1 2 2 1 1
3 3
1 2 3
VOC
SOA 3
1 OH
SOA 2 NO3
3 SOA
SOA
(1) VOC
SVOC (2) SVOC
(3) SOA
SOA
6m3
2 ppmv 4 ppmv
PTR-MS 2 SOA PTFE
PTR-MS
25 85 PTR-MS
OH OH OH CO
NI-CIMS 1m3
NI-CIMS CH2OO 46
PTR-MS M [M+H]+
[M+H]+ H2O
NI-CIMS
NI-CIMS
SOA
1C01 (Invited)
– 38 –
PTR NI-CIMS
30 70
10−4 Torr SOA
4
Investigation on the formation mechanism of secondary organic aerosol in isoprene ozonolysis by chemical ionization mass spectrometry
○Satoshi Inomata1, Jun Hirokawa2, Yosuke Sakamoto2, Hiroshi Tanimoto1, Kei Sato1, MotonoriOkumura3, Susumu Tohno3 1NIES, 2Faculty of Environmental Earth Science, Hokkaido Univ.,3 Graduate School of Energy Science, Kyoto Univ.
– 39 –
����������� �������������������� !"#$%
&��������� ��������������������
� ��� !"#$#%&'()&(Site-J)*+,-./�01#/�)23/45
6789:�7;<=>?#/4@AB�CDEFGHI��JDK GHLMN
OP8QR9:S84TUV+BW�Kawamura et al., J. Geophys. Res., 106, 1331,
2001�XY��Z����UI[\BW<=>?#/D7;]^>_A`abcd
e@Af(GC/irMS)4ghi(Kawamura and Watanabe, Anal. Chem. 76, 5762, 2004)�
!"#$#% Site-J&'()&*D�7;<=>?#/Dbcde4@ABWX
� ,-./Dδ13Cj��-19VU+10 ‰DklZmnGH9:S8ITUV8o
pWX01#/+qhir�-28VU+0.1 ‰DklZmnGHBWXbcdeI
sDj4t9uvw�xy+�z{|Ion�}~����I\�BW����
�&1�>o�+�U�i���Y��D���K*������ZD=>?#
/D����G�D���4t�Bih:X)23/Z��mobcde(-10‰)
r�U�WIGH��Q��+��VpWXx��̀ a I¡¢�D<=>?#/
Z�, -17‰¢£D��obcde(δ13C)4tB�¤d8Bi¥w+¦nz{��i
h:uvwDbcde+��~hj4tBWX
� \§Z��,-./o�D�7;<=>?#/DbcdeD¨©G�4z{B�
ªW�CDK���«K
¬���®*ZD/�¯
°D���+qhi±²
9:X³+�&'()&*
ZDD�´§µ+�¶
:·¸�uvw8/�¹
�º/�·ao��8D¯
°D���+qhi»¼
9:X½+�·¸�uvw
D/�I !"#$#%
&'()&*D Excess
CO2D¾¿ZÀ:���
+qhir»¼9:X
Compound specific stable carbon isotopic composition of low molecular weight
dicarboxylic acids in a Greenland ice core (Site-J): Vertical profiles and atmospheric
implications Kimitaka Kawamura (Institute of Low Temperature Science, Hokkaido University),
Historical changes in the δ13C of oxalic acid in Greenland ice core (Site-J) (Kawamura et al., unpublished)
δ13 C
(ox
alic
aci
d), ‰
1C02
– 40 –
1 2 1 1
1 2
WSON
2009 6 2
2 1
WSON
WSON 157±127 ngN m�3
WSON/ WSTN
20.4±11.0%
WSON Dp < 1.9 �m
WSON �
WSON
WSON
Dp > 1.9 �m
WSON
WSON
N/C
~0.19±0.05 pH
WSON WSON
WSON
Seasonal Cycles of Water-Soluble Organic Nitrogen Aerosols in a Deciduous Broadleaf Forest in
Northern Japan
Y. Miyazaki1, P. Q. Fu
2, K. Ono
1 and K. Kawamura
1 (
1Inst. of Low Temp. Sci., Hokkaido
Univ., 2CAS, China)
1C03
– 41 –
日本の冬季における大気エアロゾル中の硫酸および微量元素濃度に対するアジア大陸の寄与○ 坂田昌弘 1, 2,石川友美 2,光延 聖 1, 2
(1静岡県大・環境科学研究所,2静岡県大院・環境物質科学)
1.背景および目的
近年アジア諸国の急速な経済発展に伴い、大量の大気汚染物質が排出されている。特に中国は、一
次エネルギー消費に占める石炭の割合が70%(2010年)と高く、その消費量は過去10年間(2000~2010
年)で2.4倍にもなっている。このため、中国での石炭燃焼に由来する各種有害化学物質の長距離輸送
による環境影響が懸念されている。とりわけ日本はアジア大陸の東端に位置することから、そこから
の風向が卓越する冬季から春季にかけて、その影響を強く受けていることが予想される。そこで本研
究では、全国10地点において冬季(12~2月)に採取された大気エアロゾル試料について、非海塩性硫
酸(nss SO42-)および微量元素(As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, V, Zn)の各濃度を測定した。ま
た、nss SO42-の発生源情報を得るため、そのイオウ同位体比(�34
S)を測定した。そして、各地点にお
ける濃度と経度との関係を利用することにより、nss SO42-および微量元素濃度に対するアジア大陸の
寄与を評価した。エアロゾル試料は、2004年4月~2006年3月にハイボリュームエアサンプラー(吸引
速度300 L min-1)を用いて石英繊維ろ紙上に採取されたものであり、サンプリング期間は各月の後半
の約2週間とした。
2.結果および考察
都市域や工業地域に位置する地点は、nss SO42-および
微量元素濃度が高かったが、それらを除く地点では経度
(ºE)の増加とともに濃度が低下した(図 1)。nss SO42-
の �34S測定および後方流跡線解析の結果から、nss SO4
2-
および微量元素濃度における地点間の相違は、特に中国
の北緯 30~40ºに位置する地域(主として渤海湾および
黄海の沿岸部から内陸部に至る地域)におけるそれらの
排出量に関係付けられることがわかった。そこで、nss
SO42-および微量元素濃度に対するアジア大陸の相対的
な寄与を評価するため、日本の主要な排出源からの影響
が小さいと判断される地点(3 地点)における濃度と経
度間の関係式(指数関数で近似)を用いて、各地点の経
度から算出される濃度は、アジア大陸からの輸送が支配
的なフラクション(Asian outflow fraction)に相当すると仮定した(図 1)。各成分の総濃度に対する
Asian outflow fraction の寄与率(10地点の平均)は、nss SO42-と Asがそれぞれ 93%、83%と高く、他
の微量元素では 50~67%と低かった。nss SO42-および As濃度に対するアジア大陸の寄与が高いのは、
石炭燃焼によるそれらの排出量が中国と日本で大きく異なることに起因していると考えられる。
Contribution of Asian outflow to atmospheric concentrations of sulfate and trace elements in aerosols during
winter in Japan. ○ M. Sakata1, 2
, T. Ishikawa2 and S. Mitsunobu
1, 2(
1Institute for Environmental Sciences,
University of Shizuoka,2Graduate School of Nutritional and Environmental Sciences, University of Shizuoka)
0
0.5
1
1.5
2
2.5
125 130 135 140 145 150
Longitude (ºE)
A
C
FG H
I
B
D
E
J
Y=2.3×104 exp(-0.073X)
Con
cent
ratio
n (�
g m
-3)
nss SO42--S
図 1 各地点における nss SO42-濃度と経度との関係
Asian outflow fraction
1C04
– 42 –
1
1
SPM 1
SPM
Pb/Zn, V/Mn, Ba/Sb, La/Sm e.g., 2012
PM2.5 PM2.5
2011 PM2.5 30
Rare Earth Elements;
REEs PM2.5
La, Ce, Sm
SPM
SPM
REE
SPM
35 48 139 28
10 m HV-1000A PM2.5
MCAS-SJ 1.0 m3/min
24 30.0 L/min 24 2011 12 2013 7
PTFE WP-500-50 8 10
HV-1000A PALL Teflo, 47 mm MCAS-SJ
PTFE HNO3 HF H2O2 TAMAPURE AA-100
ETOS1600
1 mol/L HNO3
XSTC-1 SPEX
In Tl ICP Agilent 7700x
He
REE
TSP PM2.5 PM2.5
McLennan (2001), Tb* = TbN /(GdN*DyN)
0.5 = 1.0, Eu
* =
EuN/(SmN/GdN)0.5
= 0.66 TbN, GdN, DyN, EuN, SmN, GdN
Tb Eu Tb* = 1.5 - 2.1, Eu
* = 0.77
- 1.54 Tb Eu
Rare Earth Elements (REEs) pattern of airborne particulate matter collected in Tokorozawa, Japan.
M. Honda1 (
1National Environmental Research and Training Institute, Ministry of the Environment)
1C05
– 43 –
1 1 2 2
1 2
High nutrient-low chlorophyll HNLC
(Fe) (Martin and Fitzwater, 1988)
Fe Fe
2 Fe 3
HNLC Fe
(Jickells et al., 2005)
Fe Fe
Fe
Fe XAFS
KH-08-2
Okmok
Okmok
HNLC Fe 1
CJ-1, CJ-2, Fe XAFS Fe
Fe FeTotal MQ
SW Fe FeMQ FeSW ICP-AES
Fe =FeMQ/ FeTotal FeSW/ FeTotal
Leg.1-5 Leg.1-6
Fe/Al Ca/Na Leg.1-5 Leg.1-6
Okmok
Fe K XAFS
Leg.1-5 ferrihydrite 60% magnetite 30%
(II) 10% <20 μm augite fayalite pyrite
CJ-1 CJ-2 illite ferrihydrite
chlorite Gobi Kosa Dust illite ferrihydrite hematite
Leg.1-5 FeSW/ FeTotal 10%
2
Fe 3 Fe 2 Fe
Fe
Fe
(II) 176
256 Tg/yr; Durant et al., 2010 1000-2000 Tg/yr; Tegen and Schepanski, 2009
10 1 Fe
0.012 Tg/yr 2.9 Tg/yr
Fe
Speciation and determination of soluble fraction of iron in aerosols supplied by volcanic eruption �A. Miyahara1, Y. Takahashi1, H. Furutani2 and M. Uematsu2 (1Hiroshima Univ., 2Univ. of Tokyo)
1C06
– 44 –
1 2 3 4 4 4, 5
1 2 3 4,
5
(EC)
EC
EC
(2012)
EC
EC
(Toyo, A080A047A) EC
2M HCl
20μm
(Whatman, QMA) 340 2
850 GC-FID
EC 2010 4 2011 12 1
2010 2011 4 12
(Pallflex, 2500QAT-UP) (2-10μm) (<2μm)
EC 340 2
850 GC-FID
EC 0.97±0.18
μgC/filter EC
0.17mgC/m2/day
EC EC
C(24510028)
(2012); , 18
p98.
Deposition of elemental carbon
K. Matsumoto1, H. Shinohara2, N. Kaneyasu3, T. Yamaguchi4, M. Akiyama4, I. Noguchi4, T. Irino5
(1Univ. Yamanashi, 2Univ. Yamanashi, 3AIST, 4Hokkaido Research Organization, 5Hokkaido Univ.)
1C07
– 45 –
HHNO33
[ ] NOX
NOX HNO3
HNO3
HNO3
HNO3 NOX O3 �17O
�17O HNO3
�17O O3
HNO3 �17O
[ ] FP , 2007
2009 1 12 FP 5
[ ]
1HNO3 HNO3 �17O= 1
HNO3
HNO3 HNO3
�17O
Origin of HNO3 supplied through dry deposition in urban area ○T. Ohyama1, U. Tsunogai1, D. D. Komatsu1, F. Nakagawa2, I. Noguchi3, T. Yamaguchi3, (1Nagoya Univ, 2Hokkaido Univ ,3 Hokkaido Res. Org.)
1 HNO3 �17O
1C08
– 46 –
&
����������� �������
����������� !"&��ÁÂÃ�ÄÅÆÇ������ÈÉ�ÊËÌÍ
Î�ÏÐ�ÑÒÓÔ
�
� Õ������������Ö�ר�Ù�Ú��Û�Ü Õ!"#$�ÝÞß�%&'
(àÚá��â)ã*+, ��� ��äåæç-.�è/é0ê1ë�"#'2*1ìÝ
�ÑÒ"3456,7'82�2*-.íî9 ��� �:à;ï�ðñ1ò<.6,7'
1�ìÝ�óôõö÷=�(>?�øùúö÷�@*�åæç=A;ç�ûBC'D�
EFGHIJñü-.��Kýþ.6,7'L$@ M9 ��� �åæç1NO�PQR
���SOTPQ�U+,NOVOW�XY+,7'2*��ZC'�Û13456'
9[�\]^_`a_ba]c������de����e����� ����������de����e�����ý���� ���
åæç��ðñ����� !"#���$%&'!(�
� )ÏÐ*ÑÒÓ�+�,�-Õö÷�ô�.#/0&'12343.56'&
��7 '1�8-Õ9�������:;<=>?7@�ABC�D&'!($E5�
F�GE+AB��5 ����HI7�J!"#7��#D&KLMNOP=>?QR
>�S�ü�7 '1 �����8��ö÷7�/0&T1(�
� ��ö÷56U! ��� �����ñ�ö÷�+�VWXYZ>[=>?�+ EJ!
"#��T/G01 ��� �\P]�^_P`!a"�6Abcdef!#a.56'
&$9�5%g$%1(ö÷$%1\P]�&���+'�GE'��#()5*'h
�������+,ijé+kl]?WR>m+,5nD&ì-�- ���oop 5h.D&
'1(,1�\P]�� ��� # �q ��5+()5/'011r�2E%�s���ts�q
3+(456åæçGE�uv7�wx!�Û�7E%1("%E��ÛGE�ö÷$
%1 ��� \P]+y589[WlzV{P|GE�èg5A!h�� !#:JE%1(
}~���}�������~��������������������������������ùú5;<$%1�=Ý>��>Z
P�q����qo��������������������������5A!ö÷�Û7h#5�2343.56U
!89[WlzV{P|��?���7�01#"����$%189[WlzV{P
|��@+ �}������������������}���p�����������p��������o�����������������d �
P<�PX7h#5��D1�@#+-T�A/0&6B�"��ÛGE �}�����d �
P<�PX�+2343.56U!89[WlzV{P|GE� ���ègé51D&
-T/BC7Ü0&'!"#�DEG5/01(ÅåE�+2343.56U!89
[WlzV{P|Fç� ���ègé5�'&ö÷�Û7h#5GHx!(�
Long-term continuous observation and source exploration of atmospheric methane in the
Southeast Asia region using a commercial cargo vessel
�H. Nara, H. Tanimoto, H. Mukai, Y. Nojiri, Y. Tohjima (National Institute for Environmental
Studies)
1C09 (Invited)
– 47 –
T. Shirai1, M. Ishizawa1, R. Zhuravlev2, A. Ganshin2, D. Belikov1,
M. Saito1, T. Oda3,4, V. Valsala5, E. J. Dlugokencky4, P. P. Tans4, and
S. Maksyutov1 1National Institute for Environmental Studies, 2Central Aerological Observatory, 3Colorado State Univ., 4GMD,
NOAA/ESRL, 5Indian Institute for Tropical Meteorology
The global monthly CO2 flux distributions for the period of 2001-2011 were estimated
using an atmospheric inversion modeling system, which is based on combined two transport
models, called GELCA (Global Eulerian-Lagrangian Coupled Atmospheric model). This coupled
model approach has several advantages over inversions to single type of model alone: the use of
Lagrangian particle dispersion model (LPDM) to simulate the transport in the vicinity of the
observation points enables us to avoid numerical diffusion of Eulerian models, and is suitable to
represent observations at high spatial and temporal resolutions. The global background
concentration fields generated by an Eulerian model is to be used as time-variant boundary
conditions for an LPDM that performs backward simulations from each receptor point
(observation location). In the GELCA inversion system, National Institute for Environmental
Studies-Transport Model (NIES-TM) version 8.1i was used as an Eulerian global transport
model coupled with FLEXPART version 8.1 as an LPDM. Two-day backward transported
particles by FLEXPART were combined at the end points with the background CO2 levels 2 days
prior to the observations simulated by NIES-TM. Our prior CO2 fluxes consist of daily terrestrial
biospheric fluxes, monthly oceanic fluxes, monthly biomass burning emissions, and monthly
fossil fuel CO2 emissions. We employed a Kalman Smoother optimization technique with fixed
lag of 3 months, estimating CO2 emissions for 42 land and 22 ocean regions.
In order to examine the sensitivity of the inversion to the choice of observation dataset, we
have been using several different global network settings of CO2 observations. The Observation
Package (ObsPack) data products contain more measurement information in space and time than
the NOAA flask network which basically consists of by-weekly samplings at marine background
sites. The global total and large-scale patterns of the emission optimized with two different
global observation networks agreed overall with other previous studies. In regional scales,
apparently inverted seasonal CO2 fluxes are altered by assimilating the ObsPack measurements,
especially where the NOAA network is sparse. It indicates that wider spatial coverage of
measurements is necessary to improve regional CO2 flux estimations.
Inverse modeling of global atmospheric carbon dioxide: sensitivity to the observation dataset
T. Shirai1, M. Ishizawa1, R. Zhuravlev2, A. Ganshin2, D. Belikov1, M. Saito1, T. Oda3,4, V.
Valsala5, E. J. Dlugokencky4, P. P. Tans4, and S. Maksyutov1 1NIES, 2CAO, 3CSU., 4GMD,
NOAA/ESRL, 5IITM
1C10
– 48 –
1JAMSTEC
2 3 4)
Global modeling of nitrous oxide isotopes in the atmosphere
Kentaro Ishijima1, Sakae Toyoda2, Masayuki Takigawa1, Kengo Sudo3,1, Shuji Aoki4, Takakiyo
Nakazawa4,1, Naohiro Yoshida2 (1JAMSTEC, 2Tokyo institute of Technology, 3Nagoya University, 4Tohoku
University)
1C11
– 49 –
1,2 2 1,3 2,1
1 2 3
�� 10% CO2 N2O1
40km
SMILES
SMILES ISS
e.g.,2
SMILES 2009 10 2010
4 38oS 65
oN ISS �18
OOO
1)
2)
2 3 20oN 50
oN �18
OOO �18OOO = Robs / RSMOW -
1, R = [18
OOO]/[O3] �18OOO [
18OOO] [O3]
�18OOO
32 ~ 57km
�18OOO
e.g.,3 �18OOO
18 5% �18OOO
e.g.,4
�18OOO
1. Lyons J. R., Geophys. Res. Lett., 28, 3231-3234, doi:10.1029/2000GL012791 (2001). 2. Baron P. et al., Atmos. Meas. Tech., 4, 2105-2124, doi:10.5194/amt-4-2105-2011 (2011). 3. Irion F. W. et al., Geophys. Res. Lett., 23, 2377-2380, doi:10.1029/96GL01695 (1996). 4. Liang M. C. et al., J. Geophys. Res., 111, D02302, doi:10.1029/2005JD006342 (2006).
�
Observation of ozone enrichment from middle stratosphere to lower mesosphere by SMILES
T. O. Sato1,2
, H. Sagawa2, N. Yoshida
1,3 and Y. Kasai
2,1
(1Tokyo Institute of Technology,
2National Institute of Information and Communications
Technology, 3Earth-Life Science Institute)
1C12
– 50 –
1 2 1 1
1 2
CO2
CO2
CO2
ENSO
CO2
CO2
CO2 FF=0
FF=0
)
)
FF=0
FF=0
10 CO2
CO2
FF=0
FF=0
CO2
Preindustrial latitudinal distribution of atmospheric carbon dioxide
H. Matsueda1, T. Machida
2, Y. Sawa
1, and Y. Niwa
1 (
1Meteorological Research Institute,
2National Institute for Environmental Studies)
1C13
– 51 –