Rheology of granular flows: Role of the interstitial fluid

Post on 01-Nov-2021

2 views 0 download

transcript

Rheology of granular flows:

Role of the interstitial fluid

Olivier Pouliquen,

IUSTI, CNRS, Aix-Marseille University

Marseille, France

Colorado 2003, USGS

Motivations : debris flows, landslides, avalanches, silo

Not Fault!!!

Low level of pressure: 10-100 kPa in natural events0.1-1 kPa in the experiments

=> Rigid and non breakable particles

Particles of different sizes + liquid (non newtonian) + complex topography+ unsteady flows …

In this talk :

1) rheology of dry granularflows ?…

2) What happen whencoupling with the interstitialfluid matters …?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Dry granular material:Collection of grains

No cohesionNo brownian motionNo fluid interaction

… Only contact interactions

But not so easy…

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Quasi-static deformations :Soil mechanics and plasticity

Focus on initial deformation

What happens :

! at large deformations ?

! for fast deformations ?

«!solid!»

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Kinetic theory for rapidgranular gases

! constitutive equations couplingDensity, velocity and granular temperature

Binary collisions+inelastic collisions

a) b)

But if not enough energy is injected: ! finite duration contact, ! multiple contact,

«!gas!»

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Different flow configurations studiedboth experimentally and numerically

GDR Midi, Eur. Phys. J 04

Lois et al 2005Da Cruz et al, PRE 05GdR Midi, Eur. Phys. J 04

plane shear under controlled normal stress

P

U

h

P

One imposes P and

Shear stress "?Volume fraction #?

A single dimensionless number (inertial number)

(Savage 84, Ancey et al 99)

Inertial number

* ratio between 2 times :

: time scale of the mean shear

: microscopic time for rearrangement

«!quasi-static!» « liquid » «!gas!»

!

I =˙ " dP /#

10

Da Cruz et al, PRE 05GdR Midi Eur. Phys. J 04

P

U

h

P

One imposes P and

Shear stress "?Volume fraction #?

!

I =˙ " d

P /#

!

" /P

P

!

" = µ I( )P

!

" = " I( )

!

"

remark: No velocity weakening

Dacruz et al PRE 05

Peyneau & Roux PRE 08

Data from

Inclined plane exp. (Pouliquen 99)Inclined plane simulations (Baran et al 2006)Annular shear cell exp. (Sayed, Savage JFM, 84)

For spheres

Forterre, Pouliquen ARFM 08

!

I =˙ " d

P /#

!

" = µ(I)P

!

µ(I) = µs+

µ2"µ

s

I0I +1

An empirical friction law:

And shear at constant volume fraction ??

$

f1

#

#

Bagnold Proc. R. Soc 54Lois et al PRE 07Lemaitre PRE 05Da Cruz et al PRE 05

Constant pressure

µ

I

#

f2

allows to describe (not perfectly) velocity profileson inclined plane,

Let’s go further…

Predicted velocity and volume fraction profiles

Gdr Midi et al, 2004,Da cruz et al 2002,Silbert et al 2001

Rheology µ(I) predicts - V % h1.5- (h-z)1.5

and &=cte

-Pb with thin flows and close to free surfaceGdr Midi et al, 2004,Da cruz et al 2002,Rajchenbach 2003

allows to describe (not perfectly) velocity profileson inclined plane, on pile,…

Let’s go further…

3D generalisation: a visco-plastic model (Jop et al Nature 06)

assumptions : 1) P isotropic

2) and are colinear

Effectiveviscosity

(Savage 83, Goddard 86, Schaeffer 87,…)

3D generalisation of the friction law :granular flows as a viscoplastic fluid

(Jop et al Nature 06)

Pressure dependent viscosity

assumptions: 1) P isotropic2) and are co-linear

(Savage 83, Goddard 86, Schaeffer 87,…)

flows on a heap : a full 3D problem

L = 1.5 m

W

Q

(P. Jop et al Nature 06)

y/d

V(y,z)

z/d

0

1

2

3

4

5

6

7

-0,2 0 0,2 0,4 0,6 0,8 1 1,2

0

1

2

3

4

5

6

7

-0,2 0 0,2 0,4 0,6 0,8 1 1,2

-10

0

10

20

30

40

500 0,2 0,4 0,6 0,8 1

-10

0

10

20

30

40

500 0,2 0,4 0,6 0,8 1

Flow between rough lateral walls:

y/W y/W

h/d

!

Vsurf

gd

Jop et al , Nature 2006

Jop et al, Phys. Fluids 2007 Initiation of the flow?

Long wave instability in granular flows

(Y. Forterre, JFM 06 )

Experimental Setup : forcing of the instability

Forterre and Pouliquen JFM 02

Loudspeakers

Power supply Function generator

Nozzle

Slides projector

Stabilized

alimentationf, AGBF

!

h

x

y

z

Photodiodes

Dispersion relation

Forterre, JFM 06

Instability threshold

Granular slumping(Lacaze and Kerswell 08)

Lajeunesse et al Phys. Fluids 2004,2005Lube et al JFM 2004,Larrieu et al JFM 2006,Staron & Hinch JFM 2005,Lacaze et al Phys. Fluids 2008…

Lajeunesse et al 05

Lacaze and Kerswell(preprint 08)

Relative Success of the visco-plastic description.

A starting point to adress other configurations…(simulating the pressure dependent visco-plastic rheology is non trivial…)

But there are problems when approaching the solid…

Limits of the viscoplastic approach:

1) Quasistatic flows (shear band, finite size effect….)A need for non local approach…

2) Transient flows when preparation plays a crucial role

Exponential tailNot predicted..

Velocity profile

Shear bands in quasi-static flow

(Forterre & Pouliquen ARFM 08, Jop PRE 08)

Howell et al PRL 99Mueth et al Nature 00Bocquet et al PRE 02…

Not captured by the viscoplastic approach

1.0

0.8

0.6

0.4

0.2

0.0121086420

V/Vw

y/d

Limit of a local rheology ?

Not captured by the viscoplastic approach

Flow threshold

Finite size effects

hysteresis

to go further?

Role of the fluctuations ?

Role of the correlations ?

Link with plasticity of other amorphous and glassy systems

Aranson and Tsimring PRE,01,

Louge Phys. Fluids 03,

Josserand et al 06

Mills et al 08

Jenkins and Chevoir 01,

Pouliquen et al 01, Ertas and Halsey 03,

Lemaitre 02Bazant 07Nott 08Behringer 08…

Jenkins Phys. Fluids 06,…

Radjai and Roux PRL 02

5 10 15 20 25 30

5

10

15

20

25

30

Pouliquen PRL 04

!!

F

Evidence for non local effects:Microrheology experiments

0

20

40

60

80

100

0 100 200 300 400 500 600

Deflection angle

(mRad)

time (s)

'=0

'!0

M. Van Hecke 2008

Pouliquen, Forterre, Nott

Pouliquen & Forterre, Phil. Trans, 2009

Self activated process

Limits of the viscoplastic approach:

1) Quasistatic flows (shear band, finite size effect….)A need for non local approach…

2) Transient flows when preparation plays a crucial role

Daerr & Douady 99

Influence of the initialVolume fraction on the Collapse of a pile.

#

(

#c

CouplingFriction- dilatancy

"

(

"c

Quasi-static case : critical statetheory

Reynolds Dilatancy

(Radjai and Roux 98)

P

(

dX

dY

#

(

#c

assumption: critical volume fraction

!

" #c

Dilatancy angle

Simple critical state theory

critical state theory :

dilatancy but no shear rate dependence

Visco plastic theory :

shear rate dependence but no dilatancy

Shear rate dependent critical state theory

Shear rate dependent critical state theory :

!

I =˙ " dP /#

3D generalisation :. . .

.

.

.

Initiation of flow on an inclined plane:

)

different

z

Application to a dry flow:

Initiallydense

Initially loose

z

z

z

z

Comparison with DEM simulations with N. Taberlet…

Changing time scales…by putting the granular material in water

(Cassar et al, Phys. Fluids 06)

Laser

P.C

DV

recorder

!P

d=112 µm

glass beads

Dry

Immersed

A naive idea :

fluid only plays a role by changing the time scale of rearrangements

I = ( tmicro" = P µ(I) with

viscous :

dry :

µ=tg)

Idry Ivisc

Cassar et al. Phys. Fluids 05

Submarine flows on heap

Doppler et al, JFM 07

Flow rate

Velocity profile

And dilatancy ???

And Pore pressure ??

Cf In Faults Rice JGR 75, Rudnicki JGR 84, …

Large scale experiments in the USGS facility

Iverson et al , (2000) Science

How to explain the variety of landslides observed in nature ?

Dense preparation Courtesy of Dick Iverson

Loose preparation Courtesy of Dick Iverson

Pore Pressure feedback argument(Iverson Rev. Geo. 97, JGR 05)

&!

! Fluid expelled! Pfluid !! Peff "

! Friction "! Less frictionbetween grains

Loose case Dense case

&"

! Fluid sucked! Pfluid "

! Peff !

! Friction !

! higher frictionbetween grains

In faults: rice JGR 75, Rudnicki JGR 84, …

A simple experiment:

Loose sampleDense sample

Experimental setup(Pailha et al 08)

1m

20cm

7cm

Glass beads : 160µm Liquid: mixture of water and Ucon oil:*=9.8 10-3 kg/m.s

*=96 10-3 kg/m.s

Experimental procedure

Compaction by taps0.60

0.59

0.58

0.57

0.56

0.55

!

20151050

# tap

Result of sedimentation

Velocity of theFree surface

Pressure underThe avalanche

+=25ºh=5mm*=96 10-3 Pa.s

0.6

0.5

0.4

0.3

0.2

0.1

Su

rfa

ce

ve

locity (

mm

/s)

-4

-2

0

2

4

Pore

pre

ssure

(P

a)

5004003002001000Time (s)

Typicalresults

,&i=0.562

,&i=0.568

,&i=0.592&i=0.588&i=0.584

&i=0.578&i=0.571

(Pailha et al Pof 08)

Velocity of theFree surface

Pressure underThe avalanche

+=25ºh=5mm*=96 10-3 Pa.s

0.6

0.5

0.4

0.3

0.2

0.1

Su

rfa

ce

ve

locity (

mm

/s)

-4

-2

0

2

4

Pore

pre

ssure

(P

a)

5004003002001000Time (s)

Typicalresults

,&i=0.562

,&i=0.568

,&i=0.592&i=0.588&i=0.584

&i=0.578&i=0.571

(Pailha et al Pof 08)

Dense

&i>&c

Loose &i<&c

Triggering time

in the dense case

Triggering time

60

50

40

30

20

10

Tim

e (

s)

0.6050.6000.5950.5900.5850.580

Phi

+ =25°

+ =26.4°

+ = 28°

+ = 30°

h=3.7 mmh=6.1 mm

*=9.8 10-3 kg/m.s

Deformation

For

12

10

8

6

4

2

0

Su

rfa

ce

ve

locity (

mm

.s-1

)

403020100Time (s)

initial preparation erased

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Surf

ace

vel

oci

ty (

mm

.s-1

)

0.80.60.40.20.0Deformation

!i=0.588

!i=0.584

!i=0.582

Two phase flow model

Rheology of thegranular phase

Granular matter

2Dilatancy

Soil mechanics

3

Coupling with the liquid:Two phase equations

Fluids mechanics

1

Depth averaged approach (Pitman and Le 05) :

submarine avalanches :

)

z

h

Submarine granular avalanches:

Relative weight Viscous drag due to the Vertical displacement

(Cassar et al 05,Doppler et al 07 )

Shear rate critical state theory

Particle-fluidcoupling

Calibration of the model looking at the steady state

0.55

0.50

0.45

0.40

!start

0.590.580.570.56

"

!

µ Iv( )

!

"eq Iv( )

!

K

A single freeParameterK2

0.62

0.60

0.58

0.56

0.54

0.52

0.50

!

4x10-3

3210

I

0.58

0.56

0.54

0.52

0.50

0.48

0.46

0.44

µ

2.5x10-3

2.01.51.00.50.0I

Predictions :Velocity Pressure

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

u (

mm

.s-1

)

4003002001000

t (s)

-4

-2

0

2

4

Po

re p

ressu

re (

Pa

)

5004003002001000t (s)

-4

-2

0

2

4

Po

re p

ressu

re (

Pa

)

5004003002001000t (s)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

u (

mm

.s-1

)

4003002001000

t (s)

Different hDifferent viscosities

Scaling of the triggering time

t/t0

Pore Pressure Maximum acceleration

Conclusions for submarineavalanches

A simple critical state approach+ a viscoplastic rheology+ two phase flow equations

!Semi quantitative predictions in the complexdynamics of the flow initiation of submarine avalanches

Beyond the depth averaged approach ?Question of the numerical implementation of such models?

Index matchingmethod

Mickael Pailhaunpublished

Conclusions for constitutive modeling of granular flows

Visco-plastic approach gives the order zero of viscousbehavior of granular flows

It can serve as a base for further developments:-irregular particles?-cohesive particles?-polydispersed materials?-breakable particles?(dilatancy, underwater granular flows, cohesive flows…)

-link with the microscopic physics? -how to capture non local effects (role of fluctuations, link with glassy systems,….) ?

Towards more complex granular media:

Polydispersed : Felix et Thomas PRE 04 Rognon et al 06…

Cohesive granular matter:

granular matter with fluid interactions

Rognon et al 08Halsey et al 06Richefeu et al 06 …

Merci à

Mickael Pailha Pierre Jop, Cyril Cassar Yoël Forterre Pascale Aussillous Maxime Nicolas Prabhu Nott Jeff Morris Neil Balmforth Bruno Andreotti Olivier Dauchot…