ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu 1 Spin Torque...

Post on 27-Mar-2015

213 views 0 download

Tags:

transcript

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu1

Spin Torque Transfer Technology

S. James AllenUC Santa Barbara

• Science

• TechnologySpin Torque Transfer – RAM, STT-RAM

Spin Torque Transfer Nano-oscillators Spin logic devices

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu2

Spin Torque Transfer Technology

Mark Rodwell UC Santa BarbaraBob Buhrman CornellStu Wolf U. VirginiaH. Ohno Tohoku UniversityNick Rizzo Free ScaleYiming Huai GrandisBill Rippard NISTSteve Russek NISTEli Yablonovitch UC BerkeleyAjey Jacob Intel

With input from

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu3

Spin Torque Transfer Technology

• Science

• TechnologySpin Torque Transfer – RAM, STT-RAM

Spin Torque Transfer Nano-oscillators Spin logic devices

From R. A. Buhrman, “Spin Torque Effects in Magnetic Nanostructures”, Spintech IV, 2007

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu4

Spin Torque Transfer: Science

• Heisenberg exchange

• Giant magneto resistance

• Spin transfer torque

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu5

Spin Torque Transfer: Science

• Heisenberg exchange

• Giant magneto resistance

• Spin transfer torque

Ef , 1-band

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

Ferromagnet FerromagnetNo

n-m

agn

etic

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu6

Spin Torque Transfer: Science

• Heisenberg exchange

Ef , 1-band

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

Anti-ferromagnetic Anti-ferromagnetic

Ferromagnetic

Ferromagnetic

Ferromagnet Ferromagnet

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu7

Spin Torque Transfer: Science

• Giant magneto resistance

Ef , 1-band

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

2

0 2

1 cos/

(1 )I V G G

P

P

2

2

( (0)) 2

0 (1 )

R R

R

P

P

P = 1, ideal, perfect spin valve

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu8

H. Ohno, “Spintronics” Seminar, UCSB May, 2008

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu9

H. Ohno, “Spintronics” Seminar, UCSB May, 2008

2

2

( (0)) 2

0 16

( )

R R

R

P

P

P = 1, ideal, perfect spin valve

0.87P

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu10

H. Ohno, “Spintronics” Seminar, UCSB May, 2008

P = 1, ideal, perfect spin valve

0.6P

Fixed SyF

FreeM. Hosomi, et al., “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462.

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu11

Spin Torque Transfer: Science

• Spin transfer torque

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

Fre

e

dm

dt

Effective field

Damping

o AHdm

mdt

dmm

dt

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu12

Spin Torque Transfer: Science

• Spin transfer torque

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

Fixed

Fre

e

-J

edm

dt

dm

dt

Slonczewski torque

Effect

Effective field

Damping

/

ive magnetic field/

o A

B

S

B

S

p

dmm H

dt

dmm

dt

J em m

t M

J em

t Mp

P

P

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu13

Spin Torque Transfer: Science

• Spin transfer torque

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

Fixed

Fre

e

-J

edm

dt

dm

dt

Slonczewski torque

Effecti

Effective field

Damping

/

ve magnetic fie d/

l

o A

B

S

B

S

p

dmm H

dt

dmm

dt

J em m

t M

J em

t Mp

P

P

dm

dtJ

• Precession• Switching• Damping

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu14

Spin Torque Transfer Technology

• Science

• TechnologySpin Torque Transfer – RAM, STT-RAM

Spin Torque Transfer Nano-oscillators Spin logic devices

From R. A. Buhrman, “Spin Torque Effects in Magnetic Nanostructures”, Spintech IV, 2007

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu15

GMR and STT --- STT-RAM

• Spin transfer torque

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

Fixed

Fre

e

-J

edm

dt

dm

dt

Slonczewski torque

Effecti

Effective field

Damping

/

ve magnetic fie d/

l

o A

B

S

B

S

p

dmm H

dt

dmm

dt

J em m

t M

J em

t Mp

P

P

dm

dtJ

• Precession• Switching• Damping

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu16

GMR and STT --- STT-RAM

T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008).

~ 200 A

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu17

Conventional MRAM (toggle) and Spin Torque MRAM

H field produces torque to reverse free layer. Spin polarized current produces torque to reverse free layer.

•Need Isw ≈ 40 mA/bit for 0.4 um x 1.0 um.•Isw constant for smaller bits.

•Isw < 1 mA/bit for 0.06 m x 0.12 m bit.•Isw reduces as bit scales smaller.

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu18

STT-RAM 2005

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462.

Fixed SyF

Free

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu19

STT-RAM 2005

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462.

CMOS driver 100 100 nm

S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu20

STT-RAM 2005

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462.

CMOS sensing > 0.2 V

S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

Read ~ 0.2 V < write!

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu21

STT-RAM 2005

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462.

S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

Sony

4 kb

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu22

STT-RAM 2007

S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

Y. Huai, Z. Diao, Y.Ding, A. Panchula, S. Wang, Z. Li, D. Apalkov, X. Luo, H. Nagai, A. Driskill-Smith, and E. Chen, “Spin Transfer Torque RAM (STT-RAM) Technology”, 2007 Inter. Conf. Solid State Devices and Materials, Tsukuba, 2007, pp. 742-743.

STT-RAM cell with integrated CMOS transistor. The area of a single-level STT-RAM cell can be as small as 6 F2.

Grandis, Inc.

Courtesy of Yiming Huai

115 x 180 nm2

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu23

STT-RAM 2007

S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

Hitachi

Courtesy of Hideo Ohno

T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008).

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu24

GMR and STT --- STT-RAM

T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008).

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu25

STT-RAM Projections vs State-of-the-art

A.Driskill-Smith, Y. Huai, “STT-RAM – A New Spin on Universal Memory”, Future Fab, 23, 28

Hitachi, 2007

Yes

1.6 x 1.6 m TMR 100 x 50 nm2 (60)

40 ns

100 ns

> 109

40 pJ/100ns

None

1.8 V

T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008).

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu26

STT-RAMProjections vs State-of-the-art

Hitachi, 2007

Yes

1.6 x 1.6 m TMR 100 x 50 nm2 (60)

40 ns

100 ns

> 109

40 pJ

T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008).

 Toggle

MRAM (180 nm)

ToggleMRAM (90 nm)*

DRAM(90 nm)+

SRAM(90 nm)+

FLASH(90 nm)+

FLASH(32 nm)+

ST MRAM

(90 nm)*

STMRAM

(32 nm)*

cell size (m2)

1.25 0.25 0.05 1.3 0.06 0.01 0.06 0.01

Read time 35 ns 10 ns 10 ns 1.1 ns 10 - 50 ns 10 - 50 ns 10 ns 1 ns

Program time

5 ns 5 ns 10 ns 1.1 ns 0.1-100 ms 0.1-100 ms 10 ns 1 ns

Program energy/bit

150 pJ 120 pJ5 pJ

Needs refresh

5 pJ30 – 120

nJ10 nJ 0.4 pJ 0.04 pJ

Endurance > 1015 > 1015 > 1015 > 1015

> 1015 read,

> 106 write

> 1015 read,

> 106 write> 1015 >1015

Non-volatility

YES YES NO NO YES YES YES YES

* 90nm, 32nm MRAM values are projected+ These values are from the ITRS roadmap

Nick Rizzo, Freescale

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu27

Information Requested (2/2)

• Current state-of-the-art using the provided metrics as a guide (Appendix 2 of request for white papers)CMOS integrated STT-RAM demonstrated. 2Mb

• Key scientific and technological issues remaining to accept the technology for manufacture.Lower critical currents and larger TMR ratio. Quality of the tunnel junction is critical.

• Technology roadmap outlining a 5-15 year develop path leading to manufacture in 5-10 years.Replace MRAM. Embedded memory in logic applications. Longer term – universal memory.

STT - RAM

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu28

Spin Transfer Torque Nano-oscillator

• Spin transfer torque

J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989).

Fixed

Fre

e

-J

edm

dt

dm

dt

Slonczewski torque

Effecti

Effective field

Damping

/

ve magnetic fie d/

l

o A

B

S

B

S

p

dmm H

dt

dmm

dt

J em m

t M

J em

t Mp

P

P

dm

dtJ

• Precession• Switching• Damping

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu29

Spin Transfer Torque Nano-oscillator

30 nmPt2 nm Cu/3 nm Co/10 nm Cu/40 nmCo/80 nm Cu/

S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman and D. C. Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current”, Nature, 425,380 (2003).“

~ 0.1 nW measured

130 x 70 nm2

H

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu30

Spin Transfer Torque Nano-oscillator

30 nmPt2 nm Cu/3 nm Co/10 nm Cu/40 nmCo/80 nm Cu/

S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman and D. C. Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current”, Nature, 425,380 (2003).“

~ 0.1 nW measured

130 x 70 nm2

H

Key element: A skew magnetic field !

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu31

Spin Transfer Torque Nano-oscillator

30 nmPt2 nm Cu/3 nm Co/10 nm Cu/40 nmCo/80 nm Cu/

2 2

max

1 1 50 1

2 2 50 50DCP I RR

~ 0.1 nW measured

~ 0.2 nW estimated max.

610 Efficiency

130 x 70 nm2

H

13

0.1

2.0DC

Cu junction

R

R

I mA

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu32

Spin Transfer Torque Nano-oscillator:

Injection Locking

1 nm Au1 nm Cu/5 nm NiFe/4 nm Cu/20 nm CoFe/50 nmCu/5 nm Ta/

W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, S. E. Russek, J. A. Katine, “Injection Locking and Phase Control of Spin Transfer Nano-oscillators”, Phys. Rev. Lett., 95, 067203 (2005).

50 x 50 nm2

0.56 Tesla

~ 30 pW

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu33

Spin Transfer Torque Nano-oscillator:

Frequency ModulationM. R. Pufall, W. H. Rippard, S. Kaka, T. J. Silva, and S. E. Russek“Frequency modulation of spin-transfer oscillators” Appl. Phys. Lett. 86, 082506 (2005).

~ 250 pW

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu34

Spin Transfer Torque Nano-oscillator:

Phase LockingS. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek and J.A. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators” Nature, 437, 389 (2005).

~ 2 pW

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu35

Spin Transfer Torque Nano-oscillator:

B=0.0T. Devoldera, A. Meftah, K. Ito, J. A. Katine, P. Crozat and C. Chappert, “Spin transfer oscillators emitting microwave in zero applied magnetic field”, J. Appl. Phys. 101, 063916 2007.

Free

Effective field, shape, material

/Slonczewski torqu

/Effective magnetic fiel

e

Damp

d

ing

o

S

B

A

B

S

dmm H

dtJ e P

m p mt M

d

J e Pm

dt

t

m

pM

m

Fixed layer

0.05

< 1.0 pW

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu36

Spin Transfer Torque Nano-oscillator:

Power issues?

Some measures:Cell phone – 900 MHz, 1.8GHz, ~ 500 mWWireless access points – 2.4 GHz, 5.0 GHz, ~ 25 mWAutomotive radar 24 GHz, 100 GHz ~ 10 mW

State of the art STT nano-oscillatorsExternal magnetic field, ~ nW, efficiency 10-6

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu37

Spin Transfer Torque Nano-oscillator

30 nmPt2 nm Cu/3 nm Co/10 nm Cu/40 nmCo/80 nm Cu/

2 2

max

1 1 50 1

2 2 50 50DCP I RR

13

0.1

2.0DC

Cu junction

R

R

I mA

MgO tunnel barrier

100

100

1

DC

MgO tunnel barrier

R

R

I mA

~ 1 W estimated 210Efficiency

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu38

Spin Transfer Torque Nano-oscillator:

Power issues?

Some measures:Cell phone – 900 MHz, 1.8GHz, ~ 500 mWWireless access points – 2.4 GHz, 5.0 GHz, ~ 25 mWAutomotive radar 24 GHz, 100 GHz ~ 10 mW

State of the art STT nano-oscillatorsExternal magnetic field, ~ nW, efficiency ~ 10-6

ProjectionMTJ based STT nano-oscillators ~ W, efficiency ~ 10-2 ?Power combining ?

But touch base with the Cornell, NIST, UVa collaboration

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu39

Information Requested (2/2)

• Current state-of-the-art using the provided metrics as a guide (Appendix 2 of request for white papers)Nano-oscillators at the nano-picowatt level with spin valve structures, in external magnetic fields. Existence proof of approach to external magnetic field free sustained oscillation. Phase locking, frequency modulation, injection locking demonstrated.

• Key scientific and technological issues remaining to accept the technology for manufacture.Increased power. Use of magnetic tunnel junctions. Power combining.

• Technology roadmap outlining a 5-15 year develop path leading to manufacture in 5-10 years.Needs to be guided by potential applications.

STT Nano-oscillators

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu40

“MRAM” --- Spin Logic Device

Mark Rodwell, UC Santa BarbaraHigh

I

R

Eli Yablonovitch, UC Berkeley

source

drain

I

I

R

“transpinnor”Si (001) Substrate

Ta 5nm

Ru 50nm

Ta 5nm

NiFe 5nm

Antiferromagnetic MnIr 8nm

CoFe 2nm

Ru 0.8nm

Ferromagnetic CoFeB 3nm

MgO 1.5nm Tunnel Barrier

Ferromagnetic CoFeB 3nm

Ta 5nm

Ru 15nm

Isignal

Magnetization

Drain

Source

InsulatorCurrent Gate

BField

BField

Device Area 1?m2

Gate

Ikeda et. al., Japanese Journal of Applied Physics, Vol. 44, No 48, pp. L1442-L1445

• Current controlled• Non-volatile• “Leaky” switch, ~ 6

R

R

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu41

Two views - Spin Logic

5μA output5μA input

500Ωor

2.275kΩ

2.275kΩor

500Ω

+V +3mV

-V -3mV

Output Power = 1.6*10-8 WTotal Power = 2.5*10-8 W

Efficiency=65%

•Problems: On/Off ratio is only about 5:1 Still takes too many Amps to switch

Eli Yablonovitch

Complementary Transpinnor logic

High

I

R

Iss

Iss

High

High

High

High

input

output

Mark Rodwell

Three state circuits• memory and logic• clocked logic• “0” static dissipation

Inverter

Iinput

Ioutput

Iss

Iss

Iinput

Ioutput

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu42

“MRAM” --- Spin Logic Device

Mark Rodwell, UC Santa BarbaraHigh

I

R

Eli Yablonovitch, UC Berkeley

source

drain

I

I

R

“transpinnor”Si (001) Substrate

Ta 5nm

Ru 50nm

Ta 5nm

NiFe 5nm

Antiferromagnetic MnIr 8nm

CoFe 2nm

Ru 0.8nm

Ferromagnetic CoFeB 3nm

MgO 1.5nm Tunnel Barrier

Ferromagnetic CoFeB 3nm

Ta 5nm

Ru 15nm

Isignal

Magnetization

Drain

Source

InsulatorCurrent Gate

BField

BField

Device Area 1?m2

Gate

Ikeda et. al., Japanese Journal of Applied Physics, Vol. 44, No 48, pp. L1442-L1445

• Current controlled• Non-volatile• “Leaky” switch, ~ 6

R

R

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu43

GMR and STT --- Spin Logic Device?

Mark Rodwell, UC Santa BarbaraHigh

I

R

Eli Yablonovitch, UC Berkeley

source

drain

I

I

R

“transpinnor”Fixed

Contact

Contact Contact

Contact

STT – “switch control”GMR – “switch”

Magnetostatically coupled free layers

Can we control GMR by Magnetostatically coupling to a STT switch ??

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu44

GMR and STT --- Spin Logic Device?

Fixed

Contact

Contact Contact

Contact

STT – “switch control”GMR – “switch”

Magnetostatically coupled free layers

Can we control GMR by Magnetostatically coupling to a STT switch ??

O. Ozatay,a_ N. C. Emley, P. M. Braganca, A. G. F. Garcia, G. D. Fuchs, I. N. Krivorotov,R. A. Buhrman, and D. C. Ralph, “Spin transfer by nonuniform current injection into a nanomagnet”, Appl. Phys. Lett., 88, 202502 (2006).

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu45

GMR and STT --- Spin Logic Device?

ISS

ISS

Input

Input

Output

Output

Current drivenClocked logicInherent memory, ISS → 0, no change in input of next stage

Iss

Iss

High

High

High

High

input

output

M. Rodwell Inverter

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu46

GMR and STT --- Spin Logic Device?

B Input

Input

O utput

O utput

IS S

IS S

A Input

Input

F

B Input

Input

O utput

O utput

IS S

IS S

A Input

Input

F

M. Rodwell NAND

Current controlledClocked logic3-state, nonvolatile

Cell 100F2

Energy per bit ~ 4* STT-RAMSwitching speed slower than STT-RAM

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu47

Information Requested (2/2)

• Current state-of-the-art using the provided metrics as a guide (Appendix 2 of request for white papers)“Straw man” concepts, synergistic with STT-RAM developments

• Key scientific and technological issues remaining to accept the technology for manufacture.Demonstration of magneto-static proximity coupling of GMR device and STT switch

• Technology roadmap outlining a 5-15 year develop path leading to manufacture in 5-10 years.Premature

GMR-STT Spin logic devices

ITRS Emerging Technology Review, 12 July 2008 Contact: SJ Allen, allen@iqcd.ucsb.edu48

Spin Torque Transfer Technology

A perspective:

STT-RAM will be developed for memory embedded in logic applications.

STT Nano-oscillators development needs to guided by potential application.

Research on potential STT Logic will be leveraged by developments in STT-RAM