EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

Post on 10-Feb-2017

238 views 3 download

transcript

1

Electrical and Computer Engineering Network for Computational Nanotechnology

Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA

Lundstrom 5.3.2013 nanoHUB.org

EDS Mini-colloquium, Mexico City, May 3, 2014

From Lilienfeld to Landauer:

Understanding the nanoscale transistor:

Mark Lundstrom

2

history of the field-effect transistor

Lundstrom 5.3.2013

Lilienfeld, 1926 Heil, 1934

concept

Atalla and Dawon Kahng Bell Labs, 1959

demonstration

Intel IEDM, 2012

22 nm FinFET

3

NMOS-II

Hewlett-Packard Journal, Nov. 1977

NMOS II: 5 microns = 5000 nm

4

Moore’s Law

4

http://en.wikipedia.org/wiki/Moore's_law Micro- electronics

Nano- electronics

Lundstrom 5.3.2013

5

MOSFET IV characteristic

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007) S

D

G

circuit

symbol

gate-voltage controlled resistor

gate-voltage controlled

current source

Lundstrom 5.3.2013

6

MOSFET IV: low VDS

gate-voltage controlled resistor

Lundstrom 5.3.2013

7

velocity saturation

107

104 105

Lundstrom 5.3.2013

8

MOSFET IV: velocity saturation

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

Lundstrom 5.3.2013

textbook MOSFET model

9

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

gate-voltage controlled resistor

Lundstrom 5.3.2013

gate-voltage controlled current source

Velo

city

(cm

/s)

10

carrier transport nanoscale MOSFETs

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

quasi-ballistic

Lundstrom 5.3.2013

Ener

gy

11

MOSFET: IV (2-piece approximation)

Lundstrom 5.3.2013

12

current = charge times velocity

Lundstrom 5.3.2013

1) Low VDS:

2) High VDS:

13

model for ID(VG, VD)

If we can make the average velocity go smoothly from the low VD to the high VD limit, then we will have a smooth model for ID(VG, VD).

Lundstrom 5.3.2013

14

drain voltage dependent average velocity

Lundstrom 5.3.2013

15

empirical saturation function

Lundstrom 5.3.2013

16

“MIT Virtual Source” model

Lundstrom 5.3.2013

Only a few device-specific input parameters to this model: 1)

2)

3)

4)

5)

The parameter, β, is empirically adjusted to fit the IV. Typically, β ≈ 1.4 – 1.8 for both N- and P-MOSFETs.

17

MIT Virtual Source Model

32 nm technology

Lundstrom 5.3.2013

18

questions

Lundstrom 5.3.2013

1) Why does the traditional MOSFET model (based on transport physics that is not valid at the nanoscale) continue to describe the IV characteristics of nano-MOSFETs?

2) How does the velocity saturate in a ballistic or quasi-ballistic MOSFET?

3) What is the meaning of the “apparent mobility” and the “injection velocity.”

4) What will happen below 10 nm?

19

outline

1) Introduction

2) The MOSFET as a barrier-controlled device 3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models

5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

energy band diagrams

20 Lundstrom 5.3.2013

source drain

SiO

2

silicon

S G D

(Texas Instruments, ~ 2000)

electron potential energy vs. position

the transistor as a barrier controlled device

21 Lundstrom 5.3.2013

source drain channel

low gate voltage

VD = VS = 0

the transistor as a barrier controlled device

22 Lundstrom 5.3.2013

low gate voltage

source drain channel

high drain voltage

the transistor as a barrier controlled device

23 Lundstrom 5.3.2013

high gate voltage

source high drain voltage

24

how transistors work

2007 N-MOSFET

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973

understanding MOSFET IV characteristics

25 Lundstrom 5.3.2013

electrostatics + transport

26

semiclassical transport in nanoscale MOSFETs

Lundstrom 5.3.2013

Velo

city

(cm

/s)

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

Ener

gy

27

quantum transport

Lundstrom 5.3.2013

L = 10 nm

n(x, E)

nanoMOS (www.nanoHUB.org)

28

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device 4) Connecting the traditional and Landauer models

5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

29

Landauer approach to transport

Lundstrom 5.3.2013

gate

nano-device

30

the DD equation for the 21st Century

Lundstrom 5.3.2013

nano-device

bulk semiconductor

31

“Lessons from Nanoscience”

Lundstrom 5.3.2013

http://nanohub.org/topics/LessonsfromNanoscience

32

i) small drain bias

Lundstrom 5.3.2013

nano-device

33

small drain bias

Lundstrom 5.3.2013

34

ballistic transport and quantized conductance

Lundstrom 5.3.2013

W --> B. J. van Wees, et al. Phys. Rev. Lett. 60, 848–851,1988.

1) conductance is quantized 2) upper limit to conductance

35

ii) large drain bias

Lundstrom 5.3.2013

nano-device

36

ballistic MOSFET: linear region

Lundstrom 5.3.2013

near-equilibrium

37

linear region with MB statistics

✔ Lundstrom 5.3.2013

38

ballistic MOSFET: linear region

Lundstrom 5.3.2013

near-equilibrium

ballistic MOSFET: saturated region

39 Lundstrom 5.3.2013

40

saturated region with MB statistics

✔ Lundstrom 5.3.2013

41

ballistic MOSFET:

Lundstrom 5.3.2013

42

the ballistic IV (Boltzmann statistics)

K. Natori, JAP, 76, 4879, 1994.

ballistic channel resistance

ballistic on-current

“velocity saturation”

Lundstrom 5.3.2013

43

velocity saturation in a ballistic MOSFET

Increasing VDS

-10 -5 0 5 10

ΕΧ vs. x for VGS = 0.5V 1) 2)

3) 4)

(Numerical simulations of an L = 10 nm double gate Si MOSFET from J.-H. Rhew and M.S. Lundstrom, Solid-State Electron., 46, 1899, 2002)

44

“velocity overshoot”

Lundstrom Fall 2012

Velo

city

(cm

/s)

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

45

comparison with experiment: Silicon

A. Majumdar, Z. B. Ren, S. J. Koester, and W. Haensch, "Undoped-Body Extremely Thin SOI MOSFETs With Back Gates," IEEE Transactions on Electron Devices, 56, pp. 2270-2276, 2009. Device characterization and simulation: Himadri Pal and Yang Liu, Purdue, 2010.

• Si MOSFETs deliver > one-half of the ballistic on-current. (Similar for the past 15 years.)

• MOSFETs operate closer to the ballistic limit under high VDS.

46

comparison with experiment: InGaAs HEMTs

Jesus del Alamo group (MIT)

47

scattering and transmission

X X X

λ0 is the mean-free-path for backscattering

Lundstrom 5.3.2013

48

the quasi-ballistic MOSFET

Lundstrom 5.3.2013

49

on-current and transmission

Lundstrom 5.3.2013

50

the quasi-ballistic MOSFET

Lundstrom 5.3.2013

51

scattering under high VDS

low VDS

high VDS

Lundstrom 5.3.2013

52

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models 5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

53

MIT VS Model: why does it work?

32 nm technology

Lundstrom 5.3.2013

54

connection to traditional model (low VDS)

Lundstrom 5.3.2013

55

connection to traditional model (high VDS)

Lundstrom 5.3.2013

56

the MOSFET as a BJT

‘bottleneck’ “collector”

“base”

E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973

Lundstrom 5.3.2013

Landauer VS model

57 Lundstrom 5.3.2013

58

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models

5) What will happen below 10 nm? 6) Summary

Lundstrom 5.3.2013

59

limits to barrier control: quantum tunneling

from M. Luisier, ETH Zurich / Purdue

1) 2)

3) 4)

Lundstrom 5.3.2013

60

5 nm MOSFETs?

Lundstrom 5.3.2013

Unpublished results from Saumitra Mehrotra, G. Klimeck group, Purdue University.

61

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models

5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

62

top of the barrier / VS model

Lundstrom 5.3.2013

under strong control of gate with weak influence of the drain

For large VDS, most of the additional voltage drop occurs on the drain end of the channel.

In a “well-tempered” MOSFET, the height of the energy barrier is mostly controlled by the gate voltage and only weakly controlled by the drain voltage.

Current is controlled by a bottleneck near the beginning of the channel

63

the MIT VS model: Why does it work?

64

summary

• Understanding MOSFETs means understanding electrostatics and transport.

• The Landauer approach provides a clear, physical approach to transport at the nanoscale.

• 10 nm and below is still uncharted territory.

65

questions

For more information, take a nanoHUB-U short course: “Nanoscale transistors” on nanoHUB-U https://nanohub.org/groups/u/self_paced_nanoscale_transistors

This talk will be available soon at: www.nanoHUB.org