+ All Categories
Home > Documents > ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß...

° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß...

Date post: 16-Jul-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
Embed Size (px)
of 14 /14
1 2 2 1 1 3 3 1 2 3 VOC SOA 3 1 OH SOA 2 NO 3 3 SOA SOA (1) VOC SVOC (2) SVOC (3) SOA SOA 6m 3 2 ppmv 4 ppmv PTR-MS 2 SOA PTFE PTR-MS 25 85 PTR-MS OH OH OH CO NI-CIMS 1m 3 NI-CIMS CH 2 OO 46 PTR-MS M [M+H] + [M+H] + H 2 O NI-CIMS NI-CIMS SOA 1C01 (Invited) – 38 –
Transcript
Page 1: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1 2 2 1 1

3 3

1 2 3

VOC

SOA 3

1 OH

SOA 2 NO3

3 SOA

SOA

(1) VOC

SVOC (2) SVOC

(3) SOA

SOA

6m3

2 ppmv 4 ppmv

PTR-MS 2 SOA PTFE

PTR-MS

25 85 PTR-MS

OH OH OH CO

NI-CIMS 1m3

NI-CIMS CH2OO 46

PTR-MS M [M+H]+

[M+H]+ H2O

NI-CIMS

NI-CIMS

SOA

1C01 (Invited)

– 38 –

Page 2: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

PTR NI-CIMS

30 70

10−4 Torr SOA

4

Investigation on the formation mechanism of secondary organic aerosol in isoprene ozonolysis by chemical ionization mass spectrometry

○Satoshi Inomata1, Jun Hirokawa2, Yosuke Sakamoto2, Hiroshi Tanimoto1, Kei Sato1, MotonoriOkumura3, Susumu Tohno3 1NIES, 2Faculty of Environmental Earth Science, Hokkaido Univ.,3 Graduate School of Energy Science, Kyoto Univ.

– 39 –

Page 3: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

����������� �������������������� !"#$%

&��������� ��������������������

� ��� !"#$#%&'()&(Site-J)*+,-./�01#/�)23/45

6789:�7;<=>?#/4@AB�CDEFGHI��JDK GHLMN

OP8QR9:S84TUV+BW�Kawamura et al., J. Geophys. Res., 106, 1331,

2001�XY��Z����UI[\BW<=>?#/D7;]^>_A`abcd

e@Af(GC/irMS)4ghi(Kawamura and Watanabe, Anal. Chem. 76, 5762, 2004)�

!"#$#% Site-J&'()&*D�7;<=>?#/Dbcde4@ABWX

� ,-./Dδ13Cj��-19VU+10 ‰DklZmnGH9:S8ITUV8o

pWX01#/+qhir�-28VU+0.1 ‰DklZmnGHBWXbcdeI

sDj4t9uvw�xy+�z{|Ion�}~����I\�BW����

�&1�>o�+�U�i���Y��D���K*������ZD=>?#

/D����G�D���4t�Bih:X)23/Z��mobcde(-10‰)

r�U�WIGH��Q��+��VpWXx��̀ a I¡¢�D<=>?#/

Z�, -17‰¢£D��obcde(δ13C)4tB�¤d8Bi¥w+¦nz{��i

h:uvwDbcde+��~hj4tBWX

� \§Z��,-./o�D�7;<=>?#/DbcdeD¨©G�4z{B�

ªW�CDK���«K

¬���­®*ZD/�¯

°D���+qhi±²

9:X³+�&'()&*

ZD­D�´§µ+�¶

:·¸�uvw8/�¹

�º/�·ao��8D¯

°D���+qhi»¼

9:X½+�·¸�uvw

D/�I !"#$#%

&'()&*D Excess

CO2D¾¿ZÀ:���

+qhir»¼9:X

Compound specific stable carbon isotopic composition of low molecular weight

dicarboxylic acids in a Greenland ice core (Site-J): Vertical profiles and atmospheric

implications Kimitaka Kawamura (Institute of Low Temperature Science, Hokkaido University),

Historical changes in the δ13C of oxalic acid in Greenland ice core (Site-J) (Kawamura et al., unpublished)

δ13 C

(ox

alic

aci

d), ‰

1C02

– 40 –

Page 4: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1 2 1 1

1 2

WSON

2009 6 2

2 1

WSON

WSON 157±127 ngN m�3

WSON/ WSTN

20.4±11.0%

WSON Dp < 1.9 �m

WSON �

WSON

WSON

Dp > 1.9 �m

WSON

WSON

N/C

~0.19±0.05 pH

WSON WSON

WSON

Seasonal Cycles of Water-Soluble Organic Nitrogen Aerosols in a Deciduous Broadleaf Forest in

Northern Japan

Y. Miyazaki1, P. Q. Fu

2, K. Ono

1 and K. Kawamura

1 (

1Inst. of Low Temp. Sci., Hokkaido

Univ., 2CAS, China)

1C03

– 41 –

Page 5: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

日本の冬季における大気エアロゾル中の硫酸および微量元素濃度に対するアジア大陸の寄与○ 坂田昌弘 1, 2,石川友美 2,光延 聖 1, 2

(1静岡県大・環境科学研究所,2静岡県大院・環境物質科学)

1.背景および目的

近年アジア諸国の急速な経済発展に伴い、大量の大気汚染物質が排出されている。特に中国は、一

次エネルギー消費に占める石炭の割合が70%(2010年)と高く、その消費量は過去10年間(2000~2010

年)で2.4倍にもなっている。このため、中国での石炭燃焼に由来する各種有害化学物質の長距離輸送

による環境影響が懸念されている。とりわけ日本はアジア大陸の東端に位置することから、そこから

の風向が卓越する冬季から春季にかけて、その影響を強く受けていることが予想される。そこで本研

究では、全国10地点において冬季(12~2月)に採取された大気エアロゾル試料について、非海塩性硫

酸(nss SO42-)および微量元素(As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, V, Zn)の各濃度を測定した。ま

た、nss SO42-の発生源情報を得るため、そのイオウ同位体比(�34

S)を測定した。そして、各地点にお

ける濃度と経度との関係を利用することにより、nss SO42-および微量元素濃度に対するアジア大陸の

寄与を評価した。エアロゾル試料は、2004年4月~2006年3月にハイボリュームエアサンプラー(吸引

速度300 L min-1)を用いて石英繊維ろ紙上に採取されたものであり、サンプリング期間は各月の後半

の約2週間とした。

2.結果および考察

都市域や工業地域に位置する地点は、nss SO42-および

微量元素濃度が高かったが、それらを除く地点では経度

(ºE)の増加とともに濃度が低下した(図 1)。nss SO42-

の �34S測定および後方流跡線解析の結果から、nss SO4

2-

および微量元素濃度における地点間の相違は、特に中国

の北緯 30~40ºに位置する地域(主として渤海湾および

黄海の沿岸部から内陸部に至る地域)におけるそれらの

排出量に関係付けられることがわかった。そこで、nss

SO42-および微量元素濃度に対するアジア大陸の相対的

な寄与を評価するため、日本の主要な排出源からの影響

が小さいと判断される地点(3 地点)における濃度と経

度間の関係式(指数関数で近似)を用いて、各地点の経

度から算出される濃度は、アジア大陸からの輸送が支配

的なフラクション(Asian outflow fraction)に相当すると仮定した(図 1)。各成分の総濃度に対する

Asian outflow fraction の寄与率(10地点の平均)は、nss SO42-と Asがそれぞれ 93%、83%と高く、他

の微量元素では 50~67%と低かった。nss SO42-および As濃度に対するアジア大陸の寄与が高いのは、

石炭燃焼によるそれらの排出量が中国と日本で大きく異なることに起因していると考えられる。

Contribution of Asian outflow to atmospheric concentrations of sulfate and trace elements in aerosols during

winter in Japan. ○ M. Sakata1, 2

, T. Ishikawa2 and S. Mitsunobu

1, 2(

1Institute for Environmental Sciences,

University of Shizuoka,2Graduate School of Nutritional and Environmental Sciences, University of Shizuoka)

0

0.5

1

1.5

2

2.5

125 130 135 140 145 150

Longitude (ºE)

A

C

FG H

I

B

D

E

J

Y=2.3×104 exp(-0.073X)

Con

cent

ratio

n (�

g m

-3)

nss SO42--S

図 1 各地点における nss SO42-濃度と経度との関係

Asian outflow fraction

1C04

– 42 –

Page 6: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1

1

SPM 1

SPM

Pb/Zn, V/Mn, Ba/Sb, La/Sm e.g., 2012

PM2.5 PM2.5

2011 PM2.5 30

Rare Earth Elements;

REEs PM2.5

La, Ce, Sm

SPM

SPM

REE

SPM

35 48 139 28

10 m HV-1000A PM2.5

MCAS-SJ 1.0 m3/min

24 30.0 L/min 24 2011 12 2013 7

PTFE WP-500-50 8 10

HV-1000A PALL Teflo, 47 mm MCAS-SJ

PTFE HNO3 HF H2O2 TAMAPURE AA-100

ETOS1600

1 mol/L HNO3

XSTC-1 SPEX

In Tl ICP Agilent 7700x

He

REE

TSP PM2.5 PM2.5

McLennan (2001), Tb* = TbN /(GdN*DyN)

0.5 = 1.0, Eu

* =

EuN/(SmN/GdN)0.5

= 0.66 TbN, GdN, DyN, EuN, SmN, GdN

Tb Eu Tb* = 1.5 - 2.1, Eu

* = 0.77

- 1.54 Tb Eu

Rare Earth Elements (REEs) pattern of airborne particulate matter collected in Tokorozawa, Japan.

M. Honda1 (

1National Environmental Research and Training Institute, Ministry of the Environment)

1C05

– 43 –

Page 7: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1 1 2 2

1 2

High nutrient-low chlorophyll HNLC

(Fe) (Martin and Fitzwater, 1988)

Fe Fe

2 Fe 3

HNLC Fe

(Jickells et al., 2005)

Fe Fe

Fe

Fe XAFS

KH-08-2

Okmok

Okmok

HNLC Fe 1

CJ-1, CJ-2, Fe XAFS Fe

Fe FeTotal MQ

SW Fe FeMQ FeSW ICP-AES

Fe =FeMQ/ FeTotal FeSW/ FeTotal

Leg.1-5 Leg.1-6

Fe/Al Ca/Na Leg.1-5 Leg.1-6

Okmok

Fe K XAFS

Leg.1-5 ferrihydrite 60% magnetite 30%

(II) 10% <20 μm augite fayalite pyrite

CJ-1 CJ-2 illite ferrihydrite

chlorite Gobi Kosa Dust illite ferrihydrite hematite

Leg.1-5 FeSW/ FeTotal 10%

2

Fe 3 Fe 2 Fe

Fe

Fe

(II) 176

256 Tg/yr; Durant et al., 2010 1000-2000 Tg/yr; Tegen and Schepanski, 2009

10 1 Fe

0.012 Tg/yr 2.9 Tg/yr

Fe

Speciation and determination of soluble fraction of iron in aerosols supplied by volcanic eruption �A. Miyahara1, Y. Takahashi1, H. Furutani2 and M. Uematsu2 (1Hiroshima Univ., 2Univ. of Tokyo)

1C06

– 44 –

Page 8: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1 2 3 4 4 4, 5

1 2 3 4,

5

(EC)

EC

EC

(2012)

EC

EC

(Toyo, A080A047A) EC

2M HCl

20μm

(Whatman, QMA) 340 2

850 GC-FID

EC 2010 4 2011 12 1

2010 2011 4 12

(Pallflex, 2500QAT-UP) (2-10μm) (<2μm)

EC 340 2

850 GC-FID

EC 0.97±0.18

μgC/filter EC

0.17mgC/m2/day

EC EC

C(24510028)

(2012); , 18

p98.

Deposition of elemental carbon

K. Matsumoto1, H. Shinohara2, N. Kaneyasu3, T. Yamaguchi4, M. Akiyama4, I. Noguchi4, T. Irino5

(1Univ. Yamanashi, 2Univ. Yamanashi, 3AIST, 4Hokkaido Research Organization, 5Hokkaido Univ.)

1C07

– 45 –

Page 9: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

HHNO33

[ ] NOX

NOX HNO3

HNO3

HNO3

HNO3 NOX O3 �17O

�17O HNO3

�17O O3

HNO3 �17O

[ ] FP , 2007

2009 1 12 FP 5

[ ]

1HNO3 HNO3 �17O= 1

HNO3

HNO3 HNO3

�17O

Origin of HNO3 supplied through dry deposition in urban area ○T. Ohyama1, U. Tsunogai1, D. D. Komatsu1, F. Nakagawa2, I. Noguchi3, T. Yamaguchi3, (1Nagoya Univ, 2Hokkaido Univ ,3 Hokkaido Res. Org.)

1 HNO3 �17O

1C08

– 46 –

Page 10: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

&

����������� �������

����������� !"&��ÁÂÃ�ÄÅÆÇ������ÈÉ�ÊËÌÍ

Î�ÏÐ�ÑÒÓÔ

� Õ������������Ö�×Ø�Ù�Ú��Û�Ü Õ!"#$�ÝÞß�%&'

(àÚá��â)ã*+, ��� ��äåæç-.�è/é0ê1ë�"#'2*1ìÝ

�ÑÒ"3456,7'82�2*-.íî9 ��� �:à;ï�ðñ1ò<.6,7'

1�ìÝ�óôõö÷=�(>?�øùúö÷�@*�åæç=A;ç�ûBC'D�

EFGHIJñü-.��Kýþ.6,7'L$@ M9 ��� �åæç1NO�PQR

���SOTPQ�U+,NOVOW�XY+,7'2*��ZC'�Û13456'

9[�\]^_`a_ba]c������de����e����� ����������de����e�����ý���� ���

åæç��ðñ����� !"#���$%&'!(�

� )ÏÐ*ÑÒÓ�+�,�-Õö÷�ô�.#/0&'12343.56'&

��7 '1�8-Õ9�������:;<=>?7@�ABC�D&'!($E5�

F�GE+AB��5 ����HI7�J!"#7��#D&KLMNOP=>?QR

>�S�ü�7 '1 �����8��ö÷7�/0&T1(�

� ��ö÷56U! ��� �����ñ�ö÷�+�VWXYZ>[=>?�+ EJ!

"#��T/G01 ��� �\P]�^_P`!a"�6Abcdef!#a.56'

&$9�5%g$%1(ö÷$%1\P]�&���+'�GE'��#()5*'h

�������+,ijé+kl]?WR>m+,5nD&ì-�- ���oop 5h.D&

'1(,1�\P]�� ��� # �q ��5+()5/'011r�2E%�s���ts�q

3+(456åæçGE�uv7�wx!�Û�7E%1("%E��ÛGE�ö÷$

%1 ��� \P]+y589[WlzV{P|GE�èg5A!h�� !#:JE%1(

}~���}�������~��������������������������������ùú5;<$%1�=Ý>��>Z

P�q����qo��������������������������5A!ö÷�Û7h#5�2343.56U

!89[WlzV{P|��?���7�01#"����$%189[WlzV{P

|��@+ �}������������������}���p�����������p��������o�����������������d �

P<�PX7h#5��D1�@#+-T�A/0&6B�"��ÛGE �}�����d �

P<�PX�+2343.56U!89[WlzV{P|GE� ���ègé51D&

-T/BC7Ü0&'!"#�DEG5/01(ÅåE�+2343.56U!89

[WlzV{P|Fç� ���ègé5�'&ö÷�Û7h#5GHx!(�

Long-term continuous observation and source exploration of atmospheric methane in the

Southeast Asia region using a commercial cargo vessel

�H. Nara, H. Tanimoto, H. Mukai, Y. Nojiri, Y. Tohjima (National Institute for Environmental

Studies)

1C09 (Invited)

– 47 –

Page 11: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

T. Shirai1, M. Ishizawa1, R. Zhuravlev2, A. Ganshin2, D. Belikov1,

M. Saito1, T. Oda3,4, V. Valsala5, E. J. Dlugokencky4, P. P. Tans4, and

S. Maksyutov1 1National Institute for Environmental Studies, 2Central Aerological Observatory, 3Colorado State Univ., 4GMD,

NOAA/ESRL, 5Indian Institute for Tropical Meteorology

The global monthly CO2 flux distributions for the period of 2001-2011 were estimated

using an atmospheric inversion modeling system, which is based on combined two transport

models, called GELCA (Global Eulerian-Lagrangian Coupled Atmospheric model). This coupled

model approach has several advantages over inversions to single type of model alone: the use of

Lagrangian particle dispersion model (LPDM) to simulate the transport in the vicinity of the

observation points enables us to avoid numerical diffusion of Eulerian models, and is suitable to

represent observations at high spatial and temporal resolutions. The global background

concentration fields generated by an Eulerian model is to be used as time-variant boundary

conditions for an LPDM that performs backward simulations from each receptor point

(observation location). In the GELCA inversion system, National Institute for Environmental

Studies-Transport Model (NIES-TM) version 8.1i was used as an Eulerian global transport

model coupled with FLEXPART version 8.1 as an LPDM. Two-day backward transported

particles by FLEXPART were combined at the end points with the background CO2 levels 2 days

prior to the observations simulated by NIES-TM. Our prior CO2 fluxes consist of daily terrestrial

biospheric fluxes, monthly oceanic fluxes, monthly biomass burning emissions, and monthly

fossil fuel CO2 emissions. We employed a Kalman Smoother optimization technique with fixed

lag of 3 months, estimating CO2 emissions for 42 land and 22 ocean regions.

In order to examine the sensitivity of the inversion to the choice of observation dataset, we

have been using several different global network settings of CO2 observations. The Observation

Package (ObsPack) data products contain more measurement information in space and time than

the NOAA flask network which basically consists of by-weekly samplings at marine background

sites. The global total and large-scale patterns of the emission optimized with two different

global observation networks agreed overall with other previous studies. In regional scales,

apparently inverted seasonal CO2 fluxes are altered by assimilating the ObsPack measurements,

especially where the NOAA network is sparse. It indicates that wider spatial coverage of

measurements is necessary to improve regional CO2 flux estimations.

Inverse modeling of global atmospheric carbon dioxide: sensitivity to the observation dataset

T. Shirai1, M. Ishizawa1, R. Zhuravlev2, A. Ganshin2, D. Belikov1, M. Saito1, T. Oda3,4, V.

Valsala5, E. J. Dlugokencky4, P. P. Tans4, and S. Maksyutov1 1NIES, 2CAO, 3CSU., 4GMD,

NOAA/ESRL, 5IITM

1C10

– 48 –

Page 12: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1JAMSTEC

2 3 4)

Global modeling of nitrous oxide isotopes in the atmosphere

Kentaro Ishijima1, Sakae Toyoda2, Masayuki Takigawa1, Kengo Sudo3,1, Shuji Aoki4, Takakiyo

Nakazawa4,1, Naohiro Yoshida2 (1JAMSTEC, 2Tokyo institute of Technology, 3Nagoya University, 4Tohoku

University)

1C11

– 49 –

Page 13: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1,2 2 1,3 2,1

1 2 3

�� 10% CO2 N2O1

40km

SMILES

SMILES ISS

e.g.,2

SMILES 2009 10 2010

4 38oS 65

oN ISS �18

OOO

1)

2)

2 3 20oN 50

oN �18

OOO �18OOO = Robs / RSMOW -

1, R = [18

OOO]/[O3] �18OOO [

18OOO] [O3]

�18OOO

32 ~ 57km

�18OOO

e.g.,3 �18OOO

18 5% �18OOO

e.g.,4

�18OOO

1. Lyons J. R., Geophys. Res. Lett., 28, 3231-3234, doi:10.1029/2000GL012791 (2001). 2. Baron P. et al., Atmos. Meas. Tech., 4, 2105-2124, doi:10.5194/amt-4-2105-2011 (2011). 3. Irion F. W. et al., Geophys. Res. Lett., 23, 2377-2380, doi:10.1029/96GL01695 (1996). 4. Liang M. C. et al., J. Geophys. Res., 111, D02302, doi:10.1029/2005JD006342 (2006).

Observation of ozone enrichment from middle stratosphere to lower mesosphere by SMILES

T. O. Sato1,2

, H. Sagawa2, N. Yoshida

1,3 and Y. Kasai

2,1

(1Tokyo Institute of Technology,

2National Institute of Information and Communications

Technology, 3Earth-Life Science Institute)

1C12

– 50 –

Page 14: ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ · ì Û å ì2A5 ( Ò 2 #Ý 8 S ¯ É Þ å b ° å4ß ì [#Õ B M § w µ ß ° Ý b#Õ B µ S b* 9 Ñ"¦ D1 í ] ß 2 í 7g Ó2 í1Â

1 2 1 1

1 2

CO2

CO2

CO2

ENSO

CO2

CO2

CO2 FF=0

FF=0

)

)

FF=0

FF=0

10 CO2

CO2

FF=0

FF=0

CO2

Preindustrial latitudinal distribution of atmospheric carbon dioxide

H. Matsueda1, T. Machida

2, Y. Sawa

1, and Y. Niwa

1 (

1Meteorological Research Institute,

2National Institute for Environmental Studies)

1C13

– 51 –


Recommended