p r o a c h e d in t h i s i n ­

v e s t i g a t i o n f rom a m a c r o s c o p i c p o i n t o f v i ew b a s e d on n o n - e q u i l i b ­

r ium t he r modynami c p r i n c i p l e s .

Thermal c o n d u c t i v i t y me a s u r e m e n t s we r e made w i t h a p r e v i o u s l y

d e s i g n e d and t h o r o u g h l y t e s t e d p a r a l l e l p l a t e a p p a r a t u s . The

a p p a r a t u s has been shown t o y i e l d e x p e r i m e n t a l r e s u l t s w i t h an

e s t i m a t e d e r r o r o f ± 1. 5%-

Thermal c o n d u c t i v i t i e s o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e were

mea s u r ed f o r e l e v e n a 1c o h o l - i n e r t s o l v e n t s y s t e m s . The a l c o h o l

s y s t e m s s t u d i e d in t h i s i n v e s t i g a t i o n wer e m e t h a n o l , e t h a n o l ,

p r o p a n o l , and i s o p r o p a n o l , each in c o m b i n a t i o n w i t h t h e i n e r t

s o l v e n t s : b e n z e n e , c y c l o h e x a n e , and c a r b o n t e t r a c h l o r i d e .

Page 14: A Non-Equilibrium Thermodynamic Approach to the ...

P r i n c i p l e s o f n o n - e q u i l i b r i u m t he r modynami c s we r e used t o

d e r i v e g e n e r a l r e l a t i o n s f o r d e s c r i b i n g s i m u l t a n e o u s h e a t and mass

t r a n s f e r w i t h c h e mi c a l e q u i l i b r i u m f o r t e r n a r y s y s t e m s . In t h i s

i n v e s t i g a t i o n , t h e a 1c o h o l - i n e r t s o l v e n t s y s t e m i s c o n s i d e r e d t o

e f f e c t i v e l y be a t e r n a r y s y s t e m c o n s i s t i n g o f t h e monomer a l c o h o l

in c he mi c a l e q u i l i b r i u m w i t h t h e a v e r a g e po l ymer a l c o h o l , b o t h of

whi ch a r e d i l u t e d by t h e i n e r t s o l v e n t . C e r t a i n s p e c i f i c a s s u m p t i o n s

wer e i n t r o d u c e d whi ch r e d u c e d t h e h e a t f l u x e q u a t i o n t o a r e l a t i v e l y

s i m p l e fo rm. The p h e n o me n o l og i c a l c o e f f i c i e n t in t h e s i m p l i f i e d

h e a t f l u x e q u a t i o n was t hen r e l a t e d t o t h e mutua l d i f f u s i v i t y of

t h e s y s t e m and a t he r modynami c f a c t o r , which i s d e p e n d e n t upon t h e

l i q u i d p h a s e a c t i v i t y c o e f f i c i e n t .

The e f f e c t i v e t h e r m a l c o n d u c t i v i t y , d e f i n e d by a n a l o g y t o

F o u r i e r ' s law o f h e a t c o n d u c t i o n , was r e l a t e d t o t h e d e v i a t i o n

o f t h e t he r ma l c o n d u c t i v i t y of t h e m i x t u r e f rom t h e i d e a l t he r ma l

c o n d u c t i v i t y (mole f r a c t i o n a v e r a g e o f p u r e component v a l u e s ) .

T h i s d e v i a t i o n , whi ch i s t h e e x c e s s t h e r ma l c o n d u c t i v i t y o f t h e

m i x t u r e , was t h e n shown t o be p r e d i c t a b l e by an e q u a t i o n c o n t a i n i n g

t h e mutua l d i f f u s i v i t y , hydr ogen bond e n e r g y , d e n s i t y , and o t h e r

f a c t o r s r e l a t e d t o t h e c o n c e n t r a t i o n o f t h e monomer a l c o h o l in t h e

so 1u t i o n .

The d e r i v e d e q u a t i o n was t e s t e d and f ound t o p r e d i c t t h e t he r ma l

c o n d u c t i v i t y o f a 1c o h o l - i n e r t s o l v e n t m i x t u r e s w i t h an a v e r a g e e r r o r

o f l e s s t han one pe r c e n t o v e r t h e e n t i r e c o n c e n t r a t i o n r a n g e . The

mole f r a c t i o n a t which t h e e x c e s s t he r ma l c o n d u c t i v i t y i s maximum

Page 15: A Non-Equilibrium Thermodynamic Approach to the ...

was a c c u r a t e l y p r e d i c t e d and p r o v i d e s s t r o n g s u p p o r t i n g e v i d e n c e

f o r t h e mode 1.

A p p r o p r i a t e hydr ogen bond e n e r g y d a t a f o r some o f t h e a l c o h o l

s y s t e m s s t u d i e d were no t a v a i l a b l e . The e x p e r i m e n t a l l y d e t e r m i n e d

e x c e s s t h e r ma l c o n d u c t i v i t i e s were used t o e s t i m a t e hydr ogen bond

e n e r g i e s f o r a l l s y s t e m s . E s t i m a t e d v a l u e s and l i t e r a t u r e v a l u e s

o f hydr ogen bond e n e r g y f o r s e v e r a l s y s t e m s wer e compared and shown

t o be in good a g r e e m e n t .

In c o n c l u s i o n , t h e method d e v e l o p e d in t h i s i n v e s t i g a t i o n has

been shown t o a c c u r a t e l y p r e d i c t t h e c o m p o s i t i o n d e p e n d e n c e o f

t h e r m a l c o n d u c t i v i t y f o r a 1c o h o l - i n e r t s o l v e n t s y s t e m s . The h y d r o ­

gen bond e n e r g i e s e s t i m a t e d f rom e x c e s s t h e r ma l c o n d u c t i v i t y a r e

in good a g r e e m e n t w i t h i n d e p e n d e n t d e t e r m i n a t i o n s by o t h e r me t hods .

The method d e v e l o p e d f o r p r e d i c t i n g t h e c o m p o s i t i o n d e pe nde nc e o f

t h e t h e r m a l c o n d u c t i v i t y o f a l c o h o l s y s t e ms s h o u l d a l s o be a p p l i c a b

t o o t h e r t y p e s o f s y s t e m s . Sys t ems in which i n t e r a c t i o n s a r e

d e s c r i b a b l e by a s i n g l e c he mi c a l r e a c t i o n a r e ame na b l e t o a s i m i l a r

a n a l y s i s . T e s t i n g o f t h e method f o r s y s t e ms o t h e r t ha n t h e a l c o h o l

i n e r t s o l v e n t s y s t e m was n o t p o s s i b l e b e c a u s e o f i n s u f f i c i e n t d a t a .

Page 16: A Non-Equilibrium Thermodynamic Approach to the ...

D e d i c a t e d t o my w i f e ,

my m o t h e r , and t o t h e

memory o f my f a t h e r .

x i v

Page 17: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I

INTRODUCTION

The t h e r ma l c o n d u c t i v i t y o f l i q u i d s i s an i m p o r t a n t p h y s i c a l

q u a n t i t y bo t h f rom t h e s t a n d p o i n t o f p r a c t i c a l u s e in t h e s o l u t i o n

o f h e a t t r a n s f e r p r ob l e ms and f rom t h e i n s i g h t t h a t i t g i v e s i n t o

u n d e r s t a n d i n g o t h e r t r a n s p o r t phenomena.

The laws g o v e r n i n g t r a n s p o r t phenomena can be s t a t e d in t h e

f o l l o w i n g form:

, P r o p o r t i ona 1 i t y w Dr i vi ng,. , , nF l u x = ( M r - ) •v C o n s t a n t Fo r c e

F o u r i e r ' s law o f h e a t c o n d u c t i o n , f i r s t p o s t u l a t e d in 1822, and

F i c k ' s law o f d i f f u s ion, f o r m u l a t e d in 1855; a r e b o t h d e s c r i b e d by

e q u a t i o n ( ! - ! ) • The a s s u m p t i o n t h a t t h e d r i v i n g f o r c e f o r h e a t and

mass t r a n s f e r i s , r e s p e c t i v e l y , t h e g r a d i e n t o f t e m p e r a t u r e and t h e

g r a d i e n t o f c o n c e n t r a t ion, d e f i n e s t h e t h e r ma l c o n d u c t i v i t y and t h e

d i f f u s i v i t y o f t h e f l u i d .

I t i s i m p o r t a n t t o n o t e t h a t b o t h o f t h e s e p h e n o me n o l o g i c a l

laws assume a l i n e a r r e l a t i o n s h i p be tween t h e f l u x and t h e d r i v i n g

f o r c e . The e x t e n s i o n o f t h e i dea o f l i n e a r r e l a t i o n s h i p s t o i n c l u d e

c o n t r i b u t i o n s t o e a ch f l u x f rom a l l d r i v i n g f o r c e s has l ed t o t h e

p r e d i c t i o n of t h e S o r e t and Dufour e f f e c t s in b i n a r y s y s t e m s . The

Page 18: A Non-Equilibrium Thermodynamic Approach to the ...

2

c o u p l i n g o f f l u x - f o r c e p a i r s and t h e r e l a t i o n s h i p s e x i s t i n g be tween

t h e p h e n om e n o l o g i c a l c o e f f i c i e n t s r e s u l t i n g f rom t h i s p a i r i n g i s an

i m p o r t a n t a c h i e v e m e n t o f n o n - e q u i l i b r i u m t h e r m o d y n a m i c s . The i n t e r ­

c o n n e c t i o n s o f c o e f f i c i e n t s , known as t h e O n s a g e r ' r e c i p r o c a l

r e l a t i o n s , were f o r m u l a t e d in 1931 by Ons a ge r ba s ed upon t h e c o n c e p t

o f m i c r o s c o p i c r e v e r s i b i l i t y .

The r e l a t i o n s h i p s be t ween t h e f l u x e s and d r i v i n g f o r c e s in a

2b i n a r y s y s t e m a r e i l l u s t r a t e d in F i g u r e 1. The d i ag r a m a l s o

i n d i c a t e s t h e t r a n s p o r t c o e f f i c i e n t s a s s o c i a t e d w i t h t h e v a r i o u s

f o r c e s maki ng up e a ch f l u x . The S o r e t and Dufour e f f e c t s a r e shown

t o depend upon one a d d i t i o n a l t r a n s p o r t p r o p e r t y , D^, t h e S o r e t

c o e f f i c i e n t .

The d i s c u s s i o n up t o now has i m p l i c i t l y a ssumed n o n - r e a c t i n g

m i x t u r e s . The p o s s i b i l i t y o f c h e mi c a l r e a c t i o n can be i n c l u d e d in

t h e p r e v i o u s d i s c u s s i o n by t h e us e o f c h e mi c a l a f f i n i t i e s i n t r o d u c e d 3

by de Donder . As n o t e d e a r 1 i e r , n o n - e q u i 1 ibr iurn t he r modynami c s i s

b a s e d upon l i n e a r p h e n o m e n o l o g i c a l l aws , whi ch f o r c h e mi ca l r e a c t i o n s

i s , in many c a s e s , a g r o s s a p p r o x i m a t i o n . However , when t h e c o n d i t i o n s

a r e such t h a t t h e r e a c t a n t s and p r o d u c t s a r e v e r y c l o s e t o e q u i l i b r i u m ,

kt h e a s s u m p t i o n o f a l i n e a r law becomes e x a c t .

T h i s s t u d y i n v o l v e s t h e t he r ma l c o n d u c t i v i t y o f b i n a r y m i x t u r e s

o f a s s o c i a t e d l i q u i d s ( a l c o h o l s ) w i t h i n e r t , n o n - a s s o c i a t e d s o l v e n t s .

A l c o h o l s a r e known t o form r e l a t i v e l y s t r o n g hyd r ogen bonds and can5

be v i ewed a s an e q u i l i b r i u m m i x t u r e o f monomer and p o l y m e r s . The

c o m p o s i t i o n d e p e n d e n c e o f t h e t h e r m a l c o n d u c t i v i t y o f a l c o h o l s y s t e ms

i s shown in C h a p t e r IV t o be c a u s e d by t h e s h i f t in t h e e q u i l i b r i u m

Page 19: A Non-Equilibrium Thermodynamic Approach to the ...

3

C o n c e n t r a t i on Grad i e n t

T e m p e r a t u r e Grad i e n t

F o r c e sr ] uxes

Dufour E f f e c tC d J ]

F o u r i e r ' s LawHeatF l ux

S o r e t E f f e c tMassF l ux

szszas&xswrts tessKtsissKsssKrJsssxiestxi

F i g u r e 1. R e l a t i o n s h i p Between t h e F l u x e s and D r i v i n g F o r c e s in a B i n a r y Sys t em.

Page 20: A Non-Equilibrium Thermodynamic Approach to the ...

k

c o n c e n t r a t i o n o f monomer a l c o h o l .

The n o n - e q u i l i b r i u m t he r modynami c a n a l y s i s o f t h e p r ob l em o f

s i m u l t a n e o u s h e a t and mass t r a n s f e r w i t h c h e mi c a l e q u i l i b r i u m i s t h e

b a s i s f o r t h e p r e d i c t i o n o f t h e e f f e c t o f hydr ogen b o nd i ng on t h e

t he r ma l c o n d u c t i v i t y in a l c o h o l s y s t e m s . The e x c e s s t he r ma l c on ­

d u c t i v i t y , a s d e f i n e d in C h a p t e r IV, i s shown t o depend upon t h e

s q u a r e o f t h e e n e r g y a s s o c i a t e d w i t h h y d r oge n bond c l e v a g e . T h i s

d e p e n d e n c e makes t h e e x c e s s t h e r ma l c o n d u c t i v i t y s e n s i t i v e t o t h e

m a g n i t u d e o f t h e hydr ogen bond e n e r g y a s oppos e d t o o t h e r p h y s i c a l

q u a n t i t i e s a f f e c t e d by hydr ogen b o n d i n g .

Page 21: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I R E F E R E N C E S

L. O n s a g e r , " R e c i p r o c a l R e l a t i o n s in I r r e v e r s i b l e P r o c e s s e s , " P h y s i c a l Rev i ew, XXXVII ( 1 9 3 5 ) , 405•

2R. B. B i r d , W. E. S t e w a r t , and E. N. L i g h t f o o t , T r a n s p o r t

Phenomena (New York: John Wi l e y and Sons , I 9 6 0 ) , p. 565•3

Th. de Donder , L 1A f f i n i t e ( P a r i s : G a u t h i e r - V i 1 l a r s , 1927)-

4S. R. de Gr oo t and P. Mazur , N o n - E q u i l i b r i u m Thermodynamics

(Amsterdam: Nor t h Ho l l a n d P u b l i sh i ng C o . , 1962) , p~ 13&.

^G. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond (San F r a n c i s c o : W. H. Freeman and Co . , I 9 6 0 ) , p. 5.

6 l b i d . , p. 207-

5

Page 22: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I 1

REVIEW OF PREVIOUS WORK

A. Exper i m e n t a 1 Methods f o r Measur i ng T h e r ma 1 Conduct i vi t y

The s t u d y o f t h e t h e r ma l c o n d u c t i v i t y o f l i q u i d s began in t h e

e a r l y 18001s w i t h t h e q u a l i t a t i v e me a s u r e m e n t s o f Mur r ay , Rumford,

D a l t o n , Thomson and o t h e r s . ^ S i n c e t h a t t i m e , e x p e r i m e n t a l d e t e r ­

m i n a t i o n s o f t h e r m a l c o n d u c t i v i t y have improved t o t h e p o i n t where

me a s u r e me n t s a c c u r a t e t o b e t t e r t ha n 1% a r e commonly a v a i l a b l e .

The e x p e r i m e n t a l me t hods o f m e a s u r i n g t h e r m a l c o n d u c t i v i t y

can be c l a s s i f i e d i n t o s t e a d y s t a t e and t r a n s i e n t m e t h o d s . S t e a d y

s t a t e met hods have been t h e mos t w i d e l y used and can be s u b c l a s s i f i e d

a c c o r d i n g t o c e l l g e o me t ry . Ce l l g e o m e t r i e s c o n s i s t i n g o f p a r a l l e l ,

f l a t p l a t e s , c o n c e n t r i c c y l i n d e r s , and c o n c e n t r i c s p h e r e s have a l l

been u s e d . D i s c u s s i o n o f t h e a d v a n t a g e s and d i s a d v a n t a g e s o f

2v a r i o u s c e l l g e o m e t r i e s have been g i v e n by S a k i a d i s and C o a t e s ,

3 4T s e d e r b e r g , and T y r r e l l .

T r a n s i e n t met hods f o r m e a s u r i n g t h e r m a l c o n d u c t i v i t i e s have

j u s t r e c e n t l y been d e v e l o p e d t h a t a r e a c c u r a t e t o w i t h i n 1%. The

t r a n s i e n t me t hods have g e n e r a l l y been r e s t r i c t e d t o h o t w i r e c e l l s ' ^

and a r e c h a r a c t e r i z e d by t h e a b s o l u t e method o f Gi l lam and Lamm and

t h e r e l a t i v e method o f Grassman and S t r a u m a n n . ^

6

Page 23: A Non-Equilibrium Thermodynamic Approach to the ...

7

B. Pred i c t ion o f t h e T h e r ma 1 Conduc t i v i t y o f Pu r e L i q u i d s

The p r e d i c t i o n o f t h e t h e r ma l c o n d u c t i v i t i e s o f p u r e l i q u i d s

i s d i f f i c u l t due t o t h e compl ex n a t u r e o f t h e l i q u i d s t a t e . For t h i s

r e a s o n , t h e f i r s t p r o p o s a l s f o r p r e d i c t i n g t h e r ma l c o n d u c t i v i t i e s

were e m p i r i c a l c o r r e l a t i o n s , such a s t h o s e p r e s e n t e d by Weber and

o t h e r s . ^

S e m i t h e o r e t i c a 1 p r e d i c t i o n s o f t h e r ma l c o n d u c t i v i t y began w i t h

9 10t h e s i m p l e p h y s i c a l model s o f Br idgmann and Ka r dos . The Kardos

e q u a t i o n was m o d i f i e d by S a k i a d i s and C o a t e s ' ' and s u c c e s s f u l l y used

t o p r e d i c t t h e t h e r m a l c o n d u c t i v i t i e s o f p u r e o r g a n i c l i q u i d s w i t h

12an a v e r a g e e r r o r o f 6%. R e c e n t l y , Bondi i p u b l i s h e d a n o t h e r p r e ­

d i c t i o n method ba s ed on m o l e c u l a r s t r u c t u r e c o n t r i b u t i o n s and c l a i m s

an a v e r a g e e r r o r o f l e s s t h a n 8%.

Ri g o r o u s t h e o r e t i c a l e q u a t i o n s f o r p r e d i c t i n g t h e r ma l c o n d u c ­

t i v i t y o f p u r e l i q u i d s a r e c o n s i d e r a b l y more complex t h a n t h o s e

p r e v i o u s l y d i s c u s s e d . The f i r s t s e r i o u s a t t e m p t t o r i g o r o u s l y13

p r e d i c t t h e r m a l c o n d u c t i v i t i e s was made by Enskog, who e x t e n d e d

t h e d i l u t e gas t h e o r y t o t h e r e g i o n o f d e n s e g a s e s . S u b s e q u e n t

d e v e l o p m e n t s have been e s s e n t i a l l y a l o n g two l i n e s : t h e r i g o r o u s

s t a t i s t i c a l m e c h a n i c a l t h e o r i e s o f t r a n s p o r t p r o c e s s e s and t h e

r e p r e s e n t a t i o n o f t h e r m a l c o n d u c t i v i t y in t e r ms o f t h e f r e e volume

14t h e o r y o f t h e l i q u i d s t a t e .

E x a m i n a t i o n o f t h e p r e d i c t i o n s o f t h e s t a t i s t i c a l m e c h a n i c a l

and f r e e volume t h e o r i e s r e v e a l t h a t t h e p r e d i c t e d t h e r ma l c onduc ­

t i v i t i e s o f s i m p l e l i q u i d s a r e o f t e n a s much a s 100% in e r r o r . For

t h i s r e a s o n , t h e b e s t method f o r p r e d i c t i n g t h e t h e r m a l c o n d u c t i v i t y

Page 24: A Non-Equilibrium Thermodynamic Approach to the ...

8

o f p u r e l i q u i d s a p p e a r s t o be t h e s e m i t h e o r e t i c a 1 method p r o p o s e d

by S a k i a d i s and C o a t e s . ' " ’

C. Pred i c t ion o f t h e T h e r ma 1 Conduc t i v i t y o f B i n a r y M i x t u r e s

P r e d i c t i o n o f t h e t h e r m a l c o n d u c t i v i t y o f b i n a r y l i q u i d m i x t u r e s

has p r o c e e d e d a l o n g much t h e same l i n e s a s t h o s e f o r p u r e l i q u i d s .

The e m p i r i c a l e q u a t i o n s t h a t have been mos t t h o r o u g h l y t e s t e d a r e

16 17t h o s e o f F i l l i p p o v and Novos e l ova and J o r d a n and C o a t e s .

F i l l i p p o v and Novos e l ova d e v e l o p e d t h e f o l l o w i n g e m p i r i c a l

e q u a t i o n u s i n g d a t a on f o u r b i n a r y o r g a n i c m i x t u r e s :

km = k2W2 + k l Wl " 0 , 72 ( k2 “ k l^ W1W2 - ( 2_1)

where

k - t he r ma l c o n d u c t i v i t y

w - mass f r a c t i o n ‘

S u b s c r i p t s m - m i x t u r e

1 - component 1

2 - component 2

Component 2 i s t h e component h a v i n g t h e h i g h e r t h e r m a l c o n d u c t i v i t y .

18A l a t e r r e p o r t , b a s e d on e x p e r i m e n t a l d a t a f rom n i n e m i x t u r e s o f

a s s o c i a t e d l i q u i d s , i n d i c a t e d t h a t t h e v a l u e o f t h e c o n s t a n t in

e q u a t i o n (2-1) s h o u l d be O.76 r a t h e r t ha n 0 . 7 2 .

The J o r d a n - C o a t e s e q u a t i o n i s a l s o s u c c e s s f u l in p r e d i c t i n g t he

c o m p o s i t i o n d e p e n d e n c e o f t h e t he r ma l c o n d u c t i v i t y o f b i n a r y m i x t u r e s .

In t h i s s t u d y , a m o d i f i e d A r r h e n i u s e x p r e s s i o n p r o v i d e s t h e b a s i s

f o r t h e f o l l o w i n g e m p i r i c a l e q u a t i o n s :

Page 25: A Non-Equilibrium Thermodynamic Approach to the ...

9

In k = w , I n k, + w„ l n k„ + w. w„ l n D m I I 2 2 1 2 (2- 2 )

( k2 + k ])( 2 -3)

2

wher e

k - t h e r m a l c o n d u c t i v i t y

w - mass f r a c t i o n

S u b s c r i p t s m - m i x t u r e

1 - component 1

2 - component 2

The t h e r m a l c o n d u c t i v i t y mus t be in t h e u n i t s o f BTU/ (HR) (FT) (°F) .

E q u a t i o n ( 2 - 2 ) w i t h e q u a t i o n ( 2 - 3 ) p r e d i c t s t h e t h e r ma l c o n d u c t i v i t y

o f t we l v e b i n a r y o r g a n i c m i x t u r e s t o w i t h i n ±2% and n i n e b i n a r y

w a t e r - o r g a n i c m i x t u r e s t o w i t h i n ± 3%-

s a t i s f a c t o r y b e c a u s e i t f a i l s t o p r e d i c t t h a t t h e t h e r m a l c o n d u c ­

t i v i t y o f a m i x t u r e i s a l wa ys l e s s t ha n t h e mass f r a c t i o n a v e r a g e ,

even i f t h e two p u r e component t h e r m a l c o n d u c t i v i t i e s a r e t h e same

v a l u e . The J o r d a n - C o a t e s e q u a t i o n , whi ch i s ba s ed on more e x t e n s i v e

e x p e r i m e n t a l d a t a , does n o t have t h i s l i m i t a t i o n and w i l l p r o b a b l y

have a w i d e r r an g e o f a p p l i c a t i o n t ha n t h e F i 11 i p p o v - N o v o s e l o v a

equa t i o n .

S e m i t h e o r e t i c a 1 e q u a t i o n s f o r p r e d i c t i n g t h e r m a l c o n d u c t i v i t y

20 21 o f m i x t u r e s a r e g i v e n by Bondi i and T s e d e r b e r g . R e c e n t l y , a n o t h e r

22method ba s ed on t h e Kardos e q u a t i o n was p r o p o s e d by R o d r i g u e z . The

method p r e d i c t s t h e t h e r ma l c o n d u c t i v i t y o f e i g h t b i n a r y m i x t u r e s t o

w i t h i n an a v e r a g e e r r o r o f ±k%.

Bond i i 19 s u g g e s t s t h a t t h e F i 11 i p p o v - N o v o s e 1 ova e q u a t i o n i s n o t

Page 26: A Non-Equilibrium Thermodynamic Approach to the ...

1 0

R i go r o u s t h e o r e t i c a l e q u a t i o n s f o r b i n a r y m i x t u r e s have a l s o

been d e v e l o p e d . The s e e q u a t i o n s a r e , in g e n e r a l , e x t e n s i o n s o f t h e

r i g o r o u s t h e o r e t i c a l e q u a t i o n s d e v e l o p e d f o r p u r e l i q u i d s .

One r i g o r o u s t h e o r y has been used t o p r e d i c t s e m i q u a n t a t i v e

r e s u l t s f o r t h e b e n z e n e - c a r b o n t e t r a c h l o r i d e s y s t e m . T h i s t h e o r y ,

which i s bas ed on s t a t i s t i c a l m e c h a n i c a l a r g u m e n t s , was d e r i v e d by

23Bearman. With c e r t a i n s i m p l i f y i n g a s s u m p t i o n s , which a r e c o n s i s t e n t

2kw i t h t h e o r i g i n a l d e v e l o p m e n t , t h e f o l l o w i n g e q u a t i o n r e s u l t s :

k - t h e r ma l c o n d u c t i v i t y

N - mole f r a c t i o n

v - mo 1 a r v o 1ume

- s e l f d i f f u s i o n c o e f f i c i e n t o f component 1 in t h e m i x t u r e

D° - s e l f d i f f u s i o n c o e f f i c i e n t o f p u r e component 1

CODj - s e l f d i f f u s i o n c o e f f i c i e n t o f

component 1 a t ' i n f i n i t e d i l u t i o n

S u b s c r i p t s m - m i x t u r e

Due t o t h e c o m p l e x i t y o f t h e r e l a t i o n s h i p s and t h e l a r g e

m a g n i t u d e o f e r r o r , mos t o f t h e r i g o r o u s t h e o r i e s f o r b i n a r y l i q u i d

m i x t u r e s need f u r t h e r de v e l o p m e n t b e f o r e t h e y can be o f much

p r a c t i c a l u s e .

) + N . N- B , _ - 4 + N1 2 12 2 vm

( 2 - k )

wher e

1 - component 1

2 - component 2

Page 27: A Non-Equilibrium Thermodynamic Approach to the ...

D. T h e r ma 1 Conduc t i v i t y i n Re a c t i ng M i x t u r e s

E x p e r i m e n t a l and t h e o r e t i c a l work on c h e m i c a l l y r e a c t i n g

m i x t u r e s has p r i m a r i l y been c o n c e r n e d w i t h gas p h a s e r e a c t i o n s .

The e mp h a s i s on gas p h a s e r e a c t i o n s ha s come a b o u t b e c a u s e gas

r e a c t i o n s e x h i b i t t h e i n t e r e s t i n g phenomena o f v e r y l a r g e i n c r e a s e s

25in t h e r ma l c o n d u c t i v i t y . Most o f t h e work in t h i s a r e a has been

done on s y s t e m s in whi ch t h e o n l y s p e c i e s p r e s e n t a r e t h e r e a c t a n t s

and t h e p r o d u c t s . The e f f e c t o f an i n e r t gas on t h e t h e r m a l c o n d u c ­

t i v i t y o f t h e r e a c t i n g g a s e o u s m i x t u r e has been l a r g e l y i g n o r e d .2

H i r s c h f e l d e r s t a t e s t h a t w h i l e mos t o f t h e m a t h e m a t i c a l d i s c u s s i o n s

in t h e l i t e r a t u r e have been in t e r ms o f g a s e o u s m i x t u r e s , t h e y s h o u l d

a p p l y e q u a l l y a s w e l l t o l i q u i d s .

27T y r r e l l , u s i n g p r i n c i p l e s o f n o n - e q u i l i b r i u m t he r mo d y n a mi c s ,

d e r i v e d t h e e f f e c t i v e t h e r m a l c o n d u c t i v i t y f o r t h e c a s e o f a s e r i e s

o f p o l y me r s d i s s o c i a t i n g t o form a monomer. The e q u a t i o n i s compl ex ,

b u t can be used t o q u a l i t a t i v e l y p r e d i c t t h e h i g h v a l u e s o f t h e r m a l

c o n d u c t i v i t y in hyd r ogen bonded l i q u i d s . I t i s s i g n i f i c a n t t h a t t h e

unus ua l p o s i t i v e t e m p e r a t u r e c o e f f i c i e n t o f t h e r ma l c o n d u c t i v i t y in

w a t e r can be e x p l a i n e d on t h i s b a s i s .

A t h e o r y , whi ch i s s i m i l a r in many r e s p e c t s t o t h e one a bove ,

28was p r o p o s e d by Ei gen t o e x p l a i n t h e t h e r ma l c o n d u c t i v i t y o f w a t e r .

His t h e o r y has a s i m p l e k i n e t i c b a s i s and u s e s t h e s t r u c t u r a l t h e o r y

29of w a t e r p o s t u l a t e d by Eucken. E i g e n ' s r e s u l t s f o r t h e t e m p e r a t u r e

c o e f f i c i e n t and t h e v a l u e o f t h e t h e r m a l c o n d u c t i v i t y o f w a t e r a g r e e

e x t r e m e l y w e l l w i t h e x p e r i m e n t a l v a l u e s . The r e s u l t s i n d i c a t e t h a t

t h e model i s q u a n t i t a t i v e l y c o r r e c t . One we a kne s s o f t h e t h e o r y i s

Page 28: A Non-Equilibrium Thermodynamic Approach to the ...

1 2

t h a t n u m e r i c a l c a l c u l a t i o n s a r e d e p e n d e n t upon c e r t a i n p a r a m e t e r s

30whi ch mus t be e s t i m a t e d w i t h unknown a c c u r a c y .

The s u c c e s s o f n o n - e q u i l i b r i u m t h e r mo d y n a mi c s in p r e d i c t i n g

v a l u e s o f t h e r m a l c o n d u c t i v i t y in h y d r oge n bonded l i q u i d s l e a d s t o

t h e p o s s i b i l i t y o f d e s c r i b i n g , on t h e same b a s i s , t h e o b s e r v e d

c o m p o s i t i o n d e p e n d e n c e o f t h e r m a l c o n d u c t i v i t y in a 1 coho 1 - i n e r t

s o l v e n t s y s t e m s . The a 1c o h o l - i n e r t s o l v e n t s y s t e m s wer e c ho s e n f o r

s t u d y in o r d e r t o m i n i mi z e s o l u t e - s o l v e n t i n t e r a c t i o n s and t o be

r e a s o n a b l y c e r t a i n t h a t t h e o b s e r v e d d e v i a t i o n in t h e t h e r m a l c o n ­

d u c t i v i t y i s c a u s e d p r i m a r i l y by hyd r ogen bond c l e v a g e .

Page 29: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I I R E F E R E N C E S

B. C. S a k i a d i s and J . C o a t e s , A Li t e r a t u r e S u r ve y o f t h e Thermal C o n d u c t i v i t y o f L i q u i d s (Baton Rouge, La . : E n g i n e e r i n g Expe r i me n t S t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1952) , p. 3*

2I b i d . , p. 7.

3N. V. T s e d e r b e r g , T h e r ma 1 Conduct i vi t y o f Gases and Ligu ids

(Cambr i dge , Ma s s . ; The M . I . T . P r e s s , M a s s a c h u s e t t s I n s t i t u t e o f Te c h n o l o g y , 1965) , p. 1.

kH. J . V. T y r r e l l , D i f f u s i o n and Heat Flow in L i q u i d s (London:

B u t t e r w o r t h and Co . , 19 6 1) , p. 294.5

E. McLaugh l i n , "The Thermal C o n d u c t i v i t y o f L i q u i d s and Dense G a s e s , " Chemical Re v i e ws , LXIV ( 1 9 6 4 ) , 392.

^D. G. G i l l a n and 0. Lamm, " P r e c i s i o n Me as ur emen t s o f t h e Thermal C o n d u c t i v i t y o f C e r t a i n L i q u i d s u s i n g t h e Hot Wire Me t h o d , "Acta Chemica Scand i nav i c a , IX ( 1955) , 65 7 *

^P. Grassmann and W. S t r a uma nn , " E i n Ins t a t i o n a r e s V e r f a h r e n Zur Messung Der W a r m e l e i t f a h i g k e i t Von F 1u s s e n k e i t e n und G a s e n , "I n t e r n a t i o n a 1 J o u r n a 1 o f Heat and Mass T r a n s f e r , I ( 1 9 6 0 ) , 50 .

gT s e d e r b e r g , £ g . c i t . , p. 18 5 •

9P. W. Br idgmann, "Thermal C o n d u c t i v i t y o f L i q u i d s Under

P r e s s u r e , " P r o c e e d i n g s o f t h e Amer i can Academy o f A r t s and S c i e n c e s ,l i x ( 1923) , “ W T

' ^ T s e d e r b e r g , _0£ . c i t . , p . 190.

' ' b . C. S a k i a d i s and J . C o a t e s , " S t u d i e s o f Thermal C o n d u c t i v i t y o f L i q u i d s , " A . I . C h . E . J o u r n a l , I ( 1 9 5 5 ) , 281.

12A. A. B o n d i i , "Thermal C o n d u c t i v i t y o f Non A s s o c i a t e d L i q u i d s , "

A . I . C h . E . J o u r n a l , VI I I ( 1 9 6 2 ) , 610.

13J . 0. H i r s c h f e l d e r , C. F. C u r t i s s , and R. B. B i r d , M o l e c u l a r The or y o f Gases and L i q u i d s (New York: John Wi l ey and Sons , 195^-), p- 64-5.

13

Page 30: A Non-Equilibrium Thermodynamic Approach to the ...

1 4

1 4 McLaugh l i n , j3g. c i t . , 402.

' ^ S a k i a d i s and C o a t e s , A.J_._Ch._E. J o u r n a 1, I ( 1 9 5 5 ) , 275-

16 L. P. F i l l i p p o v and N. S. N o v o s e l o v a , "The Thermal C o n d u c t i v i t y o f S o l u t i o n s o f Normal M i x t u r e s , " V e s t n i k Moskovskogo U n i v e r s i t e t a , S e r i y a F i z i k o - M a t e n a t e c h e s k i k h i E s t e s t v e n n y k k Nauk No.^ 2 , X ( 1955) ,37-

^ H . B- J o r d a n , Pred i c t ion o f T h e r ma 1 Conduc t i v i t y o f Mi s c i b l e B i n a r y L i qu i d M i x t u r e s f rom t h e Pu r e Component Va1ues ( Ma s t e r s T h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 19"6l) , p. 6.

18 L. P. F i l l i p p o v , "Thermal C o n d u c t i o n o f S o l u t i o n s o f A s s o c i a t e d L i q u i d s , " Ve s t n i k Moskovskogo Un i v e r s i t e t a , S e r i ya F i z i ko- M a t e n a t e c h - e s k i k h i E s t e s t v e n n y k k Nauk No. 5, X ( 19 5 5 ) , 6 7 .

1 9 Bondi i , _0£ . c i t . , 614.

2 0 , . ,I b i d .

21 T s e d e r b e r g , _og. c i t . , p . 218.

22 H. V. R o d r i g u e z , Mol e c u l a r F i e l d R e l a t i onsh i ps t o L i q u i d V i s c o s i t y , Compress i b i 1 i t y , and P r e d i c t i on o f T h e r ma 1 Conduc t ivi t y o f B i na r y L i q u i d M i x t u r e s (Ph.D. D i s s e r t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1962) , p. 10.

23 R. J . Bearman, " S t a t i s t i c a l Me c ha n i c a l The o r y o f t h e Thermal C o n d u c t i v i t y o f B i n a r y L i q u i d S o l u t i o n s , " J o u r n a 1 o f Chem i c a 1 Phys i c s , XXIX ( 1 9 5 8 ) , 1278 .

24Mc La ugh l i n , _og. c i t . , 416 .

25 J . N. B u t l e r and R. S. Brokaw, "Thermal C o n d u c t i v i t y o f Gas M i x t u r e s in Chemical E q u i l i b r i u m , " J o u r n a l o f Chemica l P h y s i c s ,XXVI ( 1 9 5 7 ) , 1641.

26 J . 0. H i r s c h f e 1d e r , " He a t T r a n s f e r in C h e m i c a l l y R e a c t i n g M i x t u r e s , " Jou r n a 1 o f C h e m i c a 1 Phys i c s , XXVI ( 1 9 5 7 ) , 274.

27T y r r e l l , og . c i t . , p . 303 -

28 M. E i g e n , " Zur T h e o r i e d e r W a r m e l e i t f a h i g k e i t de s W a s s e r , " Z e i t s c h r i f t f u r E l e k t r o c h e m i e , LVI ( 1 9 5 2 ) , 17 6 .

29 A. Eucken, " A s s o z i a t i o n in F 1u s s e n k e i t e n , " Z e i t s c h r i f t f u r E 1e k t r o c h e m i e , L l l ( 1 9 4 8 ) , 255-

30T y r r e l l , j}g. c i t . , p. 306.

Page 31: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R I I I

THEORY AND APPLICATION OF NON-EQUILIBRIUM THERMODYNAMICS

A. I n t r o d u c t i on

T h i s c h a p t e r d e a l s w i t h t h e t h e o r y and a p p l i c a t i o n o f non­

e q u i l i b r i u m t he r modynami c s t o t h e p r ob l e m o f s i m u l t a n e o u s h e a t and

mass t r a n s f e r . In p a r t i c u l a r , g e n e r a l e q u a t i o n s a r e g i v e n whi ch a r e

a p p l i c a b l e f o r t e r n a r y s ys t e ms , w i t h c he mi ca l e q u i l i b r i u m be tween

two o f t h e c o mpone n t s . The s e g e n e r a l r e l a t i o n s h i p s a r e s i m p l i f i e d

in C h a p t e r IV by c e r t a i n a s s u m p t i o n s , whi ch w i l l p e r m i t a t e s t of

t h e i r v a l i d i t y f o r t h e a 1c o h o l - i n e r t s o l v e n t s y s t e m s .

B. Genera 1 Non- Egu i 1 i b r i urn Thermodynami c The or y

The t h e o r y o f n o n - e q u i l i b r i u m t he r modynami c s has been d e v e l o p e d

t o p r o v i d e a m a c r o s c o p i c d e s c r i p t i o n o f i r r e v e r s i b l e p r o c e s s e s .

Heat c o n d u c t i o n , d i f f u s i o n , c he mi c a l r e a c t i o n , and v i s c o u s f low^

a r e a few o f t h e i r r e v e r s i b l e phenomena f o r wh i c h t h e t h e o r y i s

a p p 1 i ca b 1e.

The f o u n d a t i o n o f n o n - e q u i l i b r i u m t he r modynami c s i s a g e n e r a l i ­

z a t i o n o f t h e s econd law o f t he r mo d y n a mi c s , whi ch a s s e r t s t h a t t h e

r a t e o f e n t r o p y p r o d u c t i o n in a c l o s e d s y s t e m u n d e r g o i n g i r r e v e r s i b l e

2t r a n s f o r m a t i o n s i s p o s i t i v e . Modern t h e o r i e s a l s o make t h e a d ­

d i t i o n a l h y p o t h e s e s o f l i n e a r p h e n o me n o l o g i c a l laws and t h e v a l i d i t y

3o f t h e Ons age r r e c i p r o c a l r e l a t i o n s .

Page 32: A Non-Equilibrium Thermodynamic Approach to the ...

The l i n e a r p h e n o m e n o l o g i c a l laws a s used in t h e modern t h e o r y

o f t r a n s p o r t - p r o c e s s e s a r e l o g i c a l e x t e n s i o n s o f F o u r i e r ' s law o f

h e a t c o n d u c t i o n and F i c k ' s law o f d i f f u s i o n . They a r e r e p r e s e n t e d

by t h e f o l l o w i n g e q u a t i o n ;

NJ = £ L, X (k = 1 , 2 . . . N) • ( 3 -1 )

k j = 1 kj j

In e q u a t i o n ( 3 - 1 ) ; r e p r e s e n t s t h e f l u x o f m a t e r i a l and t h e X^ 1s

r e p r e s e n t t h e t he r modynami c f o r c e s c a u s i n g t h e f l ow , J ^ . The q u a n t i t i e s

L^. a r e c a l l e d t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s and a r e r e l a t e d

t o t h e c o e f f i c i e n t s o f t h e r ma l c o n d u c t i v i t y and d i f f u s i o n . The

r e l a t i o n ( 3 - 1 ) i s r e f e r r e d t o a s a p h e n o m e n o l o g i c a l e q u a t i o n .

I t w i l l be more c o n v e n i e n t in l a t e r d i s c u s s i o n s t o d i f f e r e n t i a t e

be t ween t h e t h e r ma l t he r modynami c f o r c e and t h e t he r modynami c f o r c e s

a r i s i n g f rom t h e c he mi c a l p o t e n t i a l s . The t h e r ma l f l u x , ; t h e

t h e r ma l f o r c e , X ; and t h e a s s o c i a t e d p h e n o m e n o l o g i c a l c o e f f i c i e n t s4

may be i n t r o d u c e d i n t o e q u a t i o n ( 3 -1 ) t o g i v e t h e f o l l o w i n g r e s u l t :

NFlow o f M a t e r i a l = J. = £ L. .X. + L. X , ( 3 -2 )

k j _ , k_l J kq q

NFlow o f Heat = J = £ L .X. + L X . ( 3-3)

q j =1 q j j qq q

A f t e r t h e i n t r o d u c t i o n o f l i n e a r p h e n o m e n o l o g i c a l e q u a t i o n s ,

t h e Ons age r r e c i p r o c a l r e l a t i o n s a r e g i v e n by;

Page 33: A Non-Equilibrium Thermodynamic Approach to the ...

T h i s r e c i p r o c a l r e l a t i o n i s v a l i d p r o v i d e d t h e c o r r e c t c h o i c e s o f

t he r modynami c f o r c e s , X^, and t h e mass f l o w , J ^ , a r e made.

T y r r e l l ^ shows t h a t t h e c o r r e c t c h o i c e s o f f o r c e t e r ms f o r t h e

Ons age r r e l a t i o n s t o be v a l i d i s g i v e n by:

Xq = - ( g r a d T ) / T , ( 3 - 5 )

Xj = - g r a d ( p V T ) , ( 3- 6 )

wher e T i s t h e a b s o l u t e t e m p e r a t u r e and p,. i s t h e c he mi ca l p o t e n t i a l

o f component j on a mass b a s i s .

The t he r modynami c f o r c e s g i v e n by e q u a t i o n s ( 3 -5 ) and ( 3 -6)

a r e p r o p e r c h o i c e s o n l y i f t h e f l u x e s , and J , a r e r e f e r e n c e d

t o a f i x e d c o - o r d i n a t e s y s t e m . For c e r t a i n a p p l i c a t i o n s , i t may be

more c o n v e n i e n t t o d e f i n e t h e f l u x e s on a d i f f e r e n t b a s i s . A change

in f l u x b a s i s w i l l n e c e s s i t a t e a change in t he r modynami c f o r c e s in

o r d e r t o keep t h e r a t e o f e n t r o p y p r o d u c t i o n i n v a r i a n t and t h e

Ons age r r e c i p r o c a l r e l a t i o n s v a l i d .

C. A 1 t e r n a t e Def i n i t ion o f Thermodynamic F 1uxes

As s t a t e d in s e c t i o n B, f o r c e r t a i n a p p l i c a t i o n s a change in

f l u x b a s i s i s c o n v e n i e n t . For most h e a t and mass t r a n s f e r p r o b l e ms ,

new f l u x e s can be d e f i n e d a s f o l l o w s :

Page 34: A Non-Equilibrium Thermodynamic Approach to the ...

1 8

The s e new f l u x e s r e s u l t in t h e f o l l o w i n g d e f i n i t i o n s f o r t h e new

c o n j u g a t e t he r modynami c f o r c e s : "

X' = - ( g r a d T ) / T , ( 3-9)H

X! = - ( g r a d M - j ^ p / T , ( 3 -10)

whe r e t h e ( g r a d u , . ) _ „ i n d i c a t e s t h a t t h e d e r i v a t i v e i s t a k e n a tJ T,P

c o n s t a n t t e m p e r a t u r e and p r e s s u r e . The symbol h^ in e q u a t i o n ( 3 -7)

r e p r e s e n t s t h e p a r t i a l e n p h a l p y o f component k on a mass b a s i s . The

the r modynami c f o r c e s , and X j , a r e t o be used in f l u x e q u a t i o n s

e x a c t l y a n a l o g o u s t o e q u a t i o n s ( 3 -2 ) and ( 3 - 3 ) •

When t h e c a s e o f z e r o b u l k f l o w i s c o n s i d e r e d , t h e f l u x e q u a t i o n s

w r i t t e n in t e r ms o f t h e t he r modynami c f o r c e s , d e f i n e d by e q u a t i o n s

6 7( 3 - 9 ) and ( 3 - 1 0 ) , a r e g i v e n by f o l l o w i n g e q u a t i o n s : ;

Jk " ~ j S i Lk j [ ( g r a d |1j ) T , R - (9ral i N) TJ P > Lkq ' CaL T ' T> ' <3- n )

55 ~ T | Lq j [ ( 9 r a d k,j ) T , p ' ( g r a d T> ’ <3- | 2 )

wher e t h e d e f i n i t i o n o f t h e r e d u c e d h e a t f l u x , J ^ , i s g i v e n by

e q u a t i o n ( 3 - 7 ) * E q u a t i o n s (3-11) and ( 3 - 12 ) a r e t h e g e n e r a l m u l t i -

component e x p r e s s i o n s r e l a t i n g t h e f l o w s o f h e a t and mass t o t h e

a p p r o p r i a t e p h e n o me n o l o g i c a l c o e f f i c i e n t s .

D. Appl i c a t ion t o T e r n a r y Sys t ems w i t h Chem i c a 1 Equ i 1 i b r i urn

The a p p l i c a t i o n o f t h e g e n e r a l m u l t i c o m p o n e n t e x p r e s s i o n s f o r

"See Appendi x A f o r d e r i v a t i o n .

Page 35: A Non-Equilibrium Thermodynamic Approach to the ...

h e a t and mass t r a n s f e r t o t h e s p e c i f i c c a s e o f a t e r n a r y s y s t e m

w i t h c h e mi ca l e q u i l i b r i u m i s d e v e l o p e d in t h i s s e c t i o n . In a l l

d e v e 1opmen t s , t h e s u b s c r i p t s 1 and 2 r e p r e s e n t s o l u t e s whi ch a r e

d i l u t e d by an i n e r t s o l v e n t , component 3- Components 1 and 2 a r e

assumed t o be in c h e mi c a l e q u i l i b r i u m a s r e p r e s e n t e d by t h e c he mi c a l

r e a c t i o n :

A, - a A2 . ( 3 -13)

For t e r n a r y s y s t e m s , t h e g e n e r a l r e l a t i o n s h i p s d e v e l o p e d in s e c t i o n

C o f t h i s c h a p t e r r e d u c e t o t h e f o l l o w i n g s e r i e s o f e q u a t i o n s ;

J 2 “ " L 2 q ( g r a d T ) / T " L 2 2 ^ 9 r a d ^ T , P “ ^ 9 r a d ^ P t ^

- L 2 3 [ ( g r a d M-3 ) T ^ p - ( g r a d jj. 1) T p ] , ( 3 - 1 * 0

J 3 = - L 3 q ( g r a d T ) / T - L3 2 [ ( g r a d |X2 ) T ^ p - ( g r a d M-! ) T p ]

- L 3 3 [ ( g r a d |J.3 ) T p - ( g r a d | J . , )T p ] , ( 3 - 1 5 )

J j = - J 2 ~ d 3 ’ ( 3 - 1 6 )

J q = “ Lq q ( g r a d T ) / T - Lq 2 [ ( g r a d P 2 ) - ^ p - ( g r a d | ^ ) T ^ p ]

- L q 3 [ ( g r a d ^ 3 ) T ^ p - ( g r a d • ( 3 - 1 7 )

The mass f l u x o f component 1 can be w r i t t e n in t h e s i m p l i f i e d form

g i v e n by e q u a t i o n ( 3 -16) b e c a u s e o f t h e c o n d i t i o n o f z e r o b u l k f l o w .

The Gibbs-Duhem r e l a t i o n a t c o n s t a n t t e m p e r a t u r e and p r e s s u r e ,

W, ( g r a d | i j ) + W2 ( g r a d H2) T p + W ^ g r a d P<3) T p = 0 , ( 3 -18 )

Page 36: A Non-Equilibrium Thermodynamic Approach to the ...

2 0

and t h e Ons a ge r r e l a t i o n , e q u a t i o n (3-^+), w i l l a l l o w s i m p l i f i c a t i o n

o f e q u a t i o n s ( 3 - 1^ ) t h r o u g h ( 3 - 1 7 ) - The Gibbs-Duhem r e l a t i o n ,

e q u a t i o n ( 3 - 1 8 ) , i s w r i t t e n in t e r ms o f t h e mass f r a c t i o n , W, o f

t h e compone n t s . Us i ng t h e Gibbs-Duhem and Ons age r r e l a t i o n s a l l o w s

t h e h e a t and mass f l u x e s t o be w r i t t e n in t h e f o l l o w i n g forms;.

J 2 = - L 2 q ( g r a d T ) / T - [ L 2 2 - L2 3 W2 / W 3 ] ( g r a d lx2 ) T ^ p

+ [ L 2 2 + L2 3 + L2 3 Wj / W 3 ] ( g r a d p ^ ) . ^ , ( 3 - 1 9 )

J 3 = - ( gr a d T ) / T - [ L23 - ( g r a d P2 ) - ^ p

+ [ L 2 3 + L3 3 + L3 3 W] / W 3 ] ( g r a d m-1 ) t p , ( 3 - 2 0 )

J q " - Lq q < g r a d T ) / T - [ L 2 q ‘ L3 q W2 / W 3 ] ( g r a d

+ ^ L2q + L3qW| /W3 ] ( 9 r ad ' ( 3 -21)

With t h e a s s u m p t i o n o f c he mi c a l e q u i l i b r i u m be t ween component sm.1*

1 a n d 2 , t h e ( g r a d P 2 ) y ( 9 r a c * M' ] ) y p a n c * ( g r a d T) a r e r e l a t e d b y "

AH( g r a d p 2 ) T p - ( g r a d p , ^ p = — - ■ (■■9--a-d- U ( 3 -22 )

3 3 ckM2 T

whe r e AHD i s t h e s t a n d a r d mo l a r h e a t o f r e a c t i o n a p p r o p r i a t e f o r t h e

c h e mi c a l r e a c t i o n d e f i n e d by e q u a t i o n ( 3 - 1 3 ) - The s t o i c h i o m e t r i c

c o e f f i c i e n t , a , and m o l e c u l a r w e i g h t , M2 , a r e a l s o d e f i n e d by t h e

same c h e mi c a l r e a c t i o n .

See Appendi x B f o r d e r i v a t i o n .

Page 37: A Non-Equilibrium Thermodynamic Approach to the ...

The ( g r a d (j,, ) may be e l i m i n a t e d f rom t h e e q u a t i o n s (3 -19)I I ; r

t h r o u g h ( 3 - 21 ) t o g i v e t h e g e n e r a l r e l a t i o n s a p p r o p r i a t e f o r h e a t

and mass t r a n s f e r in a t e r n a r y s y s t e m w i t h c he mi c a l e q u i l i b r i u m .

The s e r e l a t i o n s a r e summar i zed by t h e f o l l o w i n g s e t o f e q u a t i o n s :

L „ A H d A H d W, , ,

J 2 = — ( g r a d ^ 2 ) T , P “ [ L 2q+(~ ) L22+(~ ) ( , + T ) L33] ' ( 3 -23)

L „ A H d AH W, , ,J = — ( g r a d p ) [ L +(— * ) ! _ + ( — ^) (1+ , ( 3. 2/f)

W3 att2 ^ qM2 W3 T

L -= A H d A H d W, , , T xJ , = ^ ( g r a d p 2 ) [L + ( * ) L +(- 5 ) 0 + - i ) L 3 . ( 3 - 25 )

W3 -i W3 T

S i m p l i f i c a t i o n o f t h e s e e q u a t i o n s and a p p l i c a t i o n t o p r e d i c t i n g

t h e c o m p o s i t i o n d e p e n d e n c e o f t he r ma l c o n d u c t i v i t y in a l c o h o l s y s t e ms

i s d i s c u s s e d in C h a p t e r IV. I t i s i m p o r t a n t t o n o t e t h a t t h e

e q u a t i o n s g i v e n a bove a r e e x a c t d e s c r i p t i o n s f o r h e a t and mass

t r a n s f e r in t e r n a r y s y s t e m s and t h a t no a s s u m p t i o n s beyond t h o s e

n e c e s s a r y f o r t h e d e v e l o p m e n t o f n o n - e q u i l i b r i u m t he r modynami c s

have been made. The m a j o r d i f f i c u l t y in t h e u s e o f t h e s e e q u a t i o n s

l i e s in r e l a t i n g t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s w i t h t h e e x p e r i ­

m e n t a l l y m e a s u r a b l e q u a n t i t i e s o f t he r ma l c o n d u c t i v i t y , d i f f u s i v i t y ,

and v a r i o u s c r o s s c o e f f i c i e n t s .

Page 38: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R 1 I 1 R E F E R E N C E S

' s . R. de Gr oo t and P. Mazur , Non- E q u i l i b r i u m Thermodynamics (Amsterdam: Nor t h Ho l l a n d P u b l i s h i n g C o . , 1962) , p. 6.

2H. J . V. T y r r e l l , D i f f u s i o n and Heat Flow in L i q u i d s (London:

B u t t e r w o r t h and Co . , 1961) , p~. i l .

3The t he r modynami c s o f t r a n s p o r t p r o p e r t i e s has been d e v e l o p e d

w i t h o u t t h e a s s u m p t i o n o f O n s a g e r ' s r e c i p r o c a l r e l a t i o n s . See R. J . Bearman, " S t a t i s t i c a l Me c ha n i c a l The o r y o f T r a n s p o r t P r o c e s s e s , " J o u r n a l o f Chemical P h y s i c s , XXVIII ( 1958 ) , 662.

4T y r r e l l , _op. c 11 . , p. 9-

^ I b i d . , p . 16.g

R. B. B i r d , W. E. S t e w a r t , and E. N. L i g h t f o o t , T r a n s p o r t Phenomena (New York: John Wi l ey and Sons , I 9 6 0 ) , p. 501 .

^ T y r r e l l , c i t . , p. 33-

2 2

Page 39: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R IV

THERMAL CONDUCTION IN CHEMICALLY REACTING LIQUID MIXTURES

A• I n t r o d u c t i on

In C h a p t e r I I I , g e n e r a l e q u a t i o n s f o r t h e d e s c r i p t i o n o f h e a t

and mass t r a n s f e r f o r t e r n a r y s y s t e m s were d e v e l o p e d . The s i m p l i ­

f i c a t i o n o f t h e g e n e r a l r e l a t i o n s o f h e a t and mass f l u x t o t h e

p h e n o me n o l o g i c a l c o e f f i c i e n t s and a p p l i c a t i o n s t o p r e d i c t i n g t h e

v a r i a t i o n o f t h e r m a l c o n d u c t i v i t y in a l c o h o l s y s t e m s i s t h e o b j e c t

o f t h i s c h a p t e r .

B. S imp!i f i c a t ion o f t h e Genera 1 Non- Equ i 1 i br i urn Thermodynam i c

R e l a t i ons

The g e n e r a l e q u a t i o n s r e l a t i n g t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s

a r e complex and a r e n o t r e a d i l y u s e a b l e f o r most p r o b l e m s . T h i s

s e c t i o n d e a l s w i t h c e r t a i n a s s u m p t i o n s whi ch r e d u c e t h e g e n e r a l

r e l a t i o n s h i p s t o much s i m p l e r e x p r e s s i o n s and w i l l p e r m i t a s u b s e ­

q u e n t t e s t f o r t h e i r v a l i d i t y w i t h e x p e r i m e n t a l t h e r m a l c o n d u c t i v i t y

d a t a f rom a 1c o h o l - i n e r t s o l v e n t s y s t e m s . The a s s u m p t i o n s t h a t w i l l

be made do n o t have a r i g o r o u s b a s i s , b u t seems t o r e p r e s e n t a

r e a s o n a b l e a p p r o x i m a t i o n t o t h e t r u e p i c t u r e o f t h e r m a l c o n d u c t i o n

in a l c o h o l s y s t e m s .

The f i r s t a s s u m p t i o n w i l l be t o s e t t h e mass f l u x and t h e g r a d i e n t

of t h e c he mi ca l p o t e n t i a l o f t h e s o l v e n t e q u a l t o z e r o . Us i ng t h i s

2 3

Page 40: A Non-Equilibrium Thermodynamic Approach to the ...

a s s u m p t i o n , t h e r e l a t i o n s h i p be tween t h e g r a d i e n t s o f t h e c he mi ca l

p o t e n t i a l s and t e m p e r a t u r e r e d u c e s t o

AHd W, / , T\( g r a d * , ) - R— I— _ ( a r a d _ Q _ (1|_ ])

’ aM2 (W]+W2) T

I t may a l s o be a r g u e d t h a t t h e c o e f f i c i e n t s , and |_2 , can be

assumed z e r o . The s e c o e f f i c i e n t s a r e c l o s e l y r e l a t e d t o t h e e x p e r i

m e n t a l l y m e a s u r a b l e S o r e t and Dufour c o e f f i c i e n t s . Both o f t h e s e

c o e f f i c i e n t s u s u a l l y r e p r e s e n t n e g l i g i b l e e f f e c t s in l i q u i d s y s t e ms

I n t r o d u c i n g t h e s e a s s u m p t i o n s i n t o t h e e q u a t i o n f o r t h e mass

f l u x o f t h e s o l v e n t y i e l d s t h e f o l l o w i n g r e s u l t :

W, W./W- AHd , _j = 0 = 3 )] — B _arad_T . . (1|_ 2)

3 Wj Wj - t Wj aH2 T

The mass f l u x o f t h e s o l v e n t , J ^ , w i l l be z e r o i f t h e b r a c k e t

t e r m in e q u a t i o n ( 4 - 2 ) i s z e r o . T h i s c o n d i t i o n l e a d s t o t h e

r e l a t i o n s h i p be t ween t h e p h e n o me n o l o g i c a l c o e f f i c i e n t s , and

L33 : W Ll2, - - - 2 - a ■ ( v 3)

° w ]+w2

The mass f l u x o f component 2 may now be a p p r o x i m a t e d by t h e

f o l l o w i n g e q u a t i o n ;

j 2 = _ n . sw + p ( , . p)Wb] i a r s l l i ; (h_k)T

Page 41: A Non-Equilibrium Thermodynamic Approach to the ...

2 5

wher e t h e a d d i t i o n a l a s s u m p t i o n t h a t ' s a p p r o x i m a t e l y z e r o has

been made. The f o l l o w i n g c h a n g e s in v a r i a b l e s ha ve a l s o been

i n t r o d u c e d :

u = W + WA 1 2 ’

WB = W3 , ( 4 -5 )

P = w2 / w A

The v a r i a b l e (3 i s t h e mass f r a c t i o n o f component 2 on a s o l v e n t f r e e

bas i s .

Wi th t h e a s s u m p t i o n s t h a t have been i n t r o d u c e d , t h e r e d u c e d

h e a t f l u x , J ^ , i s g i v e n by

J 1 = -L ( g r a d T ) / T . ( 4-6)q qq

The a c t u a l h e a t f l u x , J , may be w r i t t e n by u s i n g t h e d e f i n i t i o n o f

t h e r e d u c e d h e a t f l u x . R e a r r a n g i n g t h a t d e f i n i n g e q u a t i o n w i l l

r e s u l t in t h e f o l l o w i n g e q u a t i o n f o r t h e a c t u a l h e a t f l u x , J ^ :

J = J 1 + Z h, J. . ( 4 -7 )q q k k

The a s s u m p t i o n s t h a t have been i n t r o d u c e d s i m p l i f y e q u a t i o n ( 4 -7) t o

t h e r e s u l t :

J q = J q + ( h2 “ h P J 2 '

i t may be shown t h a t t h e e n p h a l p y d i f f e r e n c e in e q u a t i o n (4-8)

i s r e l a t e d t o t h e s t a n d a r d e n p h a l p y d i f f e r e n c e o f t h e c hemi ca l

Page 42: A Non-Equilibrium Thermodynamic Approach to the ...

2 6

r e a c t i o n b y '

h 2 - h ] = AHr/ qM2 • ( 4 -9)

Usi ng e q u a t i o n s ( 4 -4 ) t h r o u g h ( 4 - 9 ) a l l o w s t h e a c t u a l h e a t

f l u x , J , t o be w r i t t e n in t e r ms o f t h e p h e n o me n o l o g i c a l c o e f f i c i e n t s ,

L and L0 0 :q q 33

L L A H ? [ l - M ( l - g ) W ]J a B “ t“ 3 3 + J U T r ------------------ } ( g r a d T) . ( 4-10)

q T cv M2WbT

2As shown in Appendi x C and a l s o by a s i m i l a r p r ob l e m in T y r r e l l ,

t h e p h e n om e n o l o g i c a l c o e f f i c i e n t , > ' s r e l a t e d t o t h e mutua l d i f f u s i o n

c o e f f i c i e n t , D , by Ad

■ . V w , (4_ M)

BBRT(V Y NBMB>

wher e D^g i s t h e mutua l d i f f u s i v i t y o f t h e s y s t e m , p i s t h e d e n s i t y ,

M2 and Mg a r e t h e m o l e c u l a r w e i g h t s o f component 2 and t h e s o l v e n t ,

and N. and ND a r e t h e o v e r a l l mole f r a c t i o n s o f t h e s o l u t e and t h e A ts

s o l v e n t . Bg i s a t he r modynami c f a c t o r r e l a t e d t o t h e a c t i v i t y

c o e f f i c i e n t o f t h e s o l v e n t and i s d e f i n e d by t h e f o l l o w i n g e q u a t i o n :

a ln y bB = 1 + ----------5 . (4- 12)

3 1 n Ng

See Appendi x A f o r d e r i v a t i o n .

Page 43: A Non-Equilibrium Thermodynamic Approach to the ...

2 7

The s i m p l i f i e d e q u a t i o n f o r h e a t f l u x in a t e r n a r y s y s t e m w i t h

c h e mi c a l e q u i 1 ibr iurn may t h e r e f o r e be w r i t t e n as

. f Lc<, , . T.J = + ------------- z - z -------------------------------- } ( g r a d T) . ( 4-13)q T BBR a V M 2 (NAM2+NBMB)

Compar i son o f e q u a t i o n ( 4 - 13 ) t o t h e e x a c t d e r i v a t i o n o f J1

3 4f o r t h e two component c a s e ’ shows t h a t t h e two e x p r e s s i o n s a r e

v e r y s i m i l a r in a p p e a r a n c e and d i f f e r p r i m a r i l y by t h e b r a c k e t e d

(3 t e r m p r e s e n t in e q u a t i o n ( 4 - 1 3 ) - T h i s r e s u l t i s n o t u n e x p e c t e d

b e c a u s e t h e a s s u m p t i o n s l e a d i n g t o e q u a t i o n (4 -13) e s s e n t i a l l y

r e d u c e s t h e t e r n a r y s y s t e m t o a d i l u t e d two component s y s t e m .

A n o t h e r way t o p i c t u r e t h e c o n s e q u e n c e s o f t h e a s s u m p t i o n s on t h e

b e h a v i o r o f t h e s y s t e m i s t o v i s u a l i z e t h e s o l v e n t a s b e i n g c o m p l e t e l y

s t a t i o n a r y . T h e r e f o r e , t h e o n l y f u n c t i o n o f t h e s o l v e n t i s t h e

d i l u t i o n o f t h e s o l u t e s . T h i s model , w h i l e a d m i t t e d l y c r u d e , i s no t

c o m p l e t e l y u n r e a s o n a b l e and s h o u l d be a f i r s t a p p r o x i m a t i o n t o t h e

t r u e p i c t u r e .

C. E f f e c t i ve The r ma 1 Conduc t i v i t y o f Re a c t i ng M i x t u r e s

The s i m p l i f i e d h e a t f l u x e x p r e s s i o n d e r i v e d in t h e p r e v i o u s

s e c t i o n may be compared w i t h F o u r i e r ' s law o f h e a t c o n d u c t i o n :

J = - k g r ad T , ( 4-14)q

where k i s t h e t h e r ma l c o n d u c t i v i t y o f t h e f l u i d . Compar i son o f

e q u a t i o n s ( 4 - 13 ) and ( 4 -14) l e a d s t o t h e d e f i n i t i o n o f t h e e f f e c t i v e

t he r ma l c o n d u c t i v i t y o f a r e a c t i n g mi x t u re . ;

Page 44: A Non-Equilibrium Thermodynamic Approach to the ...

, Lqq . ^ R DABPWAMB t | - g V g < l. - P )WB3p p p 9 9 * 10 )

T bbr t V m 2 (nam2+nbmb)

T y r r e l l ' * shows t h a t t h e t e r m L / T i s e q u i v a l e n t t o t h e normal

t h e r ma l c o n d u c t i v i t y o f a f l u i d . Normal can be c o n s t r u e d t o mean

u n d e r c o n d i t i o n s o f no c h e mi c a l r e a c t i o n s . The o t h e r t e r m making

up t h e e f f e c t i v e t h e r ma l c o n d u c t i v i t y a r i s e s f rom t h e c he mi c a l

e q u i l i b r i u m e x i s t i n g be t ween componen t s 1 and 2. D e f i n i n g t h e

/V Rsymbol k ' t o be t h e normal t h e r ma l c o n d u c t i v i t y and t h e symbol k

t o be t h e c o n t r i b u t i o n a r i s i n g f rom t h e c h e mi ca l r e a c t i o n , a l l o w s

e q u a t i o n ( 4 - 15 ) t o be more c o m p a c t l y w r i t t e n a s

k , _ = k ' + k^ . ( 4 -16)h r r

D. Exces s T h e r ma 1 Conduct i v i t y i n Re a c t i ng M i x t u r e s

As has been i n d i c a t e d in e a r l i e r c h a p t e r s , a p r i m a r y a l c o h o l

may be c o n s i d e r e d t o be an e q u i l i b r i u m m i x t u r e o f po l ymer and

monomer. I f i t i s assumed t h a t t h i s e q u i l i b r i u m m i x t u r e can be

r e p r e s e n t e d by one r e a c t i o n i n v o l v i n g an a v e r a g e a l c o h o l p o l yme r ,

t h e n t h e s i m p l i f i e d e q u a t i o n s t h a t have been d e v e l o p e d f o r a t e r n a r y

s y s t e m can be used t o d e s c r i b e h e a t t r a n s f e r in a l c o h o l s y s t e m s .

S i n c e c he mi c a l r e a c t i o n i n v o l v e s o n l y t h e a l c o h o l , i t i s p e r ­

m i s s i b l e t o a s s o c i a t e t h e c h e mi c a l r e a c t i o n t e r m in e q u a t i o n (4-16)

w i t h component A, t h e a l c o h o l . The t h e r m a l c o n d u c t i v i t y o f t h e

a l c o h o l , k n, and t h a t o f t h e s o l v e n t , k D, may be w r i t t e n as A b

Page 45: A Non-Equilibrium Thermodynamic Approach to the ...

where k. and kD r e p r e s e n t t h e normal v a l u e s o f t h e t h e r ma l c onduc - A D

t i v i t y o f t h e a l c o h o l and t h e s o l v e n t . The s e q u a n t i t i e s may a l s o

be t h o u g h t o f a s t h e monomer t he r ma l c o n d u c t i v i t i e s . The v a l u e o f

t h e t h e r m a l c o n d u c t i v i t y o f t h e a l c o h o l i s shown t o be d e p e n d e n t

upon c o m p o s i t i o n b e c a u s e o f t h e c o m p o s i t i o n d e p e n d e n c e o f t h e

i s n o t a f f e c t e d by c o m p o s i t i o n .

I t i s p o s t u l a t e d t h a t t h e t h e r m a l c o n d u c t i v i t y o f a m i x t u r e o f

a l c o h o l and an i n e r t s o l v e n t can be w r i t t e n as

o v e r a l l mole f r a c t i o n s o f t h e a l c o h o l and t h e s o l v e n t .

The i d e a l v a l u e o f t h e t he r ma l c o n d u c t i v i t y o f a m i x t u r e can

be s i m i l a r l y d e f i n e d by

t he r ma l c o n d u c t i v i t y o f p u r e s o l v e n t . S i n c e t h e s o l v e n t i s assumed

t o u n de r go no c he mi c a l i n t e r a c t i o n s , t h e t e r ms monomer t h e r ma l c on ­

d u c t i v i t y , normal t h e r m a l c o n d u c t i v i t y , and t h e t h e r m a l c o n d u c t i v i t y

o f p u r e s o l v e n t a l l r e f e r t o t h e same p h y s i c a l q u a n t i t y .

The e x c e s s t h e r m a l c o n d u c t i v i t y , d e f i n e d in t h e u s u a l manner

o f e x c e s s q u a n t i t i e s , i s :

c he mi ca l r e a c t i o n t e r m, k . The t h e r ma l c o n d u c t i v i t y o f t h e s o l v e n t

( 4 -19)

where k i s t h e m i x t u r e t h e r ma l c o n d u c t i v i t y and N„ and a r e t h e m A B

( 4-20)

where k° i s t h e t he r ma l c o n d u c t i v i t y o f p u r e a l c o h o l and k° i s t h e A D

Page 46: A Non-Equilibrium Thermodynamic Approach to the ...

3 0

where t h e e q u a l i t y o f t h e normal and t h e monomer t h e r m a l c o n d u c t i v i t y

o f t h e s o l v e n t has been used t o e l i m i n a t e t h e s o l v e n t t he r ma l

c o n d u c t i v i t y f rom t h e e x p r e s s i o n .

E . R e l a t ion o f Exces s The r ma 1 Conduc t i vi t y t o t h e Monomer

C o n c e n t r a t i on

The t h e r ma l c o n d u c t i v i t i e s k° and k a r e d i r e c t l y d e p e n d e n t onM M

t h e a p p r o p r i a t e c h e mi c a l r e a c t i o n c o n t r i b u t i o n s . As shown by

e q u a t i o n ( 4 - 17) * t h e c he mi c a l r e a c t i o n c o n t r i b u t i o n i s w r i t t e n in

t e r ms o f s t a n d a r d m o l a r h e a t o f r e a c t i o n , AHD, and a s t o i c h i o m e t r i c

c o e f f i c i e n t , ct, whi ch a r e bo t h d e p e n d e n t on p, t h e mass f r a c t i o n of

monomer a l c o h o l on a s o l v e n t f r e e b a s i s .

The r e l a t i o n s h i p o f p t o cv and AHD can be q u a l i t a t i v e l y r e a s o n e d

by c o n s i d e r a t i o n o f t h e mode l . The s t o i c h i o m e t r i c c o e f f i c i e n t i s a

m e a s u r e o f t h e a s s o c i a t i o n o f t h e a l c o h o l m o l e c u l e s . I t r e p r e s e n t s

t h e number o f a l c o h o l m o l e c u l e s in t h e a v e r a g e po l ymer c l u s t e r . As

pu r e a l c o h o l i s d i l u t e d in an i n e r t s o l v e n t , t h e a v e r a g e a s s o c i a t i o n

o f t h e a l c o h o l m o l e c u l e s w i l l be r e d u c e d u n t i l t h e c he mi c a l r e a c t i o n

i s r e p r e s e n t e d by d i me r d i s s o c i a t i o n . T h e r e f o r e , t h e s t o i c h i o m e t r i c

c o e f f i c i e n t w i l l c ha nge w i t h t h e o v e r a l l a l c o h o l c o n c e n t r a t i o n

u n t i l t h e d i me r l i m i t i s r e a c h e d . S i m i l a r r e a s o n i n g can a l s o be

a p p l i e d t o t h e h e a t o f r e a c t i o n .

The n u m e r i c a l v a l u e o f p depe nds upon t h e m a g n i t u d e o f t h e

e q u i l i b r i u m c o n s t a n t r e l a t i n g t h e c o n c e n t r a t i o n o f t h e v a r i o u s

p o l yme r s in a l c o h o l . P r i g o g i n e and Def ay^ d e r i v e e q u a t i o n s whi ch

a r e a p p l i c a b l e t o c h a i n a s s o c i a t i o n in a l c o h o l s . T h e i r r e s u l t s can

Page 47: A Non-Equilibrium Thermodynamic Approach to the ...

31

be used t o d e f i n e t h e a p p r o p r i a t e v a l u e s f o r t h e s t o i c h i o m e t r i c

c o e f f i c i e n t and t h e mo l a r h e a t o f r e a c t i o n used in t h i s d i s c u s s i o n .

The d e r i v a t i o n (Appendix D) o f t h e a p p r o p r i a t e s t o i c h i o m e t r i c

c o e f f i c i e n t and h e a t o f r e a c t i o n may be summar i zed by t h e f o l l o w i n g

e q u a t i o n s :

2/ P = ---------- , ( 4 - 2 2 )

1 + J \ +

a = 1 + — , (4 -23)/ p

AHrAH = — , (4-24)

R / e

where e q u a t i o n ( 4 -22) r e l a t e s p t o t h e e q u i l i b r i u m c o n s t a n t , K^, and

t o t h e o v e r a l l mo l a r c o n c e n t r a t i o n o f t h e a l c o h o l , C . . E q u a t i o nA

( 4-23) and ( 4 - 24 ) r e l a t e t h e s t o i c h i o m e t r i c c o e f f i c i e n t , a , and t h e

h e a t o f r e a c t i o n , AHD, t o t h e n u m e r i c a l v a l u e o f p. The q u a n t i t y

AHD i s t h e m o l a r e n e r g y a s s o c i a t e d w i t h b r e a k i n g a hyd r ogen bond.D

The v a l u e o f AH i s e q u i l i v a l e n t t o t h e h e a t o f r e a c t i o n f o r d i mer B

d i s s o c i a t i on .

The r e l a t i o n s h i p o f p t o t h e e q u i l i b r i u m c o n s t a n t , K^, i s e x a c t

o n l y f o r d i l u t e s y s t e m s . A much more g e n e r a l e x p r e s s i o n r e l a t i n g

P t o t h e a c t i v i t y c o e f f i c i e n t s has a l s o been d e r i v e d by P r i g o g i n e

7and Defay:

P =e » , ( ^ 25)

Page 48: A Non-Equilibrium Thermodynamic Approach to the ...

3 2

where y ^ and yg a r e , r e s p e c t i v e l y , t h e a c t i v i t y c o e f f i c i e n t s o f t h e

a l c o h o l and t h e s o l v e n t . The s e a c t i v i t y c o e f f i c i e n t s a r e t h e sym­

m e t r i c a l t y p e in whi ch e a ch a p p r o a c h e s u n i t y a s t h e a p p r o p r i a t e mole

f r a c t i o n a p p r o a c h e s u n i t y . The a c t i v i t y c o e f f i c i e n t o f t h e a l c o h o l

a t i n f i n i t e d i l u t i o n i s r e p r e s e n t e d by y°°. E q u a t i o n ( 4 -25) has beenn

shown t o be a c c u r a t e o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e f o r mostg

a 1 coho 1 - i n e r t s o l v e n t s y s t e m s .

E x p r e s s i o n s ( 4 -23) and ( 4 -24) may be combined w i t h t h e d e f i n i n g

e q u a t i o n f o r e x c e s s t h e r ma l c o n d u c t i v i t y t o g e t

I E ,, „ nk = --------- {------------------------------------------------- -------------- } ; ( 4-26)RT m2 1 + / T D“ Bp “ ( i + / P ) b b

where t h e s u p e r s c r i p t z e r o i n d i c a t e s t h e q u a n t i t y i s t h a t f o r p u r e

a l c o h o l . The q u a n t i t i e s (3 and p° a r e c a l c u l a t e d by t h e u s e o f

e q u a t i o n ( 4 -25) * In d i l u t e s o l u t i o n s , p may be c a l c u l a t e d by

e q u a t i o n ( 4 -22) p r o v i d e d t h e e q u i l i b r i u m c o n s t a n t i s known.

E q u a t i o n (4 -26) wi l l a l l o w t h e p r e d i c t i o n o f t h e c o m p o s i t i o n

d e p e n d e n c e of t h e t h e r m a l c o n d u c t i v i t y o f a 1c o h o l - i n e r t s o l v e n t

s y s t e m s p r o v i d e d t h e n e c e s s a r y d a t a a r e a v a i l a b l e . Hydrogen bond

e n e r g i e s and e q u i l i b r i u m c o n s t a n t s a r e a v a i l a b l e and may be d e t e r m i n e dg

by s e v e r a l i n d e p e n d e n t m e t ho d s . D i f f u s i v i t y d a t a a r e a l s o a v a i l a b l e

f o r s e v e r a l s y s t e ms and may be e s t i m a t e d by s t a n d a r d m e t h o d s . ' ^

Page 49: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER I V REFERENCES

' h . J . V. T y r r e 11, D i f f u s ion and Heat Flow in L i q u i d s (London: B u t t e r w o r t h and Co . , 1 9 6 1 ) / p. 52.

^ 1b i d . , p . 48 .

3 I b i d . , p. 53-4

S. R. de Gr oo t and P. Mazur , Non Equ i 1 i b r i um Thermodynam i cs (Amsterdam: Nor t h H o l l a n d P u b l i s h i n g C o . , 1962) , p. 299*

^ T y r r e l l , c £ . c i t . , p. 52 .g

I . P r i g o g i n e and R. Def ay , Chem i c a 1 Thermodynami cs (London: Longman, Green and Co . , 1954) , p . 424 .

^ I b i d . , p . 414 .o

I b i d . , p . 415 .g

G. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond (SanF r a n c i s c o : W. H. Freeman and Co . , I 9 6 0 ) , p. 6 7 .

^ R . C. Reid and T. K. Sherwood, The P r o p e r t i e s o f Gases andL i q u i d s (New York: McGraw-Hi l l Book Co . , 1966 ) , p7 *548.

3 3

Page 50: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER V

EXPERIMENTAL APPARATUS

A. Genera 1

The p r i n c i p a l e x p e r i m e n t a l q u a n t i t y me a s u r e d in t h i s i n v e s t i ­

g a t i o n i s t h e r m a l c o n d u c t i v i t y . The a p p a r a t u s used f o r m e a s u r i n g

t h e r ma l c o n d u c t i v i t y was d e s i g n e d by S a k i a d i s and C o a t e s ' and has

been t h o r o u g h l y t e s t e d . The d e s i g n c h a r a c t e r i s t i c s i n c o r p o r a t e d in

t h i s a p p a r a t u s a r e a s f o l l o w s ;

a) S t e a d y s t a t e meas u r emen t

b) H o r i z o n a l , p a r a l l e l i s o t h e r m a l p l a n e s w i t h downward h e a t i n g

t o e l i m i n a t e c o n v e c t i o n e f f e c t s

c) V a r i a b l e l i q u i d t h i c k n e s s

The a p p a r a t u s i s shown in F i g u r e 2. P h o t o g r a p h s o f t h e i n s t a l l a t i o n

a r e p r e s e n t e d in F i g u r e s 3 t h r o u g h 8.

B. Genera 1 Des c r i p t ion o f A p p a r a t u s

The a p p a r a t u s c o n s i s t s o f a ho t b a r and a c o l d b a r mounted

v e r t i c a l l y w i t h i n a p y r ex g l a s s p i p e . The l i q u i d s ampl e i s p l a c e d

be t ween t h e two b a r s and f orms a l i q u i d l a y e r . The l i q u i d l a y e r i s

h e a t e d a t t h e t op and c o o l e d a t t h e b o t t o m, he nc e t h e d e s i g n a t i o n o f

t h e t op b a r a s t h e h o t b a r and t h e bo t t om b a r a s t h e c o l d b a r . The

l i q u i d f i l m t h i c k n e s s may be a d j u s t e d t o t h e d e s i r e d v a l u e by r a i s i n g

o r l o w e r i n g t h e ho t b a r by means o f j a c k s c r e w s . T e m p e r a t u r e s w i t h i n

3 ^

Page 51: A Non-Equilibrium Thermodynamic Approach to the ...

M ol W oter Outlet

W a te rin le t

Test Liquid ln l«t -v

J S l o t ! Do r

,^ -R u fcU r f l ln g i' nr :V7v7V-;/}T //' -"7V/;r.mnamnjLrtctzn-Jhf.'ii/u iii/ii ■•

(5-3/4 * flfc)

k__

C o l d W a l t r 8 p f a y # r , s

C o l d W a t a r I n t o! Cold W aU r O u tU I

FIGURE 2

THERMOCONDUCTI METRIC APPARATUS

FOR LIQUIDS

Page 52: A Non-Equilibrium Thermodynamic Approach to the ...

Gener a l View

F i g u r e 3

woON

Page 53: A Non-Equilibrium Thermodynamic Approach to the ...

3 7

A"

A p p a r a t u s in O p e r a t i o n

F i g u r e 4

Page 54: A Non-Equilibrium Thermodynamic Approach to the ...

3 8

A p p a r a t u s D i s a s s e m b l e d

F i g u r e 5

Page 55: A Non-Equilibrium Thermodynamic Approach to the ...

3 9

Top View o f t h e Hot Bar

F i g u r e 6

Page 56: A Non-Equilibrium Thermodynamic Approach to the ...

Water Baths

F i g u r e 7

Page 57: A Non-Equilibrium Thermodynamic Approach to the ...

R e f r a c t o m e t e r

F i g u r e 8

Page 58: A Non-Equilibrium Thermodynamic Approach to the ...

4 2

t h e b a r s a r e m a i n t a i n e d by c i r c u l a t i n g w a t e r f rom c o n s t a n t t e m p e r a ­

t u r e b a t h s . Measur ement o f t h e t e m p e r a t u r e d i s t r i b u t i o n in t h e b a r s

i s by c a l i b r a t e d t h e r m o c o u p l e s and a s t a n d a r d p o t e n t i o m e t e r .

C . Deta i 1ed Des c r i p t ion o f A p p a r a t u s

The h o t b a r , 5*731 in . in d i a m e t e r and 1.25 i n . l ong, i s c on ­

s t r u c t e d o f n i c k e l p l a t e d s t e e l . The b a r i s c o n n e c t e d t o a s h o r t

s e c t i o n o f s t e e l p i p e o f t h e same d i a m e t e r . A s t e e l p l a t e i s b o l t e d

t o t h e p i p e , t h u s f o r m i n g a c hamber . Hot w a t e r , f r c m a c o n s t a n t

t e m p e r a t u r e b a t h , i s i n t r o d u c e d i n t o and removed f rom t h e chamber by

a c o n c e n t r i c p i p i n g a r r a n g e m e n t . The w a t e r e n t e r s t h r o u g h t h e c e n t e r

p i p e , c i r c u l a t e s w i t h i n t h e chamber and l e a v e s t h r o u g h t h e a n n u l a r

s p a c e formed by t h e o u t e r p i p e . To p r omot e u n i f o r m d i s t r i b u t i o n o f

w a t e r o v e r t h e i n s i d e s u r f a c e o f t h e h o t b a r , a t h i n p e r f o r a t e d

s t a i n l e s s s t e e l d i s k i s a t t a c h e d t o t h e end o f t h e i n l e t p i p e . F i v e

c a l i b r a t e d c o p p e r - c o n s t a n t a n t h e r m o c o u p l e s a r e s o l d e r e d in two t a p e r

p i n s whi ch a r e imbedded in t h e h o t b a r ( F i g u r e 2 ) . The d i s t a n c e

f rom t h e o u t e r s u r f a c e o f t h e h o t b a r t o t h e t h e r m o c o u p l e p l a n e is

0 . 4 0 0 in .

in o r d e r t o a d j u s t t h e l i q u i d l a y e r t h i c k n e s s , t h r e e j a c k

s c r e ws s p a c e d 120° a p a r t a r e t h r e a d e d t h r o u g h t h e s t e e l p l a t e f o r m i n g

t h e h o t w a t e r chamber ( F i g u r e 2 ) . In a d d i t i o n , t h r e e m i c r o m e t e r s

a r e s p a c e d midway be tween e a ch j a c k s c r e w . The j a c k s c r e ws b e a r

upon a s t e e l r i n g whi ch in t u r n i s b o l t e d t o t h e p y r ex p i p e . The

m i c r o m e t e r s e x t e n d t h r o u g h t h e s t e e l p l a t e and a r e used t o me a s u r e

l i q u i d t h i c k n e s s by d i f f e r e n c e in r e a d i n g s o b t a i n e d w i t h t h e h o t

Page 59: A Non-Equilibrium Thermodynamic Approach to the ...

^ 3

b a r r e s t i n g on t h e c o l d b a r .

The c o l d b a r , 5-731 i n . in d i a m e t e r and 5 - 000 i n . l ong , was

mac h i ned f rom t h e same s t e e l s h a f t a s t h e h o t b a r . A s e c t i o n o f

s t e e l p i p e o f t h e same d i a m e t e r and e n c l o s e d on one end by a s t e e l

p l a t e i s a t t a c h e d t o t h e c o l d b a r . A s p r a y n o z z l e , e x t e n d i n g t h r o u g h

t h e s t e e l p l a t e and i n t o t h e chamber , d i s t r i b u t e s t h e c o l d w a t e r

e v e n l y o v e r t h e i n n e r s u r f a c e o f t h e c o l d b a r . The w a t e r i s removed

by an o u t l e t a t t h e bo t t om o f t h e chamber . Ten c a l i b r a t e d c o p p e r -

c o n s t a n t a n t h e r m o c o u p l e s a r e imbedded w i t h i n t h e c o l d b a r in two

p l a n e s a s shown in F i g u r e 2. The d i s t a n c e be t ween t h e two t h e r m o ­

c o u p l e p l a n e s in t h e c o l d b a r i s 3 - 7 ^ 3 2 i n . ; w h i l e , t h a t be tween

t h e o u t e r s u r f a c e o f t h e c o l d b a r and t h e m i d d l e l a y e r o f t he r mo­

c o u p l e s i s 0 . 7 3 in .

To e l i m i n a t e h e a t l o s s e s f rom t h e s t e e l b a r , a c o l d w a t e r

c i r c u l a t i o n j a c k e t i s a t t a c h e d t o t h e o u t s i d e o f t h e p y r ex g l a s s

p i p e . T h r e e c o p p e r - c o n s t a n t a n t h e r m o c o u p l e s were p l a c e d on t h e

o u t e r s u r f a c e o f t h e p y r ex p i p e . The ho t j u n c t i o n s o f two t h e r m o ­

c o u p l e s a r e o p p o s i t e t h e two t h e r m o c o u p l e p l a n e s in t h e c o l d b a r ,

and t h e o t h e r h o t j u n c t i o n i s h a l f wa y b e t w e e n . The f l o w o f w a t e r

t h r o u g h t h e w a t e r j a c k e t i s c o n t r o l l e d by a n e e d l e v a l v e , whi ch i s

a d j u s t e d so t h a t , on t h e a v e r a g e , r a d i a l h e a t l o s s f rom t h e c o l d ba r

i s n e g l i g i b 1e .

Two c e n t r i f u g a l pumps c i r c u l a t e ho t and c o l d w a t e r f rom t h e

c o n s t a n t t e m p e r a t u r e b a t h s t o t h e a p p a r a t u s . T e m p e r a t u r e s o f t h e

b a t h s a r e c o n t r o l l e d t o ± 0 . 01°C by S a r g e n t Mercury T h e r m o r e g u l a t o r s .

The pump d i s c h a r g e s a r e c o n n e c t e d t o t h e a p p a r a t u s by f l e x i b l e r u b b e r

t u b i n g r a t h e r t ha n met a l p i p e t o e l i m i n a t e pump v i b r a t i o n .

Page 60: A Non-Equilibrium Thermodynamic Approach to the ...

k k

The e . m . f . r e a d i n g s o f t h e t h e r m o c o u p l e s a r e made w i t h a t yp e

K-2 Leeds and N o r t h r u p P o t e n t i o m e t e r r e a d a b l e t o 0.1 m i c r o v o l t .

A Brown ELECTRON IK Nu11 I n d i c a t o r w i t h a r a t e d s e n s i t i v i t y o f

1 m i c r o v o l t / m m . i s used in c o n j u n c t i o n w i t h t h e t y p e K-2 p o t e n t i o m e t e r .

An Epp l e y s t a n d a r d c e l l and a Leeds and N o r t h r u p c o n s t a n t v o l t a g e

s o u r c e f o r t h e p o t e n t i o m e t e r c o m p l e t e t h e n e c e s s a r y e q u i p m e n t .

S o l u t i o n c o m p o s i t i o n i s d e t e r m i n e d by r e f r a c t i v e i ndex m e a s u r e ­

ment a t 25°C. A Bausch and Lomb p r e c i s i o n r e f r a c t o m e t e r e q u i p p e d

w i t h a S a r g e n t c o n s t a n t t e m p e r a t u r e b a t h i s used f o r r e f r a c t i v e

i ndex d e t e r m i n a t i o n s .

Page 61: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER V REFERENCES

B. C. S a k i a d i s and J . C o a t e s , S t ud i e s o f T h e r ma 1 Conduct i v i t y o f L i q u i d s (Baton Rouge, La . : E n g i n e e r i n g E x p e r i m e n t S t a t i o n ,L o u i s i a n a S t a t e U n i v e r s i t y , 1954) B u l l e t i n No. 45, p. 28.

4 5

Page 62: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER V I

PROCEDURE

1. A d j u s t me r c u r y t h e r m o m e t e r s o f t h e t h e r m o r e g u l a t o r s t o t h e

d e s i r e d t e m p e r a t u r e s o f e a ch w a t e r b a t h .

2. Turn on t h e r m o r e g u l a t o r r e l a y s , h e a t i n g e l e m e n t s , and r e f r i g e r a t o r ,

and a l l o w t h e w a t e r b a t h s t o r e a c h r e g u l a t e d t e m p e r a t u r e s .

3 . A d j u s t p o w e r s t a t s e t t i n g s f o r h e a t i n g e l e m e n t s and f l o w r a t e o f

r e f r i g e r a t o r c o o l a n t so t h a t e a ch t h e r m o r e g u l a t o r has a p p r o x i ­

m a t e l y e q u a l o f f and on t i m e .

4 . Turn on v o l t a g e s u p p l y f o r p o t e n t i o m e t e r and t h e n u l l b a l a n c e

m e t e r . The s e u n i t s must warm up f o r a p e r i o d o f a t l e a s t

t h i r t y mi n u t e s .

5. Turn on w a t e r c i r c u l a t i n g pumps and a l l o w b a r s t o r e a c h d e s i r e d

t e m p e r a t u r e s .

6. D e t e r mi n e t h e i n i t i a l r e f r a c t i v e i ndex o f t h e l i q u i d s a mp l e .

7- A f t e r t h e b a r s have r e a c h e d t h e d e s i r e d t e m p e r a t u r e s , pour

a p p r o x i m a t e l y 100 ml . o f l i q u i d i n t o t h e a p p a r a t u s .

8 . S l owl y lower t h e h o t b a r u n t i l i t r e s t s upon t h e c o l d b a r . The

l o w e r i n g s h o u l d be done a t an a n g l e so t h a t any t r a p p e d a i r

b u b b l e s w i l l be swept o u t .

9- A f t e r v i s u a l i n s p e c t i o n shows t h a t no b u b b l e s a r e p r e s e n t in t h e

l i q u i d , lower t h e h o t ba r and t a k e m i c r o m e t e r r e a d i n g s .

Page 63: A Non-Equilibrium Thermodynamic Approach to the ...

10. R a i s e t h e h o t b a r u n t i l d e s i r e d l i q u i d t h i c k n e s s i s o b t a i n e d as

d e t e r m i n e d by m i c r o m e t e r s . S l i d e t h e r u b b e r s e a l i n g g a s k e t

down. Not e t h a t t h i s l i q u i d t h i c k n e s s s e t t i n g i s a p p r o x i m a t e

b e c a u s e a p p a r a t u s i s n o t y e t a t e q u i l i b r i u m .

11. A d j u s t f l o w r a t e o f w a t e r i n t o w a t e r j a c k e t t o an a p p r o x i m a t e

s e t t i ng.

12. Al l ow t h i r t y m i n u t e s f o r t h e a p p a r a t u s t o a p p r o a c h e q u i l i b r i u m .

13. Lower t h e h o t b a r r a p i d l y u n t i l i t r e s t s on t h e c o l d b a r and

t a k e m i c r o m e t e r r e a d i n g s .

}k . R a i s e t h e h o t b a r and a d j u s t t o t h e d e s i r e d l i q u i d t h i c k n e s s

as d e t e r m i n e d by m i c r o m e t e r r e a d i n g s . S l i d e r u b b e r s e a l i n g

g a s k e t down.

15* Al l ow one hour f o r t h e a p p a r a t u s t o come t o e q u i l i b r i u m . Dur i ng

t h i s t i m e a d j u s t t h e f l o w r a t e i n t o t h e w a t e r j a c k e t s o t h a t

t h e r e i s n e g l i g i b l e r a d i a l h e a t f l o w . T h i s i s a c h i e v e d when

t h e a l g e b r a i c sum o f d i f f e r e n c e s be t ween t h e j a c k e t t h e r m o ­

c o u p l e s and t h e i r r e s p e c t i v e l a y e r s i s l e s s t h a n 20 m i c r o v o l t s .

16. Begin t h e r m o c o u p l e r e a d i n g s and c o n t i n u e u n t i l e q u i l i b r i u m is

a c h i e v e d . The c r i t e r i o n o f e q u i l i b r i u m i s t h a t t h e t h e r mo ­

c o u p l e r e a d i n g s o f e a ch l a y e r a g r e e w i t h i n a 0 . 5 m i c r o v o l t

r a nge o v e r a p e r i o d o f t h i r t y m i n u t e s .

17- A f t e r e q u i l i b r i u m has been r e a c h e d , t a k e m i c r o m e t e r r e a d i n g s

wi t h h o t b a r up.

18. Lower t h e h o t b a r r a p i d l y and t a k e m i c r o m e t e r r e a d i n g s . The

a v e r a g e d i f f e r e n c e o f m i c r o m e t e r r e a d i n g s as d e t e r m i n e d in

Page 64: A Non-Equilibrium Thermodynamic Approach to the ...

4 8

(17) and ( 1 8 ) , and (13) and (14) i s t h e f i l m t h i c k n e s s t o be

used in c a l c u l a t i o n s .

19- Remove a s ampl e o f l i q u i d f rom t h e a p p a r a t u s and d e t e r m i n e t h e

f i n a l r e f r a c t i v e i ndex . The c o m p o s i t i o n c o m p a r ab l e t o t h i s is

t h e c o m p o s i t i o n t o be used in c a l c u l a t i o n s .

20. A f t e r c o m p l e t i o n o f t h e r u n , remove and c a r e f u l l y c l e a n a l l

me t a l s u r f a c e s t o p r e v e n t c o r r o s i o n . I n s p e c t and r e p l a c e i f

n e c e s s a r y t h e r u b b e r s e a l i n g g a s k e t be t ween t h e c o l d ba r and

t h e p y r e x g l a s s p i p e .

Page 65: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER VI I

EXPERIMENTAL RESULTS

A. T h e r ma 1 Conduct i v i t y f o r A1cohol Sys t ems

Thermal c o n d u c t i v i t y v a l u e s o v e r t h e e n t i r e c o n c e n t r a t i o n

r a n g e wer e e x p e r i m e n t a l l y m e a s u r e d f o r t h e f o l l o w i n g s y s t e m s ;

m e t h a n o l - b e n z e n e , e t h a n o l - b e n z e n e , p r o p a n o l - b e n z e n e , i s o p r o p a n o l -

b e n z e n e , e t h a n o l - c y c l o h e x a n e , p r o p a n o l - c y c l o h e x a n e , i s o p r o p a n o l -

c y c l o h e x a n e , m e t h a n o l - c a r b o n t e t r a c h l o r i d e , e t h a n o l - c a r b o n t e t r a ­

c h l o r i d e , p r o p a n o l - c a r b o n t e t r a c h l o r i d e , and i s o p r o p a n o l - c a r b o n

t e t r a c h l o r i d e . Al l l i q u i d s were r e a g e n t o r s p e c t r o q u a l i t y and were

used w i t h o u t f u r t h e r p u r i f i c a t i o n . Thermal c o n d u c t i v i t y v a l u e s f o r

t h e a bove s y s t e m s were c o r r e c t e d t o 25°C and a r e shown in F i g u r e s

9 t h r o u g h 11. Smoothed e x p e r i m e n t a l r e s u l t s f o r t h e t he r ma l c on ­

d u c t i v i t y and t h e e x c e s s t h e r ma l c o n d u c t i v i t y a r e g i v e n in T a b l e s

I t h r o u g h X I .

As i n d i c a t e d a bove , t h e e x p e r i m e n t a l t h e r ma l c o n d u c t i v i t y d a t a

was c o r r e c t e d t o 25°C. T h i s was n e c e s s a r y in o r d e r t o compare

e x p e r i m e n t a l r e s u l t s w i t h t h o s e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . The

t e m p e r a t u r e c o e f f i c i e n t o f t h e t h e r m a l c o n d u c t i v i t y o f t h e m i x t u r e

was e s t i m a t e d t o be t h e mole f r a c t i o n a v e r a g e o f t h e p u r e component

c o e f f i c i e n t s . ^ E x p e r i m e n t a l l y d e t e r m i n e d t he r ma l c o n d u c t i v i t y v a l u e s

t h a t a r e n o t c o r r e c t e d t o 25°C a r e t a b u l a t e d in Appendi x E.

4 9

Page 66: A Non-Equilibrium Thermodynamic Approach to the ...

5 0

oq*s

u3" Ocoo

(UEi_0)

-C

0

0 . 0 9

0 .08

0. 80 . 6 1 . 0

Mole F r a c t i o n Al cohol

F i g u r e 9- Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n o f Al cohol f o r Benzene S o l u t i o n s . Al c oho l component s a r e : f o r c u r v e A - m e t h a n o l ,B - e t h a n o l , C - p r o p a n o l , D - i s o p r o p a n o l .

Page 67: A Non-Equilibrium Thermodynamic Approach to the ...

5 1

ccm

-MU"DCoo

fDEu(U

_ c

0 . 0 9

0.08

0 . 0 7

0.80 . 4 0 . 60 0 . 2 1. 0

Mole F r a c t i o n Al c oho l

F i g u r e 10. Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n o f Al c oho l f o r Cy c l o h e x a n e S o l u t i o n s . Al cohol component s a r e : f o r c u r v e A - e t h a n o l ,B - p r o p a n o l , C - i s o p r o p a n o l .

Page 68: A Non-Equilibrium Thermodynamic Approach to the ...

5 2

cC31

:d h— CO

o3~DCoo

03E

Q)_C

2

0

0 . 0 9

0.08

0 . 0 7

0.06

0 . 05 I I I I I I0 0. 2 0 . 4 0 . 6 1 . 0

Mole F r a c t i o n Al cohol

F i g u r e 11. Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n o f Al cohol f o r Carbon T e t r a c h l o r i d e S o l u t i o n s . Al c oho l component s a r e : f o r c u r v eA - m e t h a n o l , B - e t h a n o l , C - p r o p a n o l , D - i s o p r o p a n o l .

Page 69: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eM e t h a n o l - B e n z e n e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n M e t h a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Th Conduc t iv i t y

0 . 0 0 . 08 3 7 0 . 0 0

0 . 1 0 . 0 8 4 4 - 2 . 4 8

0 . 2 0 . 0855 - 4 . 5 6

0 . 3 0 . 08 6 9 - 6 . 3 4

0 . 4 0 . 0 8 8 6 - 7 . 8 2

0 . 5 0 . 09 0 7 - 8 . 9 0

0 . 6 0 . 0 9 3 3 - 9 . 4 8

0 . 7 0 . 0 9 6 7 - 9 . 2 6

0 . 8 0 . 1 0 1 0 - 8 . 1 4

0 . 9 0.1071 - 5 . 2 2

1.0 0.1 155 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 3

Page 70: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eE t h a n o 1 - B e n z e n e S y s t e m

C o r r e c t e d t o 25°C

l e F r a c t i o n E t h a n o 1

M i x t u r e Thermal Conduct i v i t y

Exc e s s Thermal C o n d u c t i v i t y X 1000

0 . 0 0 . 0 8 3 7 0 . 0 0

0 . 1 0 . 0 8 3 9 - 1.06

0 . 2 0 . 0 8 4 3 - 1 .92

0 . 3 0 . 0 8 4 9 - 2 . 5 8

0 . 4 0 . 0 8 5 8 - 2 . 9 4

0 . 5 0 . 08 7 0 - 3 . 0 0

0 . 6 0 . 0885 - 2 . 7 6

0 . 7 0.0901 - 2 . 4 2

0 . 8 0 . 0 9 2 0 - 1 . 7 8

0 . 9 0.0941 - 0 . 9 4

1.0 0 . 0963 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

54

Page 71: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eP r o p a n o 1 - B e n z e n e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n Pr opano l

M i x t u r e Thermal Conduct i v i t y

Exces s Thermal Conduc t i v i t y X 1000

0 . 0 0 . 0 8 3 7 0 . 0 0

0 . 1 0 . 0 8 3 7 - 0 . 5 3

0 . 2 0 . 08 3 8 -1 . 06

0 . 3 0 . 08 3 9 - 1 . 5 4

0 . 4 0 . 0 8 4 2 - 1.82

0 . 5 0 . 0 8 4 6 - 2 . 0 0

0 . 6 0 . 0 8 5 3

CO

OOi

0 . 7 0.0861 - 1.66

0 . 8 0.0871 - 1 . 2 4

0 . 9 0 . 0 8 8 2 - 0 . 7 2

1.0 0 . 0895 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 5

Page 72: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I V

Thermal C o n d u c t i v i t y Va l ue s f o r 1 s o p r o p a n o l - Benzene Sys t em

t h e

C o r r e c t e d t o 25°C

F r a c t i on ' o p a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exces s Thermal C o n d u c t i v i t y X 1000

0 . 0 0 . 0 8 3 7 0 . 0 0

0. 1 0 .0831 - 0 . 3 3

0 . 2 0 . 0 8 2 6 - 0 . 5 6

0 . 3 0 . 08 2 2 - 0 . 6 9

0 . 4 0 . 08 1 8 - 0 . 8 2

0 . 5 0 . 0815 - 0 . 8 5

0 . 6 0 . 0813 - 0 . 7 8

0 . 7 0.0811 - 0 . 7 1

0 . 8 0.0811 - 0 . 4 8

0 . 9 0 . 0 8 1 0 - 0 . 2 4

1.0 0 . 08 1 0 0 . 0 0 :

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 6

Page 73: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eE t h a n o l - C y c l o h e x a n e S y s t e m

C o r r e c t e d t o 25°C

l e F r a c t i o n E t ha no l

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Thermal Conduc t i v i t y X 1000

0 . 0 0 . 0 7 0 3 0 . 0 0

0. 1 0 . 0 7 0 5 - 2 . 4 0

0 . 2 0 . 0 7 1 0 - 4 . 5 0

0 . 3 0 . 0 7 1 8 - 6 . 3 0

0 . 4 0 . 0 7 2 9 - 7 . 8 0

0 . 5 0 . 0 7 4 5 - 8 . 8 0

0 . 6 0 . 0 7 6 5 - 9 - 4 0

0 . 7 0 . 0 7 9 0 - 9 . 5 0

0 . 8 0 . 0 8 2 5 - 8 . 6 0

0 . 9 0 . 08 7 5 - 6 . 2 0

1.0 0 . 0 9 6 3 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) •

5 7

Page 74: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eP r o p a n o l - C y c l o h e x a n e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n P r o p a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Thermal C o n d u c t i v i t y X 1000

0 . 0 0 . 0703 0 . 0 0

0. 1 0 . 0705 - 1 . 7 2

0 . 2 0 . 0 7 1 0 - 3 . 1 4

0 . 3 0 . 0 7 1 8 - 4 . 2 6

0 . 4 0 . 0 7 2 8 - 5 . 1 8

0 . 5 0 . 0 7 4 2 - 5 . 7 0

0 . 6 0 . 0 7 5 7 - 6 . 12

0 . 7 0 . 0 7 7 7 - 6 . 0 4

0 . 8 0 . 0803 - 5 . 3 6

0 . 9 0.0841 - 3 . 4 8

1.0 0 . 0895 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) •

5 8

Page 75: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eI s o p r o p a n o l - C y c l o h e x a n e S y s t e m

C o r r e c t e d t o 25°C

F r a c t i on opanol

M i x t u r e Thermal - C o n d u c t i v i t y

Exces s Thermal Conduc t i v i t y X 1000

0 . 0 0 . 0 7 0 3 0 . 0 0

0. 1 0 . 0 7 0 4 - 1 .02

0 . 2 0 . 0 7 0 4 - 2 . 0 4

0 . 3 0 . 0 7 0 6 - 2 . 9 1

0 . 4 0 . 0 7 1 0 - 3 . 5 8

0 . 5 0 . 0 7 1 6 - 4 . 0 5

0 . 6 0 . 0725 - 4 . 2 2

0 . 7 0 . 0 7 3 9 - 3 . 8 9

0 . 8 0 . 0 7 5 8 - 3 . 0 6

0 . 9 0.0781 - 1 . 8 3

1.0 0 . 0 8 1 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

5 9

Page 76: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e V I I I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eM e t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n Methanol

M i x t u r e Thermal Conduc t i v i t y

Exc e s s The Conduct i v i t y

0 . 0 0 . 0 6 0 6 0 . 0 0

0. 1 0 . 0 6 0 8 - 5 - 2 9

0 . 2 0 . 0 6 1 0 - 1 0 . 5 8

0 . 3 0 . 0 6 1 6 - 1 5 . 4 7

0 . 4 0 . 0 6 2 9 - 1 9 - 6 6

0 . 5 0 . 0 6 4 9 - 2 3 . 1 5

0 . 6 0 . 0 6 7 8 - 2 5 . 7 4

0 . 7 0 . 0 7 2 3 - 2 6 . 7 0

0 . 8 0 . 0 7 9 6 - 2 4 . 9 2

0 . 9 O.0919 - 1 8 . 1 1

1.0 0 . 1155 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

6 0

Page 77: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e I X

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eE t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n E t h a n o 1

M i x t u r e Thermal Conduc t i v i t y

Exc e s s Th< Conduc t i v i t y

0 . 0 0 . 0 6 0 6 0 . 0 0

0. 1 0 . 0 6 0 8 - 3 . 3 7

0 . 2 0 . 0 6 1 0 - 6 . 7 4

0 . 3 0 . 0 6 1 6 - 9 . 7 1

0 . 4 0 . 0 6 2 9 - 11.98

0 . 5 0 . 0 6 4 9 - 1 3 . 5 5

0 . 6 0 . 0 6 7 7 - 1 4 . 3 2

0 . 7 0 . 07 1 5 - 1 4 . 0 9

0 . 8 O.0767 - 1 2 . 4 6

0 . 9 0 . 0 8 3 9 - 8 . 8 3

1.0 0 . 0 9 6 3 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

61

Page 78: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eP r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

Mole F r a c t i o n P r opa no l

M i x t u r e Thermal Conduc t iv i t y

Exc e s s Tl Conduc t ivi

0 . 0 0 . 0 6 0 6 0 . 0 0

0. 1 0 . 06 0 8 - 2 . 6 9

0 . 2 0 . 06 1 0 - 5 . 3 8

0 . 3 0 . 0 6 1 6 - 7 . 6 7

0 . 4 0 . 0 6 2 9 - 9 - 2 6

0 . 5 0 . 0 6 4 9 - 10.15

0 . 6 0 . 06 7 7 - 1 0 . 2 4

0 . 7 0 . 0 7 1 4 - 9 . 4 3

0 . 8 0 . 07 6 2 - 7 . 5 2

0 . 9 0 . 0 8 2 4 - 4 . 2 6

1.0 0 . 0895 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

62

Page 79: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I

T h e r m a l C o n d u c t i v i t y V a l u e s f o r t h eI s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

C o r r e c t e d t o 25°C

F r a c t ion o p a n o 1

M i x t u r e Thermal Conduct i v i t y

Exc e s s Tl Conduct i v i

0 . 0 0 . 0 6 0 6 0 . 0 0

0.1 0 . 06 0 8 - 1 . 8 4

0 . 2 0 . 0 6 1 0 - 3 . 6 8

0 . 3 0 . 0615 - 5 - 2 2

0 . 4 0 . 0625 - 6 . 2 6

0 . 5 0 . 06 4 0 - 6 . 8 0

0 . 6 0 . 06 6 0 - 6 . 8 4

0 . 7 0 . 0685 - 6 . 3 8

0 . 8 0 . 07 1 8 -5* 12

0 . 9 0 . 07 5 9 - 3 - 0 6

1.0 0 . 08 1 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t i e s a r e c a l c u l a t e d b y e q u a t i o n ( 4 - 2 1 ) .T h e r m a l c o n d u c t i v i t y d a t a r e p o r t e d i n u n i t s o f B T U / ( H R ) ( F T ) ( ° F ) .

6 3

Page 80: A Non-Equilibrium Thermodynamic Approach to the ...

6 4

B. Exc e s s T h e r ma 1 Conduc t iv i t y

T a b u l a r d a t a on t h e e x c e s s t h e r ma l c o n d u c t i v i t y have been

c a l c u l a t e d f rom t h e d e f i n i t i o n o f e x c e s s t h e r m a l c o n d u c t i v i t y

[ e q u a t i o n ( 4 - 2 1 ) ] . The s e v a l u e s a r e e x p e r i m e n t a l l y d e t e r m i n e d ,

in t h e s e n s e t h a t t h e y a r e d e r i v e d f rom smoot hed e x p e r i m e n t a l

d e t e r m i n a t i o n s o f m i x t u r e t h e r ma l c o n d u c t i v i t i e s .

Page 81: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R V I ! R E F E R E N C E S

B. C. S a k i a d i s and J . C o a t e s , A L i t e r a t u r e S u r v e y o f t h e Thermal C o n d u c t i v i t y o f L i q u i d s (Baton Rouge, La . : E n g i n e e r i n gE x p e r i m e n t a l S t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1952) B u l l e t i n No. 34, p. 26.

6 5

Page 82: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER VI I I

DISCUSSION OF RESULTS

A. Genera 1

Compar i son o f t h e e x p e r i m e n t a l r e s u l t s and p r e d i c t e d v a l u e s f o r

t h e e x c e s s t h e r ma l c o n d u c t i v i t y i s t h e o b j e c t o f t h i s c h a p t e r . The

c o mp a r i s o n can b e s t be a p p r o a c h e d by c o n s i d e r i n g t h e s o u r c e s o f

e r r o r f o r t h e e x p e r i m e n t a l r e s u l t s and f o r t h e p r e d i c t e d e x c e s s

t h e r m a l c o n d u c t i v i t y .

B. S o u r c e s o f E r r o r

The e x p e r i m e n t a l d e t e r m i n a t i o n o f t h e r ma l c o n d u c t i v i t y by t h e

a p p a r a t u s g i v e s r i s e t o an a v e r a g e e r r o r o f ±1.5%. A c c o r d i n g l y ,

t h i s w i l l i n t r o d u c e an e r r o r i n t o t h e e x p e r i m e n t a l e x c e s s t he r ma l

c o n d u c t i v i t y . T a b u l a t e d e x p e r i m e n t a l e x c e s s t h e r m a l c o n d u c t i v i t i e s ,

p r e s e n t e d in C h a p t e r VI I , a r e c a l c u l a t e d by t h e us e o f e q u a t i o n

( 4 -21) u s i n g t h e smoothed t h e r m a l c o n d u c t i v i t y v a l u e s f o r t h e

m i x t u r e .

Us ing a t y p i c a l l i q u i d t h e r ma l c o n d u c t i v i t y o f 0 . 0 8 BTU/(HR)

( FT) ( °F) l e a d s t o an u n c e r t a i n t y o f ±0.001 BTU/ (HR) (FT) ( °F) in t h e

e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t y . The e x c e s s t h e r ma l c o n ­

d u c t i v i t y f o r t h e i s o p r o p a n o l - b e n z e n e s y s t e m l i e s e n t i r e l y w i t h i n

t h e r ange o f t h e e x p e r i m e n t a l e r r o r . For t h e o t h e r s y s t e m s s t u d i e d ,

t h e r ange o f e x p e r i m e n t a l e r r o r was l e s s t h a n t h e e x p e r i m e n t a l l y

6 6

Page 83: A Non-Equilibrium Thermodynamic Approach to the ...

d e t e r m i n e d e x c e s s t he r ma l c o n d u c t i v i t i e s .

P r e d i c t i o n o f e x c e s s t h e r ma l c o n d u c t i v i t i e s i s a c h i e v e d by t h e

u s e o f e q u a t i o n ( 4 - 2 6 ) . The p r i n c i p a l t e r ms in t h i s e x p r e s s i o n a r e

t h e d i f f u s i v i t y , D^g, and t h e hyd r ogen bond e n e r g y , AHg. A l i t e r a t u r e

s e a r c h y i e l d e d d a t a f o r t h e d i f f u s i v i t y o f t h e m e t h a n o l - b e n z e n e , ^

2 . 3e t h a n o 1 - b e n z e n e , m e t h a n o 1- c a r b o n t e t r a c h l o r i d e , and e t h a n o 1- c a r b o n

4t e t r a c h l o r i d e s y s t e m s . The s e d a t a a r e g e n e r a l l y a c c u r a t e t o

±2%. D i f f u s i v i t y d a t a f o r t h e o t h e r s y s t e m s s t u d i e d were e s t i m a t e d5

by t h e t e c h n i q u e o u t l i n e d by G a i n e r .

Hydrogen bond e n e r g i e s f o r many s y s t e m s have been summar i zed £

by P i m e n t e l . I t i s u n f o r t u n a t e , however , t h a t a r e l a t i v e l y s ma l l

amount o f work on hydr ogen bond e n e r g y in a l c o h o l s y s t e m s has been

done . Most i n v e s t i g a t i o n s have been g e n e r a l l y c o n f i n e d t o e i t h e r

me t ha no l o r e t h a n o l s y s t e m s . In a d d i t i o n , many v a l u e s f o r hydr ogen

bond e n e r g y a r e b a s e d upon d o u b t f u l mea s u r eme n t and a n a l y s i s t e c h n i q u e s .

R e p o r t e d v a l u e s f o r t h e same s y s t e m f r e q u e n t l y d i f f e r by a s much a s

2000 c a l o r i e s p e r mole o f monomer a l c o h o l . A f u r t h e r d i s c u s s i o n o f

hyd r ogen bond e n e r g y i s g i v e n l a t e r in t h i s c h a p t e r un d e r s e c t i o n D.

Because o f t h e wi de s c a t t e r in r e p o r t e d hydr ogen bond e n e r g i e s ,

t h e e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t i e s have been used t o back-

c a l c u l a t e a b e s t f i t v a l u e o f hyd r ogen bond e n e r g y f o r e a c h s y s t e m .

Hydrogen bond e n e r g i e s e s t i m a t e d in t h i s manner w i l l o b v i o u s l y be

s e n s i t i v e t o t h e e x p e r i m e n t a l e r r o r i n h e r e n t in t h e t h e r m a l c on ­

d u c t i v i t y d e t e r m i n a t i o n s . For s y s t e m s h a v i n g s ma l l d e v i a t i o n s in

m i x t u r e t h e r ma l c o n d u c t i v i t y , t h e p o s s i b l e e r r o r in e s t i m a t e d hydr ogen

bond e n e r g y can be q u i t e l a r g e . For t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e

Page 84: A Non-Equilibrium Thermodynamic Approach to the ...

6 8

s y s t e m , t h e e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t y can be used t o

e s t i m a t e hydr ogen bond e n e r g y w i t h an e s t i m a t e d u n c e r t a i n t y o f a b o u t

f i v e p e r c e n t . Th i s e r r o r c o r r e s p o n d s t o an e n e r g y r an g e o f ±200

c a l o r i e s p e r mole o f monomer a l c o h o l .

C. Compar i son o f Pr ed i c t e d and E x p e r i m e n t a l Exces s T h e r ma 1 Conduc t iv i t y

In o r d e r t o f a c i l i t a t e c o m p a r i s o n o f p r e d i c t e d and e x p e r i m e n t a l

v a l u e s f o r t h e e x c e s s t h e r m a l c o n d u c t i v i t y , a l l d a t a n e c e s s a r y f o r t h e

c a l c u l a t i o n s wer e r e d u c e d t o t a b u l a r fo rm, g i v i n g d a t a a t i n t e r v a l s

o f 0 .1 mole f r a c t i o n a l c o h o l . T h i s p r o c e d u r e i n v o l v e d i n t e r p o l a t i o n

o f d a t a r e p o r t e d in t h e l i t e r a t u r e t o even mole f r a c t i o n s . L i n e a r

i n t e r p o l a t i o n o f t h e r e p o r t e d p h y s i c a l p r o p e r t i e s f o r e a ch s y s t e m

was used t o d e r i v e t h e t a b u l a r d a t a . In a d d i t i o n , t h e t he r modynami c

f a c t o r , Bd, was e s t i m a t e d by n u m e r i c a l d i f f e r e n t a t i o n o f t a b u l a rD

a c t i v i t y c o e f f i c i e n t d a t a . L i t e r a t u r e r e f e r e n c e s f o r a l l p h y s i c a l

p r o p e r t i e s a r e g i v e n in Appendi x F.

C a l c u l a t e d v a l u e s o f t h e e x c e s s t h e r ma l c o n d u c t i v i t y a t 200

c a l o r i e s p e r mole i n c r e m e n t s in hyd r ogen bond e n e r g y wer e compared

w i t h t h e e x p e r i m e n t a l e x c e s s t h e r ma l c o n d u c t i v i t y v a l u e s u n t i l a

l e a s t s q u a r e minimum in e r r o r was a t t a i n e d . The e x c e s s t h e r m a l

c o n d u c t i v i t i e s p r e d i c t e d by e q u a t i o n (4-26) , a l o n g w i t h e x p e r i m e n t a l l y

d e t e r m i n e d v a l u e s f o r t h e v a r i o u s s y s t e m s , a r e shown in F i g u r e s 12

t h r o u g h 22. The hyd r ogen bond e n e r g i e s whi ch b e s t f i t t h e e x p e r i ­

ment a l e x c e s s t h e r m a l c o n d u c t i v i t i e s have been used in t h e c a l c u l a ­

t i o n s and a r e i n d i c a t e d f o r e a ch s y s t e m on t h e a p p r o p r i a t e f i g u r e s .

T a b u l a t e d r e s u l t s f o r t h e p r e d i c t e d e x c e s s t h e r ma l c o n d u c t i v i t i e s

Page 85: A Non-Equilibrium Thermodynamic Approach to the ...

Exce

ss

The

rmal

C

ondu

ctiv

ity

X 10

, B

TU

/(H

R)(

FT)(

°F)

6 9

15

4

3

2

0

9

8

7

6

AHd = 3800 c a l / m o l e5

4

3

2

0 . 2

0

0. 6 0.80 1 . 0

Mole F r a c t i o n Methanol

F i g u r e 12. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Methanol f o r t h e M e t h a n o l - Benzene Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a po i n t s .

Page 86: A Non-Equilibrium Thermodynamic Approach to the ...

7 0

h-Ll.

al

CQ

roO

X

>*

oD~ocoo

ruEL.0)

I/)tf)0)u><

5

k

3

2

AHD = 4600 c a l / m o l e

0

0.80 . 60 0 . 2 . 0

Mole F r a c t i o n E t ha no l

F i g u r e 13* Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n E t ha no l f o r t h e E t h a n o l - Benzene Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown a s d a t a p o i n t s .

Page 87: A Non-Equilibrium Thermodynamic Approach to the ...

71

cCX

COo

X

>s

u13“Ocoo

<uEL.(U

-C

inincuuX

5

4

3

2

AHd = 5200 c a l / m o l e

0

0 . 80 . 6 . 00 0 . 2

Mole F r a c t i o n P r opa no l

F i g u r e 14. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Pr opano l f o r t h e P r o p a n o l - B e n z e n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 88: A Non-Equilibrium Thermodynamic Approach to the ...

7 2

H

cdZE

mo

x

oZi"Dcoo

<L>_ c

l/>ur<DUX

5

4

3

2

AHD = 3800 c a l / m o l e

0

0 . 80 . 60 . 4 . 00 . 20

Mole F r a c t i o n I s o p r o p a n o l

F i g u r e 15- Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - Benzene Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 89: A Non-Equilibrium Thermodynamic Approach to the ...

7 3

O—m

cr\O

X

>•

o3TJCoo

03E

<D_CI—to(/>(UOX

5

k

3

2

0

9

8

7

6

AH = 6600 c a l / m o l e5

4

3

2

0

0.80 . 60 0 . 2 . 0

Mole F r a c t i o n E t ha no l

F i g u r e 16. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n E t ha no l f o r t h e E t h a n o l - C y c l o h e x a n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown a s d a t a po i n t s .

Page 90: A Non-Equilibrium Thermodynamic Approach to the ...

cd

cr\O

X>•

on~ucoo

fDEL.<u

(/)to<UoX

7 4

AHd = 7400 c a l / m o l e

0 . 4 0 . 6 0.80 0 . 2 1 . 0

Mole F r a c t i o n Pr opano l

F i g u r e 17- Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Pr opano l f o r t h e P r o p a n o l - C y c l o h e x a n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a po i n t s .

Page 91: A Non-Equilibrium Thermodynamic Approach to the ...

7 5

H-

zrz

o

x>s

oD-ocoo

03EL-<D

(/>Q)UX

5

3

AHd = 6000 c a l / m o l e2

0

0. 6 0.8 . 00 . 20

Mole F r a c t i o n I s o p r o p a n o l

F i g u r e 18. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - Cy c l o h e x a n e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown a s d a t a p o i n t s .

Page 92: A Non-Equilibrium Thermodynamic Approach to the ...

5r;

7 6

cC

cr\O

X

o3"Ocoo

03£L-Q)

(/)V)0)oX

UJ

30

25

20

5

AHD = 4400 c a l / m o l e

0

5

0

0. 6 0 . 80 0 . 2 1 . 0

Mole F r a c t i o n Methanol

F i g u r e 19. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Methanol f o r t h e M e t h a n o l -C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e i s c u r v e p r e ­d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 93: A Non-Equilibrium Thermodynamic Approach to the ...

Exce

ss

The

rmal

C

ondu

ctiv

ity

X 10

, B

TU

/(H

R)(

FT)(

°F)

7 7

5

4

3

2

0

9

8

AHD = 6600 c a l / m o l e7

6

5

4

3

2

0

0 0 . 2 0 . 4 0 . 6 0 . 8 1 .0

Mole F r a c t i o n E t ha no l

F i g u r e 20. Exces s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n E t ha no l f o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e - i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 94: A Non-Equilibrium Thermodynamic Approach to the ...

7 8

ZDh“CQ

coo

X

>-

oD"DCoo

HJEL .(U

I/)<DOX

5

14

13

1 0

9

8

7

6

AH = 7800 c a l / m o l e5

4

3

2

I I I ]

0 . 6

0

0 . 4 0 . 80 0 . 2 1 . 0

Mole F r a c t i o n P r opa no l

F i g u r e 21. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n Pr opano l f o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 95: A Non-Equilibrium Thermodynamic Approach to the ...

7 9

CCX

cr\O

X

o3“acoo

mEu<DX

t/><uuX

LU

7

6

5

4

AHD = 6400 c a l / m o l e3

2

0

0 . 4 0 . 6 0.80 0 . 2 1 . 0

Mole F r a c t i o n I s o p r o p a n o l

F i g u r e 22. Exc e s s Thermal C o n d u c t i v i t y v e r s u s Mole F r a c t i o n I s o p r o p a n o l f o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e Sys t em. S o l i d l i n e i s c u r v e p r e d i c t e d by e q u a t i o n ( 4 - 2 6 ) . E x p e r i m e n t a l v a l u e s a r e shown as d a t a p o i n t s .

Page 96: A Non-Equilibrium Thermodynamic Approach to the ...

8 0

a r e g i v e n in T a b l e s XII t h r o u g h XXII . The p e r c e n t e r r o r in p r e d i c t i n g

t h e t h e r m a l c o n d u c t i v i t y o f t h e m i x t u r e i s a l s o t a b u l a t e d .

The e x c e s s t h e r m a l c o n d u c t i v i t y r e s u l t s f o r t h e i s o p r o p a n o l -

b e n z e n e s y s t e m l i e s e n t i r e l y w i t h i n t h e e x p e r i m e n t a l e r r o r o f t h e

t he r m a l c o n d u c t i v i t y d e t e r m i n a t i o n s . The d e v i a t i o n o f t h e t he r ma l

c o n d u c t i v i t y f rom t h e i d e a l v a l u e i s n o t l a r g e enough t o a c c u r a t e l y

e s t i m a t e t h e hydr ogen bond e n e r g y f o r t h i s s y s t e m . Whi l e t h e p o s s i b l e

e r r o r in t h e e s t i m a t e d h y d r oge n bond e n e r g y f o r t h i s s y s t e m i s q u i t e

l a r g e , t h e a c t u a l r e s u l t o f 3800 c a l o r i e s p e r mole i s q u i t e r e a s o n a b l e

and has t h e r e f o r e been i n c l u d e d in t h e r e s u l t s .

S i m i l a r l y , t h e h y d r oge n bond e n e r g i e s f o r t h e e t h a n o l - b e n z e n e

and p r o p a n o l - b e n z e n e a r e e s t i m a t e d t o have maximum p o s s i b l e e r r o r s

o f ±50%. The e s t i m a t e d hydr ogen bond e n e r g i e s o f 4600 and 5200

c a l o r i e s p e r mole f o r t h e s e s y s t e m s a r e a l s o q u i t e r e a s o n a b l e . Al l

o t h e r r e s u l t s a r e e s t i m a t e d t o be c o n s i d e r a b l y more a c c u r a t e , a v e r a g i n g

a b o u t ±10% f o r t h e p o s s i b l e hyd r ogen bond e n e r g y e r r o r , w i t h a low

o f ±5% f o r t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m .

As can be s e e n in F i g u r e s 12 t h r o u g h 22, t h e p r e d i c t e d e x c e s s

t h e r ma l c o n d u c t i v i t i e s f o l l o w t h e e x p e r i m e n t a l v a l u e s q u i t e w e l l f o r

r e a s o n a b l e v a l u e s o f hydr ogen bond e n e r g y . P e r c e n t e r r o r in p r e ­

d i c t i n g t h e t h e r ma l c o n d u c t i v i t y o f t h e m i x t u r e i s g e n e r a l l y l e s s

t h a n ±1% o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e f o r a l l s y s t e m s . S i n c e

t h e p r e d i c t e d v a l u e s have been c a l c u l a t e d on a b e s t f i t b a s i s f o r

h y d r o g e n bond e n e r g y , t h e low p e r c e n t a g e e r r o r i s t o be e x p e c t e d .

I t i s s i g n i f i c a n t , however , t h a t f o r a l l s y s t e m s t h e mole f r a c t i o n a t

whi ch t h e e x c e s s t h e r m a l c o n d u c t i v i t y i s maximum i s a c c u r a t e l y p r e d i c t e d .

Page 97: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XI 1

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e M e t h a n o l - B e n z e n e S y s t e m

AHd = 3800 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n

MethanolThermal C o n d u c t i v i t y

X 1000Pe r Cent

E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 2 . 5 9 - 0 . 14

0 . 2 - 5 . 0 5 - 0 . 5 7

0 . 3 - 7 . 1 0 - 0 . 8 8

0 . 4 - 8 . 5 7 - 0 . 8 5

0 . 5 - 9 - 41 - 0 . 5 6

0 . 6 - 9 - 5 2 - 0 . 0 5

0 . 7 - 9 . 7 2 - 0 . 4 8

0 . 8 - 7 . 5 2 + 0 . 6 2

0 . 9 - 5 - 9 7 - 0 . 7 0

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 1

Page 98: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I I I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e E t h a n o l - B e n z e n e S y s t e m

AH = 4600 c a l / m o l e 8

P r e d i c t e d Exc e s s Per CentMole F r a c t i o n Thermal C o n d u c t i v i t y E r r o r

E t h a n o l X 1000

0 . 0 0 . 0 0 0 . 00

0.1 - 1 . 0 8 - 0 . 0 2

0 . 2 - 2 . 0 2 - 0 . 12

0 . 3 - 2 . 7 0 - 0 . 14

0 . 4 - 2 . 9 8 - 0 . 0 5

0 . 5 - 2 . 9 1 +0. 10

0 . 6 - 2 . 6 0 +0. 18

0 . 7 - 2 . 2 2 + 0 . 23

0 . 8 - 1 . 7 5 + 0 . 03

0 . 9 - 1 . 0 1 - 0 . 0 8

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 2

Page 99: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I V

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e P r o p a n o l - B e n z e n e S y s t e m

AHD = 5200 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n

P r opa no lThermal C o n d u c t i v i t y

X 1000Per Cent

E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 0 . 6 9 - 0 . 19

0 . 2 - 1 . 2 8 - 0 . 2 6

0 . 3 - 1 . 7 4 - 0 . 2 4

0 . 4 - 2 . 0 1 - 0 . 2 3

0 . 5 - 2 . 0 8 - 0 . 1 0

0 . 6 - 1 . 8 5 + 0 . 0 4

0 . 7 - 1 . 3 8 + 0 . 32

0 . 8 - 0 . 9 3 + 0 . 35

0 . 9 - 0 . 4 0 + 0 . 3 6

1.0 0 . 00 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 3

Page 100: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XV

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - B e n z e n e S y s t e m

AHd = 3800 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n Thermal C o n d u c t i v i t y Pe r Centi s o p r o p a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 0 . 3 9 - 0 . 0 8

0 . 2 - 0.71 - 0 . 18

0 . 3 - 0 . 8 6 - 0 . 2 1

0 . 4 - 0 . 8 1 +0.01

0 . 5 - 0 . 7 2 + 0 . 1 6

0 . 6 - 0 . 6 1 + 0 . 2 0

0 . 7 - 0 . 5 0 + 0 . 2 6

0 . 8 - 0 . 4 1 + 0 . 0 8

0 . 9 - 0 . 2 4 - 0 . 0 0

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 4

Page 101: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XVI

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e E t h a n o l - C y c l o h e x a n e S y s t e m

AHD = 6600 c a l / m o l eD

P r e d i c t e d Exces sMole F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

E t h a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 2 . 0 4 + 0 . 5 0

0 . 2 - 4 . 0 3 + 0 . 6 6

0 . 3 - 5 - 9 3 + 0 . 5 2

0 . 4 - 7 . 6 8 + 0 . 17

0 . 5 - 9 - 1 6 - 0 . 4 8

0 . 6 - 1 0 . 0 5 - 0 . 8 4

0 . 7 - 1 0 . 0 4 - 0 . 6 8

0 . 8 - 8 . 9 4 - 0 . 4 1

0 . 9 - 5*93 + 0 . 3 0

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 5

Page 102: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XVI I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e P r o p a n o l - C y c l o h e x a n e S y s t e m

AHD = 7400 c a l / m o l eD

P r e d i c t e d Exces s Hol e F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

P r opa no l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 1 . 4 0 + 0 . 45

0 . 2 - 2 . 7 4 + 0 . 5 6

0 . 3 - 3 . 9 9 +0 . 3 8

0 . 4 - 5 . 0 9 +0 . 1 2

0 . 5 - 5 - 9 7 - 0 . 3 6

0 . 6 - 6 . 3 8 - 0 . 3 4

0 . 7 - 6 . 1 7 - 0 . 1 7

0 . 8 - 5 . 2 8 + 0 . 0 9

0 . 9 - 3 - 3 4 + 0 . 17

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 6

Page 103: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XVI I I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - C y c l o h e x a n e S y s t e m

AHD = 6000 c a l / m o l eD

P r e d i c t e d Exces s Mole F r a c t i o n Thermal C o n d u c t i v i t y Per CentI s o p r o p a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 0 . 9 2 + 0 . 1 4

0 . 2 -1 . 80 + 0 . 3 4

0 . 3 - 2 . 6 2 +0.41

0 . 4 - 3 - 3 5 + 0 . 3 2

0 . 5 - 3 . 9 4 + 0 . 1 6

0 . 6 - 4 . 2 0 + 0 . 0 2

0 . 7 - 4 . 0 4 - 0 . 2 0

0 . 8 - 3 - 4 6 - 0 . 5 3

0 . 9 - 2 . 1 9 - 0 . 4 6

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 7

Page 104: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X I X

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

AHD = 4400 c a l / m o l eD

P r e d i c t e d Exces s Mole F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

Methanol X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 6 . 0 3 - 1 .22

0 . 2 - 1 1 . 8 7 - 2 . 1 2

0 . 3 - 1 7 . 1 5 - 2 . 7 3

0 . 4 - 2 1 . 71 - 2 . 3 6

0 . 5 - 2 4 . 2 3 -1 . 67

0 . 6 - 2 6 . 4 4

O•1

0 . 7 - 27-41 - 0 . 5 7

0 . 8 - 2 6 . 3 8 - 1 . 8 4

0 . 9 - 1 9 . 0 9 - 1 . 0 7

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 8

Page 105: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XX

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

AHD = 6600 c a l / m o l eD

P r e d i c t e d Exces s Mole F r a c t i o n Thermal C o n d u c t i v i t y Pe r Cent

Et ha no l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 3 . 7 7 - 0 . 6 6

0 . 2 - 7 . 1 9 - 0 . 7 5

0 . 3 - 1 0 . 0 6 - 0 . 5 7

0 . 4 - 1 2 . 4 2 I O O

0 . 5 - 1 4 . 0 5 - 0 . 7 7

0 . 6 - 1 4 . 7 7 - 0 . 6 6

0 . 7 - 1 4 . 4 3 - 0 . 4 7

0 . 8 - 1 2 . 4 2 + 0 . 0 6

0 . 9 - 7 - 9 4 + 1 .06

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

8 9

Page 106: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXI

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

AHD = 7800 c a l / m o l eD

P r e d i c t e d Exc e s s Mole F r a c t i o n Thermal C o n d u c t i v i t y Per Cent

Pr o p a n o l X 1000 E r r o r

0 . 0 0 . 0 0 0 . 0 0

0. 1 - 2 . 6 6 + 0 . 0 4

0 . 2 - 5 . 0 5 + 0 .5 5

0 . 3 - 7 . 0 1 + 1.07

0 . 4 - 8 . 6 9 + 0.91

0 . 5 - 9 . 7 9 + 0 .5 6

0 . 6 - 1 0 . 3 3 - 0 . 1 4

0 . 7 - 9 . 9 5 - 0 .7 3

0 . 8 - 8 . 3 3 - 1 . 0 6

0 . 9 - 5 . 0 9 -1 .01

1.0 0 . 0 0 0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n .

9 0

Page 107: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXI I

P r e d i c t e d E x c e s s T h e r m a l C o n d u c t i v i t yf o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

Mole F r a c t i o n I s o p r o p a n o l

AHD = 6400 c a l / m o l eD

P r e d i c t e d Excess Thermal C o n d u c t i v i t y

X 1000P e r Cent

E r r o r

0 . 0

0. 1

0. 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0.8

0 . 9

1 . 0

0 . 00

- 1 . 8 8

- 3 . 6 1

- 5 . 13

-6 . 3 6

- 7 . 0 0

- 6.80

- 6 . 12

-4 . 7 6

-2 . 6 0

0 . 0 0

0 . 0 0

- 0 . 0 6

+ 0 . 12

+ 0 . 1 4

- 0 . 1 6

- 0 . 3 0

+ 0 . 0 6

+ 0 . 3 8

+ 0.51

+ 0 .6 0

0 . 0 0

E x c e s s t h e r m a l c o n d u c t i v i t y c a l c u l a t e d b y e q u a t i o n ( 4 - 2 6 ) .S e e A p p e n d i x F f o r r e f e r e n c e s t o d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n s .

9 1

Page 108: A Non-Equilibrium Thermodynamic Approach to the ...

9 2

The s t r o n g e s t e v i d e n c e f o r t h e c o r r e c t n e s s o f t h e c o r r e l a t i o n

comes f rom t h e r e s u l t s f o r t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m .

T h i s s y s t e m e x h i b i t e d t h e w i d e s t d e v i a t i o n f rom i d e a l b e h a v i o r . The

maximum e x c e s s t h e r m a l c o n d u c t i v i t y was e x p e r i m e n t a l l y d e t e r m i n e d

t o o c c u r a t 0 . 7 mole f r a c t i o n o f m e t h a n o l . F i g u r e 19 and T a b l e XIX

show t h a t t h e c a l c u l a t e d maximum p o i n t i s a l s o 0 . 7 mole f r a c t i o n .

The mole f r a c t i o n f o r maximum e x c e s s t h e r m a l c o n d u c t i v i t y f o r t h e

m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m i s much d i f f e r e n t f rom t h e

u s ua l maximum p o i n t o f a b o u t 0 . 5 mole f r a c t i o n f o r most s y s t e m s .

Ot he r s u p p o r t i n g d a t a f o r t h e c o r r e c t n e s s o f t h e model a r e t h e

c a l c u l a t e d maximum p o i n t s f o r t h e m e t h a n o l - b e n z e n e , e t h a n o l - c y c l o h e x a n e ,

p r o p a n o l - c y c l o h e x a n e , e t h a n o l - c a r b o n t e t r a c h l o r i d e and t h e p r o p a n o l -

c a r b o n t e t r a c h l o r i d e s y s t e m s .

D. Compar i son o f Es t i mat ed Hydrogen Bond Energ i e s w i t h Ava i l a b l e

L i t e r a t u r e Va1ues

The e x c e s s t h e r m a l c o n d u c t i v i t i e s wer e u s e d t o c a l c u l a t e e s t i ­

mated v a l u e s f o r hydr ogen bond e n e r g i e s . As i n d i c a t e d e a r l i e r , t h i s

was done b e c a u s e o f t h e wi de s c a t t e r in a v a i l a b l e hydr ogen bond

e n e r g i e s and l a c k o f d a t a f o r some o f t h e s y s t e m s s t u d i e d . P i m e n t e l ^

has summar i zed t h e r e p o r t e d hydr ogen bond e n e r g i e s f o r a l c o h o l

s y s t e m s . T a b u l a t e d r e s u l t s f o r v a r i o u s s y s t e m s a r e g i v e n in T a b l e

XX I I 1 . 8

As T a b l e XXIII i n d i c a t e s t h e r e a r e a number o f me t hods a v a i l a b l e

f o r m e a s u r i n g hydr ogen bond e n e r g i e s . The n u m e r i c a l v a l u e s f o r

hydr ogen bond e n e r g i e s g i v e n in T a b l e XXIII a r e d e p e n d e n t upon t h e

Page 109: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXI I 1

H y d r o g e n B o n d E n e r g i e s f o r V a r i o u s A l c o h o l S y s t e m s

Sys t em T e m p e r a t u r e Hydrogen Bond Measurement°C Ene r gy , c a l / m o l e Method

M e t h a n o l - C a r b o n 20- 30 4720 (1) |RT e t r a c h l o r i d e - 15 t o 60 4600 ± 1200 (2) IR

M e t h a n o l - B e n z e n e 20 4250 (1) HSL20 3670 (1) 1R

M e t h a n o 1- He xa ne 10-45 5800 (2) HM

E t h a n o l - C a r b o nT e t r a c h l o r i d e - 15 t o 60 3600 ± 800 (2) IR

E t h a n o l - M e t h y 1-Cy c l o h e x a n e 35-55 5400 ± 1000 (1) VP

P r o p a n o l - H e x a n e 10-45 5800 (2) HM

( t ) B u t a n o l - C a r b o n 20-40 5300 ± 500 (1) IRT e t r a c h l o r i d e - 1 5 t o 60 2400 ± 600 (2) IR

( t ) B u t a n o l -C y c l o h e x a n e 27 3850 (4) UA

Numbers in p a r e n t h e s e s a r e t h e assumed number o f hydr ogen bonds b r o k e n p e r mol e . Measur ement method a b b r e v i a t i o n s a r e : IR - I n f r a r e d ,HSL - Heat o f S o l u t i o n , HM - Heat o f Mi x i ng , VP - Vapor P r e s s u r e , and UA - U l t r a s o n i c Sound A b s o r p t i o n .

9 3

Page 110: A Non-Equilibrium Thermodynamic Approach to the ...

assumed number o f hyd r ogen bonds b r o k e n p e r mole . The d a t a in T a b l e

XXIII i s q u i t e s p a r s e and c a n n o t be used t o even i n d i c a t e q u a l i t a t i v e

t r e n d s f o r a l c o h o l s y s t e m s . The d a t a does show t h a t hyd r ogen bond

e n e r g i e s r an g e f rom a b o u t 3000 t o 7000 c a l o r i e s p e r mole f o r a l c o h o l

s y s t e m s .

E s t i m a t e d v a l u e s o f h y d r oge n bond e n e r g y f rom e x c e s s t h e r m a l

c o n d u c t i v i t y v a l u e s a r e in t h e same r a n g e a s t h o s e i n d i c a t e d in T a b l e

XXI I I . The e s t i m a t e d v a l u e o f 4400 c a l o r i e s p e r mole f o r t h e m e t h a n o l -

c a r b o n t e t r a c h l o r i d e s y s t e m s a g r e e s e x t r e m e l y w e l l w i t h t h e l i t e r a t u r e

v a l u e o f 4700 c a l o r i e s p e r mol e . T h i s s y s t e m s h o u l d y i e l d t h e most

a c c u r a t e e s t i m a t e o f hydr ogen bond e n e r g y b e c a u s e o f i t s l a r g e

d e v i a t i o n f rom i d e a l i t y . E a r l i e r d i s c u s s i o n s in t h i s c h a p t e r

( s e c t i o n s B and C) p l a c e d t h e a c c u r a c y o f t h e e s t i m a t e d hydr ogen

bond e n e r g y f o r t h e m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m a t ±5%.

The e s t i m a t e d h y d r oge n bond e n e r g y o f 6600 c a l o r i e s p e r mole

f o r t h e e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m a g r e e s we l l w i t h t h e

q u o t ed v a l u e , i f t h e q u o t e d v a l u e i s r e e v a l u a t e d a s s u mi n g t h a t one

hyd r ogen bond i s b r o k e n , r a t h e r t ha n two. The e s t i m a t e d v a l u e o f

3800 c a l o r i e s p e r mole and t h e q u o t e d v a l u e o f 3670 c a l o r i e s p e r

mole f o r t h e hyd r ogen bond e n e r g i e s o f t h e m e t h a n o l - b e n z e n e s y s t e m

a l s o a r e in q u i t e c l o s e a g r e e m e n t . The o n l y o t h e r s y s t e m f o r whi ch

a c o m p a r i s o n can be made i s be t ween t h e e s t i m a t e d h y d r o g e n bond

e n e r g y f o r t h e e t h a n o l - c y c l o h e x a n e s y s t e m and t h e q u o t e d hyd r ogen

bond e n e r g y f o r t h e e t h a n o l - m e t h y I c y c l o h e x a n e s y s t e m . The e s t i m a t e d

v a l u e f o r t h e e t h a n o l - c y c l o h e x a n e s y s t e m i s 6600 c a l o r i e s p e r mole ;

wh i l e , t h e q u o t e d v a l u e f o r t h e e t h a n o 1- m e t h y 1 eye 1ohe xa ne s y s t e m is

Page 111: A Non-Equilibrium Thermodynamic Approach to the ...

9 5

5400 ±1000 c a l o r i e s p e r mole .

In g e n e r a l , i t has been shown t h a t t h e hydr ogen bond e n e r g y

e s t i m a t e d f rom e x c e s s t h e r ma l c o n d u c t i v i t y d a t a a r e in good a g r e e ­

ment w i t h a v a i l a b l e r e s u l t s f rom o t h e r met hods o f m e a s u r e me n t .

F u r t h e r c o m p a r i s o n s c o u l d n o t be made b e c a u s e o f t h e s p a r s i t y o f

d a t a f o r t h e h y d r oge n bond e n e r g y o f h i g h e r a l c o h o l s .

E. U s e f u 1 n e s s o f t h e Method f o r Pr ed i c t ing T h e r ma 1 Conduc t i v i t y o f

B i n a r y M i x t u r e s

The u s e f u l n e s s o f t h i s method f o r p r e d i c t i n g t h e t h e r m a l

c o n d u c t i v i t y o f b i n a r y m i x t u r e s i s somewhat l i m i t e d b e c a u s e o f t h e

l a r g e amount o f d a t a n e c e s s a r y f o r t h e c a l c u l a t i o n s . Some o f t h e

d a t a , p a r t i c u l a r l y t h e d i f f u s i v i t y and t h e h y d r oge n bond e n e r g y ,

a r e n o t r e a d i l y a v a i l a b l e f o r s y s t e m s o t h e r t h a n t h o s e s t u d i e d .

A n o t h e r l i m i t a t i o n , n o t so o b v i o u s , i s t h a t imposed by t h e mode l .

I t has been assumed t h a t s o l u t e - s o l v e n t i n t e r a c t i o n s a r e u n i m p o r t a n t

and t h a t s o l u t e - s o l u t e i n t e r a c t i o n s can be r e p r e s e n t e d by a c h e mi c a l

r e a c t i o n . A d d i t i o n a l a s s u m p t i o n s s p e c i f i c t o a l c o h o l s y s t e m s have

a l s o been i n t r o d u c e d . In p r i n c i p l e , t h i s method s h o u l d be a p p l i c a b l e

w i t h mi nor c ha n g e s t o s y s t e m s in which t h e c h e mi c a l e q u i l i b r i u m i s a

known reac t ion_, such a s t h e d i m e r i z a t i o n r e a c t i o n t h a t o c c u r s in

p h e n y l a c e t i c a c i d - n i t r o b e n z e n e s o l u t i o n s . A s p e c i f i c s t r o n g i n t e r ­

a c t i o n be tween t h e s o l u t e and t h e s o l v e n t , such a s t h a t o c c u r r i n g in

t h e a c e t o n e - c h 1o r o f o r m s y s t e m ! ^ s h o u l d a l s o be d e s c r i b a b l e by a

s i m i l a r a n a l y s i s t o t h e one d e v e l o p e d in t h i s s t u d y . Data n e c e s s a r y

f o r t e s t i n g t h i s t y p e o f a n a l y s i s f o r such s y s t e m s a r e no t a v a i l a b l e .

Page 112: A Non-Equilibrium Thermodynamic Approach to the ...

9 6

In a d d i t i o n , s y s t e m s w i t h a s t r o n g i n t e r a c t i o n be t ween s o l u t e and

s o l v e n t , w i t h n e g l i g i b l e s o l u t e - s o l u t e and s o l v e n t - s o l v e n t i n t e r ­

a c t i o n s , a r e r a r e .

In c o n c l u s i o n , t h i s method w i l l v e r y a c c u r a t e l y p r e d i c t t h e

t h e r ma l c o n d u c t i v i t y o f a l c o h o l - i n e r t s o l v e n t s y s t e m s p r o v i d e d t h e

n e c e s s a r y d a t a a r e a v a i l a b l e . The method i s cumbersome in t h a t a

l a r g e amount o f d a t a i s n e c e s s a r y . The e m p i r i c a l r e l a t i o n s d e v e l o p e d

11 1 2 by F i 1 1 i p p o v - N o v o s e l o v a and J o r d a n - C o a t e s a r e recommended where

d a t a i s n o t a v a i l a b l e f o r t h e t y p e o f a n a l y s i s d e v e l o p e d in t h i s

s t u d y .

Page 113: A Non-Equilibrium Thermodynamic Approach to the ...

C H A P T E R V I I I R E F E R E N C E S

^C. S. Ca l dwe l l and A. L. Babb, " D i f f u s i o n in t h e Sys t em M e t h a n o l - B e n z e n e , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LIX (1955).) 1114.

2D. K. Ande r s on , J . R. H a l l , and A. L. Babb, "Mutua l D i f f u s i o n

in No n - I d e a l B i n a r y L i q u i d M i x t u r e s , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LXI I ( 1958 ) , 405 .

3D. K. Ander son and A. L. Babb, "Mutua l D i f f u s i o n in No n - I d e a l

L i q u i d M i x t u r e s , " J o u r n a 1 o f Phys i c a 1 Chemi s t r y , LXVI I ( 1963) ; 1363-4

B. R. Hammond and R. H. S t o k e s , " D i f f u s i o n in B i n a r y L i q u i d M i x t u r e s , " T r a n s a c t i o n s o f t h e F a r a d a y S o c i e t y , LI I ( 1 9 5 6 ) , 783-

'’j . L. G a i n e r , " E f f e c t o f M o l e c u l a r P r o p e r t i e s on B i n a r y L i q u i d D i f f u s i o n C o e f f i c i e n t s , " I n d u s t r i a l and E n g i n e e r i n g C h e mi s t r y F u n d a m e n t a I s , V ( 1966 ) , 436 .

gG. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond (San

F r a n c i s c o : W. H. Freeman and Co . , I 9 6 0 ) , p. 35*4)

7 I b i d . , p. 350.

^ I b i d . , p. 3 5 6 .Q

I. P r i g o g i n e and R. Defay , Chemical Thermodynami cs (London: Longmans, Green and Co . , 1954) , p. 423.

10_ilb_id., p. 427*

n L. P. F i l l i p p o v and N. S. N o vo s e l o v a , "The Thermal C o n d u c t i v i t y o f S o l u t i o n s o f Normal M i x t u r e s , " V e s t n i k Moskovskogo U n i v e r s i t e t a , S e r i y a F i z i k o - M a t e n a t e c h e s k i k h i E s t e s t v e n n y k k Nauk No. 2, X ( 1955) ) 37-

1 2H. B. J o r d a n , Pred i c t ion o f T h e r ma 1 Conduc t i v i t y o f Mi sc i b 1e B i n a r y L i q u i d M i x t u r e s f rom t h e P u r e Component Va 1ues ( M a s t e r s T h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 19 6 1) , p . 5.

9 7

Page 114: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

A. Cone 1 us ions

As a r e s u l t o f t h i s i n v e s t i g a t i o n , a v a l i d method f o r p r e d i c t i n g

t h e t he r ma l c o n d u c t i v i t y o f a 1 coho 1 - i n e r t s o l v e n t s y s t e m s has been

d e v e l o p e d . The method c a n , in p r i n c i p l e , be used f o r p r e d i c t i o n o f

t h e c o m p o s i t i o n d e p e n d e n c e o f t he r ma l c o n d u c t i v i t y f o r o t h e r t y p e s

o f s y s t e m s , p r o v i d i n g t h e s y s t e m i n t e r a c t i o n s can be d e s c r i b e d by a

s i n g l e c h e mi c a l r e a c t i o n . Wi th a p p r o p r i a t e d a t a , t h e t he r ma l c on­

d u c t i v i t y o f b i n a r y a l c o h o l m i x t u r e s can be p r e d i c t e d w i t h an e r r o r

o f l e s s t ha n ±1% o v e r t h e e n t i r e c o n c e n t r a t i o n r an g e .

For t h e s y s t e m s s t u d i e d , t h e e x p e r i m e n t a l e x c e s s t he r ma l c on­

d u c t i v i t i e s have been used t o e s t i m a t e hydr ogen bond e n e r g i e s f o r a

s e r i e s o f a l c o h o l - i n e r t s o l v e n t s y s t e m s . A v a i l a b l e l i t e r a t u r e d a t a

on hydr ogen bond e n e r g y f o r s e v e r a l s y s t e m s ha s been shown t o be in

q u i t e c l o s e a g r e e m e n t w i t h t h e e x c e s s t he r ma l c o n d u c t i v i t y e s t i m a t e s .

B. Recommendat i ons f o r F u t u r e Work

As a r e s u l t o f t h i s i n v e s t i g a t i o n , s e v e r a l a r e a s o f a d d i t i o n a l

r e s e a r c h and i n v e s t i g a t i o n have o pe ne d .

F i r s t , t h e method s h o u l d be f u r t h e r t e s t e d a s a d d i t i o n a l and

more a c c u r a t e d a t a on p h y s i c a l p r o p e r t i e s f o r a 1c o h o l - i n e r t s o l v e n t

9 8

Page 115: A Non-Equilibrium Thermodynamic Approach to the ...

9 9

s y s t e m s becomes a v a i l a b l e . In p a r t i c u l a r , more a c c u r a t e d a t a f o r

hyd r ogen bond e n e r g y i s needed t o t e s t t h e mode l . D i f f u s i v i t y d a t a

f o r t h e s e s y s t e m s i s a n o t h e r l i m i t i n g f a c t o r .

Second , t h e s u c c e s s o f t h i s m a c r o s c o p i c d e s c r i p t i o n o f t h e

c o m p o s i t i o n d e p e n d e n c e o f t h e r m a l c o n d u c t i v i t y in a l c o h o l s y s t e m s

l e a d s t o t h e p o s s i b i l i t y o f d e s c r i b i n g o t h e r s t r o n g l y i n t e r a c t i n g

s y s t e m s by a s i m i l a r a n a l y s i s . in p a r t i c u l a r , t h e method s h o u l d be

d i r e c t l y a p p l i c a b l e t o d i m e r i z a t i o n r e a c t i o n s , such as t h a t o c c u r r i n g

in t h e p h e n y l a c e t i c a c i d - n i t r o b e n z e n e s y s t e m , ' and t o s t r o n g s o l u t e -

s o l v e n t i n t e r a c t i o n s , such a s t h a t o c c u r r i n g in t h e a c e t o n e - c h l o r o -

2fo rm s y s t e m . T e s t i n g o f t h e method f o r o t h e r s t r o n g l y i n t e r a c t i n g

s y s t e m s has n o t been a t t e m p t e d b e c a u s e o f t h e l a c k o f s u f f i c i e n t d a t a .

F i n a l l y , i t i s b e l i e v e d t h a t t h e r m a l c o n d u c t i v i t y d e v i a t i o n s

t h a t o c c u r in s l i g h t l y i n t e r a c t i n g s y s t e m s can a l s o be d e s c r i b e d by

an a n a l y s i s s i m i l a r t o t h e one d e v e l o p e d in t h i s i n v e s t i g a t i o n . Such

an a n a l y s i s would p r o c e e d on t h e a s s u m p t i o n o f t h e f o r m a t i o n o f a

compl ex be tween t h e s o l u t e and t h e s o l v e n t . The d i f f i c u l t y w i t h

such an a n a l y s i s would be in d e t e r m i n i n g t h e p r o p e r complex formed

and in r e l a t i n g t h i s model t o t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t s and

t h e m a c r o s c o p i c p r o p e r t i e s o f t h e s o l u t i o n .

Page 116: A Non-Equilibrium Thermodynamic Approach to the ...

CHAPTER I X REFERENCES

' l . P r i g o g i n e and R. Def ay , Chemical Thermodynamics (London: Longmans, Green and Co . , 1954) , p. 423-

^ I b i d . , p. 427 •

1 0 0

Page 117: A Non-Equilibrium Thermodynamic Approach to the ...

SELECTED BIBLIOGRAPHY

1. An d e r s o n , D. K. , and A. L. Babb. "Mutua l D i f f u s i o n in Non-Idea l L i q u i d M i x t u r e s , " J o u r n a l o f P h y s i c a l C h e m i s t r y ,LXVII ( 1 9 6 3 ) , 1363.

2. An d e r s o n , D. K. , J . R. H a l l , and A. L. Babb. "Mut ua l D i f f u s i o nin N o n - I d e a l B i n a r y L i q u i d M i x t u r e s , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LXIi ( 1 9 5 8 ) , 405 .

3. Bearman, R. J . " S t a t i s t i c a l Me cha n i ca l Theory o f t h e ThermalC o n d u c t i v i t y o f B i na r y L i q u i d S o l u t i o n s , " J o u r n a l o f Chemica l P h y s i c s , XXIX ( 1 9 5 8 ) , 1278.

4. Bearman, R. J . " S t a t i s t i c a l Me c ha n i c a l The or y o f T r a n s p o r tP r o c e s s e s , " J o u r n a 1 o f C h e mi c a 1 P h y s i c s , XXVI I I ( 1958 ) ,6 6 2 .

5. B i r d , R. B. , W. E. S t e w a r t , and E. N. L i g h t f o o t . T r a n s p o r tPhenomena . New York: John Wi l ey and Sons , i 9 6 0 .

6 . B o n d i i , A. A. , "Thermal C o n d u c t i v i t y o f Non A s s o c i a t e d L i q u i d s , "A. I . Ch . E . J o u r n a l , VI I I ( 1962 ) , 610.

7. Br idgmann, P. W. "Thermal C o n d u c t i v i t y o f L i q u i d s Under P r e s s u r e , "P r o c e e d i n g s o f t h e Amer i can Academy o f A r t s and S c i e n c e s ,LIX ( 1 9 2 3 ) , T 4 l .

8. B u t l e r , J . N. , and R. S. Brokaw. "Thermal C o n d u c t i v i t y o f GasM i x t u r e s in Chemica l E q u i l i b r i u m , " J o u r n a l o f Chemica l P h y s i c s , XXVI ( 1 9 5 7 ) , 1641.

9- C a l d w e l l , C. S . , and A. L. Babb. " D i f f u s i o n in t h e Sys t emM e t h a n o 1 - B e n z e n e , " J o u r n a l o f P h y s i c a l C h e m i s t r y , LIX ( 1 9 5 5 ) , 1114.

10. C a r l e y , J . F . , and L. W. B e r t e l s e n , I I I . " V a p o r - L i q u i d E q u i l i b ­r ium D a t a , " I n d u s t r i a l and E n g i n e e r i n g C h e m i s t r y , XLI( 1949) , 2806 .

1 0 1

Page 118: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 2

11. de Donder , Th. L ' A f f in i t e . P a r i s ; G a u t h i e r - V i 1 l a s s , 1927*

12. de G r o o t , S. R. , and P. Mazur . N o n - E q u i l i b r i u m Thermodynami cs .Amsterdam: Nor t h H o l l a n d P u b l i s h i n g Co . , 1962.

13- E i ge n , M. "Zur T h e o r i e d e r Warme1e i t f a h i g k e i t des W a s s e r , "Ze i t s c h r i f t f u r E 1e k t r o c h e m i e , LVI ( 1 9 5 2 ) , 176.

14. Eucken, A. " A s s o z i a t i o n in F 1u s s e n k e i t e n , " Z e i t s c h r i f t f u rE l e k t r o c h e m i e , LI I ( 1 9 4 8 ) , 255-

15- F i l l i p p o v , L. P . , and N. S. N o v o s e l o v a . "The Thermal Conduc­t i v i t y o f S o l u t i o n s o f Normal M i x t u r e s , " V e s t n i k Moskovskogo U n i v e r s i t e t a , S e r i y a F i z i k o - M a t e n a t e c h e s k i k h i E s t e s t v e n n y k k Nauk, No. 2, X ' ( 1 9 5 5 ) 37-

16. F i l l i p p o v , L. P. "Thermal C o n d u c t i o n in S o l u t i o n s o f A s s o c i a t e dL i q u i d s , " Ve s t n i k Moskovskogo Un i v e r s i t e t a , Se r i ya F i z i ko- M a t e n a t e c h e s k i kh i E s t e s t v e n n y k k Nauk, No. 5 ~X ( 195"5T", 57.

17- G a i n e r , J . L. " E f f e c t o f M o l e c u l a r P r o p e r t i e s on B i n a r y L i q u i dD i f f u s i o n C o e f f i c i e n t s , " I n d u s t r i a 1 and Eng i n e e r i ng Chem i s t r y - F u n d a m e n t a 1s , V ( 1 9 6 6 ) , 436 .

18. G a u t r e a u x , M. F . , J r . A Thermodynamic A n a l y s i s o f C o r r e l a t i o n sf o r Vapor - Liqu id Equ i 1 i b r ia in Non- I d e a 1 S o l u t i o n s , M a s t e r sT h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 1951.

19- G i l l a n , D. G. , and 0. Lamm. " P r e c i s i o n Me as ur e me n t s o f t h eThermal C o n d u c t i v i t y o f C e r t a i n L i q u i d s u s i n g t h e Hot Wire Me t h o d , " Ac t a Chemica S c a n d i n a v i c a , IX ( 1955 ) ; 657•

20. Grassmann, P . , and W. S t r a u ma n n . " E i n I n s t a t i o n a r e s V e r f a h r e nZur Messung Der W a r m e l e i t f a h i g k e i t Von F I u s s e n k e i t e n und G a s e n , " I n t e r n a t i o n a l J o u r n a l o f Heat and Mass T r a n s f e r ,I ( I 9 6 0 ) , 50 .

21. Hammond, B. R. , and R. H. S t o k e s . " D i f f u s i o n in B i n a r y L i q u i dM i x t u r e s , " T r a n s a c t i o n s of t h e F a r a d a y S o c i e t y , LI I ( 1956 ) ,783-

22. H i p k i n , Howard, and H. S. Myer . " V a p o r - R e c i r c u l a t i n g E q u i l i b ­r ium S t i l l , " I n d u s t r i a l and E n g i n e e r i n g C h e m i s t r y , XLVI ( 1 9 5 4 ) , 2524.

23- H i r s c h f e 1d e r , J . 0 . , C. F. C u r t i s s , and R. B. B i r d . M o l e c u l a rTheor y o f Gases and L i q u i d s . New York: John Wi l ey andSons , 1954.

Page 119: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 3

24. H i r s c h f e 1d e r , J . 0. " He a t T r a n s f e r in C h e m i c a l l y R e a c t i n gM i x t u r e s / 1 J o u r n a l o f Chemical P h y s i c s , XXVI (1957). , 21k .

25- Jordan; , H. B. Pred i c t ion o f Therma 1 Conduct ivi t y o f Misc i b l eB i n a r y L i q u i d M i x t u r e s f rom t h e Pur e Component Va 1u e s .M a s t e r s T h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y , 1961.

26. Ki rkwood, J . G. , and 1. Oppenheim. Chemical The r modyna mi c s .New York: McGraw-Hi l l Book Co . , 19 6 1•

21. McLaugh l i n , E. "The Thermal C o n d u c t i v i t y o f L i q u i d s and Dense G a s e s , " Chemical Re v i e ws , LXIV ( 1 9 6 4 ) , 392.

28. N a g a t a , I. "Vapor L i q u i d E q u i l i b r i u m D a t a , " J o u r n a l o f Chemical and E n g i n e e r i n g Da t a , X ( 1965 ) ; 106.

29- O l s e n , A. L . , and E. R. Washburn. "Vapor P r e s s u r e o f Bi na r yS o l u t i o n s o f I s o p r o p y l Al c oho l and Benzene a t 2 5 ° C , "J o u r n a l o f P h y s i c a l C h e m i s t r y , XLI ( 1937 ) ; 457*

30. On s a g e r , L. " R e c i p r o c a l R e l a t i o n s in I r r e v e r s i b l e P r o c e s s e s , "P h y s i c a l Review, XXXVII ( 1931 ) ; 405 .

31. P i m e n t e l , G. C. , and A. L. M c C l e l l a n . The Hydrogen Bond.San F r a n c i s c o : W. H. Freeman and C o . , 19 6 0 *

32. P r i g o g i n e , I . , and R. Defay . Chemical The r mo d y n a mi c s . London:Longmans, Green and Co . , 1954.

33- Re i d , R. C . , and T. K. Sherwood. The P r o p e r t i e s o f Gases andL i q u i d s . New York: McGraw-Hi l l Book Co . , 19 6 6 .

34. R o d r i g u e z , H. V. M o l e c u l a r F i e l d R e l a t i o n s h i p s t o L i q u i dV i s c o s i t y , Compress i b i 1 i t y , and Pr ed i c t ion o f T h e r ma 1 Conduct i v i t y o f B i na r y L i qu i d M i x t u r e s . Ph.D. D i s s e r t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 19*52"!

35* S a k i a d i s , B. C. , and J . C o a t e s . A L i t e r a t u r e Sur ve y o f t h eThermal C o n d u c t i v i t y o f L i q u i d s . Baton Rouge, L o u i s i a n a : E n g i n e e r i n g Ex p e r i m e n t S t a t i o n , L o u i s i a n a S t a t e U n i v e r s i t y , 1952.

3 6 . S a k i a k i s , B. C. , and J . C o a t e s . " S t u d i e s o f Thermal C o n d u c t i v i t yo f L i q u i d s , " A._[._Ch._E. J o u r n a 1, I ( 1955 ) ; 281.

37. Timmerans , J . The Phys i c o - C h e m i c a 1 C o n s t a n t s o f Bi n a r y Sys t emsin C o n c e n t r a t e d So 1u t i o n s , Vol I 1. New York: I n t e r s c i e n c eP u b l i s h e r s , I n c . , 1959-

Page 120: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 4

38. T s e d e r b e r g , N. V. Thermal C o n d u c t i v i t y o f Gases and L i q u i d s .Cambr i dge , M a s s a c h u s e t t s : The M. I . T . P r e s s , M a s s a c h u s e t t sI n s t i t u t e o f T e c h n o l o g y , 1965-

39. T y r r e l l , H. J . V. D i f f u s i o n and Heat Flow in L i q u i d s . London:B u t t e r w o r t h and Co . , T ^ l .

40 . Washburn, E. R . , and B. H. Ha ndo r f . "Vapor P r e s s u r e o f B i na r yS o l u t i o n s o f E t hy l A l c oho l and Cy c l o h e x a n e a t 2 5 ° C , " J o u r n a 1 o f t h e Amer i can Chemica l S o c i e t y , LVI I ( 1935 ) , 4 4 l .

41 . Wehe, A. H. , and J . C o a t e s . " V a p o r - L i q u i d E q u i l i b r i u m R e l a t i o n sP r e d i c t e d by Thermodynamic E x a m i n a t i o n o f A c t i v i t y C o e f f i c i e n t s , "A._[._Ch.E. J o u r n a l , I ( 1 9 5 5 ) , 241.

42 . Wehe, A. H. A Thermodynam i c E x a mi n a t i o n o f Act i v i t y Co e f f i c i e n t so f S o l u t i ons o f A1coho 1s and Benzene . M a s t e r s T h e s i s ,L o u i s i a n a S t a t e U n i v e r s i t y , 1953-

43- Yuan, K. S . , and B. C. Y. Lu. "Vapor L i q u i d E q u i l i b r i a , "J o u r n a 1 o f C h e mi c a 1 and E n g i n e e r i n g D a t a , VI I I ( 1 9 ^ 3 ) , 549-

Page 121: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X A

REDUCED HEAT FLOW IN THERMALLY CONDUCTING SYSTEMS

The n o n - e q u i l i b r i u m t h e r m o d y n a m i c a n a l y s i s o f s i m u l t a n e o u s

h e a t and mass t r a n s f e r a l l o w s t h e a r b i t r a r y d e f i n i t i o n o f f l u x e s

and t he r modyna mi c f o r c e s . T h e r e f o r e , w h i l e e q u a t i o n s a r e u s u a l l y

w r i t t e n w i t h t h e f l u x e s r e f e r e n c e d t o a s t a t i o n a r y s e t of

c a r t e s i a n c o o r d i n a t e s , o t h e r r e f e r e n c e c o o r d i n a t e s may j u s t as

r i g o r o u s l y be u s e d . The r a t e o f e n t r o p y p r o d u c t i o n , wh i ch depe nds

upon t h e sum o f t h e p r o d u c t s o f t h e f l u x e s and c o n j u g a t e f o r c e s ,

1 2mus t be i n d e p e n d e n t o f t h e c o o r d i n a t e s y s t e m . DeGroot and Mazur

g i v e an e x c e l l e n t d i s c u s s i o n o f t h e p r i n c i p l e o f e n t r o p y p r o d u c t i o n

i n v a r i a n c e .

For p a r t i c u l a r a p p l i c a t i o n s , a r e d u c e d h e a t f l u x , J ^ , may be

d e f i n e d ;

J ' = J ’ - Zh. J. . (A.A-1)q q k k v '

The sum o f t h e p r o d u c t s o f f l u x e s a nd f o r c e s mus t be i n v a r i a n t ,

whi ch l e a d s t o t h e e q u a l i t y ;

J X + ZJ . X. = J ' X' + Z J ' X ' . (A.A-2)q q k k q q k k ' '

3Use o f t h e d e f i n i t i o n o f t h e t h e r mo d y n a mi c f o r c e s X^ and X^,

a l o n g w i t h e q u a t i o n ( A - A- 1) y i e l d s . -

1 0 5

Page 122: A Non-Equilibrium Thermodynamic Approach to the ...

1 0 6

( A . A - 3 )

The g r a d ((jl /T) may be t r a n s f o r m e d by t h e t he r modynami c r e l a t i o n :

T grad( | j , k/ T) = ( g r a d (j.k) T p- ( h k/ T) ( g r a d T) , (A.A-4)

wher e t h e s u b s c r i p t s T and P i n d i c a t e t h a t t h e d e r i v a t i v e i s t a k e n

a t c o n s t a n t t e m p e r a t u r e and p r e s s u r e .

I n s p e c t i o n o f e q u a t i o n (A.A-3) and t h e t he r modynami c r e l a t i o n

(A.A-4) shows t h a t t h e e n t r o p y p r o d u c t i o n wi l l be i n v a r i a n t i f t h e

new t he r modynami c f o r c e s a r e t a k e n t o be

A l t e r n a t e c h o i c e s o f h e a t f l u x wi l l a l t e r t h e c o n j u g a t e t he r modynami c

f o r c e s

= - ( g r a d T ) / T ( A . A - 5 )

(A.A-6)

Page 123: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X A REFERENCES

^S. R. d e G r o o t a n d p. M a z u r , No n E q u i l i b r i u m T h e r m o d y n a m i c s ( A m s t e r d a m : N o r t h H o l l a n d P u b l i s h i n g C o . , 1962)7 P* 2 5 -

2 I b i d . , p . 2 3 .

^ I b i d . , p . 2k .

I b i d . , p . 2 7 -

1 0 7

Page 124: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X B

RELATIONSHIP OF THE CHEMICAL POTENTIALS AT EQUILIBRIUM

The r e l a t i o n s h i p be t ween t h e c he mi c a l p o t e n t i a l s f o r t h e

d i s s o c i a t i o n r e a c t i o n ,

A] - oA2 , (A.B-1)

may be e x p r e s s e d by t h e e q u a l i t y ,

pj = op^ , (A. B-2)

whe r e t h e q u a n t i t i e s pj and p^ a r e t h e mola l c he mi c a l p o t e n t i a l s

o f c omponent s 1 and 2.

The mo l a r h e a t o f r e a c t i o n i s d e f i n e d in t e r ms o f t h e p a r t i a l

mola l e n p h a l p i e s o f e a ch component by t h e f o l l o w i n g e q u a t i o n :

AHR = aU2 “ h l ’ (A.B-3)

where AHD i s t h e mo l a r h e a t o f r e a c t i o n , a i s t h e s t o i c h i o m e t r i c

c o e f f i c i e n t , h^ i s t h e p a r t i a l mola l e n p h a l p y o f component 2, and

hj i s t h e p a r t i a l mola l e n p h a l p y o f component 1.

The p a r t i a l mola l e n p h a l p i e s may be e l i m i n a t e d t o y i e l d an

e q u i v a l e n t e x p r e s s i o n d e r i v a b l e f rom c l a s s i c a l t he r modynami c

p r i nc i p 1es : '

1 0 8

Page 125: A Non-Equilibrium Thermodynamic Approach to the ...

The t o t a l d i f f e r e n t i a l s o f t h e c h e mi c a l p o t e n t i a l s may be

wr i t t e n in t h e f o r m s :

dp, | = (— i ) pdT + ( d p p - ^ p 3T

(A.B-5)

(A.B-6)

wher e t h e s u b s c r i p t s T and P i n d i c a t e t h e d e r i v a t i v e i s t a k e n a t

c o n s t a n t t e m p e r a t u r e and p r e s s u r e .

Combining e q u a t i o n s (A.B-5) and (A.B-6) w i t h t he d i f f e r e n t i a l

f orm o f e q u a t i o n (A.B-2) and s u b s t i t u t i n g t h e r e s u l t i n t o e q u a t i o n

(A.B-4) y i e l d s ;

where t h e g r a d i e n t s y m b o l i z a t i o n has been used t o g e n e r a l i z e t h e

d i f f e r e n t i a l e q u a t i o n .

The e x p r e s s i o n s t h a t have been d e v e l o p e d may be s i m p l i f i e d by

t h e us e o f c he mi ca l p o t e n t i a l s and p a r t i a l e n p h a l p i e s on a mass

b a s i s r a t h e r t han t h e m o l a r b a s i s . With t h e c ha nge t o a mass b a s i s ,

t h e e q u a t i o n s become;

Q-Cgrad p p T^ p- ( g r a d p | ) T^ p= (AHr/ T) ( g r a d T) , (A.B-7)

Page 126: A Non-Equilibrium Thermodynamic Approach to the ...

11 0

AHR = QfM2^ h2 " h l^ ' (A.B-8)

( g r a d jj. ) - ( g r a d p, ) = (— B)AHd ( g r a d T)

where t h e non p r i med p a r t i a l q u a n t i t i e s i n d i c a t e t h e mass b a s i s .

M2 i s t h e m o l e c u l a r w e i g h t o f component 2.

Page 127: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X B R E F E R E N C E S

^ J . G. Ki rkwood and I. Oppenheim, Chemical Thermodynamics (New York: McGraw-Hi l l Book Co . , 1961) , p. 107.

Page 128: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X C

RELATIONSHIP OF THE PHENOMENOLOGICAL COEFFICIENT TO DIFFUSIVITY

The r e l a t i o n s h i p o f t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t t o t h e

d i f f u s i v i t y c a n n o t be r e a d i l y d e r i v e d f rom t h e g e n e r a l n o n - e q u i l i b ­

r ium t he r modynami c e x p r e s s i o n s . The r e l a t i o n s h i p i s mos t e a s i l y

a p p r o a c h e d by c o n s i d e r i n g i s o t h e r m a l d i f f u s i o n . Wi th t h e a s s u m p t i o n

o f c o n s t a n t t e m p e r a t u r e , t h e g e n e r a l r e l a t i o n f o r a t e r n a r y s y s t e m

w i t h c h e mi c a l e q u i l i b r i u m r e d u c e s t o

( J 3 ) T = ( L ^ / W ^ ) ( g r a d p,2 ) T^ p . (A.C-1)

The e q u i l i b r i u m c o n d i t i o n r e d u c e s t h e Gibbs-Duhem r e l a t i o n t o

WA ( g r a d H-2 ) T^p+ wB( 9 rad P = 0 > (A.C-2)

whe r e t h e f o l l o w i n g s u b s t i t u t i o n s have been made:

W = W + W A 1 2

W = W B 3

(A.C-3)

Use o f t h e Gibbs-Duhem r e l a t i o n a l l o w s t h e mass f l u x o f t h e

s o l v e n t t o be w r i t t e n in t h e f o l l o w i n g form:

( J 3 ) T = - (L33/WA) ( g r a d p 3 ) T^ p . (A.C-4)

1 12

Page 129: A Non-Equilibrium Thermodynamic Approach to the ...

1 1 3

The mass f l u x w r i t t e n in t e r ms o f t h e p h e n o me n o l og i c a l c o e f f i c i e n t ,

|_33 , a n d t h e c hemi ca l p o t e n t i a l g r a d i e n t may be compared w i t h t he

u s u a l d e f i n i n g e q u a t i o n f o r t h e d i f f u s i v i t y : '

( J 3 ) T = -DABp ( g r a d WB) T^ p . (A.C-5)

The g r a d i e n t o f t h e s o l v e n t c he mi ca l p o t e n t i a l can be w r i t t e n in

t e r ms o f t h e g r a d i e n t o f t h e mass f r a c t i o n o f t h e s o l v e n t in t h e

f o l l o w i n g ma n n e r ; ^

BBRT(NAM2+NBMB) ( g r a d WB)( g r a d p, ) = i - . ( A.C- 6 )

W b

The r e l a t i o n s h i p o f t h e c he mi c a l p o t e n t i a l g r a d i e n t t o t h e mass

f r a c t i o n g r a d i e n t l e a d s t o t h e i d e n t i f i c a t i o n o f t h e e x p r e s s i o n

r e l a t i n g t h e p h e n o m e n o l o g i c a l c o e f f i c i e n t , *-33* t o d i f f u s i v i t y ,

°AB:

°ABpWAWBM2L = JP. , A B 2 - - - - - - - - ( A C _ 7 )rt b b ( nam2+n bMb )

whe r e p i s t h e d e n s i t y , W. and WD a r e mass f r a c t i o n s , M„ and MDA d z d

a r e m o l e c u l a r w e i g h t s , R i s t h e gas c o n s t a n t , and T i s t h e a b s o l u t e

t e m p e r a t u r e . The q u a n t i t y BD i s a t e r m r e l a t e d t o t h e a c t i v i t yD

c o e f f i c i e n t o f t h e s o l v e n t . I t i s d e f i n e d by t h e f o l l o w i n g e q u a t i o n :

Bi n yB = 1 + (----------?) . (A.C-8)

Bln Nb

The the r modynamic f a c t o r , BD, i s i m p o r t a n t o n l y f o r non i d e a l s o l u t i o n s .B

Page 130: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X C R E F E R E N C E S

H. J . V. T y r r e l l , Pi f f u s i on and Heat F 1ow i n L i q u i d s (London B u t t e r w o r t h a nd Co . , 1961) , p. AS.

Page 131: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X D

MODIFICATION OF THE CHAIN ASSOCIATION THEORY OF ALCOHOLS

P r i g o g i n e and Defay^ d e r i v e e q u a t i o n s whi ch a r e a p p l i c a b l e f o r

c h a i n a s s o c i a t i o n in a l c o h o l s . T h e i r d e v e l o p m e n t i s b a s e d on t h e

a s s u m p t i o n t h a t t h e e q u i l i b r i u m c o n s t a n t f o r t h e r e a c t i o n ,

Ai + A, - A. +1 , (A.D-1)

i s g i v e n by

Kc = — U J — (A.D-2)

SSThe e q u i l i b r i u m c o n s t a n t , Kc , i s assumed t o be a f u n c t i o n o f

t e m p e r a t u r e and i n d e p e n d e n t o f i . The P r i g o g i n e - D e f a y model a s sumes

t h a t a l c o h o l i s a m u l t i p o l y m e r l i q u i d wi t h a c o m p l e x i t y r a n g i n g f rom

t h e monomer u n i t t o a c h a i n o f i n f i n i t e l e n g t h . R e s u l t s f o r t h i s

model show t h a t t h e mass f r a c t i o n o f t h e monomer a l c o h o l on a

s o l v e n t f r e e b a s i s i s r e l a t e d t o t h e e q u i l i b r i u m c o n s t a n t and t h e

m o l a r c o n c e n t r a t i o n o f t h e a l c o h o l by t h e f o l l o w i n g e x p r e s s i o n ;

/ P = ----------2 .......... - . (A.D-3)1 + v / l + ^ K c C ^

To d e f i n e an a p p r o p r i a t e v a l u e f o r t h e a v e r a g e s t o i c h i o m e t r i c

c o e f f i c i e n t , t h e i n f i n i t e sums used by P r i g o g i n e and Defay a r e

r e p l a c e d by t h e e q u a t i o n s below:

Page 132: A Non-Equilibrium Thermodynamic Approach to the ...

wher e a i s t h e a v e r a g e s t o i c h i o m e t r i c c o e f f i c i e n t and i s t h e m o l a ra

c o n c e n t r a t i o n o f t h e a v e r a g e a l c o h o l p o l y me r .

Us i ng (3, t h e mass f r a c t i o n o f monomer a l c o h o l on a s o l v e n t

f r e e b a s i s , and e q u a t i o n s (A.D-4) and (A.D-5) w i l l g i v e t h e f o l l o w i n g

e x p r e s s i o n f o r t h e s t o i c h i o m e t r i c c o e f f i c i e n t , a:

a = 1 + l / / p . (A.D-6)

I f t h e a s s u m p t i o n i s made t h a t t h e e n e r g y r e q u i r e d t o b r e a k

a h y d r oge n bond i s c o n s t a n t , t h e h e a t o f r e a c t i o n can be w r i t t e n in

t e r ms o f t h e s t o i c h i o m e t r i c c o e f f i c i e n t and t h e h y d r oge n bond e n e r g y ,

AHb :

AHr = ( a - l ) A H B = AHB/ / p • (A.D-7)

The a s s u m p t i o n o f c o n s t a n t hyd r ogen bond e n e r g y i s an a p p r o x i ­

m a t i o n whi ch i s o f unknown v a l i d i t y . I t i s known t h a t hyd r ogen bond

2e n e r g i e s v a r y d e p e n d i n g upon t h e s y s t e m ; b u t v a r i a t i o n o v e r t h e

c o n c e n t r a t i o n r an g e has n o t been c o n s i d e r e d in mos t i n v e s t i g a t i o n s .

Ex a c t c a l c u l a t i o n s o f hyd r ogen bond e n e r g i e s f rom e x p e r i m e n t a l d a t a

a r e t oo complex t o be c o n s i d e r e d e x c e p t in v e r y d i l u t e a l c o h o l

s y s t e m s .

Page 133: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X D R E F E R E N C E S

P r i g o g i n e and R. Defay , Chemical Thermodynamics (London: Longmans, Green and Co . , 195^0, p. ^+23*

2G. C. P i me n t e l and A. L. M c C l e l l a n , The Hydrogen Bond

(San F r a n c i s c o : W. H. Freeman and Co . , 1960) , p. 217-

1 1 7

Page 134: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X E

NON TEMPERATURE CORRECTED EXPERIMENTAL RESULTS

T a b l e XXIV

E x p e r i m e n t a l Thermal C o n d u c t i v i t y Va l ues f o r t h e M e t h a n o l - B e n z e n e Sys t em

Mole F r a c t i o n M e t h a n o 1

0 .0000

0 . 3 1 2 2

0 . 5 8 8 4

0 . 7827

0 . 9293

1.0000

M i x t u r e Thermal Conduct i v i t y

0 . 0817

0 . 0 8 6 8

0 . 0913

0.0988

0 . 1 0 9 1

0 . 1 1 3 6

LiquidT e m p e r a t u r e ,

9 8 . 2 2 9

9 8 . 37 6

98.421

9 8 . 7 3 8

9 8 . 95 0

99- 047

Thermal Con- °F d u c t i v i t y a t

25° C

0 . 0 8 3 7

0 . 0885

0 . 0 9 3 2

0 . 1 0 0 7

0 . 1 1 1 3

0 . 1155

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ ( H R) ( F T ) ( ° F ) .

1 1 8

Page 135: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXV

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e E t h a n o l - B e n z e n e S y s t e m

M o l e F r a c t i o nE t h a n o l

M i x t u r e Therma Conduc t i v i t y

Liquid T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0.0000

0.2668

0 . 5343

0 . 7 0 5 7

0.8761

1 . 0000

0 . 0 8 1 7

o . 0 8 3 4

0 . 0 8 5 8

0.0886

0 . 0 9 1 8

0 . 0 9 4 7 .

9 8 . 2 2 9

9 8 . 2 3 9

9 8 . 3 6 9

9 8 . 2 8 2

9 8 . 4 5 6

9 8 . 3 4 6

0 . 0 8 3 7

0 . 0 8 5 2

O .O 8 7 6

0 . 0903

0 . 0 9 3 7

0 . 0963

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

1 1 9

Page 136: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXVI

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e P r o p a n o l - B e n z e n e S y s t e m

M o l e F r a c t i o nP r o p a n o l

0 . 00 0 0

0 . 2 4 1 9

0 . 4675

0 . 6 6 8 4

0 . 8 4 3 7

1.0000

M i x t u r e Thermal Conduct i v i t y

0 . 0 8 1 7

0.0822

0 . 08 3 8

0 . 0 8 4 5

0 . 0 8 6 9

0 . 08 8 9

L i q u i dT e m p e r a t u r e ,

9 8 . 22 9

98.302

98.401

98 . 425

9 8 . 3 5 9

98.360

T h e r m a 1° F C o n d u c t i v i t y

a t 2 5 ° C

0 . 0837

0 . 0 8 4 0

0.0852

0 . 0857

0 .0878

0 . 0895

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ (H R ) ( F T ) ( ° F ) .

1 2 0

Page 137: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXVI I

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e I s o p r o p a n o l - B e n z e n e S y s t e m

M o l e F r a c t i o nI s o p r o p a n o 1

M i x t u r e Thermai Conduc t i v i t y

L i qu i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0

0 . 2 2 8 7

0 . 4 5 8 6

0 .6 6 7 6

0 . 8 4 8 6

1.0000

0 . 0 8 1 7

0 .0 7 8 8

0 . 0777

0 . 0 7 7 0

0 . 0 7 7 9

0 . 0 8 0 2

9 8 . 2 2 9

9 8 . 32 0

98 .061

9 8 . 05 6

9 8 . 0 5 4

9 8 . 1 4 2

0 . 0 8 3 7

0 . 0833

0 .0 8 2 0

0 .0 8 1 2

0 . 0817

0 .0 8 1 0

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BTU/(HR)(FT) ( ° F ) .

1 2 1

Page 138: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXV I I I

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e E t h a n o l - C y c l o h e x a n e S y s t e m

T h e r ma 1Mole F r a c t i o n M i x t u r e Thermal L i q u i d C o n d u c t i v i t y

E t h a n o l C o n d u c t i v i t y T e m p e r a t u r e , °F a t 25°C

0 . 0 0 0 0 0 . 06 8 5 97 - 807 0 .0 703

0 . 3 0 6 0 0 . 0 7 0 5 9 7 . 8 3 8 0 . 07 2 2

0 . 5 6 5 0 0 . 0 7 4 2 9 8 . 0 4 0 0 . 0 7 5 8

0 . 7^71 0 . 0 7 8 6 9 8 . 0 4 9 0 . 0 8 0 2

0 . 8 8 5 2 0 .0851 9 8 . 22 3 0 . 0867

1 .0000 0 .0 9 4 7 9 8 . 3 4 6 0 .0 9 6 3

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ ( H R) ( F T ) ( ° F ) .

1 2 2

Page 139: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X X I X

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e P r o p a n o l - C y c l o h e x a n e S y s t e m

Th e r ma 1Mole F r a c t i o n M i x t u r e Thermal L i q u i d C o n d u c t i v i t y

Pr opa no l C o n d u c t i v i t y T e m p e r a t u r e , °F a t 25°C

0 . 0 0 0 0 0 . 0685 97 - 807 0 .0 7 0 3

0 . 2 6 2 3 0 . 0 6 9 9 9 7 - 8 4 9 0 . 0 7 1 4

0 . 5 0 3 4 0 . 0731 97- 955 0 . 0743

0 . 69 7 0 0 .0 7 6 5 9 8 . 07 3 0 . 0 7 7 6

0.8541 0 . 0811 98.141 0 . 0 8 1 9

1.0000 0 .0 8 8 9 9 8 .3 6 0 0 . 0895

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

1 2 3

Page 140: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXX

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e I s o p r o p a n o l - C y c l o h e x a n e S y s t e m

M o l e F r a c t i o n1 s o p r o p a n o l

M i x t u r e Thermal Conduc t i v i t y

L i q u i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0

0 . 2 5 0 2

0 . 4971

0 . 6 9 3 9

0 . 8 4 6 5

1 . 0000

0 . 0685

0 . 0 6 8 9

0 .0701

0 . 0 7 2 5

0 . 07 5 7

0 .0802

9 7 . 8 0 7

97- 700

9 7 - 777

9 7 - 8 4 4

9 7 . 8 9 8

9 8 . 1 4 2

0 . 0 7 0 3

0 . 0705

0 . 0 7 1 4

0 . 0735

0 . 0 7 6 7

0 .0 8 1 0

Thermal c o n d u c t i v i t y v a l u e s r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

1 2 4

Page 141: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXXI

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e M e t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

M o l e F r a c t i o nM e t h a n o l

0 . 0 0 0 0

0 . 3677

0 . 6 1 3 2

0.7861

019125

1.0000

M i x t u r e T h e r ma 1 Conduc t i v i t y

0 . 0 5 9 3

0 . 0 6 1 2

0 . 0 6 6 7

0 . 0 7 7 8

0 . 1 0 5 2

0 .1 1 3 6

L i qu i d T e m p e r a t u r e , °F

9 7 . 62 9

97- 520

9 7 . 69 8

9 8 . 0 1 0

98 . 825

99- 047

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 .0 6 0 6

0 . 0 6 2 4

0.0680

0 . 0793

0 . 1073

0 . 1155

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f B T U/ ( H R) ( F T ) ( ° F ) .

1 2 5

Page 142: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e XXX I I

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e E t h a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

M o l e F r a c t i o nE t h a n o l

M i x t u r e Therma Conduc t iv i t y

L i q u i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0 0 .0 5 9 3 9 7 .6 2 9 0 .0 6 0 6

0 .2 9 3 0 0 . 0 6 1 0 9 7 .5 8 7 0 .0 6 2 3

0 .5 3 1 6 0 .0 6 5 2 9 7 .7 2 5 0 .0 6 6 5

0 .7 1 5 7 0 .0 7 0 6 9 7 .6 9 2 0 .0 7 1 9

0 .8 7 6 7 0 .0 8 0 5 - 98 .021 0 . 0 8 1 8

1 .0000 0 .0 9 4 7 9 8 . 3 4 6 0 .0 9 6 3

Thermal c o n d u c t i v i t y d a t a r e p o r t e d in u n i t s o f BTU/ ( HR) ( FT) ( °F) .

1 2 6

Page 143: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X X X I 11

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e P r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

Mole F r a c t i o n M i x t u r e Thermal P r opa no l C o n d u c t i v i t y

0 . 0000 0 . 0593

0.2521 0.0601

0 . 5 0 3 7 0 . 0 6 3 7

0 . 7 5 1 9 0 . 0 7 0 2

0 .8 5 6 6 0 .0 7 8 2

1.0000 0 . 0 8 8 9

The r ma 1L i q u i d C o n d u c t i v i t y

T e m p e r a t u r e , °F a t 25°C

9 7 . 6 2 9 0 .0 6 0 6

97- 756 0 .0 6 1 2

9 7 . 4 8 6 0 . 0 6 4 8

97 . 6 9 2 0 .0 7 0 8

98.021 0 . 0 7 9 0

9 8 .3 6 0 0 . 0895

Thermal c o n d u c t i v i t y v a l u e s r e p o r t e d in u n i t s o f B T U/ (H R ) ( F T ) ( ° F ) .

Page 144: A Non-Equilibrium Thermodynamic Approach to the ...

T a b l e X X X I V

E x p e r i m e n t a l T h e r m a l C o n d u c t i v i t y V a l u e sf o r t h e I s o p r o p a n o l - C a r b o n T e t r a c h l o r i d e S y s t e m

M o l e F r a c t i o nI s o p r o p a n o l

M i x t u r e Thermal Conduc t i v i t y

L i q u i d T e m p e r a t u r e , °F

T h e r m a 1C o n d u c t i v i t y

a t 2 5 ° C

0 . 0 0 0 0 0 . 0 5 9 3 9 7 . 6 2 9 0 . 0 6 0 6

0 . 2 5 1 7 0. 0601 97 . 41 3 0 . 0 6 0 9

0 . 4 0 3 7 0 . 0 6 1 3 97- 475 0 . 0 6 2 4

0 . 8045 0 .0 7 1 2 97 - 486 0 . 0 7 2 0

1. 0000 0 . 08 0 2 9 8 . 14 2 0 . 0 8 1 0

Thermal c o n d u c t i v i t y v a l u e s r e p o r t e d in u n i t s o f BT U / ( H R ) ( F T ) ( ° F ) .

128

Page 145: A Non-Equilibrium Thermodynamic Approach to the ...

APP ENDI X F

INDEX TO LITERATURE DATA

Act i v i t ySys t em D i f f u s i v i t y D e n s i t y C o e f f i c i e n t

M e t h a n o 1- Benzene 9 37 18

E t h a n o 1 - Benzene 2 37 ^1

P r o p a n o l - B e n z e n e * 37 ^2

I s o p r o p a n o l - B e n z e n e * 37 29

E t h a n o l - C y c l o h e x a n e * 37 ^0

P r o p a n o l - C y c l o h e x a n e * 37 28

I s o p r o p a n o l - C y c l o h e x a n e * *** 28

Me t h a n o l - C a r b o nT e t r a c h l o r i d e 1 37 22

E t h a n o l - C a r b o nT e t r a c h l o r i d e 21 37 37

P r o p a n o l - C a r b o nT e t r a c h l o r i d e ** 37 10

I s o p r o p a n o l - C a r b o nT e t r a c h l o r i d e ** ** /f 3

E s t i m a t e d f r o m d a t a o n t h e E t h a n o l - B e n z e n e S y s t e m .

E s t i m a t e d f r o m d a t a o n t h e E t h a n o l - C a r b o n T e t r a c h l o r i d

E s t i m a t e d f r o m d a t a o n t h e E t h a n o l - C y c l o h e x a n e S y s t e m .

1 2 9

Page 146: A Non-Equilibrium Thermodynamic Approach to the ...

APPENDIX G

SAMPLE CALCULATION

The m e t h a n o l - c a r b o n t e t r a c h l o r i d e s y s t e m a t 0 . 7 mole f r a c t i o n

met hano l w i l l be used t o i l l u s t r a t e t h e c a l c u l a t i o n s .

A. I dea l M i x t u r e Thermal C o n d u c t i v i t y

k ,D = NAkJ + NBk B

k jD = ( 0 . 7 ) ( 0 . 1 1 5 ) + ( 0 . 3 ) ( 0 . 0 6 0 6 )

k D = 0 . 0 9 9 0 BTU/ (HR)(FT) (°F)

B. E x p e r i m e n t a l Excess Thermal C o n d u c t i v i t y

kE = k - k m m ID

kE = 0 . 0 7 2 3 - 0 . 0 9 9 0

kE = - 2 6 . 7 X 10"3 BTU/ (HR)(FT)(°F)

C. F r a c t i o n o f Monomer Al cohol in Pur e Al cohol

13° - CO 00

Y Y B A

(3° = -------- !---------( 7 . ^ 5 ) (23)

p° = 0 . 00583

1 3 0

Page 147: A Non-Equilibrium Thermodynamic Approach to the ...

131

D. F r a c t i o n o f Monomer Al c oho l in S o l u t i o n

•Ya0 =

Y Y B A

1 . 20

( 2 . 6 0 ) (23)

p = 0 . 02 0 1

E. P r e d i c t e d Exc e s s Thermal C o n d u c t i v i t y

Data n e c e s s a r y f o r t h i s c a l c u l a t i o n was i n t e r p o l a t e d f rom

l i t e r a t u r e d a t a r e p o r t e d f o r t h i s s y s t e m . See Appendi x F f o r

r e f e r e n c e s . The t he r modynami c f a c t o r , BD, was d e t e r m i n e d by

n u m e r i c a l d i f f e r e n t a t i o n o f t a b u l a r a c t i v i t y c o e f f i c i e n t d a t a . Al l

c a l c u l a t i o n s wer e p e r f o r me d on an IBM 7040 c ompu t e r programmed t o

d e t e r m i n e t h e b e s t f i t v a l u e f o r t h e hydr ogen bond e n e r g y . Data

n e c e s s a r y f o r t h e c a l c u l a t i o n i s summar i zed be low:

AHD = 4400 c a l / m o l e MD = 153*84 g / mo l eD D

D°b = 2 . 2 6 X 10"5cm2/ s e c p° = 0 .7 8 6 5 g / c c

R = 1 .987 c a l / m o l e °K T = 298°K

M = 3 2 . 0 4 g / mo l e p = 1 . 188 g / c c

D^g = 1 . 036 X 10 3 cm2/ s e c Bg = 0 . 2 7

E AHBMB°ABPA r NA ^ 1-^ DABPwAn - P W A+ p ( l - p ) W g ]|< = D D MD M £

RT2M2 i + / p ° dabpa ( 1 + / p ) 2 bb

kE = - ( 7 0 . 1 X 10“ 3 ) ( 0 . 6 0 3 0 - 0 . 21 1 0 )

kE = - 27 * 4 0 X 10“ 3 BTU/(HR)(FT) (°F)

Page 148: A Non-Equilibrium Thermodynamic Approach to the ...

1 3 2

F. P r e d i c t i o n o f M i x t u r e Thermal C o n d u c t i v i t y

k = kE + k m m 1D

k = - 0 . 0 2 7 ^ + 0 . 0 9 9 0m

km = 0 . 07 1 6 BTU/ (HR)(FT)(°F)

G. Per Cent E r r o r in P r e d i c t i n g M i x t u r e Thermal C o n d u c t i v i t y

k - k_ P r e d i c t e d Ac t ua l lnnE r r o r = ------------------------------------- X 100

^ A c t u a 1

( 0 . 0 7 1 6 - 0 . 0 7 2 3 ) (100) E r r o r = - --------- —-------—----------- —

0 . 0 7 2 3

E r r o r = - 0 . 57%

Page 149: A Non-Equilibrium Thermodynamic Approach to the ...

A P P E N D I X H

NOMENCLATURE

Thermodynamic f a c t o r , d i me n s i o n 1 e s s

3O v e r a l l m o l a r c o n c e n t r a t i o n o f a l c o h o l , m o l e s / f t

Molar c o n c e n t r a t i o n o f a l c o h o l po l ymer o f c o m p l e x i t y i ,3

mo 1e s / f t3

Molar c o n c e n t r a t i o n o f monomer a l c o h o l , m o l e s / f t

3Molar c o n c e n t r a t i o n o f a v e r a g e a l c o h o l p o l yme r , m o l e s / f t

D e v i a t i o n c o n s t a n t o f t h e J o r d a n - C o a t e s e q u a t i o n , d i m e n s i o n -

l e s s

2Mutual d i f f u s i v i t y o f a b i n a r y m i x t u r e , FT /HR

Mutual d i f f u s i v i t y o f t h e s o l v e n t a t i n f i n i t e d i l u t i o n

in a l c o h o l , FT^/HR

S o r e t c o e f f i c i e n t , LB/HR FT°F

S e l f d i f f u s i o n c o e f f i c i e n t o f component 1 in a b i n a r y

m i x t u r e , FT2/HR

S e l f d i f f u s i o n c o e f f i c i e n t o f component 1 a t i n f i n i t e

2d i l u t i o n in component 2, FT /HR

2S e l f d i f f u s i o n c o e f f i c i e n t o f p u r e component 1, FT /HR

P a r t i a l e n p h a l p y o f component k on a mass b a s i s , BTU/LB

P a r t i a l mola l e n p h a l p y o f component k, BTU/mole

Page 150: A Non-Equilibrium Thermodynamic Approach to the ...

Molal hydr ogen bond e n e r g y , BTU/mole

Molal h e a t o f r e a c t i o n , BTU/mole

2G e n e r a l i z e d f l u x o f mas s , LB/HR FT

Reduced mass f l u x , LB/HR FT^

G e n e r a l i z e d f l u x o f h e a t , BTU/HR FT^

Reduced h e a t f l u x , BTU/HR FT^

Thermal c o n d u c t i v i t y , BTU/HR FT°F

Thermal c o n d u c t i v i t y o f t h e a l c o h o l and o f t h e s o l v e n t ,

r e s p e c t i v e l y , BTU/HR FT°F

Normal o r monomer t h e r ma l c o n d u c t i v i t y , BTU/HR FT°F

Monomer t he r ma l c o n d u c t i v i t y o f t h e a l c o h o l and of t h e

s o l v e n t , r e s p e c t i v e l y , BTU/HR FT°F

Pur e component t h e r m a l c o n d u c t i v i t y o f t h e a l c o h o l and

o f t h e s o l v e n t , r e s p e c t i v e l y , BTU/HR FT°F3

Chemical e q u i l i b r i u m c o n s t a n t , FT / mo l e

Exces s t he r ma l c o n d u c t i v i t y o f b i n a r y m i x t u r e , BTU/HR FT°F

E f f e c t i v e t he r ma l c o n d u c t i v i t y , BTU/HR FT°F

I dea l t he r ma l c o n d u c t i v i t y o f a b i n a r y m i x t u r e , BTU/HR FT°F

Thermal c o n d u c t i v i t y o f t h e l i q u i d m i x t u r e , BTU/HR FT°F

C o n t r i b u t i o n o f c h e mi c a l r e a c t i o n t o t h e e f f e c t i v e

t h e r ma l c o n d u c t i v i t y , BTU/HR FT°F

Thermal c o n d u c t i v i t i e s o f c omponent s 1 and 2 o f a b i n a r y

m i x t u r e , BTU/HR FT°F

C o n j u g a t e p h e n o m e n o l o g i c a l c o e f f i c i e n t s t o t h e t h e r mo ­

dynamic f o r c e s X. f o r t h e f l u x J.J k

Page 151: A Non-Equilibrium Thermodynamic Approach to the ...

C o n j u g a t e p h e n o m e n o l o g i c a l c o e f f i c i e n t s t o t h e t h e r m o ­

dynamic f o r c e s X. f o r t h e f l u x J J q

M o l e c u l a r w e i g h t o f t h e s o l v e n t , LB/mole

M o l e c u l a r w e i g h t o f component 2 o r t h e monomer a l c o h o l ,

LB/mo1e

Mole f r a c t i o n , d i me n s i o n 1 e s s

O v e r a l l mole f r a c t i o n o f t h e a l c o h o l and o f t h e s o l v e n t ,

r e s p e c t i v e l y , d i me n s i o n 1 e s s

Mole f r a c t i o n o f b i n a r y m i x t u r e componen t s 1 and 2,

r e s p e c t i v e l y , d i me n s i o n 1 e s s

Gas c o n s t a n t , 1 . 987 BTU/mole °R

A b s o l u t e t e m p e r a t u r e , °R 3

Molar vol ume, FT / mo l e

Mola r volume o f c omponent s 1 and 2 o f a b i n a r y m i x t u r e ,3

and o f t h e m i x t u r e , r e s p e c t i v e l y , FT / mo l e

Mass f r a c t i o n , d i m e n s i o n 1 e s s

Mass f r a c t i o n o f t h e a l c o h o l and o f t h e s o l v e n t , r e s p e c ­

t i v e l y , d i m e n s i o n 1 e s s

Mass f r a c t i o n o f c omponent s 1, 2 and Z, r e s p e c t i v e l y ,

d imens i on 1 e s s

Thermodynamic f o r c e a s s o c i a t e d w i t h c he mi c a l p o t e n t i a l

g r ad i e n t s

Reduced t he r modynami c f o r c e a s s o c i a t e d w i t h c he mi c a l

p o t e n t i a l g r a d i e n t s

Thermodynamic f o r c e a s s o c i a t e d w i t h t e m p e r a t u r e g r a d i e n t s

Page 152: A Non-Equilibrium Thermodynamic Approach to the ...

1 3 6

Reduced t he r modynami c f o r c e a s s o c i a t e d w i t h t e m p e r a t u r e

g r a d i e n t s

Greek Symbols

q ? Aver age s t o i c h e o me t r i c c o e f f i c i e n t

p Mass f r a c t i o n o f monomer a l c o h o l on a s o l v e n t f r e e

b a s i s , d i me n s i o n 1 e s s

P° Mass f r a c t i o n o f monomer a l c o h o l in p u r e a l c o h o l ,

d imens ion 1 e s s

y L i q u i d a c t i v i t y c o e f f i c i e n t

Y^ Yg L i q u i d a c t i v i t y c o e f f i c i e n t o f t h e a l c o h o l and o f t h e

s o l v e n t , r e s p e c t i v e l y

Y? L i q u i d a c t i v i t y c o e f f i c i e n t o f a l c o h o l a t i n f i n i t en

d i 1u t i on

A D i f f e r e n c e o r change in

p . Chemical p o t e n t i a l o f component j on a mass b a s i s ,

BTU/LB

pi Molal c h e mi c a l p o t e n t i a l o f component j , BTU/mole

3p D e n s i t y o f m i x t u r e , LB/FT

3p° D e n s i t y o f p u r e a l c o h o l , LB/FTr\

Page 153: A Non-Equilibrium Thermodynamic Approach to the ...

AUTOBIOGRAPHY

The a u t h o r was born J a n u a r y 13, 19^0, in S h r e v e p o r t , L o u i s i a n a ,

t h e y o u n g e s t o f t wi n son and d a u g h t e r t o W i l l i e Ga r l a n d and Edna

R u s s e l l B a r n e t t e . He a t t e n d e d grammar s c h o o l s in Minden and Co t t o n

V a l l e y , L o u i s i a n a . In 1957; he g r a d u a t e d f rom C o t t o n V a l l e y High

S c h o o 1.

In Se p t em b e r , 1957; he e n r o l l e d in L o u i s i a n a P o l y t e c h n i c

I n s t i t u t e . Whi l e an u n d e r g r a d u a t e , t h e a u t h o r was i n i t i a t e d i n t o

t h e honor s o c i e t i e s o f Tau Beta P i , Omicron D e l t a Kappa, and Phi

Kappa P h i . In Augus t o f 1961, he was g r a d u a t e d Cum Laude w i t h t h e

d e g r e e o f B a c h e l o r o f S c i e n c e in Chemical E n g i n e e r i n g .

The f o l l o w i n g S e p t e mb e r , t h e a u t h o r e n t e r e d g r a d u a t e s c hoo l a t

L o u i s i a n a S t a t e U n i v e r s i t y . In Augus t o f 1963; he r e c e i v e d t h e

M a s t e r o f S c i e n c e d e g r e e in t h e f i e l d o f Chemical E n g i n e e r i n g .

Whi l e c o m p l e t i n g c a n d i d a t e r e q u i r e m e n t s f o r t h e d e g r e e o f Doc t o r

o f P h i l o s o p h y , he met t h e f o r m e r Mis s Mary Ann Ross o f E s c a t a wp a ,

M i s s i s s i p p i . They were m a r r i e d in Au g u s t , 1965- The a u t h o r i s

c u r r e n t l y a c a n d i d a t e f o r t h e d e g r e e o f Do c t o r o f P h i l o s o p h y in

Chemical E n g i n e e r i n g .

Upon c o m p l e t i o n o f d e g r e e r e q u i r e m e n t s , t h e a u t h o r p l a n s t o

j o i n t h e r e s e a r c h s t a f f o f t h e E. I . Du Pont Chemical Company,

P l a s t i c s De pa r t me n t - Nylon I n t e r m e d i a t e s in Or ange , Te xa s .

1 3 7

Page 154: A Non-Equilibrium Thermodynamic Approach to the ...

E X A M I N A T I O N A N D T H E S I S R E P O R T

Candidate:

Major Field:

Title of Thesis

W i l l i e Jon B a r n e t te

Chem ical E n g in e e r in g

A N on-E qulibrium Thermodynamic Approach to the C o r r e la t io n and P r e d i c t i o n o f the Thermal C o n d u c t iv i ty o f B inary L iq u id S o lu t io n s C o n ta in in g Hydrogen Bonded S o lu t e s

Approved:

Q £ ...(£n. .LS .-1-' Major Prolessor andj Major Prolessor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

[ L i U ,

Date of Examination: January 9 , 1967


Recommended