02 Di Giacomo Anna Maria firenze 29nov 2017 · Anna Maria Di Giacomo Medical Oncology and...

Post on 17-Jul-2020

1 views 0 download

transcript

Anna Maria Di GiacomoMedical Oncology and Immunotherapy

Center for Immuno-OncologySIENA, ITALY

Immuno-Oncologia:verso una immunoterapia di precisione?

MEDICINA E ASSISTENZA DI PRECISIONEFirenze – 22 Novembre 2017

Cancer immunotherapy, a very long standing concept

Venuti A. J Exp Clin Cancer Res. 2009.

The concept that a vaccine could be useful in the treatment of cancer is a long-held hope coming from the observation that patients with cancer who developed bacterial infections experienced remission of their malignancies.

The earliest mention of cancer-fighting infections dates to a citation from Ebers papyrus (1550 B.C.) attributed to the Egyptian physician Imhotep (2600 B.C.), who recommended to treat tumors (swellings) with a poultice followed by an incision whichwould result in infection of the tumor and therefore its regression.

In 1896, the surgeon William Coley locally injected streptococcal broth cultures to induce erysipelas in an Italian patient (Mr. Zola) with an inoperable neck sarcoma, obtaining a tumour regression. Although therapy was toxic, the patient's tumour ultimately regressed, and he lived disease-free for 8 years before succumbing to his cancer.

Surgery

Radiotherapy

Chemotherapy

Evolving Therapeutic Options forCancer Treatment

Surgery

Radiotherapy

Chemotherapy

Immunotherapy

Evolving Therapeutic Options forCancer Treatment

5

Adapted from Pardoll DM 2012.

APC/Tumor

T cell

CD40 CD40L

CD137

OX40

CD137L

OX40L

Activation

Activation

Activation

PD-1

B7-1 (CD80)

PD-L1

PD-L2

LAG-3MHC

CD28 ActivationB7-2 (CD86)

B7-1 (CD80) CTLA-4 Inhibition

TCR

Inhibition

Inhibition

Inhibition

These pathways can be blocked via I-O agents to counteract tumor-mediated inhibition

These pathways can be activated via I-O agents to counteract tumor-mediated inhibition

APC=antigen-presenting cell; CTLA-4=cytotoxic T-lymphocyte antigen-4; LAG-3=lymphocyte activation gene-3; MHC=major histocompatibility complex; PD-1=programmed death-1; PD-L1=PD ligand-1; PD-L2=PD ligand-2; TCR=T-cell receptor.Pardoll DM. Nat Rev Cancer. 2012;12:252-264.

T-cell Checkpoint and Co-stimulatory Pathways

Tissue samples readily accessible

Adaptable to tissue culture

Amenable to testing of novel therapies

Melanoma as a tool for cancer research

0 1 2 3 4 5 6 7 8 9 10

100

90

80

70

60

0

50

40

30

20

10

Ove

rall

Sur

viva

l (%

)

Years

IPI (Pooled analysis)1

NIVO Monotherapy (Phase 3 Checkmate 066)3

N=210

NIVO Monotherapy (Phase 1 CA209-003)2

N=107

N=1,861

8

Immune Checkpoint Inhibitors Provide Durable Long-term Survival for Patients with Advanced Melanoma

1. Schadendorf et al. J Clin Oncol 2015;33:1889-1894; 2. Current analysis; 3. Poster presentation by Dr. Victoria Atkinson at SMR 2015 International Congress.

Immune Checkpoint Pathways

CTLA-4 = cytotoxic T-lymphocyte-associated antigen 4 ; MHC = major histocompatibility complex; PD-1 = programmed death-1;PD-L1 = programmed death ligand 1; TCR = T-cell receptor.

CTLA-4 Blockade (ipilimumab) PD-1 Blockade (nivolumab)

Wolchok JD et al. N Engl J Med 2017. DOI: 10.1056/NEJMoa1709684

Kaplan–Meier Estimates of Survival.

A

B

C

D

* *

F

* * *

*

C E

Baseline 3 weeks after the first dose 20 weeks after the first dose

Baseline 9 weeks after the first dose 20 weeks after the first dose

Danielli R et al, unpublished

Immunotherapy in solid tumors with immunomodulating antibodies

www.ImmunOncologia.org

ASCO 201613

CI = confidence interval; HR = hazard ratio

NSCLC Kaplan–Meier Estimates of OS(3 Years Minimum Follow-up)

292

194

148

112

82 58 49 39 7 0

290

195

112

67 46 35 26 16 1 0

135

86 57 38 31 26 21 16 8 0

137

69 33 17 11 10 8 7 3 0

CheckMate 057 (non-SQ NSCLC)CheckMate 017 (SQ NSCLC)

No. of patients at risk

Nivolumab

Docetaxel

No. of patients at risk

Nivolumab

Docetaxel

0 6 12 18 24 30 36 42 48 54

Δ10%

Nivolumab (n = 135) Docetaxel (n = 137)

1-y OS = 42%

2-y OS = 23%

3-y OS = 16%1-y OS = 24%

2-y OS = 8% 3-y OS = 6%

HR (95% CI): 0.62 (0.48, 0.80)

100

80

60

40

20

0

OS

(%)

Months

Δ18%

Δ15%

0 6 12 18 24 30 36 42 48 54

Months

1-y OS = 51%

2-y OS = 29%

3-y OS = 18%

1-y OS = 39%

2-y OS = 16%

3-y OS = 9%

Nivolumab (n = 292) Docetaxel (n = 290)

HR (95% CI): 0.73 (0.62, 0.88)

100

80

60

40

20

0

OS

(%)

Δ12%

Δ13%

Δ9%

Felip E, ESMO 2017Felip E, ESMO 2017

Presented By Julie Brahmer at 2017 ASCO Annual Meeting

Lawrence et al, Nature 2013

Mutational landscape of tumor according to Clinical Benefit from ipilimumab therapy (Snyder et al., 2014)

Le DT et al. N Engl J Med 2015; 372:2509‐2520.

Clinical Benefit of Pembrolizumab Treatment According to Mismatch-Repair Status

1970s 1980s 1990s 2010s

Spontaneous regressions in 

melanoma: immune component?

1st tumour associated 

antigen cloned

IL‐2 approved in the US for melanoma (1992)

IFN adjuvant melanoma US (1995)

2011Ipilimumab approved 

for advanced melanoma

2015–2017Anti‐PD‐1/‐PD‐L1 for metastatic 

melanoma, NSCLC, RCC, Bladder, 

HNSCC, Hodgkin, Merkel, MSI‐H.

Ipilimumab in adjuvant 

melanoma. Nivolumab + 

ipilimumab, T‐VEC in melanoma 

2010 Provenge US

Coley in 1891: observation of a 

tumour regression in a pt who developed a post‐op infection 

A historical view of immunotherapy…

Italy 2017

Anti‐PD‐1 in: RCC

HodgkinMelanoma NSCLC……….………..

2017

The future of Cancer ImmunotherapyTargeting and modulating multiple compartments

TUMORMICROENVIRONMENT

Antigens

Active T cell  

Cancer cell

Dendriticcell

LYMPH NO

DE

BLOOD VESSELS

Apoptoticcancer cell

Active T cell  

IMMUNESYSTEM

TUMORMICRO‐

ENVIRONMENT

TUMOR

ICOSGITRLAG34‐1BBOX‐40TIM3…..…..

LAG-3 in T-Cell exhaustion and anti–PD-1 resistance

In therapy-naïve patients, constitutive LAG-3 expression may limit the antitumor activity of PD-1 pathway blockade. Anti–LAG-3 combined with nivolumab may deepen or increase the durability of responses

In patients exposed to PD-1 pathway blockade, adaptive upregulation of LAG-3 expression may lead to treatment resistance and tumor progression. Anti–LAG-3 combined with nivolumab may restore T-cell activation and tumor response

1

2

EffectorCD4+/CD8+

T cell

Acquires resistance

Tumor or other infiltrating cell

+ AntigenPD-L1

Nivolumab

LAG-3

MHC II

Anti–LAG-3 (BMS-986016)

PD-1

PD-1

LAG-3 MHC II

PD-L1

PD-1

+ Nivolumab

+ Nivolumab + Anti–LAG-3

+ Nivolumab + Anti–LAG-3

IO therapy naïve:LAG-3 limits IO response

IO therapy exposed:LAG-3 contributes to resistance

1

2

Study design and endpoints

aTumor response evaluated per Response Evaluation Criteria in Solid Tumors (RECIST) v1.110 (investigator assessment). bSafety evaluated per Common Terminology Criteria for Adverse Events v4.011 during treatment and up to 135 days after discontinuation. cLAG-3 and PD-L1 expression (percent of positive cells within invasive margin, tumor, and stroma) evaluated using immunohistochemistry (IHC) assays on formalin-fixed, paraffin-embedded tumor sections. Immune cell LAG-3 expression (≥ 1% or < 1%) determined using mouse antibody clone 17B4; tumor cell PD-L1 expression (≥ 1% or < 1%) determined using Dako PD-L1 IHC 28-8 kit.

BMS-986016 + Nivolumab (N = 212)

Dose-Escalation Phase(advanced solid tumors)

Dose-Expansion PhaseMelanoma After Prior IO (n =

55)(other tumor-specific cohorts)

Endpoints (dose expansion)

• Preliminary efficacya (co-primary)• Safety/tolerabilityb (co-primary)• Pharmacokinetics and pharmacodynamics• Immunogenicity and QTc (secondary)• Biomarkers (LAG-3 and PD-L1;

exploratory)c

Anti-Lymphocyte Activation Gene-3 (anti–LAG-3; BMS-986016) in Combination With Nivolumab in Patients With Melanoma Previously Treated With Anti–PD-1/PD-L1

Ascierto P et al., ASCO 2017

ResultsEfficacy in the Melanoma Prior–IO Cohort

BOR, best overall response; DCR, disease control rate. aAll response-evaluable patients; all progressed on prior anti–PD-1/PD-L1 therapy. bTwo responses were unconfirmed. cOccurred prior to first radiographic scan.

Table 4. Preliminary evidence of antitumor activity

Patients, n (%) Mel Prior IO (n = 48a)BOR

CR 0PRb 6 (13)SD 20 (42)PD 16 (33)Clinical progressionsc 6 (13)

ORR, 95% CIb 6 (13), 4.7, 25LAG-3 ≥ 1% (n = 25) 5 (20), 6.8, 41LAG-3 < 1% (n = 14) 1 (7.1), 0.2, 34

DCR (CR + PR + SD)b 26 (54)LAG-3 ≥ 1% (n = 25) 16 (64)LAG-3 < 1% (n = 14) 5 (36)

ResultsEfficacy in the Melanoma Prior–IO Cohort

Figure 5. Ongoing clinical follow-up

aSix patients had clinical progression prior to their first scan and are not included in the plot. bCensored on last visit. cEvaluations are planned for every 8 weeks.

0 5 1510 2520 3530 4540

Ongoing progression-free survivalb

Time to progression or death

**

*

*

**

*Patients with an objective response

46% (22/48) of patients were still on

treatment at data cutoffa

Weeksc

Melanoma prior-IO cohort

ICOS Mechanism of Action

T cell Priming / Periphery

Local Antigen Re-challenge

ICOSICOS-L

CXCR5, CD40L

Proliferation

IFN-γ

Activation status of T cells

Kaplan Meyer curves of overall survival according to the circulating CD4+ICOS+ in A) metastatic melanoma pts treated with ipilimumab at10mg/Kg within an EAP

Di Giacomo et al CII, 2013

CD4+ICOS+ > 4 fold increase; CD4+ICOS+ ≤ 4 fold increase

mOS = 118 wks

mOS = 27 wks

log-rank test, p = 0.009

A Week 7

• Increased levels of CD4+ICOS+ T cells in patients with different tumor types treated with Ipilimumab

Summary of GSK anti-ICOS agonist antibodyGSK3359609

A humanized, engineered IgG4 anti-ICOS agonist monoclonal antibody (mAb)

For the treatment of cancer

First-in-class ICOS agonist antibody in development

Binds with high affinity to human ICOS

Enhances the proliferation, survival and function of antigen activated effector T cells

Well tolerated safety profile in pre-clinical studies

Strong rationale for combination with other anticancer agents

APC

T cellICOS

ICOS agonist mAb(GSK3359609)

Enhanced survival

and function

Preclinical Evidence of ICOS Agonist Combination Potential

Synergistic combination of surrogate ICOS agonist antibody with checkpoint mAbs in

mouse tumor models

ICOS + PD1

PD1ICOS

CT26 Tumor Model

Combination of GSK3359609 with Pembrolizumab in human PBMCs induces

synergistic IFN-γ production

GSK 204691 (INDUCE-1) Study Design

Part 1A: Monotherapy Dose Escalation

N~36

Multiple selected solid tumors

Part 2B: Combination Expansion

Cohort 1 N~20

Cohort 2 N~20

Cohort 1 N~20

Cohort 2 N~20

Part 2A: Combination Dose Escalation

1

2Multiple selected

solid tumors

N~24

N~24

Biomarker cohort N~30

Steering Committee Decision Points

Cohort 1 N~20

Cohort 2 N~20

Part 1B: MonotherapyExpansion

Cohort 3 N~20

Cohort 4 N~20

Biomarker cohort N~30

TUMOR

MICROENVIRONMENT

Antigens

Active T cell  

Cancer cell

Dendriticcell

LYMPH NODE

BLOO

D VESSELS

Apoptoticcancer cell

Active T cell  

IMMUNESYSTEM

TUMORMICRO-

ENVIRONMENT

TUMOR

ICOSGITRLAG34‐1BBOX‐40TIM3…..…..

The future of Cancer ImmunotherapyTargeting and modulating multiple compartments

HLA I/IITumor Associated AntigensAntigen Processing MachineryCo‐stimulatory Molecules…..…..

Heritable changes in gene expression not based

on modifications of the DNA sequence

EPIGENETICS

DNA methylation

Histone modifications

MicroRNA gene silencing

EPIGENETIC MODIFICATIONS

PHARMACOLOGICALLY REVERSIBLE

DNMTs inhibitors (DNMTi)

HDAC inhibitors (HDACi)

Maio et al, unpublished

Maio M. et al., CCR 2015

Epigenetic Immunomodulation of Cancer cell

Can epigenetic modulation of neoplastic cells be used to design

novel immunotherapeutic approaches in cancer?

COMBOS

TUMOR

Epigenetic drugs

Modulatetumor immunogenicity

and immune recognitionHOST

Check-point mAb

Improve host’s immune system activity

Epigenetic Epigenetic immunoimmuno--sequencingsequencing

Epigenetic immuno‐sequencing:the NIBIT‐M4 Study

EUDRACT 2015‐001329‐17

W1 W4 W7 W10Ipilimumab4 x q21

W0 W3 W6 W9Guadecitabine5 days q21 WKTA

W12

A.M. Di Giacomo et al. Semin Oncol, 2015

FPFV October 12, 2015

Tumor BiopsyPBMC

Tumor BiopsyPBMC

Tumor BiopsyPBMC

3 pts15mg/m2/die

3 pts30mg/m2/die

3 pts45mg/m2/die

+3 pts30mg/m2/die

≥2 DLT

No DLT

1 DLT

Expand to 16 ptsTo date 11 out of 19 pts enrolled

3 pts60mg/m2/die

No DLT

≥2 DLT

+3 pts60mg/m2/die

1 DLT

Epigenetic immuno‐sequencing: the NIBIT‐M4 Study NCT02608437

Amendment approved Jan 24rd, 2017

Methylome DNA

Transcriptome RNA

ExomeDNA

Epigenetic immuno‐sequencing: the NIBIT‐M4 Study NCT02608437

Phenotipic,functional analyses of

PBMC

IMMUNOSCOREdensity, location, organization and 

functional orientation of 

tumor‐infiltrating immune cells

FFPE

W1 W4 W7 W10

Ipilimumab4 x q21

W0 W3 W6 W9Guadecitabine5 days q21 WKTA

W12

Tumor biopsyPBMC Tumor biopsy

PBMC

Tumor biopsyPBMC

NGS analysesPerifery and tumorimmunophenotype

The future of Cancer ImmunotherapyTargeting and modulating multiple compartments

TUMOR

MICROENVIRONMENT

Antigens

Active T cell  

Cancer cell

Dendriticcell

LYMPH NODE

BLOO

D VESSELS

Apoptoticcancer cell

Active T cell  

IMMUNESYSTEM

TUMORMICRO-

ENVIRONMENT

TUMOR

ICOSGITRLAG34‐1BBOX‐40TIM3…..…..

IDOArginaseSuppressor cellsVEGF

IDO‐mediated immunesuppression

IDO1 Inhibition Correlates With Increases in TIL Number and Function

• IDO1 inhibition leads to increased number of TILs and decreased suppressor cells in tumors

• Enhanced IFN-γ secretion from TILs was observed following IDO1 inhibitor treatment

43IFN=interferonKoblish HK, et al. AACR 2015. Poster 1336

Infiltrating cells Cytokines PD-1 expression

Combinations of Epacadostat and Checkpoint Inhibition Showed Synergistic Inhibition in Preclinical Models

• Combinations of epacadostat and checkpoint inhibition were associated with enhanced T-cell proliferation and cytokine secretion in vivo

441. Spranger S, et al. J Immunother Cancer. 2014;2:3. Data on file, Incyte Corporation

Epacadostat + anti–CTLA4 Epacadostat + anti–PD-L1

Days Postinoculation Days Postinoculation

IMMUNE SYSTEM

TUMOR

The future of Cancer ImmunotherapyPatient-tailored immunotherapeutic approaches

TUMOR MICRO-ENVIRONMENT

Targeting and modulating multiple compartments

• Maresa Altomonte• Erika Bertocci• Luana Calabrò• Ornella Cutaia• Riccardo Danielli• Anna Maria Di Giacomo• Carolina Fazio • Ester Fonsatti• Carla Chiarucci• Gianluca Giacobini• Andrea Lazzeri

Medical Oncology and ImmunotherapyCenter for Immuno‐Oncology

University Hospital of Siena ‐ Italy                                   

• Francesca Colizzi• Sandra Coral• Alessia Covre• Elisabetta Fratta• Hugues Nicolay• Luca Sigalotti• Maria Lofiego• Patrizia Tunici• Antonello Lamboglia• Monica Valente• Armida D’Incecco