+ All Categories
Home > Documents > 06 Conformational Anal 3

06 Conformational Anal 3

Date post: 14-Apr-2018
Category:
Upload: erabor
View: 222 times
Download: 0 times
Share this document with a friend

of 13

Transcript
  • 7/29/2019 06 Conformational Anal 3

    1/13

    Chem 206D. A. Evans

    D. A. Evans

    Friday,

    September 30, 2005

    http://www.courses.fas.harvard.edu/~chem206/

    ! Reading Assignment for week

    A. Carey & Sundberg: Part A; Chapter 3

    Conformational Analysis: Part3

    Chemistry 206

    Advanced Organic Chemistry

    Lecture Number 6

    Conformational Analysis-3

    ! Conformational Analysis of C4! C6 Rings

    Three Types of Strain:

    Prelog Strain: van der Waals interactions

    Baeyer Strain: bond angle distortion away from the idealPitzer Strain: torsional rotation about a sigma bond

    Baeyer Strain for selected ring sizes

    size of ring Ht of Combustion(kcal/mol)

    Total Strain(kcal/mol)

    Strain per CH2(kcal.mol)

    "angle strain"deviation from 10928'

    3456789

    101112131415

    499.8656.1793.5944.8

    1108.31269.21429.61586.81743.11893.42051.92206.12363.5

    27.526.36.20.16.29.7

    12.612.411.34.15.21.91.9

    9.176.581.240.020.891.211.401.241.020.340.400.140.13

    2444'944'044'

    -516'

    Eliel, E. L., Wilen, S. H. Stereochemistry of Organic CompoundsChapter 11, John Wiley & Sons, 1994.

    ! Baeyer "angle strain" is calculated from the deviation of the

    planarbond angles from the ideal tetrahedral bond angle.

    ! Discrepancies between calculated strain/CH2 and the "anglestrain" results from puckering to minimize van der Waals oreclipsing torsional strain between vicinal hydrogens.

    Conformational Analysis of Cyclic Systems

    de Meijere, "Bonding Properties of Cyclopropane & their ChemicalCharacteristics"

    Angew Chem. Int. Ed.1979, 18, 809-826 (pdf)

    Eliel & Wilen, "Stereochemistry of Organic Compounds, "Chapter 11,Configuration and Conformation of Cyclic Molecules, Wiley, 1994

    Ribeiro & Rittner, "The Role of Hyperconjugation in the Conformational Analysis of

    Methylcyclohexane and Methylheterocyclohexanes"J. Org. Chem., 2003, 68, 6780-6787 (handout)

    HH

    O

    O OH

    ONaBH4

    Problem: Rationalize the regioselectivity of the following reduction

    Stork, JACS, 1979, 7107.

  • 7/29/2019 06 Conformational Anal 3

    2/13

    Cyclopropane: Bonding, Conformation, Carbonium Ion StabilizationEvans, Kim, Breit Chem 206

    H

    H

    H

    H

    Cyclopropane

    !Necessarily planar.!Subtituents are therefore eclipsed.!Disubstitution prefers to be trans.

    ! = 3080 cm-1

    " = 120

    !Almost sp2, not sp3

    Nonbonding

    Walsh Model for Strained Rings:

    !Rather than! and !* c-c bonds, cyclopropane has sp2 and p-typeorbitals instead.

    H

    H

    side view

    !1 (bonding)

    ! (antibonding) ! (antibonding)

    " (antibonding)

    " (bonding) " (bonding)

    3

    de Meijere, "Bonding Properties of Cyclopropane & their Chemical Characteristics"Angew Chem. Int. Ed.1979, 18, 809-826 (handout)

    de Meijere, A.; Wessjohann, L. "Tailoring the Reactivity of Small Ring BuildingBlocks for Organic Synthesis." Synlett1990 , 20. (pdf)

    Carbocation Stabilization via Cyclopropylgroups

    C

    A rotational barrier of about13.7 kcal/mol is observed in

    following example:H

    Me

    MeNMR in super acids

    !(CH3) = 2.6 and 3.2 ppm

  • 7/29/2019 06 Conformational Anal 3

    3/13

    Evans, Kim, Breit Chem 206Conformational Analysis: Cyclic Systems-2

    eq

    ax ax

    eq

    ax

    eq

    eq

    ax

    Cyclobutane

    ! = 28

    !Eclipsing torsional strain overridesincreased bond angle strain by puckering.

    !Ring barrier to inversion is 1.45 kcal/mol.

    145-155

    (MM2)

    ! !G = 1 kcal/mol favoring R = Me equatorial

    !1,3 Disubstitution prefers cisdiequatorial totransby 0.58 kcal/mol for di-bromo cmpd.

    !1,2 Disubstitution prefers transdiequatorial tocisby 1.3 kcal/mol for diacid (roughly equivalentto the cyclohexyl analogue.)

    H

    H H

    H

    HH

    H

    H

    HH H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    Cyclopentane

    C2 Half-ChairCsEnvelope

    ! Two lowest energy conformations (10 envelope and 10 half chair conformationsCs favored by only 0.5 kcal/mol) in rapid conformational flux (pseudorotation)which causes the molecule to appear to have a single out-of-plane atom "bulge"which rotates about the ring.

    ! Since there is no "natural" conformation of cyclopentane, the ring conforms tominimize interactions of any substituents present.

    HH

    HH

    CsEnvelope

    H

    H

    H

    H

    HH

    H

    ! A single substituent prefers the equatorial position of the flap of the envelope(barrier ca. 3.4 kcal/mol, R = CH3).

    HH H

    H

    H

    H

    H

    HH

    X

    X

    ! 1,2 Disubstitution preferstrans for steric/torsionalreasons (alkyl groups) anddipole reasons (polar groups).

    CsEnvelope

    X

    ! A carbonyl or methylene prefers the planar position ofthe half-chair (barrier 1.15 kcal/mol for cyclopentanone).

    Me

    Me ! 1,3 Alkyl Disubstitution: Cis-1,3-dimethylcyclopentane 0.5 kcal/mol more stable than trans.

    H

    (MM2)

  • 7/29/2019 06 Conformational Anal 3

    4/13

    Evans, Kim, Breit Chem 206Conformational Analysis: Cyclic Systems-3

    Methylenecyclopentane and Cyclopentene

    Strain trends:

    > >

    ! Decrease in eclipsing strainmore than compensates for the

    increase in angle strain.

    Relative to cyclohexane derivatives, those of cyclopentane prefer an sp2center in the ring to minimize eclipsing interactions.

    !

    "Reactions will proceed in such a manner as to favor the formation or retentionof an exo double bond in the 5-ring and to avoid the formation or retention of

    the exo double bond in the 6-ring systems." Brown, H. C., Brewster, J. H.;Shechter, H. J. Am. Chem. Soc.1954, 76, 467.

    H

    HH

    H OH

    OH

    H

    HH

    H

    k6k6

    k5= 23

    Brown, H. C.; Ichikawa, K. Tetrahedron1957, 1, 221.

    Examples:

    O

    H

    H

    H

    H

    H

    H

    H

    H

    OHk5

    NaBH4

    NaBH4

    O OO O

    hydrolyzes13 times faster than

    O

    OEt

    OO

    OEt

    OH

    95.5:4.5 keto:enol 76:24 enol:keto

    Brown, H. C., Brewster, J. H.; Shechter, H. JACS1954

    , 76, 467.

    Conan, J-Y.; Natat, A.; Priolet, D. Bull. Soc. Chim., Fr.1976, 1935.

  • 7/29/2019 06 Conformational Anal 3

    5/13

    O O OTBSO O

    XO

    Me

    O

    O

    Me

    OX

    MeMe MeMe

    12

    182227

    Me

    Me

    X = CMe2

    "Total Synthesis of the Antifungal Macrolide Antibiotic (+)-Roxaticin," Evans, D. A.; Connell, B. T.

    J. Am. Chem. Soc., 2003, 125, 10899-10905

    O O OTBSO O

    XO

    Me

    O

    O

    Me

    OX12

    182227

    Me

    Me

    PPTS, rt, MeOH.

    OH OH OH OH OH

    HOMe2CH

    Me

    O

    O

    Me

    OH2

    12

    16

    2227

    X = C(CH2)4

    PPTS, rt, MeOH.63%

  • 7/29/2019 06 Conformational Anal 3

    6/13

    3

    1

    7

    55

    71

    3

    HO R

    OH

    O

    OH

    CO2H

    CO2H

    OHOH

    OH

    OCO2HHO

    HO2C

    HO2C

    OH

    ROO

    HO

    H

    Zaragozic Acid C Synthesis

    CH2Cl2:THF78 C

    5

    73

    1

    7

    53

    MgBr

    H

    OCO2

    tBu

    O

    tBuO2C

    O

    OBn

    TBSO Ph

    HO

    OBn

    OTBS Ph

    H

    OCO2

    tBu

    O

    tBuO2C

    3

    7

    51

    91%

    OBn

    OTBS

    tBuO2C

    OOH

    OCO2

    tBu

    O

    tBuO2C

    7

    51

    3

    OBn

    OTBS

    O

    H

    O

    O

    O

    CO2tButBuO2C

    H

    3 steps

    76%

    86%

    3 steps

    Chelate Control

    0:10:1 CH2Cl2:TFA:H2O, 18 h

    1

    7O

    O

    CO2tButBuO2C

    H OO O

    tBuO2C

    OTBS

    O

    Ph

    Me

    2 steps

    70%Me

    OPMB

    BnLi

    5

    O

    O

    Ph

    Me

    O

    O

    CO2tButBuO2C

    H OtBuO2C

    OTBS

    Me

    OR

    Bn

    OH

    4'

    3

    1

    7

    5

    Zaragozic acid C

    O

    O

    Ph

    OAc

    MeO

    H

    OH

    HO2CHO2C

    HOCO2H

    Ph O

    Me

    94%

    R = PMB R = Ac (89%)

    65%

    J. Leighton, J. Barrow

    JACS1994, 116, 12111-12112

  • 7/29/2019 06 Conformational Anal 3

    7/13

  • 7/29/2019 06 Conformational Anal 3

    8/13

  • 7/29/2019 06 Conformational Anal 3

    9/13

  • 7/29/2019 06 Conformational Anal 3

    10/13

    Evans, Breit Chem 206Conformational Analysis: Cyclic Systems-6

    Let's now consider geminal substitution

    !G = A(Ph) A(Me)

    Me

    Ph

    Me

    Ph

    The prediction:

    !G = +2.8 1.7 = +1.1 kcal/mol

    Observed: !G = 0.32 kcal/mol

    Me

    Me

    MeMe

    Let's now consider vicinal substitution

    !G = 1 gauche butane 2A(Me)The prediction:

    !G = +0.88 2(1.74) = +2.6 kcal/mol

    Observed: !G = +2.74 kcal/mol

    If the added gauche butane destabilization in the di-equatorialconformer had not been added, the estimate would have been off.

    Case 1: HH

    H

    H

    OH

    OH

    H MeMe

    The conformer which places the isopropyl group equatorial is much morestrongly preferred than would be suggested by A-Values. This is due toa syn pentane OH/Me interaction.

    H

    Me

    Me

    Case 2:

    H

    H

    HH

    D. Kim & Co-workers, Tetrahedron Lett. 1986, 27, 943.

    diastereoselection 89:11

    EtO EtO

    O

    n-C4H9H

    MeO

    n-C4H9H

    Problem:Can you rationalize the stereochemical outcome of this reaction?

    LiNR2

    MeI

  • 7/29/2019 06 Conformational Anal 3

    11/13

  • 7/29/2019 06 Conformational Anal 3

    12/13

    Evans, Breit Chem 206Conformational Analysis: Bicyclic Ring Systems

    H

    H

    2.4 kcal/mol 0 Relative !G

    rigid

    Decalin Ring System (6/6)

    mobile

    H

    H

    H

    H

    Let's identify the destabilizing gauche butane interactions in the cis isomer

    H

    H

    1

    2

    3

    4

    Gauche-butane interactions

    C1! C2C1! C3C4! C3

    "G(est) = 3(0.88) = 2.64 kcal/mol

    Estimate the energy difference between the two methyl-decalinsshown below.

    Me

    H

    Me

    H

    Hydrindane Ring System (6/5)

    H

    H

    H

    H

    flexible rigid

    !G = 0.5 kcal/mol (at 23 C)!G = 0.0 kcal/mol (at ~200 C)

    ! The turnover to favor the cisfusion results from the entropic preference for theless ordered cisisomer.

    The 5-5 Ring System

    H

    H

    H

    H

    favored

    !G = +6.4 kcal/mol

    H

    H

    HMe

    HH

    H

    H

    HMe

    HH

    R R

    A/B CisA/B Trans

    Rationalize the conformational flexibility of a A/B Transvs. A/B CisSteroid!

    DC

    BA BC D

    A

  • 7/29/2019 06 Conformational Anal 3

    13/13


Recommended