+ All Categories
Transcript
Page 1: Chem 622: Organometallic Chemistry - University of …manoa.hawaii.edu/chem/wp-content/uploads/CHEM-622_Cain...Chem 622: Organometallic Chemistry Class: MWF, 1030 – 1120 AM, Bilger

S37

31P{1H} NMR (CD2Cl2, Room Temperature)

31P{1H} NMR (CD2Cl2, -70 °C)

Ru

PP

P

Si

Me

t-Bu

Me

Me

t-BuMet-Bu

6

Cl

DMSO Cl

Ru

PP

P

Si

Me

t-Bu

Me

Me

t-BuMet-Bu

6

Cl

DMSO Cl

Chem622:OrganometallicChemistry

Class:MWF,1030–1120AM,Bilger341CInstructor:MattCain

Textbook(s):Crabtree,6thEdition,TheOrganometallicChemistryoftheTransitionMetalsAND

Elschenbroich,3rdEdition,OrganometallicsOrganometallicChemistrybridgestheimaginarygapbetweenorganicandinorganicchemistry. Despite being a rather new field (Ferrocene 1951), its utility andpracticality are undeniable. The production of L-DOPA, S-Metolachlor, and (–)-Mentholare justsomeof thecommoditiesproducedonacolossalscaleduetotheemployment of organometallics catalysts. This class will focus on the entirePeriodicTableofElements andwill introduce the fundamental trends inboth theMainGroupandTransitionMetals.Studentsshouldgainanunderstandingofthesefundamentals and be able to apply them to published research,with the ultimategoal of applying it to their own! In addition, some topics/complexes will beevaluated fromahistoricalprospective, inwhich they first appearedas structuralanomalies and have evolved (through synthesis, etc.) to become highly usefulligands, intermediates,orcatalysts. Acommonthemethroughouttheclasswillbetoconnectthematerialfromtheclassroomtorelevantandpublishedresearch,withthe hope that students will recognize that although many fields of chemistry(organic, inorganic, physical, supramolecular, etc.) are taught separately, they areinterdisciplinaryandoftentimes,directlylinkedbyorganometallicchemistry.

Fe FePPh2

PPh2Fe

PR2

PR'2

dppf Josiphos

N

OCl

H3CO

S-MetolachlorFerrocene

R

LiLi

Li

RR

R

Li

LiLiLi

Li R

Structure and Bonding

PR1 R2

R3R1

SR2

O

Chiral MoleculesNMR Spectroscopy

Reactivity

ZnEt2 in air

History, Development, Evolution, and Application Main Group

Organometallics and Catalysis

N

N

H

H

Main Group Applications

31P NMR 19F NMR6Li NMR7Li NMR

Olefin MetathesisR

M

R

M

R R

+R

MR

Asymmetric Hydrogenation

OEt

O O

OEt

OH O

M C O

Ligands and Bonding

CO: σ-donor / π-acceptor DCD ModelM OC M C

C

Isolobal Analogyd7–ML5 CH3

(CO)5Mn CH3(CO)5Mn Mn(CO)5

H3C CH3

M RX

MX

RM

R'

R

R'-M'M'-X

RR'Cross Couplings

MP P

H/D

FG

Symmetry and ChiralityKineticIsotopeEffects

Electron Counting

PtP

P Ph

Cl

CpTa

Cp CH2

CH3

dialkylphosphoric,dialkylphosphinic,6andnitric7acids).Thelow

barriertoprotontransferbetweentwominimaofadouble-well

potentialfunctionisresponsiblefortheappearanceofabroad

absorptionforO

-H‚‚‚Ostretching,forexample,inthe3000-1500

cm-1rangeforstrongphosphoricaciddimers.7Inthepresentcase

ofCl-H‚‚‚Clbonding,withastrongeracidandheavieratoms,the

absorptionliesatlowerfrequency,inthe2200

-1100cm

-1range.

Thedimericform

ofH(CHB 1

1Cl 11)canbeobtaineddirectlyby

rapidsublimationusinghighsublimationtemperatures(200-260

°C)andimmediatecondensationontocoldcellwindows(Figure

4a). Withmoregradualsublimationoverlongertimeperiods(g1h)

atlowertemperatures(180-200°C),anewIRspectrumofavisibly

crystallinesolidphaseisobserved(Figure4b,c).Theappearance

ofsharp

νCHbandsfromthecarboraneanionat3039and3024

cm-1(Figure4inset)indicatesthepresenceoftwodifferent

crystallinephases.Therelativeintensityofthesetwobandsvaries

accordingtothesublimationconditionswiththe3039cm

-1band

typicallybeingmoreabundant,althoughoccasionallyabsent(Figure

4c).TheCl-H‚‚‚Clvibrationsdonotdiffersignificantlybetween

thetwophases,indicatingtheyhaveverysim

ilarstructures.The

carboraneclusterbands(rightinsetofFigure2)onlydistinguish

betweenmonomeranddimer/polymerstructures.

Afragmentofthecrystallinephase(having

νCHat3039cm

-1 )

wasusedforsingle-crystalX-raydetermination.AsshowninFigure

5,thestructurecontainslinearpolymericchainswithprotonbridges

betweenClatomsatthe7-11positionsofthecarboraneanions.

Theseareindicatedby

shortinter-anion

Cl‚‚‚Clcontactsand

lengtheningoftheassociatedB-

Clbonds.TheCl‚‚‚Cldistances

involvedinthetwocrystallographicallyindependentCl‚‚‚H

‚‚‚Cl

bridgesare3.171(3)and3.209(3)Å,whereasallotherCl‚‚‚Cl

nonbonding

contactsare>3.36

Å.TheB-

Clbond

lengthsof

unprotonatedClatomslieintherangeof1.745(10)-1.796(10)Å,

whereasthoseassociatedwithprotonbridgesare1.831(10)-1.845-

(10)Å.Thebindingofthecarboraneanionstotheacidicproton

viaClatomsfromthe7-11pentagonalbeltratherthantheslightly

morebasic

12position(seemonomerA,Figure2)isprobablya

consequenceofpackingefficiencyandstatisticaladvantage.The

samebiasinthecrystallinestatetowardthe7ratherthanthe12

positionwasseenintheX-raystructureofi-Pr(CHB 1

1Me 5Br

6).5

TheHatomswerelocatedintheX-rayrefinementof[H(CHB 1

1-Cl11)] nwiththefollowingdimensions:foroneCl-H-Clbridge,

Cl-H

)1.28(9)and1.92(10)Å,∠Cl-H-Cl

)166(7)°;andfor

theother,Cl-H

)1.74(11)and1.47(11)Å,∠Cl-H-Cl

)179-

(8)°.Whilenotconclusive,thesedataareconsistentwithsomewhat

unsymmetricalH-bondingandeasydisplacementofHalongthe

trajectorybetweentheClatoms.

IftheCl-H-Clgroupsinthepolymericacidweresymmetric

with

localD∞hsymmetry,onlythedoublydegeneratebend(ν2)

andtheantisymmetricCl-H-Clstretch(ν3)wouldbeIRactive.

BandscorrespondingtothesevibrationsareobservedintheIR

spectrumofthebichlorideion,HCl2-,whichisagoodstructural

modelforthepolymeric(anddimeric)carboraneacid.Inthesolid

state,thebichlorideioncanbeasymmetricorsymmetricdepending

uponthecation,8,9andwhenasymmetric,the

ν 1symmetricCl‚‚‚

ClstretchbecomesweaklyIRactive(∼200cm

-1 ).Thepolymeric

acidhasquitesim

ilarbands(Figure4).Thus,theverybroadand

distortedbandwithmaximum

at∼1100cm

-1isassignedto

ν 3,

thehigh

intensity,broadband

at∼615cm

-1whoseshapeis

distortedby

Evansholes10isassignedto

ν 2,andaweaklow-

frequencybandat225cm

-1canbeattributedto

ν 1.TheIRactivity

ofν 1isconsistentwith

theX-raystructurewhichindicatestwo

typesofClHCl

groups

with

differentdegreesofasymmetry.

Together,theIRandX-raydataindicatestrong,low-barrier,nearly

symmetricH-bonding.

Insummary,thegasandsolid

phasestructuresofH(CHB11-

Cl11)havebeendetermined.RelateddataforH(CHB 1

1H5Br 6)(see

TableinSupportingInformation)indicatethatthesestructuresare

generalforcarboraneacids.Thedifferentstructureshaveimplica-

tionsforacidity.WiththehighestνHClfrequencyandthesmallest

Cl-H‚‚‚Clanglereflectingbondstrain,themonomericacidshould

show

thehighestacidity.Uponthermodynamicallyfavoreddimer-

ization,anglestrainintheCl-H‚‚‚Clgroupispresumablyrelieved,

thestrengthoftheH‚‚‚Clbond

increases,andtheacidshould

expressdiminishedacidity.Inthepolymericcrystallinephases,the

Cl-H-Cl

bondingismorenearlysymmetricalandsomewhat

strongerthanthedimer,soaciditywillbefurtherdiminished.These

differencesmaybeimportantconsiderationswhenusinggasand

solidphasecarboraneacidstoprotonatetheweakestbases.

Acknowledgment.WethankDr.FookTham

fordetermining

theX-raystructure.Thisworkwassupportedby

NSF

(CHE-

0349878)andNIH(GM23851).

SupportingInformationAvailable:

Experimentaldetails,IR

spectra,DFTcalculations,andX-raystructuredetails.Thismaterialis

availablefreeofchargeviatheInternetathttp://pubs.acs.org.

References

(1)Reed,C.A.;Kim,K.-C.;Bolskar,R.D.;Mueller,L.J.Science2000,

122,4660-4667.

(2)Reed,C.A.C

hem.C

ommun.2005,1669-1677.

(3)Juhasz,M

.;Hoffmann,S.P.;Stoyanov,E.S.;Kim,K.-C.;Reed,C.A.

Angew.C

hem.,Int.Ed.2004,43,5352-5355.

(4)Koppel.I.A.;Burk,P.;Koppel,I.;Leito,I.;Sonoda,T.;Mishima,M.J.

Am.C

hem.Soc.2000,122,5114-5124.

(5)Kato,T.;Stoyanov,E.S.;Geier,J.;Grutzmacher,H.;Reed,C.A.J.Am.

Chem.Soc.2004,126,12451-12457.

(6)Stoyanov,E.S.;Popov,V.M

.;Mikhailov,V.A.Zh.Prikl.Spectrosk.

1984,40,77-84.

(7)Guillory,W

.A.;Bernstein,M.L.J.Chem.Phys.1975,62,1058-1060.

(8)Evans,J.C.;Lo,G.Y.-S.J.Phys.Chem.1966,70,11-19.

(9)Ault,B.S.Acc.Chem.Res.1982,15,103-109.

(10)EvansJ.C.

Spectrochim.Acta1960,16,994-1000.

JA058581L

Figure4.IRspectraofdifferentsublimedfilmsofH(CHB 1

1Cl 11):(a)the

dimericform

(black,dashed)andtwopolymericforms(b)with

νCHat

3039cm

-1(red,studiedbyX-ray)and(c)at3024cm

-1(blue).

Figure5.Perspectiveview

oftheproton-bridgedX-raycrystalstructure

ofH(CHB 1

1Cl 11)lookingdowntheC-

Hbondsofthecarboraneanions

(green

)Cl,orange)B,gray

)C,white

)H).

COMMUNIC

ATIO

NS

J.AM

.CHEM.SOC.

9VO

L.128,NO

.10,2006

3161

Page 2: Chem 622: Organometallic Chemistry - University of …manoa.hawaii.edu/chem/wp-content/uploads/CHEM-622_Cain...Chem 622: Organometallic Chemistry Class: MWF, 1030 – 1120 AM, Bilger

TopicsIntroduction/HistoricalPerspective

- Landmark compounds and reactions, Evolution ofInorganic/OrganometallicChemistry,NobelPrizeWinners

MainGroup

- StructureandBondingofGroups1,2,13–16- SynthesisofMainGroupCompounds- DOSYNMRspectroscopy- ReactivityandhandlingofMainGroupCompounds- Trends in bond strength/length, polarity of M-C bond,

comparisontotransitionmetalcomplexes- NMRactivenuclei(6Li,7Li,31P,19F,etc.)andNMRassignments

ofcomplexes- InertPairEffect,increasingenergyseparationofs/porbitals- P-andS-Stereogenicmolecules,synthesisandresolution,and

importance- Tolman,BiteAngle,etc.à Describingligands- AsymmetricDeprotonationwiths-BuLi/(–)-Sparteine- Carboranes:Synthesis,Reactivity,Applications- FrustratedLewisPairs,NBcomplexes,othernewresearch- Unusual,unexpectedMainGroupcomplexes

OrganometallicstoCatalysis

- Introduction: 16/18-electron rule,σ-,π-, andδ-bonding andtheorbitals,DCDmodel,etc.

- Tour of the ligands: σ-donors, σ-donors/π-acceptor, π-donors,commonligands(CO,PR3,halides,etc.),backbondingand its effect (IR spectroscopy, quantification of electrondensity)

- Isolobal Analogy and its Application: understanding andpredictingbonding,RoaldHoffman(1981NobelPrize)

- Reactions at the Metal: Ligand Dissociation/Association,OxidativeAddition/ReductiveElimination,and the impactofstericsandelectronics

- Reactions involving the Ligands: Insertion/β-hydrideelimination, nucleophilic/electrophilic attack, and how topromote or inhibit these processes. Examination of Bredt’sRule,agosticinteractions,etc.

- Kinetic Isotope Effects: Deuterium Labeling, CrossoverExperiments,etc.

- HomogeneousCatalysis1:Hydrogenation- Chirality: Types (Point, planar, axial, helical, etc.), effect of

symmetry,examplesofchiralmolecules

Page 3: Chem 622: Organometallic Chemistry - University of …manoa.hawaii.edu/chem/wp-content/uploads/CHEM-622_Cain...Chem 622: Organometallic Chemistry Class: MWF, 1030 – 1120 AM, Bilger

- Asymmetric Catalysis: Hydrogenation and its mechanisticunderlyings,prochiraltochiral,howtogetenantioinduction,NobelPrize2001

- Homogeneous Catalysis 2: Pd-Cross Coupling,TransmetalationAgent (B, Sn,Cu, Si, etc.),2010NobelPrize,RecentDevelopments(BuchwaldLigands,etc.)

- Homogeneous Catalysis 3: Metathesis, Its development,mechanism, and applications, 2005 Nobel Prize, DickSchrock/BobGrubbs,Mo/Wvs.Ru

- Future:HypotheticalDirections,whattoexpect,etc.Grading

- 5BriefExams(80%,20%each,droplowest)- Final(OralPresentation)à20%total


Top Related