+ All Categories
Home > Documents > EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

Date post: 10-Feb-2017
Category:
Upload: vantuong
View: 238 times
Download: 3 times
Share this document with a friend
65
1 Electrical and Computer Engineering Network for Computational Nanotechnology Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA Lundstrom 5.3.2013 nanoHUB.org EDS Mini-colloquium, Mexico City, May 3, 2014 From Lilienfeld to Landauer: Understanding the nanoscale transistor: Mark Lundstrom
Transcript
Page 1: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

1

Electrical and Computer Engineering Network for Computational Nanotechnology

Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA

Lundstrom 5.3.2013 nanoHUB.org

EDS Mini-colloquium, Mexico City, May 3, 2014

From Lilienfeld to Landauer:

Understanding the nanoscale transistor:

Mark Lundstrom

Page 2: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

2

history of the field-effect transistor

Lundstrom 5.3.2013

Lilienfeld, 1926 Heil, 1934

concept

Atalla and Dawon Kahng Bell Labs, 1959

demonstration

Intel IEDM, 2012

22 nm FinFET

Page 3: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

3

NMOS-II

Hewlett-Packard Journal, Nov. 1977

NMOS II: 5 microns = 5000 nm

Page 4: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

4

Moore’s Law

4

http://en.wikipedia.org/wiki/Moore's_law Micro- electronics

Nano- electronics

Lundstrom 5.3.2013

Page 5: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

5

MOSFET IV characteristic

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007) S

D

G

circuit

symbol

gate-voltage controlled resistor

gate-voltage controlled

current source

Lundstrom 5.3.2013

Page 6: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

6

MOSFET IV: low VDS

gate-voltage controlled resistor

Lundstrom 5.3.2013

Page 7: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

7

velocity saturation

107

104 105

Lundstrom 5.3.2013

Page 8: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

8

MOSFET IV: velocity saturation

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

Lundstrom 5.3.2013

Page 9: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

textbook MOSFET model

9

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

gate-voltage controlled resistor

Lundstrom 5.3.2013

gate-voltage controlled current source

Page 10: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

Velo

city

(cm

/s)

10

carrier transport nanoscale MOSFETs

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

quasi-ballistic

Lundstrom 5.3.2013

Ener

gy

Page 11: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

11

MOSFET: IV (2-piece approximation)

Lundstrom 5.3.2013

Page 12: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

12

current = charge times velocity

Lundstrom 5.3.2013

1) Low VDS:

2) High VDS:

Page 13: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

13

model for ID(VG, VD)

If we can make the average velocity go smoothly from the low VD to the high VD limit, then we will have a smooth model for ID(VG, VD).

Lundstrom 5.3.2013

Page 14: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

14

drain voltage dependent average velocity

Lundstrom 5.3.2013

Page 15: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

15

empirical saturation function

Lundstrom 5.3.2013

Page 16: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

16

“MIT Virtual Source” model

Lundstrom 5.3.2013

Only a few device-specific input parameters to this model: 1)

2)

3)

4)

5)

The parameter, β, is empirically adjusted to fit the IV. Typically, β ≈ 1.4 – 1.8 for both N- and P-MOSFETs.

Page 17: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

17

MIT Virtual Source Model

32 nm technology

Lundstrom 5.3.2013

Page 18: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

18

questions

Lundstrom 5.3.2013

1) Why does the traditional MOSFET model (based on transport physics that is not valid at the nanoscale) continue to describe the IV characteristics of nano-MOSFETs?

2) How does the velocity saturate in a ballistic or quasi-ballistic MOSFET?

3) What is the meaning of the “apparent mobility” and the “injection velocity.”

4) What will happen below 10 nm?

Page 19: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

19

outline

1) Introduction

2) The MOSFET as a barrier-controlled device 3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models

5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

Page 20: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

energy band diagrams

20 Lundstrom 5.3.2013

source drain

SiO

2

silicon

S G D

(Texas Instruments, ~ 2000)

electron potential energy vs. position

Page 21: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

the transistor as a barrier controlled device

21 Lundstrom 5.3.2013

source drain channel

low gate voltage

VD = VS = 0

Page 22: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

the transistor as a barrier controlled device

22 Lundstrom 5.3.2013

low gate voltage

source drain channel

high drain voltage

Page 23: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

the transistor as a barrier controlled device

23 Lundstrom 5.3.2013

high gate voltage

source high drain voltage

Page 24: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

24

how transistors work

2007 N-MOSFET

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973

Page 25: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

understanding MOSFET IV characteristics

25 Lundstrom 5.3.2013

electrostatics + transport

Page 26: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

26

semiclassical transport in nanoscale MOSFETs

Lundstrom 5.3.2013

Velo

city

(cm

/s)

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

Ener

gy

Page 27: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

27

quantum transport

Lundstrom 5.3.2013

L = 10 nm

n(x, E)

nanoMOS (www.nanoHUB.org)

Page 28: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

28

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device 4) Connecting the traditional and Landauer models

5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

Page 29: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

29

Landauer approach to transport

Lundstrom 5.3.2013

gate

nano-device

Page 30: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

30

the DD equation for the 21st Century

Lundstrom 5.3.2013

nano-device

bulk semiconductor

Page 31: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

31

“Lessons from Nanoscience”

Lundstrom 5.3.2013

http://nanohub.org/topics/LessonsfromNanoscience

Page 32: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

32

i) small drain bias

Lundstrom 5.3.2013

nano-device

Page 33: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

33

small drain bias

Lundstrom 5.3.2013

Page 34: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

34

ballistic transport and quantized conductance

Lundstrom 5.3.2013

W --> B. J. van Wees, et al. Phys. Rev. Lett. 60, 848–851,1988.

1) conductance is quantized 2) upper limit to conductance

Page 35: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

35

ii) large drain bias

Lundstrom 5.3.2013

nano-device

Page 36: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

36

ballistic MOSFET: linear region

Lundstrom 5.3.2013

near-equilibrium

Page 37: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

37

linear region with MB statistics

✔ Lundstrom 5.3.2013

Page 38: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

38

ballistic MOSFET: linear region

Lundstrom 5.3.2013

near-equilibrium

Page 39: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

ballistic MOSFET: saturated region

39 Lundstrom 5.3.2013

Page 40: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

40

saturated region with MB statistics

✔ Lundstrom 5.3.2013

Page 41: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

41

ballistic MOSFET:

Lundstrom 5.3.2013

Page 42: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

42

the ballistic IV (Boltzmann statistics)

K. Natori, JAP, 76, 4879, 1994.

ballistic channel resistance

ballistic on-current

“velocity saturation”

Lundstrom 5.3.2013

Page 43: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

43

velocity saturation in a ballistic MOSFET

Increasing VDS

-10 -5 0 5 10

ΕΧ vs. x for VGS = 0.5V 1) 2)

3) 4)

(Numerical simulations of an L = 10 nm double gate Si MOSFET from J.-H. Rhew and M.S. Lundstrom, Solid-State Electron., 46, 1899, 2002)

Page 44: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

44

“velocity overshoot”

Lundstrom Fall 2012

Velo

city

(cm

/s)

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

Page 45: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

45

comparison with experiment: Silicon

A. Majumdar, Z. B. Ren, S. J. Koester, and W. Haensch, "Undoped-Body Extremely Thin SOI MOSFETs With Back Gates," IEEE Transactions on Electron Devices, 56, pp. 2270-2276, 2009. Device characterization and simulation: Himadri Pal and Yang Liu, Purdue, 2010.

• Si MOSFETs deliver > one-half of the ballistic on-current. (Similar for the past 15 years.)

• MOSFETs operate closer to the ballistic limit under high VDS.

Page 46: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

46

comparison with experiment: InGaAs HEMTs

Jesus del Alamo group (MIT)

Page 47: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

47

scattering and transmission

X X X

λ0 is the mean-free-path for backscattering

Lundstrom 5.3.2013

Page 48: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

48

the quasi-ballistic MOSFET

Lundstrom 5.3.2013

Page 49: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

49

on-current and transmission

Lundstrom 5.3.2013

Page 50: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

50

the quasi-ballistic MOSFET

Lundstrom 5.3.2013

Page 51: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

51

scattering under high VDS

low VDS

high VDS

Lundstrom 5.3.2013

Page 52: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

52

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models 5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

Page 53: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

53

MIT VS Model: why does it work?

32 nm technology

Lundstrom 5.3.2013

Page 54: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

54

connection to traditional model (low VDS)

Lundstrom 5.3.2013

Page 55: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

55

connection to traditional model (high VDS)

Lundstrom 5.3.2013

Page 56: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

56

the MOSFET as a BJT

‘bottleneck’ “collector”

“base”

E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973

Lundstrom 5.3.2013

Page 57: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

Landauer VS model

57 Lundstrom 5.3.2013

Page 58: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

58

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models

5) What will happen below 10 nm? 6) Summary

Lundstrom 5.3.2013

Page 59: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

59

limits to barrier control: quantum tunneling

from M. Luisier, ETH Zurich / Purdue

1) 2)

3) 4)

Lundstrom 5.3.2013

Page 60: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

60

5 nm MOSFETs?

Lundstrom 5.3.2013

Unpublished results from Saumitra Mehrotra, G. Klimeck group, Purdue University.

Page 61: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

61

outline

1) Introduction

2) The MOSFET as a barrier-controlled device

3) The MOSFET as a nano-device

4) Connecting the traditional and Landauer models

5) What will happen below 10 nm?

6) Summary

Lundstrom 5.3.2013

Page 62: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

62

top of the barrier / VS model

Lundstrom 5.3.2013

under strong control of gate with weak influence of the drain

For large VDS, most of the additional voltage drop occurs on the drain end of the channel.

In a “well-tempered” MOSFET, the height of the energy barrier is mostly controlled by the gate voltage and only weakly controlled by the drain voltage.

Current is controlled by a bottleneck near the beginning of the channel

Page 63: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

63

the MIT VS model: Why does it work?

Page 64: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

64

summary

• Understanding MOSFETs means understanding electrostatics and transport.

• The Landauer approach provides a clear, physical approach to transport at the nanoscale.

• 10 nm and below is still uncharted territory.

Page 65: EE-612: Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical ...

65

questions

For more information, take a nanoHUB-U short course: “Nanoscale transistors” on nanoHUB-U https://nanohub.org/groups/u/self_paced_nanoscale_transistors

This talk will be available soon at: www.nanoHUB.org


Recommended