Final Project Discussion - University Of...

Post on 26-Aug-2018

252 views 0 download

transcript

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Final Project Discussion• Final Report Discussion• Thermal Systems Design Overview

1

© 2011 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Thermal Systems Design• Fundamentals of heat transfer• Radiative equilibrium• Surface properties• Non-ideal effects

– Internal power generation– Environmental temperatures

• Conduction• Thermal system components

9

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Classical Methods of Heat Transfer• Convection

– Heat transferred to cooler surrounding gas, which creates currents to remove hot gas and supply new cool gas

– Don’t (in general) have surrounding gas or gravity for convective currents

• Conduction– Direct heat transfer between touching components– Primary heat flow mechanism internal to vehicle

• Radiation– Heat transferred by infrared radiation– Only mechanism for dumping heat external to vehicle

10

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Thermodynamic Equilibrium• First Law of Thermodynamics

! heat in -heat out = work done internally• Heat in = incident energy absorbed• Heat out = radiated energy• Work done internally = internal power used

(negative work in this sense - adds to total heat in the system)

!

Q "W =dUdt

11

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiative Equilibrium Temperature• Assume a spherical black body of radius r• Heat in due to intercepted solar flux

• Heat out due to radiation (from total surface area)

• For equilibrium, set equal

• 1 AU: Is=1394 W/m2; Teq=280°K

!

Qin = Is" r2

!

Qout = 4" r 2#T 4

!

Is" r2 = 4" r2#T 4 $ Is = 4#T 4

!

Teq =Is4"#

$ %

&

' (

14

12

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Distance on Equilibrium Temp

Mercury

PlutoNeptuneUranus

SaturnJupiter

Mars

Earth

Venus

Asteroids

13

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Shape and Radiative Equilibrium• A shape absorbs energy only via illuminated faces• A shape radiates energy via all surface area• Basic assumption made is that black bodies are

intrinsically isothermal (perfect and instantaneous conduction of heat internally to all faces)

14

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Shape on Black Body Temps

15

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Incident Radiation on Non-Ideal Kirchkoff’s Law for total incident energy flux on solid

bodies:

! where– ! =absorptance (or absorptivity)– " =reflectance (or reflectivity)– # =transmittance (or transmissivity)

!

QIncident =Qabsorbed+Qreflected +Qtransmitted

!

Qabsorbed

QIncident

+Qreflected

QIncident

+Qtransmitted

QIncident

=1

!

" #Qabsorbed

QIncident

; $ #Qreflected

QIncident

; % #Qtransmitted

QIncident

16

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Non-Ideal Radiative Equilibrium • Assume a spherical black body of radius r• Heat in due to intercepted solar flux

• Heat out due to radiation (from total surface area)

• For equilibrium, set equal

!

Qin = Is"# r2

!

Qout = 4" r 2#$T 4

!

Is"# r2 = 4# r 2$%T4 & Is = 4 $

"%T 4

!

Teq ="#Is4$

%

& '

(

) *

14

($ = “emissivity” - efficiency of surface at radiating heat)

17

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Surface Coating on Temperature

$ = emissivity

! =

abs

orpt

ivit

y

18

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Non-Ideal Radiative Heat Transfer• Full form of the Stefan-Boltzmann equation

! where Tenv=environmental temperature (=4°K for space)

• Also take into account power used internally

!

Prad ="#A T 4 $Tenv4( )

!

Is" As + Pint =#$Arad T4 % Tenv

4( )

19

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Example: AERCam/SPRINT• 30 cm diameter sphere• !=0.2; $=0.8• Pint=200W• Tenv=280°K (cargo bay

below; Earth above)• Analysis cases:

– Free space w/o sun– Free space w/sun– Earth orbit w/o sun– Earth orbit w/sun

20

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

AERCam/SPRINT Analysis (Free Space)• As=0.0707 m2; Arad=0.2827 m2

• Free space, no sun

!

Pint = "#AradT4 $ T =

200W

0.8 5.67 %10&8 Wm2°K 4

'

( )

*

+ , 0.2827m2( )

'

(

) ) ) )

*

+

, , , ,

14

= 354°K

21

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

AERCam/SPRINT Analysis (Free Space)• As=0.0707 m2; Arad=0.2827 m2

• Free space with sun

!

Is" As + Pint = #$AradT4 % T =

Is" As + Pint#$Arad

&

' (

)

* +

14

= 362°K

22

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

AERCam/SPRINT Analysis (LEO Cargo Bay)

• Tenv=280°K

• LEO cargo bay, no sun

• LEO cargo bay with sun

!

Pint ="#Arad T4 $ Tenv

4( )% T =200W

0.8 5.67 &10$8 Wm 2°K 4

'

( )

*

+ , 0.2827m2( )

+ (280°K)4

'

(

) ) ) ) )

*

+

, , , , ,

14

= 384°K

!

Is" As + Pint =#$Arad T4 % Tenv

4( )& T =Is" As + Pint#$Arad

+ Tenv4

'

( ) )

*

+ , ,

14

= 391°K

23

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

EVA Thermal Equilibrium• Human metabolic workload = 100 W• Suit electrical systems = 40 W• Total heat load = 140 W

24

Q = �σAT 4 ⇒ A =Q

�σT 4

A =140

(0.8)(5.67× 10−8)(295)4= 0.41 m2

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

EVA Thermal Equilibrium with Sun• Human metabolic workload = 100 W• Suit electrical systems = 40 W• Total internal heat load = 140 W

25

Q + αAIs = �σAT 4 ⇒ A =Q

�σT 4 − αIs

A =140

(0.8)(5.67× 10−8)(295)4 − 0.2(1394)= 2.2 m2

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Sublimation• Water heat of sublimation = 46.7 kJ/mole• @ 18 gm/mole = 2594 W-sec/gm• Mass flow for 140 W = 0.54 gm/sec• per hour = 194 gm/hr• 8 hr total EVA time = 1.55 kg of water• @ 2 EVA/day and 180 days = 559 kg of water

26

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Sitting on a Planetary Surface

27

IsTb

Th

Th

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiative Insulation• Thin sheet (mylar/kapton with

surface coatings) used to isolate panel from solar flux

• Panel reaches equilibrium with radiation from sheet and from itself reflected from sheet

• Sheet reaches equilibrium with radiation from sun and panel, and from itself reflected off panel

Is

Tinsulation Twall

28

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Multi-Layer Insulation (MLI)• Multiple insulation

layers to cut down on radiative transfer

• Gets computationally intensive quickly

• Highly effective means of insulation

• Biggest problem is existence of conductive leak paths (physical connections to insulated components)

Is

29

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Emissivity Variation with MLI Layers

Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

30

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

MLI Thermal Conductivity

Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

31

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Ambient Pressure on MLI

Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

32

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

1D Conduction• Basic law of one-dimensional heat conduction

(Fourier 1822)

! whereK=thermal conductivity (W/m°K)A=areadT/dx=thermal gradient

!

Q = "KAdTdx

33

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

3D ConductionGeneral differential equation for heat flow in a solid

! whereg(r,t)=internally generated heat"=density (kg/m3)c=specific heat (J/kg°K)K/"c=thermal diffusivity

!

" 2T ! r ,t( ) +g(! r ,t)

K=#cK$T ! r ,t( )$t

34

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Simple Analytical Conduction Model• Heat flowing from (i-1) into (i)

• Heat flowing from (i) into (i+1)

• Heat remaining in cell

TiTi-1 Ti+1

!

Qin = "KATi " Ti"1#x

!

Qout = "KATi+1 "Ti#x

!

Qout "Qin =#cK

Ti( j +1) " Ti( j)$t

… …

35

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

• Time-marching solution

where

• For solution stability,

Finite Difference Formulation

! =k

"Cv

= thermal di!usivityd =!!t

!x2

Tn+1i

= Tn

i + d(Tn

i+1 ! 2Tn

i + Tn

i!1)

!t <!x2

2!

36

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Heat Pipe Schematic

37

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Shuttle Thermal Control Components

38

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Shuttle Thermal Control System

39

Final Project Discussion And Thermal DesignENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

ISS Radiator Assembly

40