1-s2.0-0198759383900061-main

Post on 14-Apr-2018

214 views 0 download

transcript

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 1/11

Heat Recovery Sys tems Vol. 3, No. 2, pp. 145 to 155, 1983 0198-7593/83/020145-11503.00 0Printed in Great Britain. Pergamo n Pres s Ltd

H E A T R E C O V E R Y - - A N E C O N O M I C B E N E F I T T O

H A Z A R D O U S W A S T E I N C I N E R A T I O N S Y S T E M S

JOSEPH J. SANTOLERI

T r a n e T h e r m a l , P r o c e ss D i v i si o n , T h e T r a n e C o m p a n y , B r o o k R o a d ,C on shoh ocken , P A 19428 , U .S .A .

A b s t r a c t - - M a n y p r o c e s s w a s te s l is t e d a s h a z a r d o u s h a v e b e e n d i s p o s e d o f i n l a n df i ll s a n d b yi n c i n e r a t i o n w i t h o u t c o n s i d e r a t i o n o f e n e r g y r e c o v e r y . T h e h e a t o f c o m b u s t i o n o f t h e s e w a s t em a te r i a l s has r ep l aced foss il f ue l ene rgy i n m any p roces s p l an t s by ge ne ra t i ng s t ea m a nd p rehe a t -i n g o t h e r p r o c e s s s tr e a m s . O p e r a t i n g c o s t s f or t h e s e p l a n t s c a n b e m i n i m i z e d b y p r o p e r d e s i g n o fthe com bus t i on and hea t r ecove ry sys t em s . T h i s pape r r ev i ew s expe r i ence a t s eve ra l f ac i l i t i e sw h e r e w a s t e g a s a n d l i q u i d s h a v e b e e n p r o p e r l y d i s p o s e d o f b y i n c i n e ra t i o n a n d t h e e n e r g y v a l u esr ecove red fo r u se i n t he p l an t .

I N T R O D U C T I O N

IN THE p a s t q u a r t e r c e n tu r y , m a n y n e w m a te r i a l s h a v e b e e n d e v e lo p e d b y t h e c h e m ic a l

a n d p e t r o c h e m ic a l p r o ce s s i n d u s tr i es t h a t h a v e im p r o v e d t h e w a y o f l if e f o r p r e s e n t a n dfu tu re genera t ions . P las tic s used in p rod uc ts a t hom e, a t the o f f ice and in indus t r ia l

app l ica t ions have min imized we igh t , co r ros ion and main tenance . Pes t ic ides , he rb ic ides

a n d f e r ti li z er s h a v e b e e n a b o o n t o t h e f a r m e r a n d h o m e o w n e r i n m a x im iz in g o u tp u t p e r

ac re and min imiz ing c rop des t ruc t ion . At the - - same t ime , p roduc t ion o f the raw mate r ia l s

u s e d i n t h e s e p r o d u c t s h a s c r e a t e d a m y r i a d o f c o m p o u n d s wh ic h h a v e b e e n l i s t e d b y

E P A a s h a z a r d o u s a n d t o x i c i n t h e R e s o u r c e C o n s e r v a t i o n a n d R e c o v e r y A c t (R C R A ).

D I S P O S A L M E T H O D S

T o d a y , t h e r e a r e p la n t s i n a lm o s t e v e r y i n d u s t r y p r o d u c in g m a te r i a l s wh ic h g e n e r a t e a

was te li s ted by EPA. Tho se p rod uc ing a t l eas t 1 tonn e (2200 lbs .) pe r m on th a re re qu i red

to f o l lo w s t ri c t p r o c e d u r e s fo r d is p o s al o f t h a t wa s t e. M a n y p l a n t o p e r a to r s h a v e r e -

s p o n d e d t o t h i s p r o b l e m a n d h a v e d e v e lo p e d p r o c e d u r e s f o r c o m p l i a n c e . T h e s e h a v e

been e i the r ' on s i te ' (l andfi ll s, deep w e l l d isposa l , chem ica l f ixa tion o r the rm al inc ine ra -t ion) or 'off s i te ' (co ntra ct hau ling to disposal s ites) .

S in ce t h e g e n e r a to r o f th e w a s t e is r e q u i r e d b y R C R A to b e r e s p o n s ib l e u n t i l t h e

m a te r i a l i s d e s t r o y e d - - ' c r a d l e to g r a v e ' r e s p o n s ib i l i t y - - m a n y h a v e t u r n e d t o ' o n s it e '

s y st e m s . M a n y ' o f f s i te ' s y s t e m s h a v e b e e n p l a g u e d w i th i r r es p o n s ib le c o n t r a c to r s , im -

p r o p e r ly d e s ig n e d d i s p o sa l s c h e m e s, e t c. T h o s e d i s p os a l c o m p a n i e s a n d /o r s y s t e m s t h a t

d o c o m p ly w i th R C R A a r e f ew . T h e y h a v e m a in t a in e d w e l l d e sig n e d f ac i li ti e s a n d a r e

f i n a n ci a l ly a b l e to s u p p o r t t h e o p e r a t i o n a n d i n s u r e t h e g e n e r a to r c o m p le t e d e s t r u c t i o n

of the tox ic mate r ia l s . How ever , ce r ta in s ta tes a re d ra f t ing regu la t ions wh ich wi ll e l imin-

a te land d isposa l o f ce r ta in tox ic was tes by 1 Ju ly 1984 . Ca l i fo rn ia ' s Dep ar tm en t o fHea l th Serv ices i s d ra f t ing an aggress ive regu la to ry p roposa l which i s s ign i f ican t ly more

s t r in g e n t t h a n E P A ' s c u r r e n t r u le s , wh ic h o n ly b a n t h e l a n d d i s p o s a l o f f r e e -s t a n d in gl i q uid s a n d wa s t e s i n c o m p a t ib l e w i th t h e l a n d d i s p o s a l r e q u i r e m e n t [1 ] .

Th e co m bina t ion o f s t r ic te r regu la t ions wi th fewer si tes wi ll fo rce the cos t s o f landdisposa l to levels well over tod ay 's f igures . These co sts incre ased 25-409/o fro m 1980 to

1981 [2"1. Un ti l recen tly , industr ia l wa ste disposa l c ost as l i t t le as $ 1.50 per ton. T od ay ,

non-hazardous indus t r ia l was te requ i res $15-$90 per ton fo r d i sposa l , wh i le hazardouswas te d i sposa l cos t s $50-$400 per ton . The cos ts migh t be accep tab le i f the long te rmr i sk o f h a z a r d c o u ld b e e l im in a t ed .

F i r s t p r e sen t ed a t A m er i can Ins t i t u t e o f C hem ica l E ng inee r s 1982 S um m er A nnu a l M tg . C leve l and , O h io , 29A ugus t -1 S ep t em ber 1982 .

14 5

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 2/11

146 JOSEeH J SAXlOLERI

INCINERATION

M e t h o d s t o m i m m i z e t h e a m o u n t s o f w a s te b y i m p r o v e m e n t s i n t he p r o c e ss , re c y cl in g

w a s te s a n d w a s t e -t r a d in g h a v e b e e n a n d a r e c o n t in u a l l y b e in g d e v e lo p e d . O n e m e t h o d

w h i c h w i ll r e d u c e t h e t o t a l v o l u m e a n d a t t h e s a m e t i m e d e t o x i f y t h e w a s t e i s i n c i n e r a -

t i o n - o n c e c o n s i d e r e d a b a d w o r d . E x p e r i e n c e in t he p a s t 1 5 - 2 0 y r w it h h i g h t em p e r a -

t u r e in c i n e r a t i o n s y s t e m s I c o m p l e t e w i t h a d e q u a t e i n s t r u m e n t a t i o n a n d a i r p o l l u t io n

c o n t r o l s y s te m s ) h a s s h o w n t h a t t h i s p r o c e s s w i ll s o lv e t h is s e r i o u s p r o b l e m . D i s p o s a l b y

i n c i n e r a t i o n h a s b e e n t h e m o s t e x p e n s i v e m e t h o d a s n o t e d i n T a b l e 1.

O n e o f t h e m a i n r e a s o n s f o r t h e h i g h c o s ts a s s o c i a t e d w i t h i n c i n e r a u o n is r e la t e d t o

e n e r g y . M a n y w a s t e s l is t e d a s t o x i c a r e h i g h l y a q u e o u s a s m u c h a s 9 5° ,0 w a t e r. T o9 3"a d e q u a t e l y o x id i z e t h e P r in c i p a l O r g a n i c H a z a r d o u s C o n s t i tu e n t ( P O H C ) t o t h e 99 . 9 / o

D e s t r u c t i o n a n d R e m o v a l E f f ic ie n c y ( D R E ) r e q u i r e m e n t e s ta b l is h e d b y R C R A , o x i d a t i o n

t e m p e r a t u r e s o f a t le a s t 1 0 0 0 °C (1 8 3 2 °F ) , t u r b u l e n c e i n t h e c o m b u s t i o n z o n e t o m a x i m i z e

t h e r e a c t i o n a n d t o m i n i m i z e r e s i d e n c e t i m e . a n d s u f f i c i e n t p r e s s u r e t o p r o v i d e t h e

n e c e s s a r y s c r u b b i n g o f h a l o g e n s a n d / o r p a r t i c u l a t e s a r e r e q u i re d . T h i s e s t a b li s h e s :

( a) t h e q u a n t i t y o f a u x i li a r y f u e l :( b ) t h e o x i d i z i n g a i r v o l u m e a n d p r e s s u r e :

( c ) t h e a t o m i z i n g m e d i a ( c o m p r e s s e d a i r o r s t e a m l .

T h e s e a r e t h e e n e r g y - i n t e n s i v e u t i l i t i e s f o r t h e i n c i n e r a t i o n s y s t e m . T e c h n o l o g i c a l i m -

p r o v e m e n t s in c o m b u s t i o n , m i x i n g an d a t o m i z a t i o n h a v e b e e n c o n d u c t e d b y a ll p a r t i c i-

p a n t s i n t h e l a st f ew y e ar s . T h i s h a s a i d e d i n e s t ab l i s h i n g t h e m i n i m u m t e m p e r a t u r e s

n e e d e d f o r a c h i e v i n g t h e r e q u i r e d d e s t r u c t i o n (9 9.9 99 ~) o f t h e P O H C ' s . P r i o r t o t h e f i n a l

r e l ea s e o f R C R A S e c. 3 0 0 4 ( I n c i n e r a t i o n S t a n d a r d s ) , a t e m p e r a t u r e - t i m e d e s i g n r e q u i r e -

m e n t h a d b e e n s et b y t h e E P A [3 ] . A f t er s ev e r al h u n d r e d c o m m e n t s b y b o t h i n d u s t ry

a n d e n g i n e e r i n g s o c ie t ie s ( C M A . A I C h E . A S M E . A P C A . P M A . e tc .} d e m a n d i n g a p e r -

f o r m a n c e s t a n d a r d b e e s ta b l i s h e d v e r s u s t h e d es i g n s t a n d a r d s et f o r th . E P A r e v i se d t h e

R C R A s e c t io n o n i n c i n e r a t o r s t a n d a r d s t o th e p r e s e n t r e g u l a t i o n s [ 4 ] .

T h e s e st e p s h a v e a l lo w e d t h e q u a l if i e d d es i g n e r s a n d m a n u f a c t u r e r s o f h a z a r d o u s

w a s t e i n c i n e r a t o r s to s t e p u p to t h e p r o b l e m a n d s o l v e th e t h e r m a l o x i d a t i o n p r o b -

l e m [ 5 ] . S u f f ic i e n t i n s t a ll a t io n s p r e s e n t l y ex i st w h i c h m e e t t h e 9 9 . 9 9 ~ D R E . E P A h a s

l is t ed t h o s e h a z a r d o u s w a s t e s b y d e g r e e o f h a z a r d a n d d e g r e e o f i n c i n e r a b i l i ty ( T a b l e 2j.

M e t h o d s t o m i n i m i z e t h e a u x i l i a r y f u e l r e q u i r e m e n t s w e r e t h e n e x t s t e p . T h i s w a s

p o s s i b l e w i th t h o s e s y s t e m s w h e r e r e c y c l i n g o f w a s te s c o u l d b e a c c o m p l i s h e d in t h e

p r o c e s s p l a n t a n d w a s t e v o l u m e w a s r e d u c e d . A l s o . p r e c o n c e n t r a t i o n o f r e l a ti v e l y c l e a n

a q u e o u s o r g a n i c w a st e s p e r m i t t ed a h i g h e r c o n c e n t r a t i o n o f t h e o r g a n i c s a n d in m a n y

c a se s , p rpv i de d a s e l f - sus t a i n i ng fue l ( s e e F i g . 1 ) .

H A Z A R D O U S W A S T E S IN B O I L E RS

T h o s e o r g a n i c w a s t e s w h i c h a r e s e l f- s u s ta i n in g h a v e b e e n u t i li z e d a s f u e ls i n b o i l e r s

w h e r e p o s s i b l e. H o w e v e r , t h e u s e o f th e t o x i c , h a z a r d o u s w a s t e s m i n d u s t r i a l b o i l e r s h a s

b e e n u n d e r r e v i e w b y t h e E P A o v e r t h e l a s t fe w y e ar s . T h e b o i l e r s o f f er g r e a t p o t e n t i a l

f o r t h e o n - s i t e t h e r m a l d e s t r u c t i o n o f h a z a r d o u s w a s te s . H o w e v e r , t h e t e m p e r a t u r e , t u r -

b u l e n c e a n d r e s i d e n c e t i m e o f a g i v en b o i l e r m u s t p r o v i d e t h e s a m e 9 9 . 9 9 % D R E a s t h a t

r e q u i r e d w i t h i n c i n e r a t o r s . I n m a n y c a s es , th e w a s t e is b l e n d e d w i t h c o n v e n t i o n a l f u e ls

( c o a l , n a t u r a l g a s , f u e l o i l) . T o i n s u r e t h a t t h i s i s a s a t i s f a c t o r y s o l u t i o n . E P A a w a r d e d a

c o n t r a c t t o t h e A c u r e x C o r p o r a t i o n t o s t u d y t h e t e ch n i ca l w o r t h o f t h e o v e r a ll c o n -

c e p t [ 6 ] .T h e O f f ic e o f S o l id W a s t e o f t h e U .S . E P A s p o n s o r e d t h e H a z a r d o u s W a s t e C o m b u s -

t i o n W o r k s h o p a t th e In d u s t r i al E n v i r o n m e n t a l R e s e a r ch L a b o r a t o r y , C i n c i n n at i , O h i o .

2 1 a n d 2 2 A p r i l 1 98 1. M a n y p r o s a n d c o n s w e r e p r e s e n t e d o n t h i s s u b j e c t , p a r t i c u l a r l y

w i t h r e g a r d t o h a z a r d o u s m a t e r i a l s w h i c h a r e k n o w n c a r c i n o g e n s . O n e i n s t a l l a t i o n i n d i -

c a t e d t h a t a r e s i d u e f r o m p h e n o l p u r i f i c a ti o n c o l u m n s h a s b e e n b u r n e d w i t h e i t h e r

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 3/11

T

e

H

d

w

ema

me

c

T

o

w

e

T

o

om 

P

c

($T

ma

me

o

w

e

1

1

1

1

L

$

$

5

g

dum 

$

$

5

g

dum 

$

$

$

~O-$

o

$

$

o

$

$

$

$

L

me

$

0

0

0

g

$

0

00

g

$

$

$

$

In

n

o

G 3

$00

02

g

$

$

$1

$

$

2

09

g

$

$

$

$

$

5

30

g

$

$

$

$

Dr

B

k

A R

a

v

yce

q

d

hg

Buv

u

$

2

9

g

Lq

d

$

2

9

g

S

d

hg

y

o

c

$

2

2

5

g

lq

d

A

d

ak

n

$

0

03

g

C

d

h

mea

$

2

20

g

hg

y

o

cw

e

A

$

1

0

8

g

O

yw

ew

e

$

0

0

1

g

T

c

n

w

e

$

5

1

0

g

C

mic

me

$

0

03

g

$

$

$

$

$

2

30

g

$

$

$

$

R

y

$

2

10

g

$

$

$

$

D

w

ne

o

$

0

01

g

$

$

$

$

$

5

10

g

$

$

$

$

T

a

o

$

5

o

mie

N O B ¢ a

*

ne

vew

w

c

e

nMa

o

1

a

F

mryo

1

tSm

ecme

k

n

a

g

a

ema

u

an

w

p

n

o

w

e

S

B

A

e

&

H

mio

n

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 4/11

14 8 JOSEPH J. SANTOLERI

T a b l e 2 , E P A r a n k i n g o f h a z a r d o u s b a s t e s t r e a m a n a l y s i s a n dincin erab i l i ty [ 15, 16]

Inc ine rab i l i t yH aza rd (K ca l / g )

T o lu ene d i i socya na t e 6 5 .92

B enzo (a ) py rene 6 9 .25B i s ( ch lo ram e thy l ) e t he r 5 1 .97P ara th io n 5 3 .6 1Meth y l P a ra th io n .< 4 .0F o r m a l d e h y d e 5 4 4 7Acro le in 5 6 .95Acry loni t r i le 5 7 ,93H e x a c h l o r o c y c l o p e n t a d i e n e z 1 .1 2

P e n t a c h l o r o p h e n o l 4 2 ,0 9D im e thy l su l f a t e 4 2 .861 , 3 -D ich lo rop ropene 4 3 .44E nd r in 4 3 .46H yd raz ine 4 4 .44

E p i c h l o r o h y d r i n 4 4 ,5 7N - n i t r o s o d i m e t h y l a m i n e a 5 .1 4

T r i ch lo roe then e 3 1 .74H e x a e h l o r o b e n z e n e 3 1 .7 9C h lo rda ne 3 2 .71M a l e i c a n h y d r i d e 3 3 .4 0

2 , 4 -D in i t rop heno l 3 3 .52V iny l ch lo r ide 3 4 .454 - N i t r o p h e n o t 3 4 .9 52 , 4 -D in i t ro to lu ene 3 4 .6 8

N o t e : H a z a r d - - 0 - - - l e a s t h a z a r d , 6 - - - g r e a t e s t h a z a r d ,

natural gas or No. 6 o i l in the plant powerhouse . This waste i s l i s ted in RCRA 40CFR

26/ .32 as a hazardous mater ia l . In these uni ts the average res idence t ime i s ca lculated to

be 4 .60 s a t a furnace ex i t temp erature of 1700°F (927°C). T he phe nol leve l m easured in

the e x ha us t is be l o w the de te c ta bl e l imi t ( < 1 ppm v ol .) . The r e s idue suppl i e d 5 0 % o f the

fuel input during test ing . The economic benefi t der ived from this one operation i s

$500 0000 per year reduction in fuel costs [7 ] .

Du e to the pr o jec te d i nc r ea se in c o s t s o f c o nv e nt i o na l fuels to the y e a r 2 0 0 0 a nd

beyond, o ther means are necessary to provide for the capture of the energy potentia l in

J ~ ' ~ ~ " /• 0 ~ •

0 I 2 3 4 ,5 6 7 O 9 10 I I Iz

W o s t e f lo w , t b / h r x I 0 0

F ig . I . M o d e l " 7 - V " L i q u i - D a t u r r a n g e o f o p e r a ti o n .

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 5/11

Economic benefit to hazardous waste incineration systems 149

4 8

4 4

4 0

36

32

28

2 4

2 0

16

12

i - / i

o l I I I Imeo ~ s ~ J o ~ 99 s aooo

Y e o r

F i g . 2. E n e r g y p r i c e f o re c a s t s i n U . S . A . ( $ / m m B T U ) .

hazardous was t es t o r ep lace th i s expens ive energy ( see F ig . 2 ) . No te the expec ted cos t s o f

indust r ia l d is t i l la te fuel , natural gas, residual fuel and elect r ic i ty . These are typical of

u t il i ti e s r equ i r ed fo r haza rdou s w as t e i nc ine ra tion . A l l a r e i nc r eas ing a t a m in im um of

7 % p e r y e a r to a m a x i m u m o f 1 0 . 5 % p e r y ea r . C o a l , w h i c h i s e x p e c t e d t o c o s t

$12 .34 /M M Btu $ 13 /G J by the year 2000 , wil l st il l be the l eas t expens ive b u t mo s t

d i f fi cu lt t o hand le . Th i s is due to t r anspo r t a t ion , mec han ica l hand l ing o f fue l and ash ,

and add i t i ona l cos t s c r ea t ed fo r t he su l fu r c l eanup p rob lem. Th i s wi l l be a cons ide ra t ion

pr imar i ly fo r use wi th f lu id bed inc ine ra to r s fo r hazardous s ludge , so l ids and l i qu ids .

T h e a d d i t i o n o f w a s t e h e a t r e c o v e r y t o h a z a r d o u s w a s t e i n c i n e r a t o rs s h o u l d b e

care fu l ly r ev iewed . Of p r ime im por t an ce a r e t he fo l lowing was t e l i qu id o r s ludge

speci f icat ions.

O f p r i m e i m p o r t a n c e t o a n y h a z a r d o u s w a s t e d i s p o s a l p r o b l e m i s th e p r o p e r d e s t r u c -

t io n o f t h e P O H C i n t h e w a s te . I n m a n y c a s es , th e w a s t e f l o w m a y n o t b e c o 0 t r o l la b l e ,

e .g . ven t gases f rom a v iny l ch lo r ide opera t ion . The inc ine ra to r des ign and i t s con t ro l

s y s t e m m u s t b e c a p a b l e o f t h e p r o p e r d e s t r u c t io n ( 99 .9 9% ) o f th e h a l o g e n a t e d o r g a n i c s i n

the was t e . Of sec ond ary imp or t anc e i s t he hea t r ecovery . I f t he f low i s fa i r ly con s t an t and

t h e h e a t i n g v a l u e i s a l s o s t e a d y , h e a t r e c o v e r y b e c o m e s a n i m p o r t a n t a d d i t i o n t o t h e

s y s te m . A n o p e r a t i n g p l a n t s h o u l d n o t b e d e p e n d e n t u p o n t h e h e a t r e c o v e r y f r o m a n

i n c i n e ra t i o n s y s t e m a s i ts p ri m e s o u r c e o f h e a t. W e h a v e f o u n d f r o m e x p e r i e n c e t h a t

s y s t e m s w i th v a r y i n g f lo w s o f w a s t e a n d v a r y i n g h e a t c o n t e n t o f th e w a s t e r e q u i r e a m u c hm o r e e l a b o r a t e c o n t r o l s y s t e m a n d w i t h t h e ty p e o f p e r s o n n e l p r o v i d e d f o r t h e o p e r a t i o n

o f th e i n c i n e ra t i o n p l a n t , d o w n t i m e i s c a u s e d d u e t o f a il u re s in i n s t r u m e n t a t i o n m o r e s o

t h a n i n t h e e q u i p m e n t .

WASTE HEAT RECOVERY

H e a t r e c o v e r y s y s te m s f r o m o r g a n i c f u m e s a n d l i q u id s t h a t a r e f r e e o f h al o g e ns , s u l fu r

c o m p o u n d s , m e t a l l i c c o m p o u n d s a n d i n o r g a n i c a s h a r e v e r y s t r a i g h t f o r w a r d . T h e w a s t e

fue l can be com par ed to t he s t and ard foss il f ue ls (d i s ti l la t e o i l, r e s idua l o i l and na tu ra l

g as ). T h e p r o d u c t s o f c o m b u s t i o n a r e b a s i c al ly c a r b o n d i o x id e , w a t e r v a p o r , n i t r o g e n a n d

o x y g e n . T h e b u r n e r m u s t b e c a p a b l e o f b u r n i n g t h is w a s t e a n d / o r a u x i l ia r y f ue l a t t h e

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 6/11

150 JOSEPH J. SANTOLERI

Table 3 . Waste l iquid fuels da t a

*Chemi ca l compos i t i onHea t o f combus t i onViscosity

Corros iv i tyChemi ca l reactions

Pol ymer i za t i on*Sol ids content

Ash reac t ion -re frac tor ie s

*Slag format ion

*Combust ion gas analys~s* N i t r o g e n c o m p o s i t io n I N O x l

These are a l l crit ical i tems s incethey wil l affect the combus t i oncapabil i ty of the waste in the incin-

erator, as wel l as the problems as-socia ted with downstream heat re -

covery equ ipment .

* I t ems w hi ch have t o be care-

fully analyzed for the properdesign of the waste heat recovery

system.

proper fuel /a ir rat io , contro ls must be provided to mainta in the necessary inc inerator

temperature to adeq uate ly ox idize the waste [7 , 8] . W ith heating va lues as low as

4500 Btu/ lb (10 ,467 J /g) for the l iquid fuels and 100 Btu/ ft 3 (3 .5 MJ /m3) for the gaseou s

fuels , combustors are avai lable wi th operation at low excess a ir leve ls to provide the

99 .99% DRE without need for auxi l iary fuels . I t i s recommended that auxi l iary fuels be

ma de a v a i la b l e fo r the wa r m up o f the sy s te m be for e i n tr o duc t i o n o f the wa s te .

The more di ff icul t mater ia ls to ox idize , such as hatogenated hydrocarbons, s ludges and

aqueous organics conta ining sa l ts , a l so present cr i t ica l des ign problems when heat recov-

ery i s des ired [9] . Ini tia lly , heat recovery from halogenated hyd rocarb ons w as c on-

s idered impractica l due to concerns about the meta l lurgy of the downstream heat

transfer surface . Experience became avai lable from operation of sul furic ac id plants wi th

hi g h te mpe r a tur e g a s c o o l e r s . Muni c i pa l i nc i ne r a t i o n sy s te ms ha v e o pe r a te d wi th c o n-

t inual increase of plast ic mater ia ls in the waste over the past 15-20 yr . Of pr ime concern

Tabl e 4 . Exampl e o f v iny l ch lor ide monomer was te disposal sys tem

Spec i f i ca t ions

Wastes- -A. 3400 lb/h (1542 kg/h) waste tars at 50 psig. M a x . r a t e - - I ! 250 lb/h (5103 kg/h)B. 2t 545 lb/h (9773 kg/h ) ven t gases at 3 psig.

T h e r m a l ox id izer

R a t i n g - - 7 0 M M B t u / h ( 2 0 . 5 M W )

C o m b u s t i o n a i r - - 125 00 S C F M (354 mZ/mi n) a t 75 in . W.C . - - 300 H p (224 kW)At om i z i ng s t eam- - 3 400 i b / h ( i 542 kg / h ) a t 175 ps ig (1206 .5 kN / m 2)C o o l i n g w a t e r - - O t o 20 gpm (0-1.52 l / s ) a t 40 ps ig (275.8 kN /m 2)Natura l gas - - -0 to 25000 S C F H 10-707.5 m 2/ mi n a t 4 ps ig (27 .6 kN / m 2) (w ar mup)

Waste heat bo i l er ( f i re tube wi th separate s team drum)

In le t 8as - -22 00° F (1204°C)-10.4~e HCI, 13.6% H OS t e am g e n e r a t i o n - - 5 2 4 7 0 Ib/h (23,800 kg/h)at t 80 ps ig (1241 k N/m 2)B l ow dow n- - 5830 Ib / h (26 44 kg / h ) a t 21 5° F (102° C)

Hydrogen ch lor ide recovery tower

W a t e r f low--3 40 gp m (25.8 l /s ) at 4 0 p s i g - - 6 0 ° FA c i d g e n e r a t i o n - - 1 0 O g p m (7.6 I/s)-15~o HC I

Scrubbing tower

S c r u b b i n g l i q u o r - - 1 6 5 0 l b /h ( 7 48 k g / h ) - t 0 % N a O HDischarge- - -1650 lb/h (748 kg/h)-1 4% sal t sRecyc le pump- - - 10 H p (7 .5 kW)

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 7/11

Econ om ic benefi t to hazard ous waste incine rat ion systems

Table 5 . Op erat ing and recovery cos t s

151

Ut i l i ty Cost $ /h

Steam --S5/100 0 lb . 17.00W ate r (pure)---$0.54/lO00 gal. 3.57W ate r (coolingF-$O.066/lO00 gal. 1.00

Power--$O.O4/kW 9.25Caustic--$O.O6Ab. 9.90

$40.72/h

Equ i pment and i ns t a l l a t i on - - S 2500000

O p e r a ti n g c o s t s - -Uti l i ty $40.72Labor 15.63Deprecia t ion 40.18Interest , ma intena nce , etc. 65.62

Total opera t ing cos t per h $162.15/hRecovery credi t s

Steam gen erat io n--52 470 lb/h (23800 kg/h) a t $5/1000 lb ($11/1000 kg) = $262,35Hyd rogen chlor ide reco very - -100 gpm (7.6 I / s ) - -15% H CI a t $0.208/gal . = $187,50

Tota l recovery credi t s $449.85/h

Hot spoto~- Distortion due to

/ / \ \Poor m ixingof Foilure of ref roctory and ~ n heot t ronsferhigh t e m p. go s e s t ube j o in t s o n t ube s he e t

Fig. 3. Typica l f ire-tube fai lure.

30OO(1649)

2500(1371)

(10931is(x)

I ( Frame V- , 30 f t /s

S ~ : o n ~ r yinjector

(816) ?IOOO( 5 3 8 )

5OO( 2 6 0 )

0 "-0.2 S L

BurnerWas~

Temp. 1800°F(982°C)

0 .8 SeC ~ . ~3 O f t - ,

( 9 1 4 m )

t ' - I sec

Secondory3000 in jector(1649)

250O(1371)2OO0(1093)

1 5 0 0

(816)

I000( 5 3 8 }

50O( 2 6 0 )

V=15 f t /s

~ Temp.-1800 "F( 9 8 2 ° C )

I - , - -WS ~ -~ 2 S I - - -L = 15 ft(4.57m)

Fig. 4 . Effect of turbulence in incinerat ion chambers .

H.R.S. 3, 2-- D

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 8/11

152 JOSEPHJ. SANTOLER

b / / l / . -

/ " Etec t roc l ' ~n ica t/ c o r r o s i o n ,"

/ , / [ , /

, ' 1 " , ' - , ' - 4 ,\ . \ " ' . . ] " , \ ' " . . I ,

• .

\ \ ' t , " . , \ " . i . "

• \ \

. , \ \

\ Xx~X X ~11

< q , b . " , . X [ . ." ? " N I /

r - . . . ~ . 4 8 C

4 0 0C 0 I(X3 2 0 0

"F 0 212 3 ; M e t a t t e m p , °C,OF

S t e a m p r e s .P S I A 7 0 1 3 0 4 0 0 I 0 0 0at saturation 20 0 6 00 1600 psio

K p s 0 . 4 8 1 .3 6 4 .1 3 7 1 1 . 4 4 5

Fig. 5. Corrosion rate vs metal temp.

5 0 O 6 O O 8 O 0I I 12 147'2

" / , / " 1 , ' / / " " - ". "• " D e c o m l x ~ i ti o n o f / / / / ./ Iro~ ¢ h t o r i d e a n d // o t k o l i - i F o n - - s u [ f o t e / / / "

/ /

/ / / 1 / / / , / . / , " ,, , , , , . , ' / / / /

/ / / / / . . . . .

, : - , . y / / / /

Z/.. 5 " 5~ - l ~ r ~ s e corrosion

. . . . / . ! / J , ' / .

700

1292

ini t ia l ly were dewpoint corrosion problems. There has been a considerable weal th of

knowledge and experience from the power and uti l i ty industr ies from sul fur-bearing fuels

(coal and res idual fue l )[10 , I l l .

In a thermal ox idizer handl ing chlor inated hydrocarbons, i t i s necessary to operate at

temperatures of 1000°C (1832°F) minimum. Experience has indicated that operation at

1315°-1430°C (2400°-2600°F) permitted the 99 .999% destruction with the least res idencetime El2] . This presents problem s in the high temperature por tion of the heat recovery

unit . These problems have been overcome by proper design of the inc inerator to provide

a uni form temperature profi le to the tubes and tube sheet• Laminar f lame or long f lame

burners have presented problems in operation of these uni ts (Fig . 3 ) . Abi l i ty to operate

with a high intensi ty co mb ustor at low excess a ir wi th m inim um flame p roject ion into

the inc ineration chamber has provided long maintenance- free operatmn in these appl i -

cat ions (Fig . 4) . I t i s important that the chlor ine be converted to the ac id gas (HCI) and

minimize the free chlorine gas I13] (Fig. 5)•

F ' o rm o t d e h y d e o f f - g a s

O x y - v~ f u m e

V C M waste fume

LiQuidCht.H.C.

IV lo no- ~ fume t~ "

~ . .j C c r.b ° s a ' c -~ ' ? ' ° " ' ! ~

a i r

% 0

W Q s t e h e o t Pr~n~y~ r s c n J O ~ e r

NaOH

Steam Feed water Sol. [

(88"C)

ILF u m e $ ¢ ~ n d o t y

Fig. 6. Typical incinerator-heat recovery-scrubber system for vinyl-chloride monomer processw a s t e .

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 9/11

T

e6

T

c

h

d

w

e

n

n

o

w

hh

y

m 8 

D

eo

o

o

In

n

o

h

e

temp

u

Wa

e

y

Wa

eh

y

ty fow

p

A

a

e

O 3

1 1 1 1

5

MM Buha

2

F

(1

1MW a

1

C

7

MM Buha

2

F

(2

5MW a

1

C

4

MM Buha

1

F

(1

1MW a

9

C

2

MM Buha

1

F

(7MW a

7

C

Lq

d

a

ammo

a

v

a

ad

Lq

d

a

C

HC

V

M v

A

w

e

P

h

ca

d

v

Maeca

d

v

Na

h

n

v

Wae

u

b

e

3

5

bhSem 

56

k

h

2

p

g

1

kN/m z

F

u

b

e

5

bhSem 2

k

h

1

p

g

1

kN/m 2

F

u

b

e

3

bhSem 

36

k

h

(2

U-T

o

5

C

M T

a

1

m3min

Ip

g

68

kN/m 2

2

F

ne

1

Fo

e

(9

C

ne

5

C

o

e

H

a

b

C

c

s

u

=o 

~ o Ut

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 10/11

154 JOSEPH J. SANTOLERI

T h e d e s ig n o f t h e b o i le r is a l s o v e r y i m p o r t a n t t o p r o v i d e m e t a l t e m p e r a t u r e s a t o r

n e a r t h e s t e a m t e m p e r a t u r e . T e s t s h a v e b e e n c o n d u c t e d o n t h e c o r r o s i v e p r o b l e m s r e s u l t -

i n g f r o m f l u e g a s e s c o n t a i n i n g a c i d g a s e s a n d s o l id s [ 1 4 ] . O p e r a t i n g u n i ts t h a t h a v e

u t il iz e d t he c o m b i n e d t e c h n o lo g i e s o f g o o d c o m b u s t i o n t e c h n i q u e s in t h e i n c in e r a t o r a n d

h e a t t r a n s f e r d e s i g n in t h e b o i l e r h a v e p r o v e n t h a t h e a t r e c o v e r y f r o m t h e s e h a z a r d o u s

w a s t e d i sposa l sys t e ms i s v i a b l e ( F i g . 6 ~ .

F r o m t h e a b o v e a n a ly s i s, fo r t h e in s t a l l a ti o n a n d o p e r a t i o n o f a h a z a r d o u s w a s t e

d i s p o s a l f a c il it y t o r e m o v e w a s t e t a r s a n d v e n t g a s es f r o m a v i n y l c h l o r i d e m o n o m e r

p l a n t , o n e n o t e s t h a t t h e t o t a l in s t a l l a t io n b e c o m e s a p a y i n g p r o p o s i t i o n 5 28 7.7 (3 h

w o r t h o r $ 2 30 1 6 0 0 / y r p a y b a c k f o r a t o t a l i n s t al l e d c o s t o f $ 2 5 0 0 0 0 0 . H a d t h is p l a n t o n l y

u t i l i z e d t h e i n c i n e r a t i o n a n d s c r u b b e r f o r t h e d i s p o s a l , i t w o u l d h a v e s o l v e d t h e d i s p o s a l

p r o b l e m s o f t h e p l a n t b u t a ls o r e q u i r e d a n a n n u a l o p e r a t i n g e x p e n s e o f S l 2 9 7 2 0 0 . T h i s

w o u l d , o f c o u r s e , h a v e t o b e c o v e r e d b y i n c r e a s i n g t h e p r i c e o f t h e p r o d u c t s p r o d u c e d .

w h i c h i n t o d a y ' s m a r k e t p l a c e b e c o m e s a s e r io u s p r o b l e m o f b e in g a b le t o c o m p e t e .

T h e h e a t r e c o v e r y o p t i o n w i ll e n a b l e t h e p l a n t t o r e d u c e t h e f u e l n e c e s s a r y t o g e n e r a t e

t h e 5 2 4 7 0 l b / h ( 2 3 ,8 0 0 k g / h ) o f s t e a m . A p a c k a g e d b o i l e r o p e r a t i n g a t a g r o s s e f f i ci e n c y o f

8 0 % w o u l d h a v e r e q u i r e d a p p r o x i m a t e l y 6 5 M M B t u / h ( 1 9 M W ) o f fu el. U s i n g 1 98 5

n a t u r a l g a s c o s t s o f $ 6 .7 4 M M B t u ( $ 7 . 1 / G J ) (F i g . 2 ), a s a v i n g s o f $ 3 .5 M M f u e l c os ts ,~ y r is

p r o v i d e d i n 1 98 5. T h i s o p t i o n d o e s n o t a d d t o t h e o p e r a t i n g e x p e n s e s o f th e p l a n t f a ci li ty ,

e n a b l i n g t h e p r o d u c t t o b e p r o d u c e d a t t h e s a m e o r i n c r e a s e d p r o f i t l e v e l .

T a b l e 6 li s ts t y p i c a l f a c i li t ie s w h e r e h e a t r e c o v e r y h a s b e e n i n s t a l l e d i n h a z a r d o u s w a s t e

d i s p o s a l .

O n e o f t h e m o s t i m p o r t a n t q u e s t i o n s t o b e a s k e d i n a n a l y z i n g t h e n e e d f o r h e at

r e c o v e r y i n a p r o c e s s p l a n t i s th e c y c l e t im e o f t h e i n c i n e r a t o r a n d t h a t o f th e h e a t

r e c o v e r y o p t i o n . T h i s b e c o m e s a s e ri o u s p r o b l e m f o r t h e s m a ll p l a n t o p e r a t o r w h o m a y

n o t h a v e u s e f o r t h e w a s t e h e a t b e i n g g e n e r a t e d . T h i s i s a l s o t r u e i n m a n .~ o f t h e m a j o r

c o n t r a c t d i s p o s a l f a ci li ti es w h e r e t h e n e e d f o r s t e a m o r o t h e r m e t h o d s o f h e a t r e c o v e r y i s

n o t ju s t if i ed . T o a d d t h e h e a t r e c o v e r y o n l y a d d s p r o b l e m s t o t h e o p e r a t i o n o f t h es e

fac i l i t i e s .

W h a t d o y o u d o w i th t h is e xc e ss s t e a m ? S o m e p l a n ts h a v e a d d e d t h e e q u l p m e n t o n l y

t o fi n d t h a t th e y h a v e c r e a t e d n e w p r o b l e m s a n u i s a n c e n o i s e p r o b l e m w i t h th e s t ea m

d i s c h a r g e t o a t m o s p h e r e a n d t h e c o s t o f w a t e r t o o p e r a t e t h e s t e a m g e n e r a t o r . I n th e s e

c a s e s i t is b es t t o c o n s i d e r i n s t al l in g o n l y t h e i n c i n e r a t i o n e q u i p m e n t i n i ti a ll y a n d p r o v i d -

i n g t h e o p t i o n t o a d d h e a t r e c o v e r y w h e n a n d i f i t c a n b e j u s ti f ie d .

SUMMARY

W i t h R C R A S e c. 3 0 0 4 in v o l v i n g i n c i n e r a t i o n s y s t e m s b e c o m i n g e f f e ct iv e i n J u l y 1 98 2,

i t i s c r i ti c a l t h a t a ll g e n e r a t o r s o f h a z a r d o u s w a s t e s l o o k t o t h e m o s t e f f e c ti v e m e t h o d s t oc o m p l y w i t h t h e s e re q u i r e m e n t s . A s n o t e d a b o v e , e n e r g y c o s t s w i ll c o n t i n u e t o i n c re a s e.

T h e r e f o r e , h e a t r e c o v e r y m u s t b e c o m e a c o n s i d e r a t i o n i n a ll n e w i n s t a l la t i o n s , T h e

p r o b l e m s a s s o c i a te d w i t h h e a t r e c o v e r y m u s t a l s o b e r e v i e w e d i n d e t a i l b e f o r e a f in a l

d e c i s i o n is m a d e [ 9 ] . I t i s i m p o r t a n t t o r e v i ew t h o s e i n s t a l l a t i o n s w h e r e o p e r a t i n g e x p e r i /

e n c e h a s b ee n o b t a in e d . I h a v e a t t e m p t e d t o p o i n t o u t t h o s e a r e a s w h ic h m u s t b e

r e v i e w e d a n d a r e c ri ti c al . M o r e d e t a i l e d i n f o r m a t i o n is a v a i l a b le i n t h e r e f e r e n c e s c i t e d .

T h e o v e r a l l e c o n o m i c s w ill b e c o m e t h e f in a l b o t t o m l in e t o t h e d e c i s io n m a k e r s. T h e r e -

f o r e i t i s i m p o r t a n t t h a t a l l a v e n u e s b e r e v i e w e d t o e a s e t h i s f i n a l d e c i s i o n .

R E F E R E N C E S

1 . I n s id e EPA , 18 Ju ne (1982).2. Booz , Al ien and Hamilton,C o m p a r is o n o f H a z a r d o u s W a s t e M a n a g e m e n t P r i c e s f o r A l l F i rm s C a l c u la t e d t o

1 9 80 a n d f o r N i n e Ma j o r F i r m s in 1 9 8 1.3. Resource Conserv ation and Recov eryAct, Standards for 0wners/Op erators of W aste Facilities: Incinera-

tors, 40 CFR 264, RCRA 3004/42, December (1978).4. Resource Conserv ation and Recov eryAct, Standards for Ow ners/Operators of W aste Facilities: Incinera-

tors, 40 CFR 264, RCRA 3004, Jan. 25, 1981, Rev. July 21 (1982).

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 11/11

Econ om ic benefi t to hazardou s waste incinerat ion systems 155

5. I. Frankel , Prof i le of the Haza rdous W aste Incinerator M anufac tur ing Indust ry, AIC hE, Cleveland Mtg. ,Septemb er 1 (1982).

6 . George L . Huffman et al., Review of the Conc ept of Disposing of Haza rdou s W aste in Indust r ia l Boi lers.U.S . EPA 8th Annual Research Symposium on Treatment of Hazardous Waste , March 9, (1982) .

7 . J . W. Torranc e. Comb ust ion of Haz ardou s Wa ste in Indust r ia l Boilers , Haz ardou s W aste Com bust io nWorkshop, U.S . EPA, Cincinnat i , Apr i l (1981) .

8 . F . Hassel ri is , Design and Op erat ion o f a Versat il e Pol lu t ion Co nt rol /L iquid W aste Therm al Dest ruc t ionSystem wi th Ma xim um E nergy Recovery, AS ME In cinerator Conference, Ma y (1982).

9 . J . E . Wa rd and P. Ting, Waste incinerat ion an d h eat recovery, Enrironmenta l Progress , 1, (1), February11982).

10. H. H. Krause , D. A. Vaugh an an d P. D. Mi l ler , Corro s ion a nd deposi t s f rom com bust ion of solid waste,Trans. Am. Soe. mech. Engrs, July (1974).

11. J. E . Radw ay and L . M. Exley, Review of Cause an d Con t rol o f Cold En d Corro s ion and Acidic S tackEmiss ions in Oi l - f i red Boi lers , ASME '75 Winter Annual Mtg. /CD-8.

12. J . Cor ini , C. Day and E. Tempowski , Tr ia l Burn Data- -draf t copy, OSW, U.S. EPA. Sept . 2 (1980) .13. J . J . Santoler i , Op t imu m Energy and B y-product Re covery in Chlor inated Hy droc arbo n Disposal Systems,

AS ME Incinerator Conference, Ma y (1982) .14. W. Hung, Resul t s of a F i re tube Test Boi ler in F lue Gas w i th Hy drogen Chlo r ide and Fly Ash, ASM E

Wi nt e r Annua l Conf e r ence 1975- - WA/ HT- 39 .15. Em ' i r o n m e n t a l R e p o r t e r , Current Developments 6/25/82, p. 315 (1982).16. I n s i d e EPA, p. 7, 25 June (1982).