+ All Categories
Transcript
Page 1: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Recent Progress in Staggered Chiral PerturbationTheory

Weonjong Lee

Lattice Gauge Theory Research CenterDepartment of Physics and Astronomy

Seoul National University

Chiral Dynamics 2012, Jlab, 08/07/2012

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 1 / 45

Page 2: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Outline

1 Project: 1998 – Present

2 Staggered Fermion FormulationStaggered Fermion Formulation

3 SChPTStaggered Chiral Perturbation Theory

4 AppilcationPion MassPion Decay ConstantsBK

π − π Scattering Phase Shift

5 Summary and Conclusion

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 2 / 45

Page 3: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Project: 1998 – Present

SWME Collaboration1998 — Present

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 3 / 45

Page 4: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Project: 1998 – Present

SWME Collaboration

Seoul National University (SNU):Prof. Weonjong LeeDr. Jon Bailey and Dr. Nigel Cundy (RA Prof.)11 graduate students.

Brookhaven National Laboratory (BNL):Dr. Chulwoo JungDr. Hyung-Jin Kim (Postdoc)

University of Washington, Seattle (UW):Prof. Stephen R. Sharpe.

KISTI: Dr. Taegil Bae (Postdoc).

University of Arizona, Tucson: Dr. Jongjeong Kim (Postdoc).

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 4 / 45

Page 5: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Project: 1998 – Present

Lattice Gauge Theory Research Center (SNU)

Center Leader: Prof. Weonjong Lee. (***)

Research Assistant Prof.: Dr. Jon Bailey (***)

Research Assitant Prof.: Dr. Nigel Cundy

11 graduate students (***)

Secretary: Ms. Sora Park.

more details on http://lgt.snu.ac.kr/.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 5 / 45

Page 6: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Project: 1998 – Present

Group Photo

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 6 / 45

Page 7: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Staggered Fermion Formulation Staggered Fermion Formulation

Staggered Fermion Formulation

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 7 / 45

Page 8: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Staggered Fermion Formulation Staggered Fermion Formulation

How to put quarks on the lattice ?

Wilson Fermions:

1 Clover Action: (**)2 Twisted mass fermions: (**)3 Domain Wall Fermions: (***)4 Overlap Fermions:

Staggered Fermions;

1 Asqtad action: (*)2 HYP staggered fermions: (***)3 Fat7 staggered fermions:4 HISQ action: (***)

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 8 / 45

Page 9: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Staggered Fermion Formulation Staggered Fermion Formulation

Cons and Pros for Staggered Fermions

Advantages (Pros):

1 Preserve part of exact chiral symmetries.2 Numerically cheapest on the lattice.3 No residual quark mass (no additive renormalization).4 Easy to improve with almost no extra cost.5 Staggered Chiral Perturbation Theory.

Possess 4 degenerate tastes (pure lattice artifacts).

Disadvantages (Cons):

1 Born with taste symmetry breaking by construction.2 Theoretically more challenging to interprete the data.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 9 / 45

Page 10: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Staggered Chiral Perturbation Theory

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 10 / 45

Page 11: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

What is Staggered ChPT ?

ChPT designed to analyze the data produced using staggeredfermions.

Dual expansion in powers of p2 ≈ mq and a2.

It incorporates all the taste symmetry breaking effects into the LECsorder by order in a perturbative series.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 11 / 45

Page 12: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Birth of Staggered ChPT

At the leading order of p2 ≈ mq ≈ m2π ≈ a2, we can prove that the

pion spectrum respects SO(4) taste symmetry out of the full SU(4)taste symmetry.

Lee and Sharpe proved it for single flavor case (1999).

Aubin and Bernard proved it for multiple flavor case (2003).

Power counting rules are established through the numerical study onthe lattice.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 12 / 45

Page 13: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Splittings of Pion Multiplet Spectrum

(1) Coarse lattice (a = 0.12fm) (2) Fine lattice (a = 0.09fm)

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 13 / 45

Page 14: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Scaling of the Splittings

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 14 / 45

Page 15: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Sea quark mass dependence of splittings

0

2

4

6

8

10

12

0 0.01 0.02 0.03 0.04

∆(B

)[×

10−2GeV

2]

amℓ

A

T

V

S

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 15 / 45

Page 16: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Staggered Chiral Perturbation Theory (SChPT)

1 We need to incorporate this effect of pion multiplet splittings into thedata analysis.

2 Staggered fermion formulation introduces mixing with extra operatorsin addition to the physical mixing. We can also incorporate this effectinto the data analysis using SChPT.

3 The systematic tool is the SChPT.

4 Using the SChPT, we obtain the fitting functional form exactly orderby order.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 16 / 45

Page 17: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Staggered Chiral Perturbation Theory (SChPT)

1 We need to incorporate this effect of pion multiplet splittings into thedata analysis.

2 Staggered fermion formulation introduces mixing with extra operatorsin addition to the physical mixing. We can also incorporate this effectinto the data analysis using SChPT.

3 The systematic tool is the SChPT.

4 Using the SChPT, we obtain the fitting functional form exactly orderby order.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 16 / 45

Page 18: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Staggered Chiral Perturbation Theory (SChPT)

1 We need to incorporate this effect of pion multiplet splittings into thedata analysis.

2 Staggered fermion formulation introduces mixing with extra operatorsin addition to the physical mixing. We can also incorporate this effectinto the data analysis using SChPT.

3 The systematic tool is the SChPT.

4 Using the SChPT, we obtain the fitting functional form exactly orderby order.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 16 / 45

Page 19: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Staggered Chiral Perturbation Theory (SChPT)

1 We need to incorporate this effect of pion multiplet splittings into thedata analysis.

2 Staggered fermion formulation introduces mixing with extra operatorsin addition to the physical mixing. We can also incorporate this effectinto the data analysis using SChPT.

3 The systematic tool is the SChPT.

4 Using the SChPT, we obtain the fitting functional form exactly orderby order.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 16 / 45

Page 20: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

SChPT Staggered Chiral Perturbation Theory

Staggered chiral perturbation theory

Power counting

O(a2Λ2QCD) ≈ O(p2/Λ2

χ) ≈ O(m2π/Λ2

χ) ≈ O(mq/ΛQCD)

Lee & Sharpe Lagrangian for multiple flavors[Aubin and Bernard, 2003]

LLO =f 2

8Tr(∂µΣ∂µΣ†)− 1

4µf 2Tr(MΣ + MΣ†)

+2m2

0

3(UI + DI + SI )

2 + a2V

- M = diag(mu,md ,ms)⊗ ξI- V : taste symmetry breaking potential [Lee and Sharpe, 1999]

SO(4)× SU(4)Ta 6=0−−→ SW4,diag

⊂p�Λχ

SO(4)× SO(4)T

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 17 / 45

Page 21: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation

Application of SChPT

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 18 / 45

Page 22: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Mass

Pion Mass (Quark Mass)

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 19 / 45

Page 23: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Mass

Pion Flow Diagrams

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 20 / 45

Page 24: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Mass

Quark Flow Diagrams (1)

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 21 / 45

Page 25: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Mass

Quark Flow Diagrams (2)

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 22 / 45

Page 26: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Mass

Results at NLO

Pion self energy:

M2πF

= m2πF

+ Σ(m2πF

) + NNLO

Σ(p2) =1

(4πf )2[σconn(p2) + σdisc(p2)] + σanal(p

2)

Connected Part:

σconn = a2∑B

(δconnBF `(π+

B ) +∆conn

BF

48[`(UB) + 2`(π+

B ) + `(DB)]

)Disconnected Part:

σdisc =1

12

[2(−12X5 + a4(∆conn

VF + . . .)δ′V

(RπXη(XV )˜̀(XV ) + . . .

)+ . . .)

]Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 23 / 45

Page 27: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Mass

Progress History (Pion Mass)

Goldstone pion sector at NLO : Aubin & Bernard (2003)

Non-Goldstone pion sectors at NLO : Bailey & Kim & Lee (2012)

Extension to mixed actions : underway by Yoon & Bailey & Lee(YBL) (2012)※ Example of a mixed action :• valence quarks = HYP staggered fermions• sea quarks = asqtad staggered fermions

Results have been used for the numerical study by MILC.

We plan to apply the mixed action results to the data analysis.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 24 / 45

Page 28: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Decay Constants

Pion Decay Constants

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 25 / 45

Page 29: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Decay Constants

Pion Flow Diagrams

(13) Wavefunction Cont. (14) Current Cont.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 26 / 45

Page 30: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Decay Constants

Quark Flow Diagrams (Current Contribution)

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 27 / 45

Page 31: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Decay Constants

Results at NLO

Example:- Pion decay constant for fully dynamical case (xy = ud)

- SU(2) chiral perturbation theory (mu,md � ms)

- 2+1 flavors (mu = md = m` 6= ms)

fπF

=f

{1 +

1

32π2f 2

[− 1

4

∑B

gB`(πB)

+ (4−ΘVF ){`(πV )− `(ηV )

}+ (V → A)

]

+ L416µ

f 2(2m` + ms) + L5

16µ

f 2m` + a2F

F

}

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 28 / 45

Page 32: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation Pion Decay Constants

Progress Report

Goldstone Pion Sector: Aubin & Bernard (2003)

Non-Goldstone Pion Sectors: Yoon & Bailey & Lee (2012)

Extension to the mixed action: underway by YBL (2012)

Results have been used for the numerical study by MILC.

We plan to apply the mixed action results to our data analysis.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 29 / 45

Page 33: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation BK

BK (Indicrect CP Violation)

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 30 / 45

Page 34: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation BK

BK definition in standard model

BK =〈K̄0|[s̄γµ(1− γ5)d ][s̄γµ(1− γ5)d ]|K0〉

83〈K̄0|s̄γµγ5d |0〉〈0|s̄γµγ5d |K0〉

B̂K = C (µ)BK (µ),

C (µ) = αs(µ)− γ0

2b0 [1 + αs(µ)J3]

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 31 / 45

Page 35: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation BK

Pion Flow Diagrams for BK

(20) OK (21) OK (22) OK

(23) X (24) X

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 32 / 45

Page 36: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation BK

Quark Flow Diagrams for BK

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 33 / 45

Page 37: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation BK

SU(2) Results at NLO

BK : (mu = md = m` � ms)

BK = d1Q1 + d2XP

Λ2χ

+ d3LPΛ2χ

+ NNLO

Q1 = 1 +1

32π2f 2

[(LI − XI)˜̀(XI) + `(XI)− 2

∑B

τB`(XB)

]

XP = [mxxπ (ξ5)]2

LP = [m``π (ξ5)]2

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 34 / 45

Page 38: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation BK

Progress History

BK at NLO : Sharpe & Van de Water (2006)

Extension to the mixed action : Sharpe (2008)

BSM operators at NLO : Bailey & Kim & Lee & Sharpe (2012)

Application to the numerical study : SWME (2010 ∼ present)

The SWME result of BK is posted to FLAG officially (2012).

B̂K = 0.727± 0.004(stat)± 0.038(sys)

εK = (1.56± 0.22)× 10−3 (Exclusive Vcb)

= (1.88± 0.22)× 10−3 (Inclusive Vcb)

We must reduce the errors of BK and Vcb simultaneously.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 35 / 45

Page 39: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation π − π Scattering Phase Shift

π − π Scattering

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 36 / 45

Page 40: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation π − π Scattering Phase Shift

π − π Scattering and S–matrix

Five channels of two pion states in staggered fermion formulation:

π(P)− π(P), π(A)− π(A), π(T )− π(T ),

π(V )− π(V ), π(S)− π(S),

The trouble is that their energy eigenvalues are non-degenerate.

Recently, Hansen & Sharpe make it possible to study multi-channelscattering problem by modifying the Luscher formula.

Now, it is possible to study the N = 5 multi-channel π − π scatteringproblem on the lattice using staggered fermions.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 37 / 45

Page 41: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation π − π Scattering Phase Shift

Quark Flow Diagrams for π − π Scattering

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 38 / 45

Page 42: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation π − π Scattering Phase Shift

Unitarity Violation by Rooting Technique

If the SU(4) taste symmetry is exactly conserved, then rooting cannotmake a trouble of unitarity violation.

However, if the SU(4) taste symmetry is broken, then rooting makes aunitarity violation.

The staggered fermion formulation has taste symmetry breaking byconstruction.

Hence, the rooting triggers the unitarity violation for staggeredfermions.

As a consequence, there are two kinds of unitarity violation on thelattice using staggered fermions: one from partially quenched QCDand the other from the rooting.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 39 / 45

Page 43: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation π − π Scattering Phase Shift

Rooting Technique

Fermion Determinant of Staggered Fermions:∫[dψ][dψ̄] exp[

∫ψ̄(D + m1)ψ] = det(D + m1)

Here, the Dirac operator (D + m1) contains 4 copies of degeneratetastes.

In order to reduce the number of tastes to one, we use the rootingtechnique in the numerical study.

det(D + m1) −→ [det(D + m1)]14

However, if the SU(4) taste symmetry is broken, then the rootingcauses a unitarity violation since sea quarks and valence quarks havedifferent Dirac operators.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 40 / 45

Page 44: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Appilcation π − π Scattering Phase Shift

How to get around the trouble: SChPT

SChPT can, in principle, trace the rooting part and the unitarityviolation terms.

Hence, we fit the numerical data to the functional form suggested bySChPT.

Then, we can remove the unitarity violating terms by hand.

Then, the remaining part will be unitary, which corresponds to theS-matrix defined by Hansen & Sharpe.

The SChPT calculation is underway by Yoon & Bailey & Lee.

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 41 / 45

Page 45: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Summary and Conclusion

Summary

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 42 / 45

Page 46: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Summary and Conclusion

Summary of Current Status in SChPT

physics Goldstone Non-Goldstone mixed numerical

m2π © © 4 ©

fπ © © 4 ©BK © × © ©

BSM op © × © 4π − π 4 × 4

K → ππ × × ×Vcb © × ©

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 43 / 45

Page 47: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Summary and Conclusion

Sincere apologiesfor omitting some topics

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 44 / 45

Page 48: Recent Progress in Staggered Chiral Perturbation TheoryStaggered Fermion Formulation Staggered Fermion Formulation Cons and Pros for Staggered Fermions Advantages (Pros): 1 Preserve

Summary and Conclusion

Thank you very much !!!

Weonjong Lee (SNU) Lattice QCD Chiral Dynamics 2012 45 / 45


Top Related