Short Pulse Reading for STT-RAM

Post on 19-Jan-2016

27 views 0 download

description

Short Pulse Reading for STT-RAM. fren@ee.ucla.edu. Background. Ferro-magnetic layers. Anti-parallel. Parallel. Low R P - ”0”. High R AP - ”1”. STT-RAM Storage element: MTJ Represents “0/1” by the configuration of magnetization direction Read/Write operations: CMOS circuits - PowerPoint PPT Presentation

transcript

Short Pulse Reading for STT-RAM

fren@ee.ucla.edu

Background• STT-RAM

– Storage element: MTJ• Represents “0/1” by the configuration of magnetization direction

– Read/Write operations: CMOS circuits

• CMOS and MTJ variability are increasing – Resulting in more stringent constraints on CMOS design

2

Poly

n+ n+

WL1

MTJ

BL

n+

Poly

SL M1

M2

M3

MTJ

M4

WL2

Parallel Anti-parallel

Low RP - ”0” High RAP - ”1”

Ferro-magnetic

layers

• Sense the RMTJ (RAP / RP) through IREAD

– Without disturbing the cell (0% switching prob.)

• Two ways to get 0% switching probability– Low current reading (LCR)– Short pulse reading (SPR)

Write

(2) Short Pulse Reading

(1) Low Current ReadingRead

Read Circuit Design

3

• JC scaling will eventually create difficulty for LCR

• How to implement SPR?– What is the circuit structure?

Write

(2) Short Pulse Reading

(1) Low Current Reading

Read

2 ways to get 0% switching prob.

Read Circuit Design

4

How to implement SPR?• When can we turn off sensing circuit?

– When a safe read margin (VMTJ-VREF > VOS_latch + NM) is established

– VOS_latch < 15 mV

• How fast that read margin can be established?

• The best SPR circuit should be able to establish the largest read margin with the least time.

5

• Current Sensing– Speed is limited by the IMTJ

• VMTJ is fixed, between VMTJ_P and VMTJ_AP

– VMTJ-VREF is limited

#1: Current-Mirror Sense Amp (CMSA)

6[1] D. Gogl, et al., JSSC, Vol. 40, No. 4, Apr. 2005[2] J.P. Kim, et al., VLSI, 2011[3] J. Kim, et al., JVLSI, 2011

• Current Sensing– Speed is limited by the IMTJ

• VMTJ is reverse to VMTJ

– Larger VMTJ-VREF

#2: Split-Path Sense Amp (SPSA)

7[1] S.O. Jing, et al., US Patent, Pub. No. US 2010/0321976 A1

-0.5 0 0.50

100

200

300

400

500

600

700

800

900

1000

Voltage (V)

Fre

quen

cy

SPSA

SMTJ,P

-SREF,P

SMTJ,AP

-SREF,AP

RMP = -29.8mV

RMAP

=12mV

• Body Voltage Sensing– Body-connected load is better

than diode connected load– Speed is no longer limited by

IMTJ

#3: Body-Voltage Sense Amp (BVSA)

8[My proposal]

• VMTJ is reverse to VMTJ

– Even larger VMTJ-VREF

– Benefiting from gain of the sense amp

-0.5 0 0.50

100

200

300

400

500

600

Voltage (V)

Fre

quen

cy

Vmtj-Vref, R/ RP

Vmtj-Vref, R/ RAP

RMP = -268mV

RMAP

=303mV

+3σ -3σ

RMP RMAP

RM Definition• RMP = μ(VMTJ,P − VREF,P) + 3σ(VMTJ,P − VREF,P) should be < 0

• RMAP = μ(VMTJ,AP − VREF,AP) − 3σ(VMTJ,AP − VREF,AP) should be > 0

9

We compare 3 sensing circuits at ISO reading current:

•#1: Current-Mirror Sense Amp (CMSA)– Qualcomm design [VLSI’11]

•#2: Split-Path Sense Amp (SPSA)– Qualcomm design [US Patent 2010/0321976 A1]

•#3: Body-Voltage Sense Amp (BVSA)– UCLA proposal

to demonstrate the read margin and speed advantage of our approach

RM and performance Comparison

10

Currentsensing

Voltagesensing

Simulation Setup• MTJ

– Size: 40x100 nm

– RA = 9 Ω∙um2, TMR = 110%, Rp = 2.9 kΩ

– Iread,P ~ 50 uA, Iread,ap ~ 30 uA

– 5σ MTJ variation• 1 σRA = 4%, 1 σTMR = 5%

• CMOS– 65-nm– Process Variation

• Chip-to-chip + across chip local variation (ACLV)• Monte Carlo Run # = 5000

– Temp and VDD are kept the same in comparison

• room temp

• VDD = 1V

11

IMTJ Distribution

12

0 20 40 60 80 100 1200

100

200

300

400

500

600

700

800

900

1000

Current (uA)

Fre

quen

cy

CMSA

IMTJ,P

IMTJ,AP

(IMTJ,P

)=36.5uA(I

MTJ,P)=2.61uA

(IMTJ,AP

)=26.9uA(I

MTJ,AP)=2.08uA

0 20 40 60 80 100 1200

100

200

300

400

500

600

700

800

900

Current (uA)

Fre

quen

cy

SPSA

IMTJ,P

IMTJ,AP

(IMTJ,P

)=49.1uA(I

MTJ,P)=3.19uA

(IMTJ,AP

)=31.4uA(I

MTJ,AP)=2.27uA

0 20 40 60 80 100 1200

100

200

300

400

500

600

700

800

900

1000

Current (uA)

Fre

quen

cy

BVSA

IMTJ,P

IMTJ,AP

(IMTJ,P

)=53.3uA(I

MTJ,P)=3.16uA

(IMTJ,AP

)=33.5uA(I

MTJ,AP)=2.17uA

(uA) CMSA SPSA BVSA

μ (IMTJ,P) 36.5 49.1 53.5

σ (IMTJ,P) 2.61 3.19 3.16

μ (IMTJ,AP) 26.9 31.4 33.5

σ (IMTJ,AP) 2.08 2.27 2.17

CMSA

BVSA

SPSA

SMTJ − SREF Distribution

13

VDD

VBIASN VBIASN

VMTJVREF

SREFSMTJVBIASP VBIASP

-0.5 0 0.50

50

100

150

200

250

300

350

400

Voltage (V)

Fre

quen

cy

BVSA

SMTJ,P

-SREF,P

SMTJ,AP

-SREF,AP

RMP = -38.3mV

RMAP

=74.7mV

-0.5 0 0.50

100

200

300

400

500

600

700

800

900

1000

Voltage (V)

Fre

quen

cySPSA

SMTJ,P

-SREF,P

SMTJ,AP

-SREF,AP

RMP = -29.8mV

RMAP

=12mV

BVSA

SPSA

VMTJ and VREF Distribution

14

0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

700

800

900

Voltage (V)

Fre

quen

cyCMSA

VMTJ,P

VREF,P

VMTJ,AP

VREF,AP

RMP = -234mV

RMAP

=277mV

0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

700

800

900

1000

Voltage (V)

Fre

quen

cy

SPSA

VMTJ,P

VREF,P

VMTJ,AP

VREF,AP

RMP = -574mV

RMAP

=382mV

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

1400

Voltage (V)

Fre

quen

cy

BVSA

VMTJ,P

VREF,P

VMTJ,AP

VREF,AP

RMP = -806mV

RMAP

=680mV

After VMTJ and VREF are settledAfter VMTJ and VREF are settled

CMSA

BVSA

SPSA

VMTJ − VREF Distribution and RM

(mV) CMSA SPSA BVSA

RMP −268 −596 −829

RMAP 303 432 696

15

-1 -0.5 0 0.5 10

100

200

300

400

500

600

Voltage (V)

Fre

quen

cyCMSA

VMTJ,P

-VREF,P

VMTJ,AP

-VREF,APRM

P = -268mV

RMAP

=303mV

-1 -0.5 0 0.5 10

100

200

300

400

500

600

Voltage (V)

Fre

quen

cy

SPSA

VMTJ,P

-VREF,P

VMTJ,AP

-VREF,AP

RMP = -596mV

RMAP

=432mV

-1 -0.5 0 0.5 10

100

200

300

400

500

600

Voltage (V)

Fre

quen

cy

BVSA

VMTJ,P

-VREF,P

VMTJ,AP

-VREF,AP

RMP = -829mV

RMAP

=696mV

After VMTJ and VREF are settledAfter VMTJ and VREF are settled

CMSA

BVSA

SPSA

Write

Read

RM vs. Sensing Time (Pulse Width)

16

RM (mV)

CMSA SPSA BVSA

100 2.17 1.94 0.60

200 3.54 2.80 0.67

300 N/A 3.84 0.74

400 N/A 5.78 0.82

500 N/A N/A 0.93

600 N/A N/A 1.25

650 N/A N/A 1.58

700 N/A N/A N/A

Sensing time (ns) required to achieve a given RM

Sensing time (ns) required to achieve a given RM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1000

-800

-600

-400

-200

0

200

400

600

800

Sensing Time (ns)

Rea

d M

argi

n (m

V)

CMSA, R/ RP

CMSA, R/ RAP

SPSA, R/ RP

SPSA, R/ RAP

BVSA, R/ RP

BVSA, R/ RAP

Summary and Conclusions

Methodology:•Proposed body-voltage sense amp (BVSA) reading circuit is compared with two existing current-sense reading circuits. Read margin and sensing time are compared at the same reading current.

Observations:•Our circuit shows the biggest read margin

– > 400 mV improvement as compared CMSA– > 250 mV improvement as compared to SPSA

•Our circuit achieves high read margin with much shorter pulse width (sensing time)

17