+ All Categories
Home > Documents > 1Gbit - 64M x 16 DDR3 SDRAM

1Gbit - 64M x 16 DDR3 SDRAM

Date post: 09-Jan-2022
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
124
MYX4DDR364M16JT* Revision 1.3 - 10/31/14 *Advanced information. Subject to change without notice. 1 1Gb SDRAM-DDR3 MYX4DDR364M16JT* Form #: CSI-D-685 Document 007 1Gbit - 64M x 16 DDR3 SDRAM Features Tin-lead ball metallurgy V DD =V DDQ = 1.5V ±0.075V 1.5V center-terminated push/pull I/O Differential bidirectional data strobe 8n-bit prefetch architecture Differential clock inputs (CK, CK#) 8 internal banks Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals Programmable CAS READ latency (CL) POSTED CAS ADDITIVE latency (AL) Programmable CAS WRITE latency (CWL) based on t CK Fixed burst length (BL) of 8 and burst chop (BC) of 4 (via the mode register set [MRS]) Selectable BC4 or BL8 on-the-fly (OTF) Self refresh mode T C of 0°C to 95°C 64ms, 8192 cycle refresh at 0°C to 85°C 32ms, 8192 cycle refresh at 85°C to 95°C Table 1: Key Timing Parameters Speed Grade Data Rate (MT/s) Target t RCD- t RP-CL t RCD (ns) t RP (ns) CL (ns) -15E 1333 9-9-9 13.5 *Backward compatible to 1066, CL=7 Table 2: Addressing Parameter 64 Meg x 16 Configuration 8 Meg x 16 x 8 banks Refresh Count 8K Row Address 8K (A[12:0]) Bank Address 8 (BA[2:0]) Column Address 1K (A[9:0]) Page Size 2KB Options Code Configuration: 64 Meg x 16 64M16 FBGA package (Sn63 / Pb37) 96-ball FBGA (8mm x 14mm) JT Timing - cycle time 1.5ns @ CL = 9 (DDR3-1333) -15E Operating temperature Commercial (0°C T C +95°C) None Industrial (-40°C T C +95°C) IT Automotive (-40°C T C +105°C) ET Self refresh temperature (SRT) Automatic self refresh (ASR) Write leveling Multipurpose register Output driver calibration
Transcript
Page 1: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

1

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

1Gbit - 64M x 16 DDR3 SDRAM

Features• Tin-leadballmetallurgy

• VDD=VDDQ=1.5V±0.075V

• 1.5Vcenter-terminatedpush/pullI/O

• Differentialbidirectionaldatastrobe

• 8n-bitprefetcharchitecture

• Differentialclockinputs(CK,CK#)

• 8internalbanks

• Nominalanddynamicon-dietermination(ODT)fordata,strobe,andmasksignals

• ProgrammableCASREADlatency(CL)

• POSTEDCASADDITIVElatency(AL)

• ProgrammableCASWRITElatency(CWL)basedontCK

• Fixedburstlength(BL)of8andburstchop(BC)of4(viathemoderegisterset[MRS])

• SelectableBC4orBL8on-the-fly(OTF)

• Selfrefreshmode

• TCof0°Cto95°C

• 64ms,8192cyclerefreshat0°Cto85°C

• 32ms,8192cyclerefreshat85°Cto95°C

Table 1: Key Timing Parameters

Speed Grade Data Rate (MT/s) Target tRCD-tRP-CL tRCD (ns) tRP (ns) CL (ns)

-15E 1333 9-9-9 13.5

*Backward compatible to 1066, CL=7

Table 2: Addressing

Parameter 64 Meg x 16

Configuration 8 Meg x 16 x 8 banks

Refresh Count 8K

Row Address 8K (A[12:0])

Bank Address 8 (BA[2:0])

Column Address 1K (A[9:0])

Page Size 2KB

Options Code

• Configuration:

• 64Megx16 64M16

• FBGApackage(Sn63/Pb37)

• 96-ballFBGA(8mmx14mm) JT

• Timing-cycletime

• 1.5ns@CL=9(DDR3-1333) -15E

• Operatingtemperature

• Commercial(0°C≤TC≤+95°C) None

• Industrial(-40°C≤TC≤+95°C) IT

• Automotive(-40°C≤TC≤+105°C) ET

• Selfrefreshtemperature(SRT)

• Automaticselfrefresh(ASR)

• Writeleveling

• Multipurposeregister

• Outputdrivercalibration

Page 2: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

2

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Functional DescriptionDDR3SDRAMusesadoubledataratearchitecturetoachievehigh-speedoperation.Thedoubledataratearchitectureisan8n-prefetcharchitecturewithaninterfacedesignedtotransfertwodatawordsperclockcycleattheI/Opins.AsinglereadorwriteoperationfortheDDR3SDRAMeffectivelyconsistsofasingle8n-bit-wide,four-clockcycledatatransferattheinternalDRAM core and eight corresponding n-bit-wide, onehalf-clock-cycledatatransfersattheI/Opins.

The differential data strobe (DQS, DQS#) is transmittedexternally,alongwithdata,foruseindatacaptureattheDDR3SDRAM input receiver. DQS is center-aligned with data forWRITEs.The readdata is transmittedby theDDR3SDRAMandedge-alignedtothedatastrobes.

TheDDR3SDRAMoperatesfromadifferentialclock(CKandCK#).ThecrossingofCKgoingHIGHandCK#goingLOWisreferredtoasthepositiveedgeofCK.Control,command,andaddress signalsare registeredat everypositiveedgeofCK.InputdataisregisteredonthefirstrisingedgeofDQSaftertheWRITEpreamble, andoutput data is referencedon the firstrisingedgeofDQSaftertheREADpreamble.

Read and write accesses to the DDR3 SDRAM are burst-oriented.Accessesstartataselected locationandcontinuefor a programmed number of locations in a programmedsequence. Accesses begin with the registration of anACTIVATE command,which is then followed by aREADorWRITEcommand.TheaddressbitsregisteredcoincidentwiththeACTIVATEcommandareusedtoselectthebankandrowtobeaccessed.Theaddressbits registeredcoincidentwiththeREADorWRITEcommandsareusedtoselectthebankandthestartingcolumnlocationfortheburstaccess.

ThedeviceusesaREADandWRITEBL8andBC4.Anautoprechargefunctionmaybeenabledtoprovideaself-timedrowprechargethatisinitiatedattheendoftheburstaccess.

As with standard DDR SDRAM, the pipelined, multibankarchitectureofDDR3SDRAMallowsforconcurrentoperation,therebyprovidinghighbandwidthbyhidingrowprechargeandactivationtime.

A self refreshmode is provided, alongwith a power-saving,power-downmode.

Industrial TemperatureThe industrial temperature (IT) device requires that the casetemperaturenotexceed–40°Cor95°C.JEDECspecificationsrequiretherefreshratetodoublewhenTCexceeds85°C;thisalsorequiresuseof thehigh-temperatureself refreshoption.Additionally,ODTresistanceandthe input/output impedancemustbederatedwhenTCis<0°Cor>95°C.

General Notes• Thefunctionalityandthetimingspecificationsdiscussed

inthisdatasheetarefortheDLLenablemodeofoperation(normaloperation).

• Throughoutthisdatasheet,variousfiguresandtextrefertoDQsas“DQ.”DQistobeinterpretedasanyandallDQcollectively,unlessspecificallystatedotherwise.

• Theterms“DQS”and“CK”foundthroughoutthisdatasheetaretobeinterpretedasDQS,DQS#andCK,CK#respectively,unlessspecificallystatedotherwise.

• Completefunctionalitymaybedescribedthroughoutthedocument;anypageordiagrammayhavebeensimplifiedtoconveyatopicandmaynotbeinclusiveofallrequirements.

• Anyspecificrequirementtakesprecedenceoverageneralstatement.

• Anyfunctionalitynotspecificallystatedisconsideredundefined,illegal,andnotsupported,andcanresultinunknownoperation.

• RowaddressingisdenotedasA[n:0].Forexample,1Gb:n=12(x16);1Gb:n=13(x4,x8);2Gb:n=13(x16)and2Gb:n=14(x4,x8);4Gb:n=14(x16);and4Gb:n=15(x4,x8).

• DynamicODThasaspecialusecase:whenDDR3devicesarearchitectedforuseinasinglerankmemoryarray,theODTballcanbewiredHIGHratherthanrouted.RefertotheDynamicODTSpecialUseCasesection.

Page 3: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

3

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

General Notes (continued)• Ax16device’sDQbusiscomprisedoftwobytes.If

onlyoneofthebytesneedstobeused,usethelowerbytefordatatransfersandterminatetheupperbyteasnoted:

• ConnectUDQStogroundvia1kΩ*resistor.

• ConnectUDQS#toVDDvia1kΩ*resistor.

• ConnectUDMtoVDDvia1kΩ*resistor.

• ConnectDQ[15:8]individuallytoeitherVSS,VDD,orVREFvia1kΩresistors,*orfloatDQ[15:8].

*IfODT isused,1kΩ resistorshouldbechangedto4xthatoftheselectedODT.

Figure 1: 64 Meg x 16 Functional Block Diagram

Figure 4: 128 Meg x 8 Functional Block Diagram

Bank 5Bank 6

Bank 7

Bank 4

Bank 7

Bank 4Bank 5

Bank 6

14

Row-address

MUX

Controllogic

Column-addresscounter/

latch

Mode registers

10

Co

mm

and

d

eco

de

A[13:0]BA[2:0]

14

Addressregister

17

8,192

I/O gatingDM mask logic

Columndecoder

Bank 0memory

array(16,384 x 128 x 64)

Bank 0row-

addresslatchand

decoder

16,384

Sense amplifiers

Bankcontrol

logic

16

Bank 1Bank 2

Bank 3

14

7

3

3

Refreshcounter

8

64

64

64

DQS, DQS#

Columns 0, 1, and 2

Columns 0, 1, and 2

ZQCL, ZQCS

To ODT/output drivers

READ drivers DQ[7:0]

READFIFOanddataMUX

Data

8

3

Bank 1Bank 2

Bank 3

DM/TDQS(shared pin)

TDQS#

CK, CK#

DQS, DQS#

ZQ CALZQ

RZQ

CK, CK#

RAS#

WE#

CAS#

CS#

ODT

CKE

RESET#

CK, CK#

DLL

DQ[7:0]

DQ8(1 . . . 8)

(1, 2)

sw1 sw2

VDDQ/2

RTT,nom RTT(WR)

sw1 sw2

VDDQ/2

RTT,nom RTT(WR)

sw1 sw2

VDDQ/2

RTT,nom RTT(WR)

BC4 (burst chop)

BC4BC4

WRITE drivers

and input logic

Datainterface

Column 2(select upper or

lower nibble for BC4)

(128x64)

ODTcontrol

VSSQ A12

OTF

OTF

Figure 5: 64 Meg x 16 Functional Block Diagram

Bank 5Bank 6

Bank 7

Bank 4

Bank 7

Bank 4Bank 5

Bank 6

13

Row-address

MUX

Controllogic

Column-addresscounter/

latch

Mode registers

10

Co

mm

and

d

eco

de

A[12:0]BA[2:0]

13

Addressregister

16

(128x128)

16,384

I/O gatingDM mask logic

Columndecoder

Bank 0memory

array(8192 x 128 x 128)

Bank 0row-

addresslatchand

decoder

8,192

Sense amplifiers

Bankcontrollogic

16

Bank 1Bank 2

Bank 3

13

7

3

3

Refreshcounter

16

128

128

128

LDQS, LDQS#, UDQS, UDQS#

Column 0, 1, and 2

Columns 0, 1, and 2

ZQCL, ZQCS

To ODT/output drivers

BC4

READ drivers

DQ[15:0]

READFIFOanddataMUX

Data

16

BC4 (burst chop)

3

Bank 1Bank 2

Bank 3

LDM/UDM

CK, CK#

LDQS, LDQS#

UDQS, UDQS#

ZQ CALZQ

RZQ

ODT

CKE

CK, CK#

RAS#

WE#

CAS#

CS#

RESET#

CK, CK#

DLL

DQ[15:0]

(1 . . . 16)

(1 . . . 4)

(1, 2)

sw1 sw2

VDDQ/2

RTT,nom RTT(WR)

BC4

sw1 sw2

VDDQ/2

RTT,nom RTT(WR)

sw1 sw2

VDDQ/2

RTT,nom RTT(WR)

Column 2(select upper or

lower nibble for BC4)

Datainterface

WRITE drivers

andinputlogic

ODTcontrol

VSSQ A12

OTF

OTF

1Gb: x4, x8, x16 DDR3 SDRAMFunctional Block Diagrams

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 15 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 4: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

4

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 2: 96-Ball FBGA – x16 (Top View)

Figure 8: 96-Ball FBGA – x16 (Top View)

1 2 3 4 6 7 8 95

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

TVSS

VDD

VSS

VSS

NC CS#

BA0

A3

A5

A7

RESET#

NC VSS

VREFDQ VDDQ DQ4

RAS#

CAS#

WE#

BA2

A0

A2

A9

NC

VSSQ

VSSQ

VSSQ VDD VSS

VDDQ DQ2 LDQS

DQ6 LDQS#

VDDQ

VDDQ DQ13 DQ15

DQ11 DQ9

VDDQ UDM

VSS VSSQ DQ0

ODT VDD

VDD

NC

A11

A1

NC

A10/AP ZQ

VREFCA

BA1

A4

A6

A8

CK VSS

DQ7 DQ5 VDDQ

NC

CKE

NC

VSS

VDD

VSS

VDD

VSS

VDD

DQ8

UDQS# DQ14 VSSQ

DQ1 DQ3 VSSQ

VSS VSSQ

UDQS

DQ12 VDDQ VSS

DQ10 VDDQ

VSSQ VDD

LDM VSSQ VDDQ

CK# VDD

A12/BC#

Notes: 1. Ball descriptions listed in Table 5 (page 23) are listed as “x4, x8” if unique; otherwise,x4 and x8 are the same.

2. A comma separates the configuration; a slash defines a selectable function.Example D7 = NF, NF/TDQS#. NF applies to the x4 configuration only. NF/TDQS# appliesto the x8 configuration only—selectable between NF or TDQS# via MRS (symbols are de-fined in Table 5).

1Gb: x4, x8, x16 DDR3 SDRAMBall Assignments and Descriptions

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 18 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. BalldescriptionslistedinTable3(page5)arelistedas“x4,x8”ifunique;otherwise,x4andx8arethesame.

2. Acommaseparatestheconfiguration;aslashdefinesaselectablefunction.ExampleD7=NF,NF/TDQS#.NFappliestothex4configurationonly.NF/TDQS#appliestothex8configurationonly—selectablebetweenNForTDQS#viaMRS(symbolsaredefinedinTable3).

Page 5: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

5

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 3: 96-Ball FBGA – x16 Ball Descriptions

Symbol Type Description

A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10/AP, A11, A12/BC#

Input

Address inputs: Provide the row address for ACTIVATE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command. Address inputs are referenced to VREFCA. A12/BC#: When enabled in the mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop (on-the-fly) ill be performed (HIGH = BL8 or no burst chop, LOW = BC4). See Table 20 (page 32).

BA0, BA1, BA2 InputBank address inputs: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD MODE command. BA[2:0] are referenced to VREFCA.

CK, CK# InputClock: CK and CK# are differential clock inputs. All control and address input signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced to the crossings of CK and CK#.

CKE Input

Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM. The specific circuitry that is enabled/disabled is dependent upon the DDR3 SDRAM configuration and operating mode. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle),or active power-down (row active in any bank). CKE is synchronous for power-down entry and exit and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, RESET#, and ODT) are disabled during POWER-DOWN. Input buffers (excluding CKE and RESET#) are disabled during SELF REFRESH. CKE is referenced to VREFCA.

CS# InputChip select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with multiple ranks. CS# is considered part of the command code. CS# is referenced to VREFCA.

LDM InputInput data mask: LDM is a lower-byte, input mask signal for write data. Lower-byte input data is masked when LDM is sampled HIGH along with the input data during a write access. Although the LDM ball is input-only, the LDM loading is designed to match that of the DQ and DQS balls. LDM is referenced to VREFDQ.

ODT Input

On-die termination: ODT enables (registered HIGH) and disables (registered LOW) termination resistance internal to the DDR3 SDRAM. When enabled in normal operation, ODT is only applied to each of the following balls: DQ[15:0], LDQS, LDQS#, UDQS, UDQS#, LDM, and UDM for the x16; DQ0[7:0], DQS, DQS#, DM/TDQS, and NF/TDQS# (when TDQS is enabled) for the x8; DQ[3:0], DQS, DQS#, and DM for the x4. The ODT input is ignored if disabled via the LOAD MODE command. ODT is referenced to VREFCA.

RAS#, CAS#, WE# Input Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being entered and are referenced to VREFCA.

RESET# InputReset: RESET# is an active LOW CMOS input referenced to VSS. The RESET# input receiver is a CMOS input defined as a rail-to-rail signal with DC HIGH ≥ 0.8 × VDD and DC LOW ≤ 0.2 × VDDQ. RESET# assertion and desertion are asynchronous.

UDM InputInput data mask: UDM is an upper-byte, input mask signal for write data. Upper byte input data is masked when UDM is sampled HIGH along with that input data during a WRITE access. Although the UDM ball is input-only, the UDM loading is designed to match that of the DQ and DQS balls. UDM is referenced to VREFDQ.

DQ0, DQ1, DQ2, DQ3, DQ4, DQ5, DQ6, DQ7

I/O Data input/output: Lower byte of bidirectional data bus for the x16 configuration. DQ[7:0] are referenced to VREFDQ.

DQ8, DQ9, DQ10, DQ11, DQ12, DQ13, DQ14, DQ15

I/O Data input/output: Upper byte of bidirectional data bus for the x16 configuration. DQ[15:8] are referenced to VREFDQ.

LDQS, LDQS# I/O Lower byte data strobe: Output with read data. Edge-aligned with read data. Input with write data. Center-aligned to write data.

UDQS, UDQS# I/OUpper byte data strobe: Output with read data. Edge-aligned with read data. Input with write data. DQS is center-aligned to write data.

Page 6: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

6

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 3: 96-Ball FBGA – x16 Ball Descriptions (continued)

Electrical Specifications - Absolute Ratings

Stresses greater than those listed in Table 4 may causepermanentdamagetothedevice.Thisisastressratingonly,and functionaloperationof thedeviceat theseoranyotherconditionsoutsidethoseindicatedintheoperationalsections

of this specification is not implied. Exposure to absolutemaximumratingconditionsforextendedperiodsmayadverselyaffectreliability.

Table 4: Absolute Maximum Ratings

Symbol Parameter Min Max Unit Notes

VDD VDD supply voltage relative to VSS -0.4 1.975 V 1

VDDQ VDDQ supply voltage relative to VSSQ -0.4 1.975 V

VIN, VOUT Voltage on any ball relative to VSS -0.4 1.975 V

TC Operating case temperature – Commercial 0 95 °C 2, 3

Operating case temperature – Industrial -40 95 °C 2, 3

TSTG Storage temperature -55 150 °C

Notes:

1. VDDandVDDQmustbewithin300mVofeachotheratalltimes,andVREFmustnotbegreaterthan0.6×VDDQ.WhenVDDandVDDQare<500mV,VREFcanbe≤300mV.

2. MAXoperatingcasetemperature.TCismeasuredinthecenterofthepackage.

3. DevicefunctionalityisnotguaranteediftheDRAMdeviceexceedsthemaximumTCduringoperation.

Symbol Type Description

VDD Supply Power supply: 1.5V ±0.075V.

VDDQ Supply DQ power supply: 1.5V ±0.075V. Isolated on the device for improved noise immunity.

VREFCA SupplyReference voltage for control, command, and address: VREFCA must be maintained at all times (including self refresh) for proper device operation.

VREFDQ Supply Reference voltage for data: VREFDQ must be maintained at all times (excluding self refresh) for proper device operation.

VSS Supply Ground.

VSSQ Supply DQ ground: Isolated on the device for improved noise immunity.

ZQ Reference External reference ball for output drive calibration: This ball is tied to an external 240Ω resistor (RZQ), which is tied to VSSQ.

NC – No connect: These balls should be left unconnected (the ball has no connection to the DRAM or to other balls).

Page 7: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

7

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 5: Thermal Characteristics

Description Value Unit Symbol Notes

Operating case temperature – Commercial

0 to +85 °C TC 1, 2, 3

0 to +95 °C TC 1, 2, 3, 4

Operating case temperature – Industrial

-40 to +85 °C TC 1, 2, 3

-40 to +95 °C TC 1, 2, 3, 4

Junction-to-case (TOP) 96-ball (JT) TBD °C/W ΘJC 5

Notes:

1. MAXoperatingcasetemperature.TCismeasuredinthecenterofthepackage.

2. AthermalsolutionmustbedesignedtoensuretheDRAMdevicedoesnotexceedthemaximumTCduringoperation.

3. DevicefunctionalityisnotguaranteediftheDRAMdeviceexceedsthemaximumTCduringoperation.

4. IfTCexceeds85°C,theDRAMmustberefreshedexternallyat2xrefresh,whichisa3.9μsintervalrefreshrate.TheuseofSRTorASR(ifavailable)mustbeenabled.

5. Thethermalresistancedataisbasedoffofanumberofsamplesfrommultiplelotsandshouldbeviewedasatypicalnumber.

Page 8: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

8

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 6: DDR3L Input/Output Capacitance

Note1appliestotheentiretable,

Capacitance Parameters SymbolDDR3L-1333

Unit NotesMin Max

CK and CK# CCK 0.8 1.4 pF

ΔC: CK to CK# CDCK 0 0.15 pF

Single-end I/O: DQ, DM CIO 1.5 2.5 pF 2

Differential I/O: DQS, DQS#, TDQS, TDQS# CIO 1.5 2.5 pF 3

ΔC: DQS to DQS#, TDQS, TDQS# CDDQS 0 0.15 pF 3

ΔC: DQ to DQS CDIO –0.5 0.3 pF 4

Inputs (CTRL, CMD, ADDR) CI 0.75 1.3 pF 5

ΔC: CTRL to CK CDI_CTRL –0.4 0.2 pF 6

ΔC: CMD_ADDR to CK CDI_CMD_ADDR –0.4 0.4 pF 7

ZQ pin capacitance CZQ – 3.0 pF

Reset pin capacitance CRE – 3.0 pF

Notes:

1. VDD=1.5V±0.075mV,VDDQ=VDD,VREF=VSS,f=100MHz,TC=25°C.VOUT(DC)=0.5×VDDQ,VOUT=0.1V(peak-to-peak).

2. DMinputisgroupedwithI/Opins,reflectingthefactthattheyarematchedinloading.

3. IncludesTDQS,TDQS#.CDDQSisforDQSvs.DQS#andTDQSvs.TDQS#separately.

4. CDIO=CIO(DQ)-0.5×(CIO(DQS)+CIO(DQS#)).

5. ExcludesCK,CK#;CTRL=ODT,CS#,andCKE;CMD=RAS#,CAS#,andWE#;ADDR=A[n:0],BA[2:0].

6. CDI_CTRL=CI(CTRL)-0.5×(CCK(CK)+CCK(CK#)).

7. CDI_CMD_ADDR=CI(CMD_ADDR)-0.5×(CCK(CK)+CCK(CK#)).

Page 9: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

9

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Electrical Characteristics - IDD Specifications and Conditions

Within the following IDD measurement tables, the followingdefinitionsandconditionsareused,unlessstatedotherwise:

• LOW:VIN≤VIL(AC)max;HIGH:VIN≥VIH(AC)min.

• Midlevel:InputsareVREF=VDD/2.

• RONsettoRZQ/7(34Ω)

• RTT,nomsettoRZQ/6(40Ω)

• RTT(WR)settoRZQ/2(120Ω)

• QOFFisenabledinMR1.

• ODTisenabledinMR1(RTT,nom)andMR2(RTT(WR)).

• TDQSisdisabledinMR1.

• ExternalDQ/DQS/DMloadresistoris25ΩtoVDDQ/2.

• BurstlengthsareBL8fixed.

• ALequals0(exceptinIDD7).

• IDDspecificationsaretestedafterthedeviceisproperlyinitialized.

• InputslewrateisspecifiedbyACparametrictestconditions.

• OptionalASRisdisabled.

• Readbursttypeusesnibblesequential(MR0[3]=0).

• Looppatternsmustbeexecutedatleastoncebeforecurrentmeasurementsbegin.

Table 7: DDR3L Timing Parameters Used for IDD Measurements – Clock Units

IDD Parameter

DDR3L-1333

Unit-15

9-9-9

tCK (MIN) IDD 1.5 ns

CL IDD 9 CK

tRCD (MIN) IDD 9 CK

tRC (MIN) IDD 33 CK

tRAS (MIN) IDD 24 CK

tRP (MIN) 9 CK

tFAW x16 30 CK

tRRD IDD x16 5 CK

tRFC 1Gb 74 CK

Page 10: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

10

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Electrical Characteristics - IDD Specifications

Table 8: IDD Maximum Limits

Speed BinDDR3L-1033 Units Notes

IDD Width

IDD0 x16 80 mA 1, 2

IDD1 x16 110 mA 1, 2

IDD2P0 (Slow) All 12 mA 1, 2

IDD2P1 (Fast) All 30 mA 1, 2

IDD2Q All 35 mA 1, 2

IDD2N All 40 mA 1, 2

IDD2NT x16 60 mA 1, 2

IDD3P All 30 mA 1, 2

IDD3N x16 45 mA 1, 2

IDD4R x16 165 mA 1, 2

IDD4W x16 180 mA 1, 2

IDD5B All 165 mA 1, 2

IDD6 All 8 mA 1, 2, 3,

IDD6ET All 10 mA 1, 4

IDD7 x16 265 mA 1, 2

IDD8 All IDD2P0 + 2mA mA 1, 2

Notes:

1. TC=85°C;SRTandASRaredisabled.

2. EnablingASRcouldincreaseIDDxbyuptoanadditional2mA.

3. RestrictedtoTC(MAX)=85°C.

4. TC=85°C;ASRandODTaredisabled;SRTisenabled.

5. TheIDDvaluesmustbederated(increased)onIT-optionandAT-optiondeviceswhenoperatedoutsideoftherange0°C≤TC≤+85°C:

6.

A. WhenTC<0°C:IDD2P0,IDD2P1andIDD3Pmustbederatedby4%;IDD4RandIDD5Wmustbederatedby2%;andIDD6andIDD7mustbederatedby7%.

B. WhenTC>85°C:IDD0,IDD1,IDD2N,IDD2NT,IDD2Q,IDD3N,IDD3P,IDD4R,IDD4W,andIDD5Bmustbederatedby2%;IDD2Pxmustbederatedby30%.

Page 11: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

11

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Electrical Specifications – DC and AC

DC Operating Conditions

Table 9: DC Electrical Characteristics and Operating Conditions

AllvoltagesreferencedtoVSS.

Parameter/Condition Symbol Min Nom Max Unit Notes

Supply voltage VDD

1.425 1.5 1.575 V 1, 2

I/O Supply voltage VDDQ

Input leakage currentAny input 0V ≤ VIN ≤ VDD, VREF pin 0V ≤ VIN ≤ 1.1V (all other pins not under test = 0V)

II -2 - 2 µA -

VREF supply leakage currentVREFDQ = VDD/2 or VREFCA = VDD/2 (all other pins not under test = 0V)

IVREF -1 - 1 µA 4

Notes:

1. VDDandVDDQmusttrackoneanother.VDDQmustbe≤VDD.VSS=VSSQ.

2. VDDandVDDQmayincludeACnoiseof±50mV(250kHzto20MHz)inadditiontotheDC(0Hzto250kHz)specifications.VDDandVDDQmustbeatsamelevelforvalidACtimingparameters.

3. VREF(seeTable10onpage12).

4. Theminimumlimitrequirementisfortestingpurposes.TheleakagecurrentontheVREFpinshouldbeminimal.

Page 12: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

12

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Input Operating Conditions

Table 10: DC Electrical Characteristics and Input Conditions

AllvoltagesreferencedtoVSS.

Parameter/Condition Symbol Min Nom Max Unit Notes

VIN low; DC/commands/address busses VIL VSS NA - V

VIN high; DC/commands/address busses VIH - NA VDD V

Input reference voltage command/address bus VREFCA(DC) 0.49 × VDD 0.5 × VDD 0.51 × VDD V 1, 2

I/O reference voltage DQ bus VREFDQ(DC) 0.49 × VDD 0.5 × VDD 0.51 × VDD V 2, 3

I/O reference voltage DQ bus in SELF REFRESH VREFDQ(SR) VSS 0.5 × VDD VDD V 4

Command/address termination voltage (system level, not direct DRAM input) VTT - 0.5 × VDDQ - V 5

Notes:

1. VREFCA(DC)isexpectedtobeapproximately0.5×VDDandtotrackvariationsintheDClevel.Externallygeneratedpeaknoise(noncommonmode)onVREFCAmaynotexceed±1%×VDDaroundtheVREFCA(DC)value.Peak-to-peakACnoiseonVREFCAshouldnotexceed±2%ofVREFCA(DC).

2. DCvaluesaredeterminedtobelessthan20MHzinfrequency.DRAMmustmeetspecificationsiftheDRAMinducesadditionalACnoisegreaterthan20MHzinfrequency.

3. VREFDQ(DC)isexpectedtobeapproximately0.5×VDDandtotrackvariationsintheDClevel.Externallygeneratedpeaknoise(noncommonmode)onVREFDQmaynotexceed±1%×VDDaroundtheVREFDQ(DC)value.Peak-to-peakACnoiseonVREFDQshouldnotexceed±2%ofVREFDQ(DC).

4. VREFDQ(DC)maytransitiontoVREFDQ(SR)andbacktoVREFDQ(DC)wheninSELFREFRESH,withinrestrictionsoutlinedintheSELFREFRESHsection.

5. VTTisnotapplieddirectlytothedevice.VTTisasystemsupplyforsignalterminationresistors.Minimumandmaximumvaluesaresystem-dependent.

Page 13: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

13

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 11: Differential Input Operating Conditions (CK, CK# and DQS, DQS#)

Parameter/Condition Symbol Min Max Units Notes

Differential input logic high – slew VIH,diff 200 NA mV 4

Differential input logic low – slew VIL,diff NA -200 mV 4

Differential input logic high VIH,diff(AC) 2 × (VIH(AC) - VREF) VDD/VDDQ mV 5

Differential input logic low VIL,diff(AC) VSS/VSSQ 2 × (VIL(AC) - VREF) mV 6

Differential input crossing voltage relative to VDD/2 for DQS, DQS#; CK, CK# VIX VREF(DC) - 150 VREF(DC) + 150 mV 4, 7

Differential input crossing voltage relative to VDD/2 for CK, CK# VIX (175) VREF(DC) - 175 VREF(DC) + 175 mV 4, 7, 8

Single-ended high level for strobesVSEH

VDDQ/2 + 175 VDDQ mV 5

Single-ended high level for CK, CK# VDD/2 + 175 VDD mV 5

Single-ended low level for strobesVSEL

VSSQ VDDQ/2 - 175 mV 6

Single-ended low level for CK, CK# VSS VDD/2 - 175 mV 6

Notes:

1. ClockisreferencedtoVDDandVSS.DatastrobeisreferencedtoVDDQandVSSQ.

2. ReferenceisVREFCA(DC)forclockandVREFDQ(DC)forstrobe.

3. Differentialinputslewrate=2V/ns

4. Definesslewratereferencepoints,relativetoinputcrossingvoltages.

5. MinimumDClimitisrelativetosingle-endedsignals;overshootspecificationsareapplicable.

6. MaximumDClimitisrelativetosingle-endedsignals;undershootspecificationsareapplicable.

7. ThetypicalvalueofVIX(AC)isexpectedtobeabout0.5×VDDofthetransmittingdevice,andVIX(AC)isexpectedtotrackvariationsinVDD.VIX(AC)indicatesthevoltageatwhichdifferentialinputsignalsmustcross.

8. TheVIXextendedrange(±175mV)isallowedonlyfortheclock;thisVIXextendedrangeisonlyallowedwhenthefollowingconditionsaremet:Thesingle-endedinputsignalsaremonotonic,havethesingle-endedswingVSEL,VSEHofatleastVDD/2±250mV,andthedifferentialslewrateofCK,CK#isgreaterthan3V/ns.

9. VIXmustprovide25mV(single-ended)ofthevoltagesseparation.

Page 14: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

14

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 15: Input Signal

0.575V

0.0V

0.650V

0.720V0.735V0.750V0.765V0.780V

0.850V

0.925V

VIL(AC)

VIL(DC)

VREF - AC noiseVREF - DC error

VREF + DC errorVREF + AC noise

VIH(DC)

VIH(AC)

1.50V

1.90V

–0.40V

VDDQ

VDDQ + 0.4V narrowpulse width

VSS - 0.4V narrowpulse width

VSS

0.575V

0.650V

0.720V0.735V0.750V0.765V0.780V

0.850V

0.925V

Minimum VIL and VIH levels

VIH(DC)

VIH(AC)

VIL(AC)

VIL(DC)

VIL and VIH levels with ringback

Note: 1. Numbers in diagrams reflect nominal values.

1Gb: x4, x8, x16 DDR3 SDRAMElectrical Specifications – DC and AC

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 49 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 3: Input Signal

Page 15: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

15

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

AC Overshoot/Undershoot Specification

Table 12: Control and Address Pins

Parameter DDR3L-1333

Maximum peak amplitude allowed for overshoot area (see Figure 4) 0.4V

Maximum peak amplitude allowed for undershoot area (see Figure 5) 0.4V

Maximum overshoot area above VDD (see Figure 4) 0.4 Vns

Maximum undershoot area below VSS (see Figure 5) 0.4 Vns

Table 13: lock, Data, Strobe, and Mask Pins

Parameter DDR3L-1333

Maximum peak amplitude allowed for overshoot area (see Figure 4) 0.4V

Maximum peak amplitude allowed for undershoot area (see Figure 5) 0.4V

Maximum overshoot area above VDD/VDDQ (see Figure 4) 0.15 Vns

Maximum undershoot area below VSS/VSSQ (see Figure 5) 0.15 Vns

Figure 4: Overshoot

AC Overshoot/Undershoot Specification

Table 25: Control and Address Pins

Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 DDR3-2133

Maximum peak amplitude al-lowed for overshoot area(see Figure 16)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum peak amplitude al-lowed for undershoot area(see Figure 17)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum overshoot area aboveVDD (see Figure 16)

0.67 Vns 0.5 Vns 0.4 Vns 0.33 Vns 0.28 Vns 0.25 Vns

Maximum undershoot area be-low VSS (see Figure 17)

0.67 Vns 0.5 Vns 0.4 Vns 0.33 Vns 0.28 Vns 0.25 Vns

Table 26: Clock, Data, Strobe, and Mask Pins

Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 DDR3-2133

Maximum peak amplitude al-lowed for overshoot area(see Figure 16)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum peak amplitude al-lowed for undershoot area(see Figure 17)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum overshoot area aboveVDD/VDDQ (see Figure 16)

0.25 Vns 0.19 Vns 0.15 Vns 0.13 Vns 0.11 Vns 0.10 Vns

Maximum undershoot area be-low VSS/VSSQ (see Figure 17)

0.25 Vns 0.19 Vns 0.15 Vns 0.13 Vns 0.11 Vns 0.10 Vns

Figure 16: Overshoot

Maximum amplitudeOvershoot area

VDD/VDDQ

Time (ns)

Volts (V)

Figure 17: Undershoot

Maximum amplitude

Undershoot area

VSS/VSSQ

Time (ns)

Volts (V)

1Gb: x4, x8, x16 DDR3 SDRAMElectrical Specifications – DC and AC

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 50 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

AC Overshoot/Undershoot Specification

Table 25: Control and Address Pins

Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 DDR3-2133

Maximum peak amplitude al-lowed for overshoot area(see Figure 16)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum peak amplitude al-lowed for undershoot area(see Figure 17)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum overshoot area aboveVDD (see Figure 16)

0.67 Vns 0.5 Vns 0.4 Vns 0.33 Vns 0.28 Vns 0.25 Vns

Maximum undershoot area be-low VSS (see Figure 17)

0.67 Vns 0.5 Vns 0.4 Vns 0.33 Vns 0.28 Vns 0.25 Vns

Table 26: Clock, Data, Strobe, and Mask Pins

Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 DDR3-2133

Maximum peak amplitude al-lowed for overshoot area(see Figure 16)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum peak amplitude al-lowed for undershoot area(see Figure 17)

0.4V 0.4V 0.4V 0.4V 0.4V 0.4V

Maximum overshoot area aboveVDD/VDDQ (see Figure 16)

0.25 Vns 0.19 Vns 0.15 Vns 0.13 Vns 0.11 Vns 0.10 Vns

Maximum undershoot area be-low VSS/VSSQ (see Figure 17)

0.25 Vns 0.19 Vns 0.15 Vns 0.13 Vns 0.11 Vns 0.10 Vns

Figure 16: Overshoot

Maximum amplitudeOvershoot area

VDD/VDDQ

Time (ns)

Volts (V)

Figure 17: Undershoot

Maximum amplitude

Undershoot area

VSS/VSSQ

Time (ns)

Volts (V)

1Gb: x4, x8, x16 DDR3 SDRAMElectrical Specifications – DC and AC

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 50 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 5: Undershoot

Page 16: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

16

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 6: Definition of Differential AC-Swing and tDVACFigure 20: Definition of Differential AC-Swing and tDVAC

VIH,diff(AC)min

0.0

VIL,diff,max

tDVAC

VIH,diff,min

VIL,diff(AC)max

Half cycle tDVAC

CK - CK#DQS - DQS#

Table 28: Allowed Time Before Ringback (tDVAC) for CK - CK# and DQS -DQS#

Slew Rate (V/ns)

tDVAC (ps) at |VIH,diff(AC) to VIL,diff(AC)|

350mV 300mV

>4.0 75 175

4.0 57 170

3.0 50 167

2.0 38 163

1.9 34 162

1.6 29 161

1.4 22 159

1.2 13 155

1.0 0 150

<1.0 0 150

Note: 1. Below VIL(AC)

1Gb: x4, x8, x16 DDR3 SDRAMElectrical Specifications – DC and AC

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 53 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Table 14: Minimum Required Time tDVAC for CK/CK#, DQS/DQS# Differential for AC Ringback

Slew Rate (V/ns)tDVAC (ps) at |VIH,diff(AC) to VIL,diff(AC)|

320mV 300mV

>4.0 75 175

4.0 57 170

3.0 50 167

2.0 38 163

1.9 34 162

1.6 29 161

1.4 22 159

1.2 13 155

1.0 0 150

<1.0 0 150

Note:

1. BelowVIL(AC)

Page 17: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

17

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

ODT Characteristics

ODT CharacteristicsThe ODT effective resistance RTT is defined by MR1[9, 6, and 2]. ODT is applied to theDQ, DM, DQS, DQS#, and TDQS, TDQS# balls (x8 devices only). The ODT target valuesand a functional representation are listed in Table 31 and Table 32 (page 58). The indi-vidual pull-up and pull-down resistors (RTT(PU) and RTT(PD)) are defined as follows:

• RTT(PU) = (VDDQ - VOUT)/|IOUT|, under the condition that RTT(PD) is turned off• RTT(PD) = (VOUT)/|IOUT|, under the condition that RTT(PU) is turned off

Figure 23: ODT Levels and I-V Characteristics

RTT(PU)

RTT(PD)

ODT

Chip in termination mode

VDDQ

DQ

VSSQ

IOUT = IPD - IPU

IPU

IPD

IOUT

VOUT

Toothercircuitrysuch as RCV, . . .

Table 31: On-Die Termination DC Electrical Characteristics

Parameter/Condition Symbol Min Nom Max Unit Notes

RTT effective impedance RTT(EFF) See Table 32 (page 58) 1, 2

Deviation of VM with respect toVDDQ/2

ΔVM –5 5 % 1, 2, 3

Notes: 1. Tolerance limits are applicable after proper ZQ calibration has been performed at astable temperature and voltage (VDDQ = VDD, VSSQ = VSS). Refer to ODT Sensitivity(page 59) if either the temperature or voltage changes after calibration.

2. Measurement definition for RTT: Apply VIH(AC) to pin under test and measure currentI[VIH(AC)], then apply VIL(AC) to pin under test and measure current I[VIL(AC)]:

RTT = VIH(AC) - VIL(AC)

I(VIH(AC)) - I(VIL(AC))

3. Measure voltage (VM) at the tested pin with no load:

VM = – 12 × VMVDDQ

× 100

4. For IT and AT devices, the minimum values are derated by 6% when the device operatesbetween –40°C and 0°C (TC).

1Gb: x4, x8, x16 DDR3 SDRAMODT Characteristics

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 57 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Table 15: On-Die Termination DC Electrical Characteristics

Parameter/Condition Symbol Min Nom Max Unit Notes

RTT effective impedance RTT(EFF) See Table 16 (page 18) 1, 2

Deviation of VM with respect to VDDQ/2 ΔVM -5 - 5 % 1, 2, 3

3. Measurevoltage(VM)atthetestedpinwithnoload:

Figure 7: ODT Levels and I-V Characteristics

RTT=VIH(AC)-VIL(AC)

I(VIH(AC))-I(VIL(AC))

ΔVM= x100-1)(2xVMVDDQ

4. ForITdevices,theminimumvaluesarederatedby6%whenthedeviceoperatesbetween-40°Cand0°C(TC).

TheODTeffectiveresistanceRTTisdefinedbyMR1[9,6,and2].ODT isapplied to theDQ,DM,DQS,DQS#,andTDQS,TDQS#balls (x8devicesonly).TheODTtargetvaluesandafunctional representationare listed inTable15andTable16(page 18). The individual pull-up and pull-down resistors(RTT(PU)andRTT(PD))aredefinedasfollows:

• RTT(PU)=(VDDQ-VOUT)/|IOUT|,undertheconditionthatRTT(PD)isturnedoff

• RTT(PD)=(VOUT)/|IOUT|,undertheconditionthatRTT(PU)isturnedoff

Notes:

1. TolerancelimitsareapplicableafterproperZQcalibrationhasbeenperformedatastabletemperatureandvoltage(VDDQ=VDD,VSSQ=VSS).

2. MeasurementdefinitionforRTT:ApplyVIH(AC)topinundertestandmeasurecurrentI[VIH(AC)],thenapplyVIL(AC)topinundertestandmeasurecurrentI[VIL(AC)]:

Page 18: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

18

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

1.35V ODT Resistors

Table 16 provides an overview of the ODT DC electricalcharacteristics. The values provided are not specificationrequirements;however,theycanbeusedasdesignguidelinestoindicatewhatRTTistargetedtoprovide:

• RTT120ΩismadeupofRTT120(PD240)andRTT120(PU240)

• RTT60ΩismadeupofRTT60(PD120)andRTT60(PU120)

• RTT40ΩismadeupofRTT40(PD80)andRTT40(PU80)

• RTT30ΩismadeupofRTT30(PD60)andRTT30(PU60)

• RTT20ΩismadeupofRTT20(PD40)andRTT20(PU40)

Table 16: RTT Effective Impedance

MR1 [9, 6, 2] RTT Resistor VOUT Min Nom Max Units

0, 1, 0120Ω

RTT120(PD240)

0.2 × VDDQ 0.6 1.0 1.1 RZQ/1

0.5 × VDDQ 0.9 1.0 1.1 RZQ/1

0.8 × VDDQ 0.9 1.0 1.4 RZQ/1

RTT120(PU240)

0.2 × VDDQ 0.9 1.0 1.4 RZQ/1

0.5 × VDDQ 0.9 1.0 1.1 RZQ/1

0.8 × VDDQ 0.6 1.0 1.1 RZQ/1

120Ω VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/2

0, 0, 160Ω

RTT60(PD120)

0.2 × VDDQ 0.6 1.0 1.1 RZQ/2

0.5 × VDDQ 0.9 1.0 1.1 RZQ/2

0.8 × VDDQ 0.9 1.0 1.4 RZQ/2

RTT60(PU120)

0.2 × VDDQ 0.9 1.0 1.4 RZQ/2

0.5 × VDDQ 0.9 1.0 1.1 RZQ/2

0.8 × VDDQ 0.6 1.0 1.1 RZQ/2

60Ω VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/4

Page 19: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

19

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

MR1 [9, 6, 2] RTT Resistor VOUT Min Nom Max Units

0, 1, 140Ω

RTT40(PD80)

0.2 × VDDQ 0.6 1.0 1.1 RZQ/3

0.5 × VDDQ 0.9 1.0 1.1 RZQ/3

0.8 × VDDQ 0.9 1.0 1.4 RZQ/3

RTT40(PU80)

0.2 × VDDQ 0.9 1.0 1.4 RZQ/3

0.5 × VDDQ 0.9 1.0 1.1 RZQ/3

0.8 × VDDQ 0.6 1.0 1.1 RZQ/3

40Ω VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/6

1, 0, 130Ω

RTT30(PD60)

0.2 × VDDQ 0.6 1.0 1.1 RZQ/4

0.5 × VDDQ 0.9 1.0 1.1 RZQ/4

0.8 × VDDQ 0.9 1.0 1.4 RZQ/4

RTT30(PU60)

0.2 × VDDQ 0.9 1.0 1.4 RZQ/4

0.5 × VDDQ 0.9 1.0 1.1 RZQ/4

0.8 × VDDQ 0.6 1.0 1.1 RZQ/4

30Ω VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/8

1, 0, 020Ω

RTT20(PD40)

0.2 × VDDQ 0.6 1.0 1.1 RZQ/6

0.5 × VDDQ 0.9 1.0 1.1 RZQ/6

0.8 × VDDQ 0.9 1.0 1.4 RZQ/6

RTT20(PU40)

0.2 × VDDQ 0.9 1.0 1.4 RZQ/6

0.5 × VDDQ 0.9 1.0 1.1 RZQ/6

0.8 × VDDQ 0.6 1.0 1.1 RZQ/6

20Ω VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/12

Table 16: RTT Effective Impedance (continued)

Page 20: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

20

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Output Driver ImpedanceTheoutputdriver impedance isselectedbyMR1[5,1]duringinitialization. The selected value is able tomaintain the tighttolerances specified if proper ZQ calibration is performed.Outputspecificationsrefertothedefaultoutputdriverunlessspecificallystatedotherwise.Afunctionalrepresentationoftheoutput buffer is shown below. The output driver impedanceRONisdefinedbythevalueoftheexternalreferenceresistorRZQasfollows:

• RON,x=RZQ/y(withRZQ=240Ω±1%;x=34Ωor40Ωwithy=7or6,respectively)

The individual pull-up and pull-down resistors RON(PU) andRON(PD)aredefinedasfollows:

• RON(PU)=(VDDQ-VOUT)/|IOUT|,whenRON(PD)isturnedoff

• RON(PD)=(VOUT)/|IOUT|,whenRON(PU)isturnedoff

Figure 8: Output Driver

Output Driver ImpedanceThe output driver impedance is selected by MR1[5,1] during initialization. The selectedvalue is able to maintain the tight tolerances specified if proper ZQ calibration is per-formed. Output specifications refer to the default output driver unless specifically sta-ted otherwise. A functional representation of the output buffer is shown below. The out-put driver impedance RON is defined by the value of the external reference resistor RZQas follows:

• RON,x = RZQ/y (with RZQ = 240Ω x Ω or 40Ω with y = 7 or 6, respectively)

The individual pull-up and pull-down resistors RON(PU) and RON(PD) are defined as fol-lows:

• RON(PU) = (VDDQ - VOUT)/|IOUT|, when RON(PD) is turned off• RON(PD) = (VOUT)/|IOUT|, when RON(PU) is turned off

Figure 28: Output Driver

RON(PU)

RON(PD)

Output driver

Toothercircuitrysuch asRCV, . . .

Chip in drive mode

VDDQ

VSSQ

IPU

IPD

IOUT

VOUT

DQ

1Gb: x4, x8, x16 DDR3 SDRAMOutput Driver Impedance

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 63 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 21: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

21

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

MMPUPD= x100RON(PU)-RON(PD)

RON,nom

34 Ohm Output Driver Impedance

The34Ωdriver (MR1[5,1]=01) is thedefaultdriver.Unlessotherwise stated, all timings and specifications listed hereinapply to the 34Ω driver only. Its impedance RON is definedbythevalueoftheexternalreferenceresistorRZQasfollows:RON34 = RZQ/7 (with nominal RZQ = 240Ω ±1%) and isactually34.3Ω±1%

Table 17: 34 Ohm Driver Impedance Characteristics

MR1 [5, 1] RTT Resistor VOUT Min Nom Max Units Notes

0, 1 34.3Ω

RON,34PD

0.2 × VDDQ 0.6 1.0 1.1 RZQ/7

0.5 × VDDQ 0.9 1.0 1.1 RZQ/7

0.8 × VDDQ 0.9 1.0 1.4 RZQ/7

RON,34PU

0.2 × VDDQ 0.9 1.0 1.4 RZQ/7

0.5 × VDDQ 0.9 1.0 1.1 RZQ/7

0.8 × VDDQ 0.6 1.0 1.1 RZQ/7

Pull-up/pull-down mismatch (MMPUPD) 0.5 × VDDQ -10 NA 10 % 2

Notes:

1. TolerancelimitsassumeRZQof240Ω±1%andareapplicableafterproperZQcalibrationhasbeenperformedatastabletemperatureandvoltage:VDDQ=VDD;VSSQ=VSS).

2. Measurementdefinitionformismatchbetweenpull-upandpull-down(MMPUPD).MeasurebothRON(PU)andRON(PD)at0.5×VDDQ:

3. ForITdevices,theminimumvaluesarederatedby6%whenthedeviceoperatesbetween–40°Cand0°C(TC).Alargermaximumlimitwillresultinslightlylowerminimumcurrents.

Page 22: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

22

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 18: DDR3-1333 Speed Bins

DDR3L-1333 Speed Bin -151

Units NotesCL-tRCD-tRP 9-9-9

Parameter Symbol Min Max

Internal READ command to first data tAA 13.5 – ns

ACTIVATE to internal READ or WRITE delay time tRCD 13.5 – ns

PRECHARGE command period tRP 13.5 – ns

ACTIVATE-to-ACTIVATE or REFRESH command period tRC 49.5 – ns

ACTIVATE-to-PRECHARGE command period tRAS 36 9 x tREFI ns 2

CL = 5CWL = 5 tCK (AVG) 3.0 3.3 ns 3

CWL = 6, 7 tCK (AVG) Reserved ns 4

CL = 6

CWL = 5 tCK (AVG) 2.5 3.3 ns 3

CWL = 6 tCK (AVG) Reserved ns 4

CWL = 7 tCK (AVG) Reserved ns 4

CL = 7

CWL = 5 tCK (AVG) Reserved ns 4

CWL = 6 tCK (AVG) 1.875 <2.5 ns 3, 4

CWL = 7 tCK (AVG) Reserved ns 4

CL = 8

CWL = 5 tCK (AVG) Reserved ns 4

CWL = 6 tCK (AVG) 1.875 <2.5 ns 3

CWL = 7 tCK (AVG) Reserved ns 4

CL = 9CWL = 5, 6 tCK (AVG) Reserved ns 4

CWL = 7 tCK (AVG) 1.5 <1.875 ns 3, 4

CL = 10CWL = 5, 6 tCK (AVG) Reserved ns 4

CWL = 7 tCK (AVG) 1.5 <1.875 ns 3

Supported CL settings 5, 6, 7, 8, 9, 10 CK

Supported CWL settings 5, 6, 7 CK

Notes:

1. The-15speedgradeisbackwardcompatiblewith1066,CL=7.

2. tREFIdependsonTOPER.

3. TheCLandCWLsettingsresultintCKrequirements.WhenmakingaselectionoftCK,bothCLandCWLrequirementsettingsneedtobefulfilled.

4. Reservedsettingsarenotallowed.

Page 23: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

23

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Electrical Characteristics and AC Operating Conditions

Table 19: Electrical Characteristics and AC Operating Conditions

Notes1-8applytotheentiretable.

Parameter SymbolDDR3L-1333

Units NotesMin Max

Clock Timing

Clock period average: DLL disable mode

TC ≤ 85°CtCK (DLL_DIS)

8 7800 ns 9, 42

TC = >85°C to 95°C 8 3900 ns 42

Clock period average: DLL enable mode tCK (AVG) See Speed Bin Tables for tCK range allowed ns 10, 11

High pulse width average tCH (AVG) 0.47 0.53 CK 12

Low pulse width average tCL (AVG) 0.47 0.53 CK 12

Clock period jitterDLL locked tJITper –80 80 ps 13

DLL locking tJITper,lck –70 70 ps 13

Clock absolute period tCK (ABS)MIN = tCK (AVG) MIN + tJITper MIN

MAX = tCK (AVG) MAX + tJITper MAXps –

Clock absolute high pulse width tCH (ABS) 0.43 – tCK (AVG) 14

Clock absolute low pulse width tCL (ABS) 0.43 – tCK (AVG) 15

Cycle-to-cycle jitterDLL locked tJITcc 160 ps 16

DLL locking tJITcc,lck 140 ps 16

Cumulative error across

2 cycles tERR2per –118 118 ps 17

3 cycles tERR3per –140 140 ps 17

4 cycles tERR4per –155 155 ps 17

5 cycles tERR5per –168 168 ps 17

6 cycles tERR6per –177 177 ps 17

7 cycles tERR7per –186 186 ps 17

8 cycles tERR8per –193 193 ps 17

9 cycles tERR9per –200 200 ps 17

10 cycles tERR10per –205 205 ps 17

11 cycles tERR11per –210 210 ps 17

12 cycles tERR12per –215 215 ps 17

n = 13, 14 . . . 49, 50 cycles tERRnpertERRnper MIN = (1 + 0.68ln[n]) × tJITper MIN

tERRnper MAX = (1 + 0.68ln[n]) × tJITper MAXps 17

Page 24: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

24

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Parameter SymbolDDR3L-1333

Units NotesMin Max

DQ Input Timing

Data setup time to DQS, DQS#

Base (specification)tDS (AC175)

– – ps 18, 19, 44

VREF @ 1 V/ns – – ps 19, 20

Data setup time to DQS, DQS#

Base (specification)tDS (AC150)

30 – ps 18, 19, 44

VREF @ 1 V/ns 180 – ps 19, 20

Data setup time to DQS, DQS#

Base (specification)tDS (AC135)

– – ps 18, 19

VREF @ 1 V/ns – – ps 19, 20

Data hold time from DQS, DQS#

Base (specification)tDH (DC100)

65 – ps 18, 19

VREF @ 1 V/ns 165 – ps 19, 20

Minimum data pulse width tDIPW 400 – ps 41

DQ Output Timing

DQS, DQS# to DQ skew, per access tDQSQ – 125 ps –

DQ output hold time from DQS, DQS# tQH 0.38 – tCK (AVG) 21

DQ Low-Z time from CK, CK# tLZDQ –500 250 ps 22, 23

DQ High-Z time from CK, CK# tHZDQ – 250 ps 22, 23

DQ Strobe Input Timing

DQS, DQS# rising to CK, CK# rising tDQSS –0.25 0.25 CK 25

DQS, DQS# differential input low pulse width tDQSL 0.45 0.55 CK –

DQS, DQS# differential input high pulse width tDQSH 0.45 0.55 CK –

DQS, DQS# falling setup to CK, CK# rising tDSS 0.2 – CK 25

DQS, DQS# falling hold from CK, CK# rising tDSH 0.2 – CK 25

DQS, DQS# differential WRITE preamble tWPRE 0.9 – CK –

DQS, DQS# differential WRITE postamble tWPST 0.3 – CK –

DQ Strobe Output Timing

DQS, DQS# rising to/from rising CK, CK# tDQSCK –255 255 ps 23

DQS, DQS# rising to/from rising CK, CK# when DLL is disabled

tDQSCK (DLL_DIS) 1 10 ns 26

DQS, DQS# differential output high time tQSH 0.40 – CK 21

DQS, DQS# differential output low time tQSL 0.40 – CK 21

DQS, DQS# Low-Z time (RL - 1) tLZDQS –500 250 ps 22, 23

DQS, DQS# High-Z time (RL + BL/2) tHZDQS – 250 ps 22, 23

DQS, DQS# differential READ preamble tRPRE 0.9 Note 24 CK 23, 24

DQS, DQS# differential READ postamble tRPST 0.3 Note 27 CK 23, 27

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Page 25: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

25

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Parameter SymbolDDR3L-1333

Units NotesMin Max

Command and Address Timing

DLL locking time tDLLK 512 – CK 28

CTRL, CMD, ADDR setup to CK,CK#

Base (specification)tIS (AC175)

65 – ps 29, 30, 44

VREF @ 1 V/ns 240 – ps 20, 30

CTRL, CMD, ADDR setup to CK,CK#

Base (specification)tIS (AC150)

190 – ps 29, 30, 44

VREF @ 1 V/ns 340 – ps 20, 30

CTRL, CMD, ADDR hold from CK,CK#

Base (specification)tIH (DC100)

140 – ps 29, 30

VREF @ 1 V/ns 240 – ps 20, 30

Minimum CTRL, CMD, ADDR pulse width tIPW 620 – ps 41

ACTIVATE to internal READ or WRITE delay tRCD See Speed Bin Tables for tRCD ns 31

PRECHARGE command period tRP See Speed Bin Tables for tRP ns 31

ACTIVATE-to-PRECHARGE command period tRAS See Speed Bin Tables for tRAS ns 31, 32

ACTIVATE-to-ACTIVATE command period tRC See Speed Bin Tables for tRC ns 31, 43

ACTIVATE-to-ACTIVATE minimum command period

x4/x8 (1KB page size)tRRD

MIN = greater of 4CK or 6ns CK 31

x16 (2KB page size) MIN = greater of 4CK or 7.5ns CK 31

Four ACTIVATE windowsx4/x8 (1KB page size)

tFAW30 – ns 31

x16 (2KB page size) 45 – ns 31

Write recovery time tWR MIN = 15ns; MAX = n/a ns 31, 32, 33, 34

Delay from start of internal WRITE transaction to internal READ command

tWTR MIN = greater of 4CK or 7.5ns; MAX = n/a CK 31, 34

READ-to-PRECHARGE time tRTP MIN = greater of 4CK or 7.5ns; MAX = n/a CK 31, 32

CAS#-to-CAS# command delay tCCD MIN = 4CK; MAX = n/a CK –

Auto precharge write recovery + precharge time tDAL MIN = WR + tRP/tCK (AVG); MAX = n/a CK –

MODE REGISTER SET command cycle time tMRD MIN = 4CK; MAX = n/a CK –

MODE REGISTER SET command update delay tMOD MIN = greater of 12CK or 15ns; MAX = n/a CK –

MULTIPURPOSE REGISTER READ burst end to mode register set for multipurpose register exit

tMPRR MIN = 1CK; MAX = n/a CK –

Calibration Timing

ZQCL command: Long calibration time

POWER-UP and RESET operation

tZQinit 512 – CK –

Normal operation tZQoper 256 – CK –

ZQCS command: Short calibration time tZQCS 64 – CK –

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Page 26: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

26

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Parameter SymbolDDR3L-1333

Units NotesMin Max

Initialization and Reset Timing

Exit reset from CKE HIGH to a valid command tXPR MIN = greater of 5CK or tRFC + 10ns; MAX = n/a CK –

Begin power supply ramp to power supplies stable tVDDPR MIN = n/a; MAX = 200 ms –

RESET# LOW to power supplies stable tRPS MIN = 0; MAX = 200 ms –

RESET# LOW to I/O and RTT High-Z tIOZ MIN = n/a; MAX = 20 ns 35

Refresh Timing

REFRESH-to-ACTIVATE or REFRESH command period

tRFC – 1Gb MIN = 110; MAX = 70,200 ns –

tRFC – 2Gb MIN = 160; MAX = 70,200 ns –

tRFC – 4Gb MIN = 260; MAX = 70,200 ns –

tRFC – 8Gb MIN = 350; MAX = 70,200 ns –

Maximum refresh periodTC ≤ 85°C – 64 (1X) ms 36

TC > 85°C – 32 (2X) ms 36

Maximum average periodic refresh

TC ≤ 85°C tREFI 7.8 (64ms/8192) μs 36

TC > 85°C – 3.9 (32ms/8192) μs 36

Self Refresh Timing

Exit self refresh to commands not requiring a locked DLL tXS MIN = greater of 5CK or tRFC + 10ns; MAX = n/a CK –

Exit self refresh to commands requiring a locked DLL tXSDLL MIN = tDLLK (MIN); MAX = n/a CK 28

Minimum CKE low pulse width for self refresh entry to self refresh exit timing

tCKESR MIN = tCKE (MIN) + CK; MAX = n/a CK –

Valid clocks after self refresh entry or power down entry

tCKSRE MIN = greater of 5CK or 10ns; MAX = n/a CK –

Valid clocks before self refresh exit, power-down exit, or reset exit

tCKSRX MIN = greater of 5CK or 10ns; MAX = n/a CK –

Power-Down Timing

CKE MIN pulse width tCKE (MIN) Greater of 3CK or 5.625ns CK –

Command pass disable delay tCPDED MIN = 1; MAX = n/a CK –

Power-down entry to power-down exit timing tPD MIN = tCKE (MIN); MAX = 9 * tREFI CK –

Begin power-down period prior to CKE registered HIGH tANPD WL - 1CK CK –

Power-down entry period: ODT either synchronous or asynchronous PDE

Greater of tANPD or tRFC - REFRESH command to CKE LOW time

CK –

Power-down exit period: ODT either synchronous or asynchronous PDX tANPD + tXPDLL CK –

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Page 27: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

27

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Parameter SymbolDDR3L-1333

Units NotesMin Max

Power-Down Entry Minimum Timing

ACTIVATE command to power-down entry tACTPDEN MIN = 1 CK

PRECHARGE/PRECHARGE ALL command to power-down entry

tPRPDEN MIN = 1 CK

REFRESH command to power-down entry tREFPDEN MIN = 1 CK 37

MRS command to power-down entry tMRSPDEN MIN = tMOD (MIN) CK

READ/READ with auto precharge command to power-down entry

tRDPDEN MIN = RL + 4 + 1 CK

WRITE command to power-down entry

BL8 (OTF, MRS) BC4OTF tWRPDEN MIN = WL + 4 + tWR/tCK (AVG) CK

BC4MRS tWRPDEN MIN = WL + 2 + tWR/tCK (AVG) CK

WRITE with auto recharge command to power-down entry

BL8 (OTF, MRS) BC4OTF tWRAP- DEN MIN = WL + 4 + WR + 1 CK

BC4MRS tWRAP- DEN MIN = WL + 2 + WR + 1 CK

Power-Down Exit Timing

DLL on, any valid command, or DLL off to commands not requiring locked DLL

tXP MIN = greater of 3CK or 6ns; MAX = n/a CK

Precharge power-down with DLL off to commands requiring a locked DLL

tXPDLL MIN = greater of 10CK or 24ns; MAX = n/a CK 28

ODT Timing

RTT synchronous turn-on delay ODTLon CWL + AL - 2CK CK 38

RTT synchronous turn-off delay ODTLoff CWL + AL - 2CK CK 40

RTT turn-on from ODTL on reference tAON –250 250 ps 23, 38

RTT turn-off from ODTL off reference tAOF 0.3 0.7 CK 39, 40

Asynchronous RTT turn-on delay (power-down with DLL off)

tAONPD MIN = 2; MAX = 8.5 ns 38

Asynchronous RTT turn-off delay (power-down with DLL off)

tAOFPD MIN = 2; MAX = 8.5 ns 40

ODT HIGH time with WRITE command and BL8 ODTH8 MIN = 6; MAX = n/a CK

ODT HIGH time without WRITE command or with WRITE command and BC4

ODTH4 MIN = 4; MAX = n/a CK

Dynamic ODT Timing

RTT,nom-to-RTT(WR) change skew ODTLcnw WL - 2CK CK

RTT(WR)-to-RTT,nom change skew - BC4 ODTLcwn4 4CK + ODTLoff CK

RTT(WR)-to-RTT,nom change skew - BL8 ODTLcwn8 6CK + ODTLoff CK

RTT dynamic change skew tADC 0.3 0.7 CK 39

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Page 28: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

28

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Parameter SymbolDDR3L-1333

Units NotesMin Max

Write Leveling Timing

First DQS, DQS# rising edge tWLMRD 40 – CK

DQS, DQS# delay tWLDQSEN 25 – CK

Write leveling setup from rising CK, CK# crossing to rising DQS, DQS# crossing

tWLS 195 – ps

Write leveling hold from rising DQS, DQS# crossing to rising CK, CK# crossing

tWLH 195 – ps

Write leveling output delay tWLO 0 9 ns

Write leveling output error tWLOE 0 2 ns

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Page 29: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

29

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Notes:

1. ACtimingparametersarevalidfromspecifiedTCMINtoTCMAXvalues.

2. AllvoltagesarereferencedtoVSS.

3. OutputtimingsareonlyvalidforRON34outputbufferselection.

4. TheunittCK(AVG)representstheactualtCK(AVG)oftheinputclockunderoperation.TheunitCKrepresentsoneclockcycleoftheinputclock,countingtheactualclockedges.

5. ACtimingandIDDtestsmayuseaVIL-to-VIHswingofupto900mVinthetestenvironment,butinputtimingisstillreferencedtoVREF(excepttIS,tIH,tDS,andtDHusetheAC/DCtrippointsandCK,CK#andDQS,DQS#usetheircrossingpoints).Theminimumslewratefortheinputsignalsusedtotestthedeviceis1V/nsforsingle-endedinputs(DQsareat2V/nsforDDR3-1866andDDR3-2133)and2V/nsfordifferentialinputsintherangebetweenVIL(AC)andVIH(AC).

6. Alltimingsthatusetime-basedvalues(ns,μs,ms)shouldusetCK(AVG)todeterminethecorrectnumberofclocksusesCKortCK[AVG]interchangeably).Inthecaseofnonintegerresults,allminimumlimitsaretoberoundeduptothenearestwholeinteger,andallmaximumlimitsaretoberoundeddowntothenearestwholeinteger.

7. StrobeorDQSdiffreferstotheDQSandDQS#differentialcrossingpointwhenDQSistherisingedge.ClockorCKreferstotheCKandCK#differentialcrossingpointwhenCKistherisingedge.

8. ThisoutputloadisusedforallACtiming(exceptODTreferencetiming)andslewrates.Theactualtestloadmaybedifferent.TheoutputsignalvoltagereferencepointisVDDQ/2forsingle-endedsignalsandthecrossingpointfordifferentialsignals.

9. WhenoperatinginDLLdisablemode,Microndoesnotwarrantcompliancewithnormalmodetimingsorfunctionality.

10. Theclock’stCK(AVG)istheaverageclockoverany200consecutiveclocksandtCK(AVG)MINisthesmallestclockrateallowed,withtheexceptionofadeviationduetoclockjitter.InputclockjitterisallowedprovideditdoesnotexceedvaluesspecifiedandmustbeofarandomGaussiandistributioninnature.

11. Spreadspectrumisnotincludedinthejitterspecificationvalues.However,theinputclockcanaccommodatespread-spectrumatasweeprateintherangeof20–60kHzwithanadditional1%oftCK(AVG)asalong-termjittercomponent;however,thespreadspectrummaynotuseaclockratebelowtCK(AVG)MIN.

12. Theclock’stCH(AVG)andtCL(AVG)aretheaveragehalfclockperiodoverany200consecutiveclocksandisthesmallestclockhalfperiodallowed,withtheexceptionofadeviationduetoclockjitter.InputclockjitterisallowedprovideditdoesnotexceedvaluesspecifiedandmustbeofarandomGaussiandistributioninnature.

13. Theperiodjitter(tJITper)isthemaximumdeviationintheclockperiodfromtheaverageornominalclock.Itisallowedineitherthepositiveornegativedirection.

14. tCH(ABS)istheabsoluteinstantaneousclockhighpulsewidthasmeasuredfromonerisingedgetothefollowingfallingedge.

15. tCL(ABS)istheabsoluteinstantaneousclocklowpulsewidthasmeasuredfromonefallingedgetothefollowingrisingedge.

16. Thecycle-to-cyclejittertJITccistheamounttheclockperiodcandeviatefromonecycletothenext.Itisimportanttokeepcycle-to-cyclejitterataminimumduringtheDLLlockingtime.

17. ThecumulativejittererrortERRnper,wherenisthenumberofclocksbetween2and50,istheamountofclocktimeallowedtoaccumulateconsecutivelyawayfromtheaverageclockovernnumberofclockcycles.

18. tDS(base)andtDH(base)valuesareforasingle-ended1V/nsslewrateDQs(DQsareat2V/nsforDDR3-1866andDDR3-2133)and2V/nsslewratedifferentialDQS,DQS#.

19. Theseparametersaremeasuredfromadatasignal(DM,DQ0,DQ1,andsoforth)transitionedgetoitsrespectivedatastrobesignal(DQS,DQS#)crossing.

20. Thesetupandholdtimesarelistedconvertingthebasespecificationvalues(towhichderatingtablesapply)toVREFwhentheslewrateis1V/ns(DQsareat2V/nsforDDR3-1866andDDR3-2133).Thesevalues,withaslewrateof1V/ns(DQsareat2V/nsforDDR3-1866andDDR3-2133),areforreferenceonly.

21. Whenthedeviceisoperatedwithinputclockjitter,thisparameterneedstobederatedbytheactualtJITper(largeroftJITper(MIN)ortJITper(MAX)oftheinputclock(outputderatingsarerelativetotheSDRAMinputclock).

22. Single-endedsignalparameter.

23. TheDRAMoutputtimingisalignedtothenominaloraverageclock.Mostoutputparametersmustbederatedbytheactualjittererrorwheninputclockjitterispresent,evenwhenwithinspecification.Thisresultsineachparameterbecominglarger.ThefollowingparametersarerequiredtobederatedbysubtractingtERR10per(MAX):tDQSCK(MIN),tLZDQS(MIN),tLZDQ(MIN),andtAON(MIN).Thefollowingparameters

Page 30: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

30

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

arerequiredtobederatedbysubtractingtERR10per(MIN):tDQSCK(MAX),tHZ(MAX),tLZDQS(MAX),tLZDQ(MAX),andtAON(MAX).TheparametertRPRE(MIN)isderatedbysubtractingtJITper(MAX),whiletRPRE(MAX)isderatedbysubtractingtJITper(MIN).

24. ThemaximumpreambleisboundbytLZDQS(MAX).

25. Theseparametersaremeasuredfromadatastrobesignal(DQS,DQS#)crossingtoitsrespectiveclocksignal(CK,CK#)crossing.Thespecificationvaluesarenotaffectedbytheamountofclockjitterapplied,asthesearerelativetotheclocksignalcrossing.Theseparametersshouldbemetwhetherclockjitterispresent.

26. ThetDQSCK(DLL_DIS)parameterbeginsCL+AL-1cyclesaftertheREADcommand.

27. ThemaximumpostambleisboundbytHZDQS(MAX).

28. CommandsrequiringalockedDLLare:READ(andRDAP)andsynchronousODTcommands.Inaddition,afteranychangeoflatencytXPDLL,timingmustbemet.

29. tIS(base)andtIH(base)valuesareforasingle-ended1V/nscontrol/command/addressslewrateand2V/nsCK,CK#differentialslewrate.

30. Theseparametersaremeasuredfromacommand/addresssignaltransitionedgetoitsrespectiveclock(CK,CK#)signalcrossing.Thespecificationvaluesarenotaffectedbytheamountofclockjitterappliedasthesetupandholdtimesarerelativetotheclocksignalcrossingthatlatchesthecommand/address.Theseparametersshouldbemetwhetherclockjitterispresent.

31. Fortheseparameters,theDDR3SDRAMdevicesupportstnPARAM(nCK)=RU(tPARAM[ns]/tCK[AVG][ns]),assumingallinputclockjitterspecificationsaresatisfied.Forexample,thedevicewillsupporttnRP(nCK)=RU(tRP/tCK[AVG])ifallinputclockjitterspecificationsaremet.ThismeansthatforDDR3-8006-6-6,ofwhichtRP=5ns,thedevicewillsupporttnRP=RU(tRP/tCK[AVG])=6aslongastheinputclockjitterspecificationsaremet.Thatis,thePRECHARGEcommandatT0andtheACTIVATEcommandatT0+6arevalidevenifsixclocksarelessthan15nsduetoinputclockjitter.

32. DuringREADsandWRITEswithautoprecharge,theDDR3SDRAMwillholdofftheinternalPRECHARGEcommanduntiltRAS(MIN)hasbeensatisfied.

33. WhenoperatinginDLLdisablemode,thegreaterof4CKor15nsissatisfiedfortWR.

34. Thestartofthewriterecoverytimeisdefinedasfollows:

� ForBL8(fixedbyMRSorOTF):RisingclockedgefourclockcyclesafterWL

� ForBC4(OTF):RisingclockedgefourclockcyclesafterWL

� ForBC4(fixedbyMRS):RisingclockedgetwoclockcyclesafterWL

35. RESET#shouldbeLOWassoonaspowerstartstoramptoensuretheoutputsareinHigh-Z.UntilRESET#isLOW,theoutputsareatriskofdrivingandcouldresultinexcessivecurrent,dependingonbusactivity.

36. Therefreshperiodis64mswhenTCislessthanorequalto85°C.Thisequatestoanaveragerefreshrateof7.8125μs.However,nineREFRESHcommandsshouldbeassertedatleastonceevery70.3μs.WhenTCisgreaterthan85°C,therefreshperiodis32ms.

37. AlthoughCKEisallowedtoberegisteredLOWafteraREFRESHcommandwhentREFPDEN(MIN)issatisfied,therearecaseswhereadditionaltimesuchastXPDLL(MIN)isrequired.

38. ODTturn-ontimeMINiswhenthedeviceleavesHigh-ZandODTresistancebeginstoturnon.ODTturn-ontimemaximumiswhentheODTresistanceisfullyon.TheODTreferenceloadisshowninFigure7(page17).DesignsthatwerecreatedpriortoJEDECtighteningthemaximumlimitfrom9nsto8.5nswillbeallowedtohavea9nsmaximum.

39. Half-clockoutputparametersmustbederatedbytheactualtERR10perandtJITdtywheninputclockjitterispresent.Thisresultsineachparameterbecominglarger.TheparameterstADC(MIN)andtAOF(MIN)areeachrequiredtobederatedbysubtractingbothtERR10per(MAX)andtJITdty(MAX).TheparameterstADC(MAX)andtAOF(MAX)arerequiredtobederatedbysubtractingbothtERR10per(MAX)andtJITdty(MAX).

40. ODTturn-offtimeminimumiswhenthedevicestartstoturnoffODTresistance.ODTturn-offtimemaximumiswhentheDRAMbufferisinHigh-Z.TheODTreferenceloadisshownin.ThisoutputloadisusedforODTtimings

41. PulsewidthofainputsignalisdefinedasthewidthbetweenthefirstcrossingofVREF(DC)andtheconsecutivecrossingofVREF(DC).

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Page 31: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

31

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

42. ShouldtheclockratebelargerthantRFC(MIN),anAUTOREFRESHcommandshouldhaveatleastoneNOPcommandbetweenitandanotherAUTOREFRESHcommand.Additionally,iftheclockrateisslowerthan40ns(25MHz),allREFRESHcommandsshouldbefollowedbyaPRECHARGEALLcommand.

43. DRAMdevicesshouldbeevenlyaddressedwhenbeingaccessed.DisproportionateaccessestoaparticularrowaddressmayresultinareductionofREFRESHcharacteristicsorproductlifetime.

44. WhentwoVIH(AC)values(andtwocorrespondingVIL(AC)values)arelistedforaspecificspeedbin,theusermaychooseeithervaluefortheinputAClevel.Whichevervalueisused,theassociatedsetuptimeforthatAClevelmustalsobeused.Additionally,oneVIH(AC)valuemaybeusedforaddress/commandinputsandtheotherVIH(AC)valuemaybeusedfordatainputs.Forexample,forDDR3-800,twoinputAClevelsaredefined:VIH(AC175),minandVIH(AC150),min(correspondingVIL(AC175),minandVIL(AC150),min).ForDDR3-800,theaddress/commandinputsmustuseeitherVIH(AC175),minwithtIS(AC175)of200psorVIH(AC150),minwithtIS(AC150)of350ps;independently,thedatainputsmustuseeitherVIH(AC175),minwithtDS(AC175)of75psorVIH(AC150),minwithtDS(AC150)of125ps.

Table 19: Electrical Characteristics and AC Operating Conditions (continued)

Page 32: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

32

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Commands - Truth Tables

Table 20: Truth Table - Command

Notes1-5applytotheentiretable.

Functions Symbol

CKE

CS# RAS# CAS# WE#BA

[2:0]An A12 A10

A[11, 9:0]

NotesPrev. Cycle

Next Cycle

MODE REGISTER SET MRS H H L L L L BA OP code

REFRESH REF H H L L L H V V V V V

Self refresh entry SRE H L L L L H V V V V V 6

Self refresh exit SRX L HH V V V

V V V V V 6, 7L H H H

Single-bank PRECHARGE PRE H H L L H L BAV

V L V

PRECHARGE all banks PREA H H L L H L V V H V

Bank ACTIVATE ACT H H L L H H BA Row address (RA)

WRITE

BL8MRS, BC4MRS WR H H L H L L BA RFU V L CA 8

BC4OTF WRS4 H H L H L L BA RFU L L CA 8

BL8OTF WRS8 H H L H L L BA RFU H L CA 8

WRITE with auto precharge

BL8MRS, BC4MRS WRAP H H L H L L BA RFU V H CA 8

BC4OTF WRAPS4 H H L H L L BA RFU L H CA 8

BL8OTF WRAPS8 H H L H L L BA RFU H H CA 8

READ

BL8MRS, BC4MRS RD H H L H L H BA RFU V L CA 8

BC4OTF RDS4 H H L H L H BA RFU L L CA 8

BL8OTF RDS8 H H L H L H BA RFU H L CA 8

READ with auto precharge

BL8MRS, BC4MRS RDAP H H L H L H BA RFU V H CA 8

BC4OTF RDAPS4 H H L H L H BA RFU L H CA 8

BL8OTF RDAPS8 H H L H L H BA RFU H H CA 8

NO OPERATION NOP H H H H H V V V V V 9

Device DESELECTED DES H H H X X X X X X X X 10

Power-down entry PDE H LL H H H

V V V V V 6H V V V

Power-down exit PDX L HL H H H

V V V V V6, 11

H V V V

ZQ CALIBRATION LONG ZQCL H H L H H L X X X H X 12

ZQ CALIBRATION SHORT ZQCS H H L H H L X X X L X

Page 33: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

33

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 20: Truth Table - Command (continued)

Notes:

1. CommandsaredefinedbythestatesofCS#,RAS#,CAS#,WE#,andCKEattherisingedgeoftheclock.TheMSBofBA,RA,andCAaredevice-,density-,andconfiguration-dependent.

2. RESET#isenabledLOWandusedonlyforasynchronousreset.Thus,RESET#mustbeheldHIGHduringanynormaloperation.

3. ThestateofODTdoesnotaffectthestatesdescribedinthistable.

4. Operationsapplytothebankdefinedbythebankaddress.ForMRS,BAselectsoneoffourmoderegisters.

5. “V”means“H”or“L”(adefinedlogiclevel),and“X”means“Don’tCare.”

6. SeeTable21(page34)foradditionalinformationonCKEtransition.

7. Selfrefreshexitisasynchronous.

8. BurstREADsorWRITEscannotbeterminatedorinterrupted.MRS(fixed)andOTFBL/BCaredefinedinMR0.

9. ThepurposeoftheNOPcommandistopreventtheDRAMfromregisteringanyunwantedcommands.ANOPwillnotterminateanoperationthatisexecuting.

10. TheDESandNOPcommandsperformsimilarly.

11. Thepower-downmodedoesnotperformanyREFRESHoperations.

12. ZQCALIBRATIONLONGisusedforeitherZQinit(firstZQCLcommandduringinitialization)orZQoper(ZQCLcommandafterinitialization).

Page 34: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

34

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 21: Truth Table - CKE

Notes1and2applytotheentiretable.

Current State3

CKECommand5

(RAS#, CAS#, WE#, CS#)Action5 NotesPrevious Cycle4

(n - 1)Present Cycle4

(n - 1)

Power-downL L “Don’t Care” Maintain power-down

L H DES or NOP Power-down exit

Self-refreshL L “Don’t Care” Maintain self refresh

L H DES or NOP Self refresh exit

Bank(s) active H L DES or NOP Active power-down entry

Reading H L DES or NOP Power-down entry

Writing H L DES or NOP Power-down entry

Precharging H L DES or NOP Power-down entry

Refreshing H L DES or NOP Precharge power-down entry

All banks idleH L DES or NOP Precharge power-down entry

6H L REFRESH Self refresh

Notes:

1. Allstatesandsequencesnotshownareillegalorreservedunlessexplicitlydescribedelsewhereinthisdocument.

2. tCKE(MIN)meansCKEmustberegisteredatmultipleconsecutivepositiveclockedges.CKEmustremainatthevalidinputleveltheentiretimeittakestoachievetherequirednumberofregistrationclocks.Thus,afteranyCKEtransition,CKEmaynottransitionfromitsvalidlevelduringthetimeperiodoftIS+tCKE(MIN)+tIH.

3. Currentstate=ThestateoftheDRAMimmediatelypriortoclockedgen.

4. CKE(n)isthelogicstateofCKEatclockedgen;CKE(n-1)wasthestateofCKEatthepreviousclockedge.

5. COMMANDisthecommandregisteredattheclockedge(mustbealegalcommandasdefinedinTable20(page32)).ActionisaresultofCOMMAND.ODTdoesnotaffectthestatesdescribedinthistableandisnotlisted.

6. Idlestate=Allbanksareclosed,nodataburstsareinprogress,CKEisHIGH,andalltimingsfrompreviousoperationsaresatisfied.Allselfrefreshexitandpower-downexitparametersarealsosatisfied.

Page 35: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

35

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Commands

DESELECT

The DESELT (DES) command (CS# HIGH) prevents newcommands from being executed by the DRAM. Operationsalreadyinprogressarenotaffected.

NO OPERATION

TheNOOPERATION (NOP)command (CS#LOW)preventsunwantedcommandsfrombeingregisteredduringidleorwaitstates.Operationsalreadyinprogressarenotaffected.

ZQ CALIBRATION LONG

The ZQCALIBRATION LONG (ZQCL) command is used toperformtheinitialcalibrationduringapower-upinitializationandreset sequence (see Figure 17 (page 51)). This commandmay be issued at any time by the controller, dependingon the system environment. The ZQCL command triggersthe calibration engine inside the DRAM. After calibrationis achieved, the calibrated values are transferred from thecalibration engine to the DRAM I/O, which are reflected asupdatedRONandODTvalues.

TheDRAMisallowedatimingwindowdefinedbyeithertZQinitortZQopertoperformafullcalibrationandtransferofvalues.WhenZQCL is issuedduring the initialization sequence, thetimingparametertZQinitmustbesatisfied.Wheninitializationiscomplete,subsequentZQCLcommandsrequirethetimingparametertZQopertobesatisfied.

ZQ CALIBRATION SHORT

TheZQCALIBRATIONSHORT(ZQCS)commandisusedtoperformperiodiccalibrationstoaccountforsmallvoltageandtemperature variations. A shorter timingwindow is providedtoperform the reducedcalibrationand transfer of valuesasdefinedbytimingparameter tZQCS.AZQCScommandcaneffectivelycorrectaminimumof0.5%RONandRTTimpedanceerror within 64 clock cycles, assuming the maximumsensitivitiesspecified.

ACTIVATE

TheACTIVATEcommandisusedtoopen(oractivate)arowinaparticularbankforasubsequentaccess.ThevalueontheBA[2:0]inputsselectsthebank,andtheaddressprovidedoninputsA[n:0]selectstherow.Thisrowremainsopen(oractive)foraccessesuntilaPRECHARGEcommandisissuedtothatbank.

APRECHARGEcommandmustbeissuedbeforeopeningadifferentrowinthesamebank.

Page 36: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

36

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

READ

TheREADcommandisusedtoinitiateaburstreadaccesstoanactiverow.TheaddressprovidedoninputsA[2:0]selectsthe starting columnaddress, dependingon theburst lengthandburst typeselected (seeBurstOrder table foradditionalinformation).ThevalueoninputA10determineswhetherautoprechargeisused.Ifautoprechargeisselected,therowbeing

accessedwillbeprechargedattheendoftheREADburst.Ifautoprecharge isnotselected, the rowwill remainopen forsubsequentaccesses.ThevalueoninputA12(ifenabledinthemoderegister)whentheREADcommandisissueddetermineswhetherBC4(chop)orBL8isused.AfteraREADcommandisissued,theREADburstmaynotbeinterrupted.

Table 22: READ Command Summary

Functions SymbolCKE

CS# RAS# CAS# WE#BA

[3:0]An A12 A10

A[11, 9:0]Prev. Cycle Next Cycle

READ

BL8MRS, BC4MRS RD

H L H L H BA RFU

V L

CA

BC4OTF RDS4 L L

BL8OTF RDS8 H L

READ with auto precharge

BL8MRS, BC4MRS RDAP V H

BC4OTF RDAPS4 L H

BL8OTF RDAPS8 H H

WRITE

TheWRITEcommandisusedtoinitiateaburstwriteaccesstoanactiverow.ThevalueontheBA[2:0]inputsselectsthebank.ThevalueoninputA10determineswhetherautoprechargeisused.ThevalueoninputA12(ifenabledintheMR)whentheWRITEcommandisissueddetermineswhetherBC4(chop)orBL8isused.

InputdataappearingontheDQiswrittentothememoryarraysubjecttotheDMinputlogiclevelappearingcoincidentwiththedata.IfagivenDMsignalisregisteredLOW,thecorrespondingdatawillbewrittentomemory. If theDMsignal is registeredHIGH, the corresponding data inputs will be ignored and aWRITEwillnotbeexecutedtothatbyte/columnlocation.

Table 23: WRITE Command Summary

Functions SymbolCKE

CS# RAS# CAS# WE#BA

[3:0]An A12 A10

A[11, 9:0]Prev. Cycle Next Cycle

WRITE

BL8MRS, BC4MRS WR

H L H L L BA RFU

V L

CA

BC4OTF WRS4 L L

BL8OTF WRS8 H L

WRITE with auto precharge

BL8MRS, BC4MRS WRAP V H

BC4OTF WRAPS4 L H

BL8OTF WRAPS8 H H

Page 37: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

37

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

PRECHARGE

The PRECHARGE command is used to de-activate theopenrowinaparticularbankorinallbanks.Thebank(s)areavailable forasubsequent rowaccessaspecifiedtime (tRP)afterthePRECHARGEcommandisissued,exceptinthecaseofconcurrentautoprecharge.AREADorWRITEcommandtoadifferentbankisallowedduringaconcurrentautoprechargeaslongasitdoesnotinterruptthedatatransferinthecurrentbankanddoesnotviolateanyothertimingparameters.InputA10determineswhetheroneorallbanksareprecharged. Inthecasewhereonlyonebank isprecharged, inputsBA[2:0]selectthebank;otherwise,BA[2:0]aretreatedas“Don’tCare.”

Afterabankisprecharged,itisintheidlestateandmustbeactivatedpriortoanyREADorWRITEcommandsbeingissuedtothatbank.APRECHARGEcommandistreatedasaNOPifthereisnoopenrowinthatbank(idlestate)orifthepreviouslyopenrow isalready intheprocessofprecharging.However,theprechargeperiodisdeterminedbythelastPRECHARGEcommandissuedtothebank.

REFRESH

The REFRESH command is used during normal operationof theDRAMand isanalogoustoCAS#-before-RAS#(CBR)refreshorautorefresh.Thiscommandisnonpersistent,so itmustbeissuedeachtimearefreshisrequired.Theaddressingisgeneratedbytheinternalrefreshcontroller.Thismakestheaddress bits a “Don’t Care” during a REFRESH command.TheDRAM requiresREFRESHcycles at an average intervalof7.8μs(maximumwhenTC≤85°Cor3.9μsmaximumwhenTC≤95°C).TheREFRESHperiodbeginswhentheREFRESHcommandisregisteredandendstRFC(MIN)later.

Toallow for improvedefficiency in schedulingand switchingbetweentasks,someflexibilityintheabsoluterefreshintervalisprovided.Amaximumof eightREFRESHcommandscanbe posted to any givenDRAM,meaning that themaximumabsolute interval betweenanyREFRESHcommandand thenextREFRESHcommandisninetimesthemaximumaverageinterval refresh rate. Self refreshmay be enteredwith up toeight REFRESH commands being posted. After exiting selfrefresh (when entered with posted REFRESH commands),

additional posting of REFRESH commands is allowed tothe extent that themaximum number of cumulative postedREFRESHcommands(bothpreandpost-selfrefresh)doesnotexceedeightREFRESHcommands.

At any given time, amaximumof 16REFRESHcommandscanbeissuedwithin2xtREFI.

Page 38: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

38

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 42: Refresh Mode

NOP1NOP1 NOP1PRE

RA

Bank(s)3 BA

REF NOP5 REF2 NOP5 ACTNOP5

One bank

All banks

tCK tCH tCL

RA

tRFC2tRP tRFC (MIN)

T0 T1 T2 T3 T4 Ta0 Tb0Ta1 Tb1 Tb2

Don’t CareIndicates breakin time scale

Valid5 Valid5 Valid5

CK

CK#

Command

CKE

Address

A10

BA[2:0]

DQ4

DM4

DQS, DQS#4

Notes: 1. NOP commands are shown for ease of illustration; other valid commands may be possi-ble at these times. CKE must be active during the PRECHARGE, ACTIVATE, and REFRESHcommands, but may be inactive at other times (see Power-Down Mode (page 183)).

2. The second REFRESH is not required, but two back-to-back REFRESH commands areshown.

3. “Don’t Care” if A10 is HIGH at this point; however, A10 must be HIGH if more than onebank is active (must precharge all active banks).

4. For operations shown, DM, DQ, and DQS signals are all “Don’t Care”/High-Z.5. Only NOP and DES commands are allowed after a REFRESH command and until tRFC

(MIN) is satisfied.

SELF REFRESH

The SELF REFRESH command is used to retain data in the DRAM, even if the rest of thesystem is powered down. When in self refresh mode, the DRAM retains data without ex-ternal clocking. Self refresh mode is also a convenient method used to enable/disablethe DLL as well as to change the clock frequency within the allowed synchronous oper-ating range (see Input Clock Frequency Change (page 127)). All power supply inputs(including VREFCA and VREFDQ) must be maintained at valid levels upon entry/exit andduring self refresh mode operation. VREFDQ may float or not drive VDDQ/2 while in selfrefresh mode under the following conditions:

• VSS < VREFDQ < VDD is maintained• VREFDQ is valid and stable prior to CKE going back HIGH• The first WRITE operation may not occur earlier than 512 clocks after V REFDQ is valid• All other self refresh mode exit timing requirements are met

1Gb: x4, x8, x16 DDR3 SDRAMCommands

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 122 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 9: Refresh Mode

Notes:

1. NOPcommandsareshownforeaseofillustration;othervalidcommandsmaybepossibleatthesetimes.CKEmustbeactiveduringthePRECHARGE,ACTIVATE,andREFRESHcommands,butmaybeinactiveatothertimes(seePower-DownMode).

2. ThesecondREFRESHisnotrequired,buttwoback-to-backREFRESHcommandsareshown.

3. “Don’tCare”ifA10isHIGHatthispoint;however,A10mustbeHIGHifmorethanonebankisactive(mustprechargeallactivebanks).

4. Foroperationsshown,DM,DQ,andDQSsignalsareall“Don’tCare”/High-Z.

5. OnlyNOPandDEScommandsareallowedafteraREFRESHcommandanduntiltRFC(MIN)issatisfied.

Page 39: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

39

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

SELF REFRESH

TheSELFREFRESHcommand isused to retaindata in theDRAM,eveniftherestofthesystemispowereddown.Wheninself refreshmode,theDRAMretainsdatawithoutexternalclocking.Selfrefreshmodeisalsoaconvenientmethodusedto enable/disable the DLL as well as to change the clockfrequency within the allowed synchronous operating range(seeInputClockFrequencyChange).Allpowersupplyinputs(including VREFCA and VREFDQ) must bemaintained at validlevelsuponentry/exitandduringselfrefreshmodeoperation.VREFDQmayfloatornotdriveVDDQ/2whileinselfrefreshmodeunderthefollowingconditions:

• VSS<VREFDQ<VDDismaintained

• VREFDQisvalidandstablepriortoCKEgoingbackHIGH

• ThefirstWRITEoperationmaynotoccurearlierthan512clocksafterVREFDQisvalid

• Allotherselfrefreshmodeexittimingrequirementsaremet

DLL Disable Mode

If theDLL is disabled by themode register (MR1[0] can beswitchedduring initializationor later), theDRAM is targeted,butnotguaranteed,tooperatesimilarlytothenormalmode,withafewnotableexceptions:

• TheDRAMsupportsonlyonevalueofCASlatency(CL=6)andonevalueofCASWRITElatency(CWL=6).

• DLLdisablemodeaffectsthereaddataclock-to-datastroberelationship(tDQSCK),butnotthereaddata-to-datastroberelationship(tDQSQ,tQH).SpecialattentionisrequiredtolineupthereaddatawiththecontrollertimedomainwhentheDLLisdisabled.

• Innormaloperation(DLLon),tDQSCKstartsfromtherisingclockedgeAL+CL

• cyclesaftertheREADcommand.InDLLdisablemode,tDQSCKstartsAL+CL-1cyclesaftertheREADcommand.Additionally,withtheDLLdisabled,thevalueoftDQSCKcouldbelargerthantCK.

The ODT feature (including dynamic ODT) is not supportedduringDLLdisablemode.TheODTresistorsmustbedisabledbycontinuouslyregisteringtheODTballLOWbyprogrammingRTT,nomMR1[9,6,2]andRTT(WR)MR2[10,9]to0whileintheDLLdisablemode.

Specificstepsmustbe followed toswitchbetween theDLLenableandDLLdisablemodesdue toagap in theallowedclockratesbetweenthetwomodes(tCK[AVG]MAXandtCK[DLL_DIS]MIN,respectively).Theonlytimetheclockisallowedtocrossthisclockrategapisduringselfrefreshmode.Thus,the required procedure for switching from the DLL enablemodetotheDLLdisablemodeistochangefrequencyduringselfrefresh:

1.Startingfromtheidlestate(allbanksareprecharged,alltimingsarefulfilled,ODTisturnedoff,andRTT,nomandRTT(WR)areHigh-Z),setMR1[0]to1todisabletheDLL.

2.EnterselfrefreshmodeaftertMODhasbeensatisfied.

3.AftertCKSREissatisfied,changethefrequencytothedesiredclockrate.

4.SelfrefreshmaybeexitedwhentheclockisstablewiththenewfrequencyfortCKSRX.AftertXSissatisfied,updatethemoderegisterswithappropriatevalues.

5.TheDRAMwillbereadyforitsnextcommandintheDLLdisablemodeafterthegreateroftMRDortMODhasbeensatisfied.AZQCLcommandshouldbeissuedwithappropriatetimingsmet.

Page 40: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

40

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 43: DLL Enable Mode to DLL Disable Mode

Command

T0 T1 Ta0 Ta1 Tb0 Tc0 Td0 Td1 Te0 Te1 Tf0

CKCK#

ODT9 Valid1

Don’t Care

Valid1

SRE3 NOPMRS2 NOP SRX4 MRS5 Valid1NOP NOP

Indicates breakin time scale

tMOD tCKSRE tMODtXS

tCKESR

CKE

tCKSRX876

Notes: 1. Any valid command.2. Disable DLL by setting MR1[0] to 1.3. Enter SELF REFRESH.4. Exit SELF REFRESH.5. Update the mode registers with the DLL disable parameters setting.6. Starting with the idle state, RTT is in the High-Z state.7. Change frequency.8. Clock must be stable tCKSRX.9. Static LOW in the case that RTT,nom or RTT(WR) is enabled; otherwise, static LOW or HIGH.

A similar procedure is required for switching from the DLL disable mode back to theDLL enable mode. This also requires changing the frequency during self refresh mode(see Figure 44 (page 125)).

1. Starting from the idle state (all banks are precharged, all timings are fulfilled, ODTis turned off, and RTT,nom and RTT(WR) are High-Z), enter self refresh mode.

2. After tCKSRE is satisfied, change the frequency to the new clock rate.3. Self refresh may be exited when the clock is stable with the new frequency for

tCKSRX. After tXS is satisfied, update the mode registers with the appropriate val-ues. At a minimum, set MR1[0] to 0 to enable the DLL. Wait tMRD, then set MR0[8]to 1 to enable DLL RESET.

4. After another tMRD delay is satisfied, update the remaining mode registers withthe appropriate values.

5. The DRAM will be ready for its next command in the DLL enable mode after thegreater of tMRD or tMOD has been satisfied. However, before applying any com-mand or function requiring a locked DLL, a delay of tDLLK after DLL RESET mustbe satisfied. A ZQCL command should be issued with the appropriate timings met.

1Gb: x4, x8, x16 DDR3 SDRAMCommands

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 124 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 10: DLL Enable Mode to DLL Disable Mode

Notes:

1. Anyvalidcommand.

2. DisableDLLbysettingMR1[0]to1.

3. EnterSELFREFRESH.

4. ExitSELFREFRESH.

5. UpdatethemoderegisterswiththeDLLdisableparameterssetting.

6. Startingwiththeidlestate,RTTisintheHigh-Zstate.

7. Changefrequency.

8. ClockmustbestabletCKSRX.

9. StaticLOWinthecasethatRTT,nomorRTT(WR)isenabled;otherwise,staticLOWorHIGH.

A similar procedure is required for switching from the DLLdisablemodebacktotheDLLenablemode.Thisalsorequireschangingthefrequencyduringselfrefreshmode.

1.Startingfromtheidlestate(allbanksareprecharged,alltimingsarefulfilled,ODTisturnedoff,andRTT,nomandRTT(WR)areHigh-Z),enterselfrefreshmode.

2.AftertCKSREissatisfied,changethefrequencytothenewclockrate.

3.SelfrefreshmaybeexitedwhentheclockisstablewiththenewfrequencyfortCKSRX.AftertXSissatisfied,updatethemoderegisterswiththeappropriatevalues.Ataminimum,setMR1[0]to0toenabletheDLL.WaittMRD,thensetMR0[8]to1toenableDLLRESET.

4.AfteranothertMRDdelayissatisfied,updatetheremainingmoderegisterswiththeappropriatevalues.

5.TheDRAMwillbereadyforitsnextcommandintheDLLenablemodeafterthegreateroftMRDortMODhasbeensatisfied.However,beforeapplyinganycommandorfunctionrequiringalockedDLL,adelayoftDLLKafterDLLRESETmustbesatisfied.AZQCLcommandshouldbeissuedwiththeappropriatetimingsmet.

Page 41: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

41

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 44: DLL Disable Mode to DLL Enable Mode

CKE

T0 Ta0 Ta1 Tb0 Tc0 Tc1 Td0 Te0 Tf0 Tg0

CKCK#

ODT10

SRE1 NOPCommand NOP SRX2 MRS3 MRS4 MRS5 Valid6

Valid

Don’t CareIndicates breakin time scale

tCKSRE tCKSRX987 tXS tMRD tMRD

tCKESR

ODTLoff + 1 × tCK

Th0

tDLLK

Notes: 1. Enter SELF REFRESH.2. Exit SELF REFRESH.3. Wait tXS, then set MR1[0] to 0 to enable DLL.4. Wait tMRD, then set MR0[8] to 1 to begin DLL RESET.5. Wait tMRD, update registers (CL, CWL, and write recovery may be necessary).6. Wait tMOD, any valid command.7. Starting with the idle state.8. Change frequency.9. Clock must be stable at least tCKSRX.

10. Static LOW in the case that RTT,nom or RTT(WR) is enabled; otherwise, static LOW or HIGH.

The clock frequency range for the DLL disable mode is specified by the parameter tCK(DLL_DIS). Due to latency counter and timing restrictions, only CL = 6 and CWL = 6 aresupported.

DLL disable mode will affect the read data clock to data strobe relationship (tDQSCK)but not the data strobe to data relationship (tDQSQ, tQH). Special attention is needed toline up read data to the controller time domain.

Compared to the DLL on mode where tDQSCK starts from the rising clock edge AL + CLcycles after the READ command, the DLL disable mode tDQSCK starts AL + CL - 1 cyclesafter the READ command.

WRITE operations function similarly between the DLL enable and DLL disable modes;however, ODT functionality is not allowed with DLL disable mode.

1Gb: x4, x8, x16 DDR3 SDRAMCommands

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 125 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. EnterSELFREFRESH.

2. ExitSELFREFRESH.

3. WaittXS,thensetMR1[0]to0toenableDLL.

4. WaittMRD,thensetMR0[8]to1tobeginDLLRESET.

5. WaittMRD,updateregisters(CL,CWL,andwriterecoverymaybenecessary).

6. WaittMOD,anyvalidcommand.

7. Startingwiththeidlestate.

8. Changefrequency.

9. ClockmustbestableatleasttCKSRX.

10. StaticLOWinthecasethatRTT,nomorRTT(WR)isenabled;otherwise,staticLOWorHIGH.

Figure 11: DLL Disable Mode to DLL Enable Mode

The clock frequency range for the DLL disable mode isspecified by the parameter tCK (DLL_DIS). Due to latencycounterandtimingrestrictions,onlyCL=6andCWL=6aresupported.

DLL disable mode will affect the read data clock to datastroberelationship (tDQSCK)butnotthedatastrobetodatarelationship (tDQSQ, tQH).Specialattention isneededto lineupreaddatatothecontrollertimedomain.

ComparedtotheDLLonmodewheretDQSCKstartsfromtherisingclockedgeAL+CLcyclesaftertheREADcommand,theDLLdisablemodetDQSCKstartsAL+CL-1cyclesaftertheREADcommand.

WRITEoperations functionsimilarlybetweentheDLLenableand DLL disable modes; however, ODT functionality is notallowedwithDLLdisablemode.

Page 42: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

42

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 45: DLL Disable tDQSCK

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Don’t CareTransitioning Data

Valid

NOPREAD NOP NOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command

Address

DIb + 3

DIb + 2

DIb + 1

DIb

DIb + 7

DIb + 6

DIb + 5

DIb + 4

DQ BL8 DLL on

DQS, DQS# DLL on

DQ BL8 DLL disable

DQS, DQS# DLL off

DQ BL8 DLL disable

DQS, DQS# DLL off

RL = AL + CL = 6 (CL = 6, AL = 0)

CL = 6

DIb + 3

DIb + 2

DIb + 1

DIb

DIb + 7

DIb + 6

DIb + 5

DIb + 4

DIb + 3

DIb + 2

DIb + 1

DIb

DIb + 7

DIb + 6

DIb + 5

DIb + 4

tDQSCK (DLL_DIS) MIN

tDQSCK (DLL_DIS) MAX

RL (DLL_DIS) = AL + (CL - 1) = 5

Table 74: READ Electrical Characteristics, DLL Disable Mode

Parameter Symbol Min Max Unit

Access window of DQS from CK, CK# tDQSCK (DLL_DIS) 1 10 ns

1Gb: x4, x8, x16 DDR3 SDRAMCommands

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 126 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 12: DLL Disable tDQSCK

Table 24: READ Electrical Characteristics, DLL Disable Mode

Parameter Symbol Min Max Unit

Access window of DQS from CK, CK# tDQSCK (DLL_DIS) 1 10 ns

Page 43: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

43

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Input Clock Frequency Change

When the DDR3 SDRAM is initialized, the clock must bestable during most normal states of operation. This meansthataftertheclockfrequencyhasbeensettothestablestate,theclockperiodisnotallowedtodeviate,exceptforwhatisallowedbytheclockjitterandspreadspectrumclocking(SSC)specifications.

The input clock frequency canbe changed fromone stableclockratetoanotherundertwoconditions:selfrefreshmodeandprechargepower-downmode. It is illegal tochange theclock frequency outside of those two modes. For the selfrefreshmode condition,when the DDR3SDRAM has beensuccessfully placed into self refreshmode and tCKSRE hasbeensatisfied,thestateoftheclockbecomesa“Don’tCare.”Whentheclockbecomesa“Don’tCare,”changingtheclockfrequency ispermissible if thenewclock frequency isstablepriortotCKSRX.Whenenteringandexitingselfrefreshmodeforthesolepurposeofchangingtheclockfrequency,theselfrefreshentryandexitspecificationsmuststillbemet.

The precharge power-down mode condition is when theDDR3SDRAMisinprechargepower-downmode(eitherfastexitmodeorslowexitmode).EitherODTmustbeatalogicLOWorRTT,nomandRTT(WR)mustbedisabledviaMR1andMR2.ThisensuresRTT,nomandRTT(WR)areinanoffstatepriortoenteringprechargepower-downmode,andCKEmustbeatalogicLOW.AminimumoftCKSREmustoccurafterCKEgoesLOWbeforetheclockfrequencycanchange.TheDDR3SDRAMinputclockfrequencyisallowedtochangeonlywithinthe minimum and maximum operating frequency specifiedfor theparticular speedgrade (tCK [AVG]MIN to tCK [AVG]MAX).Duringtheinputclockfrequencychange,CKEmustbeheldata stableLOW level.When the inputclock frequencyis changed, a stable clockmust be provided to the DRAMtCKSRXbeforeprechargepower-downmaybeexited.Afterprechargepower-down isexitedand tXPhasbeensatisfied,theDLLmustbe resetvia theMRS.Dependingon thenewclockfrequency,additionalMRScommandsmayneedtobeissued.During theDLL lock time,RTT,nomandRTT(WR)mustremain inanoffstate.After theDLL lock time, theDRAM isreadytooperatewithanewclockfrequency.

Page 44: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

44

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 13: Change Frequency During Precharge Power-DownFigure 46: Change Frequency During Precharge Power-Down

CK

CK#

Command NOPNOPNOP

Address

CKE

DQ

DM

DQS, DQS#

NOP

tCK

Enter prechargepower-down mode

Exit prechargepower-down mode

T0 T1 Ta0 Tc0Tb0T2

Don’t Care

tCKE

tXP

MRS

DLL RESET

Valid

Valid

NOP

tCH

tIH tIS

tCL

Tc1 Td0 Te1Td1

tCKSRE

tCHbtCLb

tCKb

tCHbtCLb

tCKb

tCHbtCLb

tCKb

tCPDED

ODT

NOP

Te0

Previous clock frequency New clock frequency

Frequencychange

Indicates breakin time scale

tIH tIS

tIH

tIS

tDLLK

tAOFPD/tAOF

tCKSRX

High-Z

High-Z

Notes: 1. Applicable for both SLOW-EXIT and FAST-EXIT precharge power-down modes.2. tAOFPD and tAOF must be satisfied and outputs High-Z prior to T1 (see On-Die Termina-

tion (ODT) (page 193) for exact requirements).3. If the RTT,nom feature was enabled in the mode register prior to entering precharge

power-down mode, the ODT signal must be continuously registered LOW, ensuring RTTis in an off state. If the RTT,nom feature was disabled in the mode register prior to enter-ing precharge power-down mode, RTT will remain in the off state. The ODT signal canbe registered LOW or HIGH in this case.

1Gb: x4, x8, x16 DDR3 SDRAMInput Clock Frequency Change

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 128 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. ApplicableforbothSLOW-EXITandFAST-EXITprechargepower-downmodes.

2. tAOFPDandtAOFmustbesatisfiedandoutputsHigh-ZpriortoT1(seeOn-DieTermination(ODT)(page103))forexactrequirements).

3. IftheRTT,nomfeaturewasenabledinthemoderegisterpriortoenteringprechargepower-downmode,theODTsignalmustbecontinuouslyregisteredLOW,ensuringRTTisinanoffstate.IftheRTT,nomfeaturewasdisabledinthemoderegisterpriortoenteringprechargepower-downmode,RTTwillremainintheoffstate.TheODTsignalcanberegisteredLOWorHIGHinthiscase.

Page 45: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

45

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Write Leveling

For better signal integrity, DDR3 SDRAM memory moduleshaveadoptedfly-bytopologyforthecommands,addresses,controlsignals,andclocks.Writelevelingisaschemeforthememorycontrollertoadjustorde-skewtheDQSstrobe(DQS,DQS#)toCKrelationshipattheDRAMwithasimplefeedbackfeatureprovidedbytheDRAM.Writelevelingisgenerallyusedas part of the initialization process, if required. For normalDRAM operation, this featuremust be disabled. This is theonlyDRAMoperationwheretheDQSfunctionsasaninput(tocapture the incomingclock)andtheDQfunctionasoutputs(toreportthestateoftheclock).NotethatnonstandardODTschemesarerequired.

ThememorycontrollerusingthewritelevelingproceduremusthaveadjustabledelaysettingsonitsDQSstrobetoaligntherising edge of DQS to the clock at the DRAM pins. This isaccomplished when the DRAM asynchronously feeds backthe CK status via the DQ bus and samples with the risingedgeofDQS.ThecontrollerrepeatedlydelaystheDQSstrobeuntilaCKtransitionfrom0to1 isdetected.TheDQSdelayestablishedbythisprocedurehelpsensuretDQSS,tDSS,andtDSHspecificationsinsystemsthatusefly-bytopologybyde-skewingthetracelengthmismatch.Aconceptualtimingofthisprocedureisshowninthefigurebelow.

Write LevelingFor better signal integrity, DDR3 SDRAM memory modules have adopted fly-by topolo-gy for the commands, addresses, control signals, and clocks. Write leveling is a schemefor the memory controller to adjust or de-skew the DQS strobe (DQS, DQS#) to CK rela-tionship at the DRAM with a simple feedback feature provided by the DRAM. Write lev-eling is generally used as part of the initialization process, if required. For normalDRAM operation, this feature must be disabled. This is the only DRAM operation wherethe DQS functions as an input (to capture the incoming clock) and the DQ function asoutputs (to report the state of the clock). Note that nonstandard ODT schemes are re-quired.

The memory controller using the write leveling procedure must have adjustable delaysettings on its DQS strobe to align the rising edge of DQS to the clock at the DRAM pins.This is accomplished when the DRAM asynchronously feeds back the CK status via theDQ bus and samples with the rising edge of DQS. The controller repeatedly delays theDQS strobe until a CK transition from 0 to 1 is detected. The DQS delay established bythis procedure helps ensure tDQSS, tDSS, and tDSH specifications in systems that usefly-by topology by de-skewing the trace length mismatch. A conceptual timing of thisprocedure is shown in Figure 47.

Figure 47: Write Leveling Concept

CK

CK#

Source

Differential DQS

Differential DQS

Differential DQS

DQ

DQ

CK

CK#

Destination

Destination

Push DQS to capture 0–1 transition

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3 T4 T5 T6Tn

CK

CK#T0 T1 T2 T3 T4 T5 T6Tn

Don’t Care

1 1

00

1Gb: x4, x8, x16 DDR3 SDRAMWrite Leveling

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 129 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 14: Write Leveling Concept

Page 46: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

46

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Whenwritelevelingisenabled,therisingedgeofDQSsamplesCK,andtheprimeDQoutputsthesampledCK’sstatus.TheprimeDQforax4orx8configurationisDQ0withallotherDQ(DQ[7:1])drivingLOW.TheprimeDQforax16configurationisDQ0forthelowerbyteandDQ8fortheupperbyte.ItoutputsthestatusofCKsampledbyLDQSandUDQS.AllotherDQ(DQ[7:1],DQ[15:9])continuetodriveLOW.TwoprimeDQonax16enableeachbytelanetobeleveledindependently.

The write leveling mode register interacts with other moderegisters tocorrectlyconfigure thewrite leveling functionality.

Write Leveling (continued)

BesidesusingMR1[7]todisable/enablewriteleveling,MR1[12]mustbeusedtoenable/disabletheoutputbuffers.TheODTvalue,burstlength,andsoforthneedtobeselectedaswell.Thisinteractionisshowninthetablebelow.Itshouldalsobenotedthatwhentheoutputsareenabledduringwritelevelingmode,theDQSbuffersaresetasinputs,andtheDQaresetasoutputs.Additionally,duringwrite levelingmode,only theDQSstrobeterminationsareactivatedanddeactivatedviatheODTball.TheDQremaindisabledandarenotaffectedbytheODTball.

Table 25: Write Leveling Matrix

MR1[7] MR1[12] MR1[2, 6, 9]DRAM ODT

Ball

DRAM RTT,nom

DRAM State Case NotesWrite Leveling

Output Buffers

RTT,nom Value

DQS DQ

Disabled See normal operations Write leveling not enabled 0

Enabled (1)

Disabled (1)

NA Low Off

Off

DQS not receiving: not terminated Prime DQ High-Z: not terminated Other DQ High-Z: not terminated

1 2

20Ω, 30Ω, 40Ω, 60Ω or

120ΩHigh On

DQS not receiving: terminated by RTT Prime DQ High-Z: not terminated Other DQ High-Z: not terminated

2

Enabled (0)

NA Low OffDQS receiving: not terminated Prime DQ driving CK state: not terminated Other DQ driving LOW: not terminated

3 3

40Ω, 60Ω or 120Ω High On

DQS receiving: terminated by RTTPrime DQ driving CK state: not terminatedOther DQ driving LOW: not terminated

4

Notes:

1. Expectedusageifusedduringwriteleveling:Case1maybeusedwhenDRAMareonadual-rankmoduleandontheranknotbeingleveledoronanyrankofamodulenotbeingleveledonamultislotsystem.Case2maybeusedwhenDRAMareonanyrankofamodulenotbeingleveledonamultislotsystem.Case3isgenerallynotused.Case4isgenerallyusedwhenDRAMareontherankthatisbeingleveled.

2. SincetheDRAMDQSisnotbeingdriven(MR1[12]=1),DQSignorestheinputstrobe,andallRTT,nomvaluesareallowed.ThissimulatesanormalstandbystatetoDQS.

3. SincetheDRAMDQSisbeingdriven(MR1[12]=0),DQScapturestheinputstrobe,andonlysomeRTT,nomvaluesareallowed.ThissimulatesanormalwritestatetoDQS.

Page 47: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

47

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Write Leveling Procedure

AmemorycontrollerinitiatestheDRAMwritelevelingmodebysettingMR1[7]to1,assumingtheotherprogramablefeatures(MR0,MR1,MR2,andMR3)arefirstsetandtheDLLisfullyresetandlocked.TheDQballsenterthewritelevelingmodegoing from aHigh-Z state to an undefined driving state, sotheDQbusshouldnotbedriven.Duringwritelevelingmode,only theNOPorDEScommandsare allowed.Thememorycontroller should attempt to level only one rank at a time;thus,theoutputsofotherranksshouldbedisabledbysettingMR1[12]to1 intheotherranks.ThememorycontrollermayassertODTafteratMODdelay,astheDRAMwillbereadytoprocesstheODTtransition.ODTshouldbeturnedonpriortoDQSbeingdrivenLOWbyatleastODTLondelay(WL-2tCK),provided it doesnot violate the aforementioned tMODdelayrequirement.

ThememorycontrollermaydriveDQSLOWandDQS#HIGHafter tWLDQSEN has been satisfied. The controller maybegintotoggleDQSaftertWLMRD(oneDQStoggleisDQStransitioning from a LOW state to a HIGH statewith DQS#transitioning from a HIGH state to a LOW state, then bothtransitionbacktotheiroriginalstates).Ataminimum,ODTLonand tAONmustbesatisfiedat leastoneclockprior toDQStoggling.

AftertWLMRDandaDQSLOWpreamble(tWPRE)havebeensatisfied, thememory controller may provide either a singleDQStoggleormultipleDQStogglestosampleCKforagivenDQS-to-CKskew.EachDQStogglemustnotviolate tDQSL(MIN) and tDQSH (MIN) specifications. tDQSL (MAX) andtDQSH (MAX) specifications are not applicable during writelevelingmode.TheDQSmustbeabletodistinguishtheCK’srisingedgewithintWLSandtWLH.TheprimeDQwilloutputtheCK’sstatusasynchronouslyfromtheassociatedDQSrisingedgeCKcapturewithintWLO.TheremainingDQthatalwaysdriveLOWwhenDQSistogglingmustbeLOWwithintWLOEafterthefirsttWLOissatisfied(theprimeDQgoingLOW).Aspreviouslynoted,DQS is an inputandnotanoutputduringthis process. Figure 15 (page 48) depicts the basic timingparametersfortheoverallwritelevelingprocedure.

Thememorycontrollerwillmostlikelysampleeachapplicableprime DQ state and determine whether to increment ordecrementitsDQSdelaysetting.Afterthememorycontrollerperforms enough DQS toggles to detect the CK’s 0-to-1transition, thememorycontroller should lock theDQSdelaysettingforthatDRAM.AfterlockingtheDQSsettingislocked,leveling for the rankwill have been achieved, and thewritelevelingmodefortherankshouldbedisabledorreprogrammed(ifwritelevelingofanotherrankfollows).

Page 48: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

48

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 15: Write Leveling SequenceFigure 48: Write Leveling Sequence

CKCK#

Command

T1 T2

Early remaining DQ

Late remaining DQ

tWLOE

NOP2 NOPMRS1 NOP NOP NOP NOP NOP NOP NOP NOP NOP

tWLStWLH

Don’t CareUndefined Driving ModeIndicates breakin time scale

Prime DQ5

Differential DQS4

ODT

tMOD

tDQSL3 tDQSL3tDQSH3 tDQSH3

tWLOtWLMRD

tWLDQSEN

tWLO

tWLO

tWLO

Notes: 1. MRS: Load MR1 to enter write leveling mode.2. NOP: NOP or DES.3. DQS, DQS# needs to fulfill minimum pulse width requirements tDQSH (MIN) and tDQSL

(MIN) as defined for regular writes. The maximum pulse width is system-dependent.4. Differential DQS is the differential data strobe (DQS, DQS#). Timing reference points are

the zero crossings. The solid line represents DQS; the dotted line represents DQS#.5. DRAM drives leveling feedback on a prime DQ (DQ0 for x4 and x8). The remaining DQ

are driven LOW and remain in this state throughout the leveling procedure.

1Gb: x4, x8, x16 DDR3 SDRAMWrite Leveling

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 132 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. MRS:LoadMR1toenterwritelevelingmode.

2. NOP:NOPorDES.

3. DQS,DQS#needstofulfillminimumpulsewidthrequirementstDQSH(MIN)andtDQSL(MIN)asdefinedforregularwrites.Themaximumpulsewidthissystem-dependent.

4. DifferentialDQSisthedifferentialdatastrobe(DQS,DQS#).Timingreferencepointsarethezerocrossings.ThesolidlinerepresentsDQS;thedottedlinerepresentsDQS#.

5. DRAMdriveslevelingfeedbackonaprimeDQ(DQ0forx4andx8).TheremainingDQaredrivenLOWandremaininthisstatethroughoutthelevelingprocedure.

Page 49: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

49

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Write Leveling Mode Exit Procedure

AftertheDRAMareleveled,theymustexitfromwritelevelingmodebeforethenormalmodecanbeused.Figure16depictsageneralprocedureforexitingwrite levelingmode.Afterthelast risingDQS (capturing a1 at T0), thememory controllershouldstopdriving theDQSsignalsafter tWLO (MAX)delayplusenoughdelaytoenablethememorycontrollertocapturetheapplicableprimeDQstate(at~Tb0).TheDQballsbecomeundefinedwhenDQSnolongerremainsLOW,andtheyremainundefineduntil tMODafter theMRScommand (atTe1).The

ODT input should be de-asserted LOW such that ODTLoff(MIN)expiresafter theDQS isno longerdrivingLOW.WhenODT LOW satisfies tIS, ODT must be kept LOW (at ~Tb0)until theDRAMisreadyforeitheranotherranktobe leveledoruntilthenormalmodecanbeused.AfterDQSterminationis switched off,write levelmode should be disabled via theMRScommand(atTc2).After tMODissatisfied(atTe1),anyvalidcommandmayberegisteredbytheDRAM.SomeMRScommandsmaybeissuedaftertMRD(atTd1).

Figure 16: Write Leveling Exit Procedure

Write Leveling Mode Exit Procedure

After the DRAM are leveled, they must exit from write leveling mode before the normalmode can be used. Figure 49 depicts a general procedure for exiting write levelingmode. After the last rising DQS (capturing a 1 at T0), the memory controller should stopdriving the DQS signals after tWLO (MAX) delay plus enough delay to enable the memo-ry controller to capture the applicable prime DQ state (at ~Tb0). The DQ balls becomeundefined when DQS no longer remains LOW, and they remain undefined until tMODafter the MRS command (at Te1).

The ODT input should be de-asserted LOW such that ODTLoff (MIN) expires after theDQS is no longer driving LOW. When ODT LOW satisfies tIS, ODT must be kept LOW (at~Tb0) until the DRAM is ready for either another rank to be leveled or until the normalmode can be used. After DQS termination is switched off, write level mode should bedisabled via the MRS command (at Tc2). After tMOD is satisfied (at Te1), any valid com-mand may be registered by the DRAM. Some MRS commands may be issued after tMRD(at Td1).

Figure 49: Write Leveling Exit Procedure

NOP

CK

T0 T1 T2 Ta0 Tb0 Tc0 Tc1 Tc2 Td0 Td1 Te0 Te1CK#

Command

ODT

RTT(DQ)

NOPNOP NOP NOP NOP NOP MRS NOP NOP

Address MR1

Valid Valid

Valid Valid

Don’t CareTransitioning

RTT DQS, RTT DQS# RTT,nom

Undefined Driving Mode

tAOF (MAX)

tMRD

Indicates breakin time scale

DQS, DQS#

CK = 1DQ

tIS

tAOF (MIN)

tMOD

tWLO + tWLOE

ODTLoff

Note: 1. The DQ result, = 1, between Ta0 and Tc0, is a result of the DQS, DQS# signals capturingCK HIGH just after the T0 state.

1Gb: x4, x8, x16 DDR3 SDRAMWrite Leveling

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 133 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Note:

1. TheDQresult,=1,betweenTa0andTc0,isaresultoftheDQS,DQS#signalscapturingCKHIGHjustaftertheT0state.

Page 50: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

50

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Initialization

The following sequence is required for power-up andinitialization,asshowninFigure17(page51):

1. Applypower.RESET#isrecommendedtobebelow0.2×VDDQduringpowerramptoensuretheoutputsremaindisabled(High-Z)andODToff(RTTisalsoHigh-Z).Allotherinputs,includingODT,maybeundefined.

Duringpower-up,eitherofthefollowingconditionsmayexistandmustbemet:

• ConditionA:

� VDDandVDDQaredrivenfromasingle-powerconverteroutputandarerampedwithamaximumdeltavoltagebetweenthemofΔV≤300mV.Slopereversalofanypowersupplysignalisallowed.ThevoltagelevelsonallballsotherthanVDD,VDDQ,VSS,VSSQmustbelessthanorequaltoVDDQandVDDononeside,andmustbegreaterthanorequaltoVSSQandVSSontheotherside.

� BothVDDandVDDQpowersuppliesramptoVDD,minandVDDQ,minwithintVDDPR=200ms.

� VREFDQtracksVDD×0.5,VREFCAtracksVDD×0.5.

� VTTislimitedto0.95Vwhenthepowerrampiscompleteandisnotapplieddirectlytothedevice;however,tVTDshouldbegreaterthanorequalto0toavoiddevicelatchup.

• ConditionB:

� VDDmaybeappliedbeforeoratthesametimeasVDDQ.

� VDDQmaybeappliedbeforeoratthesametimeasVTT,VREFDQ,andVREFCA.

� Noslopereversalsareallowedinthepowersupplyrampforthiscondition.

2. Untilstablepower,maintainRESET#LOWtoensuretheoutputsremaindisabled(High-Z).Afterthepowerisstable,RESET#mustbeLOWforatleast200μstobegintheinitializationprocess.ODTwillremainintheHigh-ZstatewhileRESET#isLOWanduntilCKEisregisteredHIGH.

3. CKEmustbeLOW10nspriortoRESET#transitioningHIGH.

4. AfterRESET#transitionsHIGH,wait500μs(minusoneclock)withCKELOW.

5. AftertheCKELOWtime,CKEmaybebroughtHIGH(synchronously)andonlyNOPorDEScommandsmaybeissued.Theclockmustbepresentandvalidforatleast10ns(andaminimumoffiveclocks)andODTmustbedrivenLOWatleasttISpriortoCKEbeingregisteredHIGH.WhenCKEisregisteredHIGH,itmustbecontinuouslyregisteredHIGHuntilthefullinitializationprocessiscomplete.

6. AfterCKEisregisteredHIGHandaftertXPRhasbeensatisfied,MRScommandsmaybeissued.IssueanMRS(LOADMODE)commandtoMR2withtheapplicablesettings(provideLOWtoBA2andBA0andHIGHtoBA1).

7. IssueanMRScommandtoMR3withtheapplicablesettings.

8. IssueanMRScommandtoMR1withtheapplicablesettings,includingenablingtheDLLandconfiguringODT.

9. IssueanMRScommandtoMR0withtheapplicablesettings,includingaDLLRESETcommand.tDLLK(512)cyclesofclockinputarerequiredtolocktheDLL.

10. IssueaZQCLcommandtocalibrateRTTandRONvaluesfortheprocessvoltagetemperature(PVT).Priortonormaloperation,tZQinitmustbesatisfied.

11. WhentDLLKandtZQinithavebeensatisfied,theDDR3SDRAMwillbereadyfornormaloperation.

Page 51: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

51

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 50: Initialization Sequence

CKE

RTT

BA[2:0]

All voltagesupplies validand stable

T = 200μs (MIN)

DM

DQS

Address

A10

CK

CK#

tCL

Command NOP

T0 Ta0

Don’t Care

tCL

tIS

tCK

ODT

DQ

Tb0

tDLLK

MR1 withDLL enable

MR0 withDLL reset

tMRD tMOD

MRSMRS

BA0 = HBA1 = LBA2 = L

BA0 = LBA1 = LBA2 = L

Code Code

Code Code

Valid

Valid

Valid

Valid

Normaloperation

MR2 MR3

tMRD tMRD

MRSMRS

BA0 = LBA1 = HBA2 = L

BA0 = HBA1 = HBA2 = L

Code Code

Code Code

Tc0 Td0

VTT

VREF

VDDQ

VDD

RESET#

T = 500μs (MIN)

tCKSRX

Stable andvalid clock

Valid

Power-upramp

T (MAX) = 200ms

DRAM ready for external commands

T1

tZQinit

ZQ calibration

A10 = H

ZQCL

tIS

See power-upconditions

in the initialization

sequence text, set up 1

tXPR

Valid

tIOZ = 20ns

Indicates breakin time scale

T (MIN) = 10ns

tVTD

1Gb: x4, x8, x16 DDR3 SDRAMInitialization

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 135 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 17: Initialization Sequence

Page 52: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

52

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Mode RegistersMode registers (MR0–MR3) are used to define various modes of programmable opera-tions of the DDR3 SDRAM. A mode register is programmed via the mode register set(MRS) command during initialization, and it retains the stored information (except forMR0[8], which is self-clearing) until it is reprogrammed, RESET# goes LOW, the deviceloses power.

Contents of a mode register can be altered by re-executing the MRS command. Even ifthe user wants to modify only a subset of the mode register’s variables, all variablesmust be programmed when the MRS command is issued. Reprogramming the moderegister will not alter the contents of the memory array, provided it is performed cor-rectly.

The MRS command can only be issued (or re-issued) when all banks are idle and in theprecharged state (tRP is satisfied and no data bursts are in progress). After an MRS com-mand has been issued, two parameters must be satisfied: tMRD and tMOD. The control-ler must wait tMRD before initiating any subsequent MRS commands.

Figure 51: MRS to MRS Command Timing (tMRD)

Valid Valid

MRS1 MRS2NOP NOP NOP NOP

T0 T1 T2 Ta0 Ta1 Ta2CK#

CK

Command

Address

CKE3

Don’t CareIndicates breakin time scale

tMRD

Notes: 1. Prior to issuing the MRS command, all banks must be idle and precharged, tRP (MIN)must be satisfied, and no data bursts can be in progress.

2. tMRD specifies the MRS to MRS command minimum cycle time.3. CKE must be registered HIGH from the MRS command until tMRSPDEN (MIN) (see Pow-

er-Down Mode (page 183)).4. For a CAS latency change, tXPDLL timing must be met before any non-MRS command.

The controller must also wait tMOD before initiating any non-MRS commands (exclud-ing NOP and DES). The DRAM requires tMOD in order to update the requested features,with the exception of DLL RESET, which requires additional time. Until tMOD has beensatisfied, the updated features are to be assumed unavailable.

1Gb: x4, x8, x16 DDR3 SDRAMMode Registers

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 136 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Mode Registers

Mode registers (MR0–MR3) are used to define variousmodes of programmable operations of the DDR3 SDRAM.A mode register is programmed via the mode register set(MRS)commandduringinitialization,anditretainsthestoredinformation(exceptforMR0[8],whichisself-clearing)untilitisreprogrammed,RESET#goesLOW,thedevicelosespower.

Contentsof amode register canbealteredby re-executingthe MRS command. Even if the user wants to modify onlya subset of the mode register’s variables, all variablesmust be programmed when the MRS command is issued.Reprogrammingthemoderegisterwillnotalterthecontentsofthememoryarray,provideditisperformedcorrectly.

TheMRScommandcanonlybe issued (or re-issued)whenallbanksareidleandintheprechargedstate(tRPissatisfiedandnodataburstsareinprogress).AfteranMRScommandhas been issued, two parameters must be satisfied: tMRDandtMOD.ThecontrollermustwaittMRDbeforeinitiatinganysubsequentMRScommands.

Figure 18: MRS to MRS Command Timing (tMRD)

Notes:

1. PriortoissuingtheMRScommand,allbanksmustbeidleandprecharged,tRP(MIN)mustbesatisfied,andnodataburstscanbeinprogress.

2. tMRDspecifiestheMRStoMRScommandminimumcycletime.

3. CKEmustberegisteredHIGHfromtheMRScommanduntiltMRSPDEN(MIN)

4. ForaCASlatencychange,tXPDLLtimingmustbemetbeforeanynon-MRScommand.

ThecontrollermustalsowaittMODbeforeinitiatinganynon-MRScommands(excludingNOPandDES).TheDRAMrequirestMODinordertoupdatetherequestedfeatures,withtheexceptionofDLLRESET,whichrequiresadditionaltime.UntiltMODhasbeensatisfied,theupdatedfeaturesaretobeassumedunavailable.

Page 53: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

53

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 19: MRS to nonMRS Command Timing (tMOD)Figure 52: MRS to nonMRS Command Timing (tMOD)

Valid Valid

MRS nonMRSNOP NOP NOP NOP

T0 T1 T2 Ta0 Ta1 Ta2CK#

CK

Command

Address

CKE Valid

Old setting

New setting

Don’t CareIndicates breakin time scale

tMOD

Updating setting

Notes: 1. Prior to issuing the MRS command, all banks must be idle (they must be precharged, tRPmust be satisfied, and no data bursts can be in progress).

2. Prior to Ta2 when tMOD (MIN) is being satisfied, no commands (except NOP/DES) may beissued.

3. If RTT was previously enabled, ODT must be registered LOW at T0 so that ODTL is satis-fied prior to Ta1. ODT must also be registered LOW at each rising CK edge from T0 untiltMODmin is satisfied at Ta2.

4. CKE must be registered HIGH from the MRS command until tMRSPDEN (MIN), at whichtime power-down may occur (see Power-Down Mode (page 183)).

Mode Register 0 (MR0)The base register, MR0, is used to define various DDR3 SDRAM modes of operation.These definitions include the selection of a burst length, burst type, CAS latency, oper-ating mode, DLL RESET, write recovery, and precharge power-down mode, as shown inFigure 53 (page 138).

Burst Length

Burst length is defined by MR0[1: 0]. Read and write accesses to the DDR3 SDRAM areburst-oriented, with the burst length being programmable to 4 (chop mode), 8 (fixed),or selectable using A12 during a READ/WRITE command (on-the-fly). The burst lengthdetermines the maximum number of column locations that can be accessed for a givenREAD or WRITE command. When MR0[1:0] is set to 01 during a READ/WRITE com-mand, if A12 = 0, then BC4 (chop) mode is selected. If A12 = 1, then BL8 mode is selec-ted. Specific timing diagrams, and turnaround between READ/WRITE, are shown in theREAD/WRITE sections of this document.

When a READ or WRITE command is issued, a block of columns equal to the burstlength is effectively selected. All accesses for that burst take place within this block,meaning that the burst will wrap within the block if a boundary is reached. The block isuniquely selected by A[i:2] when the burst length is set to 4 and by A[i:3] when the burstlength is set to 8 (where Ai is the most significant column address bit for a given config-uration). The remaining (least significant) address bit(s) is (are) used to select the start-

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 0 (MR0)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 137 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. PriortoissuingtheMRScommand,allbanksmustbeidle(theymustbeprecharged,tRPmustbesatisfied,andnodataburstscanbeinprogress).

2. PriortoTa2whentMOD(MIN)isbeingsatisfied,nocommands(exceptNOP/DES)maybeissued.

3. IfRTTwaspreviouslyenabled,ODTmustberegisteredLOW

Mode Register 0 (MR0)

Thebaseregister,MR0,isusedtodefinevariousDDR3SDRAMmodesofoperation.Thesedefinitionsincludetheselectionofaburstlength,bursttype,CASlatency,operatingmode,DLLRESET,writerecovery,andprechargepower-downmode,asshowninFigure20(page54).

Burst Length

BurstlengthisdefinedbyMR0[1:0].ReadandwriteaccessestotheDDR3SDRAMareburst-oriented,withtheburstlengthbeingprogrammableto4(chopmode),8(fixed),orselectableusingA12duringaREAD/WRITEcommand(on-the-fly).Theburst length determines the maximum number of columnlocations thatcanbeaccessed foragivenREADorWRITEcommand.WhenMR0[1:0]issetto01duringaREAD/WRITE

command, ifA12=0, thenBC4 (chop)mode isselected. IfA12=1,thenBL8modeisselected.Specifictimingdiagrams,and turnaround between READ/WRITE, are shown in theREAD/WRITEsectionsofthisdocument.

WhenaREADorWRITEcommandisissued,ablockofcolumnsequaltotheburstlengthiseffectivelyselected.Allaccessesforthatbursttakeplacewithinthisblock,meaningthattheburstwillwrapwithintheblockifaboundaryisreached.TheblockisuniquelyselectedbyA[i:2]whentheburstlengthissetto4andbyA[i:3]whentheburstlengthissetto8(whereAiisthemostsignificantcolumnaddressbit foragivenconfiguration).Theremaining(leastsignificant)addressbit(s)is(are)usedtoselectthestartinglocationwithintheblock.TheprogrammedburstlengthappliestobothREADandWRITEbursts.

atT0sothatODTLissatisfiedpriortoTa1.ODTmustalsoberegisteredLOWateachrisingCKedgefromT0untiltMODminissatisfiedatTa2.

4. CKEmustberegisteredHIGHfromtheMRScommanduntiltMRSPDEN(MIN),atwhichtimepower-downmayoccur(seePower-DownMode(page94)).

Page 54: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

54

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

ing location within the block. The programmed burst length applies to both READ andWRITE bursts.

Figure 53: Mode Register 0 (MR0) Definitions

BLCAS# latency CLBTPD

A9 A7 A6 A5 A4 A3A8 A2 A1 A0

Mode register 0 (MR0)

Address bus

9 7 6 5 4 38 2 1 0

A10A12 A11BA0BA1

10111213

M3

0

1

READ Burst Type

Sequential (nibble)

Interleaved

CAS Latency

Reserved

5

6

7

8

9

10

11

12

13

14

M2

0

0

0

0

0

0

0

0

1

1

1

M4

0

1

0

1

0

1

0

1

0

1

0

M5

0

0

1

1

0

0

1

1

0

0

1

M6

0

0

0

0

1

1

1

1

0

0

0

15DLL

Write Recovery

16

5

6

7

8

10

12

14

WR00

M12

0

1

Precharge PD

DLL off (slow exit)

DLL on (fast exit)

BA2

16

01

Burst Length

Fixed BL8

4 or 8 (on-the-fly via A12)

Fixed BC4 (chop)

Reserved

M0

0

1

0

1

M1

0

0

1

1

M9

0

1

0

1

0

1

0

1

M10

0

0

1

1

0

0

1

1

M11

0

0

0

0

1

1

1

1

M14

0

1

0

1

M15

0

0

1

1

Mode Register

Mode register 0 (MR0)

Mode register 1 (MR1)

Mode register 2 (MR2)

Mode register 3 (MR3)

A13

14

01 01

M8

0

1

DLL Reset

No

Yes

Note: 1. MR0[16, 13, 7, 2] are reserved for future use and must be programmed to 0.

Burst Type

Accesses within a given burst may be programmed to either a sequential or an inter-leaved order. The burst type is selected via MR0[3] (see Figure 53 (page 138)). The order-ing of accesses within a burst is determined by the burst length, the burst type, and thestarting column address. DDR3 only supports 4-bit burst chop and 8-bit burst accessmodes. Full interleave address ordering is supported for READs, while WRITEs are re-stricted to nibble (BC4) or word (BL8) boundaries.

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 0 (MR0)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 138 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 20: Mode Register 0 (MR0) Definitions

Note:

1. MR0[16,13,7,2]arereservedforfutureuseandmustbeprogrammedto0.

Burst Type

Accesseswithinagivenburstmaybeprogrammedtoeitherasequentialoraninterleavedorder.ThebursttypeisselectedviaMR0[3](seeFigure20).Theorderingofaccesseswithinaburstisdeterminedbytheburstlength,thebursttype,andthestartingcolumnaddress.DDR3onlysupports4-bitburstchopand8-bitburstaccessmodes.FullinterleaveaddressorderingissupportedforREADs,whileWRITEsarerestrictedtonibble(BC4)orword(BL8)boundaries.

Page 55: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

55

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 26: Burst Order

Burst Length READ/ WRITEStarting Column

Address (A[2, 1, 0])Burst Type =

Sequential (Decimal)Burst Type =

Interleaved (Decimal)Notes

4 chop

READ

0 0 0 0, 1, 2, 3, Z, Z, Z, Z 0, 1, 2, 3, Z, Z, Z, Z 1, 2

0 0 1 1, 2, 3, 0, Z, Z, Z, Z 1, 0, 3, 2, Z, Z, Z, Z 1, 2

0 1 0 2, 3, 0, 1, Z, Z, Z, Z 2, 3, 0, 1, Z, Z, Z, Z 1, 2

0 1 1 3, 0, 1, 2, Z, Z, Z, Z 3, 2, 1, 0, Z, Z, Z, Z 1, 2

1 0 0 4, 5, 6, 7, Z, Z, Z, Z 4, 5, 6, 7, Z, Z, Z, Z 1, 2

1 0 1 5, 6, 7, 4, Z, Z, Z, Z 5, 4, 7, 6, Z, Z, Z, Z 1, 2

1 1 0 6, 7, 4, 5, Z, Z, Z, Z 6, 7, 4, 5, Z, Z, Z, Z 1, 2

1 1 1 7, 4, 5, 6, Z, Z, Z, Z 7, 6, 5, 4, Z, Z, Z, Z 1, 2

WRITE0 V V 0, 1, 2, 3, X, X, X, X 0, 1, 2, 3, X, X, X, X 1, 3, 4

1 V V 4, 5, 6, 7, X, X, X, X 4, 5, 6, 7, X, X, X, X 1, 3, 4

8READ

0 0 0 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 1

0 0 1 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 1

0 1 0 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 1

0 1 1 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 1

1 0 0 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 1

1 0 1 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 1

1 1 0 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 1

1 1 1 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 1

WRITE V V V 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 1, 3

Notes:

1. InternalREADandWRITEoperationsstartatthesamepointintimeforBC4astheydoforBL8.

2. Z=Dataandstrobeoutputdriversareintri-state.

3. V=Avalidlogiclevel(0or1),buttherespectiveinputbufferignoreslevel-oninputpins.

4. X=“Don’tCare.”

Page 56: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

56

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

DLL RESET

DLLRESET isdefinedbyMR0[8] (seeFigure20 (page54)).ProgrammingMR0[8]to1activatestheDLLRESETfunction.MR0[8]isself-clearing,meaningitreturnstoavalueof0aftertheDLLRESETfunctionhasbeeninitiated.

Anytime the DLL RESET function is initiated, CKEmust beHIGHandtheclockheldstablefor512(tDLLK)clockcyclesbeforeaREADcommandcanbeissued.Thisistoallowtimefor the internal clock to be synchronized with the externalclock.Failingtowaitforsynchronizationtooccurmayresultininvalidoutputtimingspecifications,suchastDQSCKtimings.

Write Recovery

WRITE recovery time is defined by MR0[11:9] (see Figure20 (page 54)). Write recovery values of 5, 6, 7, 8, 10, or12 may be used by programming MR0[11:9]. The user isrequired to program the correct value ofwrite recovery andiscalculatedbydividingtWR(ns)bytCK(ns)androundingupanonintegervaluetothenextinteger:WR(cycles)=roundup(tWR[ns]/tCK[ns]).

Precharge Power-Down (Precharge PD)

The precharge PD bit applies only when precharge power-downmodeisbeingused.WhenMR0[12]issetto0,theDLLisoffduringprechargepower-downprovidingalowerstandbycurrent mode; however, tXPDLL must be satisfied whenexiting.WhenMR0[12] isset to1, theDLLcontinues to runduringprechargepower-downmodetoenableafasterexitofprechargepower-downmode;however,tXPmustbesatisfiedwhenexiting(seePower-DownMode(page94)).

CAS Latency (CL)

TheCLisdefinedbyMR0[6:4],asshowninFigure20(page54). CAS latency is the delay, in clock cycles, between theinternalREADcommandandtheavailabilityof thefirstbitofoutputdata.TheCLcanbesetto5,6,7,8,9,or10.DDR3SDRAMdonotsupporthalf-clocklatencies.

Examples of CL = 6 and CL = 8 are shown below. If aninternalREADcommandisregisteredatclockedgen,andtheCAS latency ismclocks, thedatawillbeavailablenominallycoincidentwithclockedgen+m.onpagethroughTable18(page 22) indicate the CLs supported at various operatingfrequencies.

Page 57: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

57

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

quired to program the correct value of write recovery and is calculated by dividing tWR(ns) by tCK (ns) and rounding up a noninteger value to the next integer: WR (cycles) =roundup (tWR [ns]/tCK [ns]).

Precharge Power-Down (Precharge PD)

The precharge PD bit applies only when precharge power-down mode is being used.When MR0[12] is set to 0, the DLL is off during precharge power-down providing a low-er standby current mode; however, tXPDLL must be satisfied when exiting. WhenMR0[12] is set to 1, the DLL continues to run during precharge power-down mode toenable a faster exit of precharge power-down mode; however, tXP must be satisfiedwhen exiting (see Power-Down Mode (page 183)).

CAS Latency (CL)

The CL is defined by MR0[6:4], as shown in Figure 53 (page 138). CAS latency is the de-lay, in clock cycles, between the internal READ command and the availability of the firstbit of output data. The CL can be set to 5, 6, 7, 8, 9, or 10. DDR3 SDRAM do not supporthalf-clock latencies.

Examples of CL = 6 and CL = 8 are shown below. If an internal READ command is regis-tered at clock edge n, and the CAS latency is m clocks, the data will be available nomi-nally coincident with clock edge n + m. on page through Table 52 (page 75) indicate theCLs supported at various operating frequencies.

Figure 54: READ Latency

READ NOP NOP NOP NOP NOP NOPNOP

CK

CK#

Command

DQ

DQS, DQS#

DQS, DQS#

T0 T1 T2 T3 T4 T5 T6 T7 T8

Don’t Care

CK

CK#

Command

DQ

READ NOP NOP NOP NOP NOP NOPNOP

T0 T1 T2 T3 T4 T5 T6 T7 T8

DI n + 3

DI n + 1

DI n + 2

DI n + 4

DIn

DIn

NOP

NOP

AL = 0, CL = 8

AL = 0, CL = 6

Transitioning Data

Notes: 1. For illustration purposes, only CL = 6 and CL = 8 are shown. Other CL values are possible.2. Shown with nominal tDQSCK and nominal tDSDQ.

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 0 (MR0)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 140 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 21: READ Latency

Notes:

1. Forillustrationpurposes,onlyCL=6andCL=8areshown.OtherCLvaluesarepossible.

2. ShownwithnominaltDQSCKandnominaltDSDQ.

Page 58: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

58

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Mode Register 1 (MR1)

Themode register1 (MR1)controlsadditional functionsandfeatures not available in the other mode registers: Q OFF(OUTPUT DISABLE), TDQS (for the x8 configuration only),DLL ENABLE/DLL DISABLE, RTT,nom value (ODT), WRITELEVELING, POSTED CAS ADDITIVE latency, and OUTPUTDRIVESTRENGTH.ThesefunctionsarecontrolledviathebitsshowninFigure22.TheMR1registerisprogrammedviatheMRS command and retains the stored information until it isreprogrammed, untilRESET#goesLOW,or until thedevice

loses power. Reprogramming theMR1 registerwill not alterthe contents of thememory array, provided it is performedcorrectly.

The MR1 register must be loaded when all banks are idleandnoburstsareinprogress.ThecontrollermustsatisfythespecifiedtimingparameterstMRDandtMODbeforeinitiatingasubsequentoperation.

Figure 22: Mode Register 1 (MR1) Definition

Mode Register 1 (MR1)The mode register 1 (MR1) controls additional functions and features not available inthe other mode registers: Q OFF (OUTPUT DISABLE), TDQS (for the x8 configurationonly), DLL ENABLE/DLL DISABLE, RTT,nom value (ODT), WRITE LEVELING, POSTEDCAS ADDITIVE latency, and OUTPUT DRIVE STRENGTH. These functions are control-led via the bits shown in Figure 55 (page 141). The MR1 register is programmed via theMRS command and retains the stored information until it is reprogrammed, until RE-SET# goes LOW, or until the device loses power. Reprogramming the MR1 register willnot alter the contents of the memory array, provided it is performed correctly.

The MR1 register must be loaded when all banks are idle and no bursts are in progress.The controller must satisfy the specified timing parameters tMRD and tMOD before ini-tiating a subsequent operation.

Figure 55: Mode Register 1 (MR1) Definition

AL RTTQ Off

A9 A7 A6 A5 A4 A3A8 A2 A1 A0

Mode register 1 (MR1)

Address bus

9 7 6 5 4 38 2 1 0

A10A12 A11BA0BA1

10111213

M0

0

1

DLL Enable

Enable (normal)

Disable

M5

0

0

1

1

Output Drive Strength

RZQ/6 (40 [NOM])

RZQ/7 (34 [NOM])

Reserved

Reserved

14

WL10 ODS DLLRTTTDQS

M12

0

1

Q Off

Enabled

Disabled

BA2

15

01

M7

0

1

Write Leveling

Disable (normal)

Enable

Additive Latency (AL)

Disabled (AL = 0)

AL = CL - 1

AL = CL - 2

Reserved

M3

0

1

0

1

M4

0

0

1

1

RTT ODS

M1

0

1

0

1

A13

16

01

M11

0

1

TDQS

Disabled

Enabled

01 01

RTT,nom (ODT) 2

Non-Writes

RTT,nom disabled

RZQ/4 (60 [NOM])

RZQ/2 (120 [NOM])

RZQ/6 (40 [NOM])

RZQ/12 (20 [NOM])

RZQ/8 (30 [NOM])

Reserved

Reserved

RTT,nom (ODT) 3

Writes

RTT,nom disabled

RZQ/4 (60 [NOM])

RZQ/2 (120 [NOM])

RZQ/6 (40 [NOM])

n/a

n/a

Reserved

Reserved

M2

0

1

0

1

0

1

0

1

M6

0

0

1

1

0

0

1

1

M9

0

0

0

0

1

1

1

1

Mode Register

Mode register set 0 (MR0)

Mode register set 1 (MR1)

Mode register set 2 (MR2)

Mode register set 3 (MR3)

M14

0

1

0

1

M15

0

0

1

1

Notes: 1. MR1[16, 13, 10, 8] are reserved for future use and must be programmed to 0.2. During write leveling, if MR1[7] and MR1[12] are 1, then all RTT,nom values are available

for use.3. During write leveling, if MR1[7] is a 1, but MR1[12] is a 0, then only RTT,nom write values

are available for use.

DLL Enable/DLL Disable

The DLL may be enabled or disabled by programming MR1[0] during the LOAD MODEcommand, as shown in Figure 55 (page 141). The DLL must be enabled for normal oper-ation. DLL enable is required during power-up initialization and upon returning to nor-mal operation after having disabled the DLL for the purpose of debugging or evalua-tion. Enabling the DLL should always be followed by resetting the DLL using the appro-priate LOAD MODE command.

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 1 (MR1)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 141 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. MR1[16,13,10,8]arereservedforfutureuseandmustbeprogrammedto0.

2. Duringwriteleveling,ifMR1[7]andMR1[12]are1,thenallRTT,nomvaluesareavailableforuse.

3. 3.Duringwriteleveling,ifMR1[7]isa1,butMR1[12]isa0,thenonlyRTT,nomwritevaluesareavailableforuse.

Page 59: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

59

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

DLL Enable/DLL Disable

TheDLLmaybeenabledordisabledbyprogrammingMR1[0]during the LOADMODE command, as shown in Figure 22(page 58). The DLLmust be enabled for normal operation.DLLenableisrequiredduringpower-upinitializationanduponreturning to normal operation after having disabled the DLLforthepurposeofdebuggingorevaluation.EnablingtheDLLshould always be followed by resetting the DLL using theappropriateLOADMODEcommand.

If theDLL isenabledprior toenteringself refreshmode, theDLLisautomaticallydisabledwhenenteringSELFREFRESHoperationand isautomaticallyreenabledandresetuponexitofSELFREFRESHoperation. If theDLL isdisabledprior toentering self refresh mode, the DLL remains disabled evenupon exit of SELF REFRESH operation until it is reenabledandreset.

TheDRAMisnottestedtocheck—nordoesMicronwarrantcompliancewith—normalmodetimingsorfunctionalitywhentheDLLisdisabled.AnattempthasbeenmadetohavetheDRAMoperateinthenormalmodewherereasonablypossiblewhen the DLL has been disabled; however, by industrystandard,afewknownexceptionsaredefined:

• ODTisnotallowedtobeused

• Theoutputdataisnolongeredge-alignedtotheclock

• CLandCWLcanonlybesixclocks

When theDLL is disabled, timing and functionality can varyfrom the normal operation specifications when the DLL isenabled (see DLL Disable Mode (page 39)). Disabling theDLLalsoimpliestheneedtochangetheclockfrequency(seeInputClockFrequencyChange(page43)).

Output Drive Strength

TheDDR3SDRAMusesaprogrammableimpedanceoutputbuffer.Thedrivestrengthmoderegistersetting isdefinedbyMR1[5, 1]. RZQ/7 (34Ω [NOM]) is the primary output driverimpedancesettingforDDR3SDRAMdevices.Tocalibratetheoutputdriver impedance,anexternalprecisionresistor(RZQ)isconnectedbetweentheZQballandVSSQ.Thevalueoftheresistormustbe240Ω±1%.

The output impedance is set during initialization. Additionalimpedancecalibrationupdatesdonotaffectdeviceoperation,andalldatasheettimingsandcurrentspecificationsaremetduringanupdate.

Tomeetthe34Ωspecification,theoutputdrivestrengthmustbesetto34Ωduringinitialization.Toobtainacalibratedoutputdriverimpedanceafterpower-up,theDDR3SDRAMneedsacalibrationcommandthatispartoftheinitializationandresetprocedure.

OUTPUT ENABLE/DISABLE

The OUTPUT ENABLE function is defined by MR1[12], asshown inFigure22(page58).Whenenabled(MR1[12]=0),alloutputs(DQ,DQS,DQS#)functionwheninthenormalmodeofoperation.Whendisabled(MR1[12]=1),allDDR3SDRAMoutputs(DQandDQS,DQS#)aretri-stated.Theoutputdisablefeature is intended to be used during IDD characterizationof the READ current and during tDQSS margining(writeleveling)only.

TDQS Enable

Terminationdatastrobe (TDQS) isa featureof thex8DDR3SDRAM configuration that provides termination resistance(RTT)andmaybeusefulinsomesystemconfigurations.TDQSisnotsupportedinx4orx16configurations.Whenenabledviathemoderegister(MR1[11]),theRTTthatisappliedtoDQSandDQS#isalsoappliedtoTDQSandTDQS#.IncontrasttotheRDQSfunctionofDDR2SDRAM,DDR3’sTDQSprovidestheterminationresistanceRTTonly.TheOUTPUTDATASTROBEfunctionofRDQS isnotprovidedbyTDQS; thus,RONdoesnotapplytoTDQSandTDQS#.TheTDQSandDMfunctionssharethesameball.WhentheTDQSfunctionisenabledviathemoderegister,theDMfunctionisnotsupported.WhentheTDQSfunction isdisabled, theDMfunction isprovided,andtheTDQS#ballisnotused.TheTDQSfunctionisavailableinthex8DDR3SDRAMconfigurationonlyandmustbedisabledviathemoderegisterforthex4andx16configurations.

Page 60: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

60

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

On-Die Termination

ODTresistanceRTT,nomisdefinedbyMR1[9,6,2](seeFigure22 (page58)). TheRTT termination valueapplies to theDQ,DM,DQS,DQS#,andTDQS,TDQS#balls.DDR3supportsmultipleRTTterminationvaluesbasedonRZQ/nwherencanbe2,4,6,8,or12andRZQis240Ω.

UnlikeDDR2,DDR3ODTmustbeturnedoffpriortoreadingdataoutandmust remainoffduringaREADburst.RTT,nomtermination is allowedany timeafter theDRAM is initialized,calibrated,andnotperformingreadaccess,orwhenitisnotinselfrefreshmode.Additionally,writeaccesseswithdynamicODT enabled (RTT(WR)) temporarily replaces RTT,nom withRTT(WR).

Theactualeffectivetermination,RTT(EFF),maybedifferentfromthe RTT targeted due to nonlinearity of the termination. ForRTT(EFF)valuesandcalculations(seeOn-DieTermination(ODT)(page103)).

TheODTfeatureisdesignedtoimprovesignalintegrityofthememorychannelbyenablingtheDDR3SDRAMcontrollertoindependentlyturnon/offODTforanyoralldevices.TheODTinputcontrolpinisusedtodeterminewhenRTT isturnedon(ODTLon)andoff(ODTLoff),assumingODThasbeenenabledviaMR1[9,6,2].

Timings for ODT are detailed in On-Die Termination (ODT)(page103).

WRITE LEVELING

The WRITE LEVELING function is enabled by MR1[7], asshown in Figure22 (page58).Write leveling is used (duringinitialization) to deskew theDQS strobe to clock offset as aresult of fly-by topology designs. For better signal integrity,DDR3SDRAMmemorymodulesadoptedfly-bytopologyforthecommands,addresses,controlsignals,andclocks.

Thefly-bytopologybenefitsfromareducednumberofstubsand their lengths. However, fly-by topology induces flighttimeskewsbetween theclockandDQSstrobe (andDQ)ateachDRAMontheDIMM.Controllerswillhaveadifficulttimemaintaining tDQSS, tDSS, and tDSH specifications withoutsupportingwritelevelinginsystemswhichusefly-bytopology-

basedmodules.Write leveling timing anddetailed operationinformationisprovidedinWriteLeveling(page45).

POSTED CAS ADDITIVE Latency

POSTEDCASADDITIVElatency(AL)issupportedtomakethecommandanddatabusefficientforsustainablebandwidthsinDDR3SDRAM.MR1[4,3]definethevalueofAL,asshowninFigure 23 (page 61).MR1[4, 3] enable the user to programtheDDR3SDRAMwithAL=0,CL-1,orCL-2.

Withthisfeature,theDDR3SDRAMenablesaREADorWRITEcommandtobeissuedaftertheACTIVATEcommandforthatbank prior to tRCD (MIN). The only restriction is ACTIVATEto READ or WRITE + AL ≥ tRCD (MIN) must be satisfied.Assuming tRCD (MIN) = CL, a typical application using thisfeaturesetsAL=CL-1tCK=tRCD(MIN)-1tCK.TheREADorWRITEcommandisheldforthetimeoftheALbeforeitisreleasedinternallytotheDDR3SDRAMdevice.READlatency(RL)iscontrolledbythesumoftheALandCASlatency(CL),RL=AL+CL.WRITElatency(WL)isthesumofCASWRITElatencyandAL,WL=AL+CWL(seeModeRegister2(MR2)on page 61). Examples of READ and WRITE latencies areshowninFigure23(page61)andFigure25(page62).

Page 61: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

61

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 57: Mode Register 2 (MR2) Definition

M14

0

1

0

1

M15

0

0

1

1

Mode Register

Mode register set 0 (MR0)

Mode register set 1 (MR1)

Mode register set 2 (MR2)

Mode register set 3 (MR3)

A9 A7 A6 A5 A4 A3A8 A2 A1 A0

Mode register 2 (MR2)

Address bus

9 7 6 5 4 38 2 1 0

A10A12 A11BA0BA1

101112131415

1 CWL010

BA2

ASR

16

01

A13

01 01 01 01 0101 SRTRTT(WR)

M6

0

1

Auto Self Refresh(Optional)

Disabled: Manual

Enabled: Automatic

M7

0

1

Self Refresh Temperature

Normal (0°C to 85°C)

Extended (0°C to 95°C)

CAS Write Latency (CWL)

5 CK (tCK 2.5ns)

6 CK (2.5ns tCK 1.875ns)

7 CK (1.875ns tCK 1.5ns)

8 CK (1.5ns tCK 1.25ns)

9 CK (1.25ns tCK 1.07ns)

10 CK (1.071ns tCK 0.938ns)

Reserved

Reserved

M3

0

1

0

1

0

1

0

1

M4

0

0

1

1

0

0

1

1

M5

0

0

0

0

1

1

1

1M9

0

1

0

1

M10

0

0

1

1

Dynamic ODT(RTT(WR) )

RTT(WR) disabled

RZQ/4

RZQ/2

Reserved

Note: 1. MR2[16, 13:11, 8, and 2:0] are reserved for future use and must all be programmed to 0.

CAS Write Latency (CWL)

CWL is defined by MR2[5:3] and is the delay, in clock cycles, from the releasing of theinternal write to the latching of the first data in. CWL must be correctly set to the corre-sponding operating clock frequency (see Figure 57 (page 145)). The overall WRITE la-tency (WL) is equal to CWL + AL (Figure 55 (page 141)).

Figure 58: CAS Write Latency

CK

CK#

Command

DQ

DQS, DQS#

ACTIVE n

T0 T1

Don’t Care

NOP NOP

T6 T12

NOPWRITE n

T13

NOP

DI n + 3

DI n + 2

DI n + 1

T14

NOP

DI n

tRCD (MIN)

NOP

AL = 5

T11

Indicates breakin time scale

WL = AL + CWL = 11

Transitioning Data

T2

CWL = 6

AUTO SELF REFRESH (ASR)

Mode register MR2[6] is used to disable/enable the ASR function. When ASR is disabled,the self refresh mode’s refresh rate is assumed to be at the normal 85°C limit (some-times referred to as 1x refresh rate). In the disabled mode, ASR requires the user to en-

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 2 (MR2)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 145 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 23: READ Latency (AL = 5, CL = 6)

Figure 24: Mode Register 2 (MR2) Definition

tCK. The READ or WRITE command is held for the time of the AL before it is releasedinternally to the DDR3 SDRAM device. READ latency (RL) is controlled by the sum ofthe AL and CAS latency (CL), RL = AL + CL. WRITE latency (WL) is the sum of CASWRITE latency and AL, WL = AL + CWL (see Mode Register 2 (MR2) (page 144)). Exam-ples of READ and WRITE latencies are shown in Figure 56 (page 144) and Figure 58(page 145).

Figure 56: READ Latency (AL = 5, CL = 6)

CK

CK#

Command

DQ

DQS, DQS#

ACTIVE n

T0 T1

Don’t Care

NOP NOP

T6 T12

NOPREAD n

T13

NOP

DOn + 3

DOn + 2

DOn + 1

RL = AL + CL = 11

T14

NOP

DOn

tRCD (MIN)

AL = 5 CL = 6

T11

BC4

Indicates breakin time scale

Transitioning Data

T2

NOP

Mode Register 2 (MR2)The mode register 2 (MR2) controls additional functions and features not available inthe other mode registers. These additional functions are CAS WRITE latency (CWL), AU-TO SELF REFRESH (ASR), SELF REFRESH TEMPERATURE (SRT), and DYNAMIC ODT(RTT(WR)). These functions are controlled via the bits shown in Figure 57. The MR2 isprogrammed via the MRS command and will retain the stored information until it isprogrammed again or until the device loses power. Reprogramming the MR2 registerwill not alter the contents of the memory array, provided it is performed correctly. TheMR2 register must be loaded when all banks are idle and no data bursts are in progress,and the controller must wait the specified time tMRD and tMOD before initiating a sub-sequent operation.

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 2 (MR2)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 144 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Mode Register 2 (MR2)

Themode register2 (MR2)controlsadditional functionsandfeatures not available in the other mode registers. Theseadditional functions are CAS WRITE latency (CWL), AUTOSELF REFRESH (ASR), SELF REFRESH TEMPERATURE(SRT), and DYNAMIC ODT (RTT(WR)). These functions arecontrolledviathebitsshowninFigure24(below).TheMR2isprogrammedviatheMRScommandandwillretainthestoredinformationuntilitis

programmed again or until the device loses power.Reprogramming theMR2 registerwill not alter the contentsof thememory array, provided it is performed correctly. TheMR2registermustbeloadedwhenallbanksareidleandnodataburstsare inprogress,andthecontrollermustwait thespecifiedtimetMRDandtMODbeforeinitiatingasubsequentoperation.

Note:

1. MR2[16,13:11,8,and2:0]arereservedforfutureuseandmustallbeprogrammedto0.

Page 62: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

62

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

CAS Write Latency (CWL)

CWLisdefinedbyMR2[5:3]andisthedelay,inclockcycles,from the releasingof the internalwrite to the latchingof thefirstdatain.CWLmustbecorrectlysettothecorrespondingoperating clock frequency (see Figure 24 (page 61)). TheoverallWRITElatency(WL)isequaltoCWL+AL(seeFigure22(page58)).

Figure 57: Mode Register 2 (MR2) Definition

M14

0

1

0

1

M15

0

0

1

1

Mode Register

Mode register set 0 (MR0)

Mode register set 1 (MR1)

Mode register set 2 (MR2)

Mode register set 3 (MR3)

A9 A7 A6 A5 A4 A3A8 A2 A1 A0

Mode register 2 (MR2)

Address bus

9 7 6 5 4 38 2 1 0

A10A12 A11BA0BA1

101112131415

1 CWL010

BA2

ASR

16

01

A13

01 01 01 01 0101 SRTRTT(WR)

M6

0

1

Auto Self Refresh(Optional)

Disabled: Manual

Enabled: Automatic

M7

0

1

Self Refresh Temperature

Normal (0°C to 85°C)

Extended (0°C to 95°C)

CAS Write Latency (CWL)

5 CK (tCK 2.5ns)

6 CK (2.5ns tCK 1.875ns)

7 CK (1.875ns tCK 1.5ns)

8 CK (1.5ns tCK 1.25ns)

9 CK (1.25ns tCK 1.07ns)

10 CK (1.071ns tCK 0.938ns)

Reserved

Reserved

M3

0

1

0

1

0

1

0

1

M4

0

0

1

1

0

0

1

1

M5

0

0

0

0

1

1

1

1M9

0

1

0

1

M10

0

0

1

1

Dynamic ODT(RTT(WR) )

RTT(WR) disabled

RZQ/4

RZQ/2

Reserved

Note: 1. MR2[16, 13:11, 8, and 2:0] are reserved for future use and must all be programmed to 0.

CAS Write Latency (CWL)

CWL is defined by MR2[5:3] and is the delay, in clock cycles, from the releasing of theinternal write to the latching of the first data in. CWL must be correctly set to the corre-sponding operating clock frequency (see Figure 57 (page 145)). The overall WRITE la-tency (WL) is equal to CWL + AL (Figure 55 (page 141)).

Figure 58: CAS Write Latency

CK

CK#

Command

DQ

DQS, DQS#

ACTIVE n

T0 T1

Don’t Care

NOP NOP

T6 T12

NOPWRITE n

T13

NOP

DI n + 3

DI n + 2

DI n + 1

T14

NOP

DI n

tRCD (MIN)

NOP

AL = 5

T11

Indicates breakin time scale

WL = AL + CWL = 11

Transitioning Data

T2

CWL = 6

AUTO SELF REFRESH (ASR)

Mode register MR2[6] is used to disable/enable the ASR function. When ASR is disabled,the self refresh mode’s refresh rate is assumed to be at the normal 85°C limit (some-times referred to as 1x refresh rate). In the disabled mode, ASR requires the user to en-

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 2 (MR2)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 145 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

AUTO SELF REFRESH (ASR)

Mode register MR2[6] is used to disable/enable the ASRfunction.WhenASRisdisabled,theselfrefreshmode’srefreshrate is assumed to be at the normal 85°C limit (sometimesreferred to as 1x refresh rate). In the disabled mode, ASRrequires the user to ensure the DRAM never exceeds a TCof85°CwhileinselfrefreshunlesstheuserenablestheSRTfeaturelistedbelowwhentheTCisbetween85°Cand95°C.

EnablingASRassumestheDRAMselfrefreshrateischangedautomatically from 1x to 2x when the case temperatureexceeds 85°C. This enables the user to operate theDRAMbeyond thestandard85°C limitup to theoptionalextendedtemperaturerangeof95°Cwhileinselfrefreshmode.

Thestandardselfrefreshcurrenttestspecifiestestconditionsto normal case temperature (85°C) only, meaning if ASR isenabled,thestandardselfrefreshcurrentspecificationsdonotapply(seeExtendedTemperatureUsage(page93)).

SELF REFRESH TEMPERATURE (SRT)

Mode register MR2[7] is used to disable/enable the SRTfunction.WhenSRTisdisabled,theselfrefreshmode’srefreshrate is assumed to be at the normal 85°C limit (sometimesreferred to as 1x refresh rate). In the disabled mode, SRTrequirestheusertoensuretheDRAMneverexceedsaTCof85°CwhileinselfrefreshmodeunlesstheuserenablesASR.

When SRT is enabled, the DRAM self refresh is changedinternally from1x to2x, regardlessof thecase temperature.This enables the user to operate the DRAM beyond thestandard85°Climituptotheoptionalextendedtemperaturerange of 95°Cwhile in self refreshmode. The standard selfrefresh current test specifies test conditions to normal casetemperature (85°C) only, meaning if SRT is enabled, thestandardself refreshcurrentspecificationsdonotapply (seeExtendedTemperatureUsage(page93)).

Figure 25: CAS Write Latency

Page 63: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

63

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

SRT vs. ASR

Ifthenormalcasetemperaturelimitof85°Cisnotexceeded,thenneitherSRTnorASRisrequired,andbothcanbedisabledthroughout operation.However, if the extended temperatureoptionof95°Cisneeded,theuserisrequiredtoprovidea2xrefresh rate during (manual) refresh and to enable either theSRTortheASRtoensureselfrefreshisperformedatthe2xrate.

SRT forces theDRAMtoswitch the internalself refresh ratefrom1xto2x.Selfrefreshisperformedatthe2xrefreshrateregardlessofthecasetemperature.

ASR automatically switches theDRAM’s internal self refreshratefrom1xto2x.However,whileinselfrefreshmode,ASRenables the refresh rate to automatically adjust between1x to 2x over the supported temperature range. One otherdisadvantage with ASR is the DRAM cannot always switchfroma1xtoa2xrefreshrateatanexactcasetemperatureof85°C.AlthoughtheDRAMwillsupportdata integritywhen itswitchesfroma1xtoa2xrefreshrate,itmayswitchatalowertemperaturethan85°C.

Sinceonlyonemodeisnecessary,SRTandASRcannotbeenabledatthesametime.

DYNAMIC ODT

ThedynamicODT(RTT(WR))featureisdefinedbyMR2[10,9].DynamicODTisenabledwhenavalueisselected.ThisnewDDR3 SDRAM feature enables the ODT termination valueto change without issuing an MRS command, essentiallychangingtheODTterminationon-the-fly.

With dynamic ODT (RTT(WR)) enabled, the DRAM switchesfrom normalODT (RTT,nom) to dynamicODT (RTT(WR))whenbeginningaWRITEburstandsubsequentlyswitchesbacktoODT(RTT,nom)atthecompletionoftheWRITEburst.IfRTT,nomis disabled, the RTT,nom valuewill beHigh-Z. Special timingparametersmustbeadheredtowhendynamicODT(RTT(WR))is enabled: ODTLcnw, ODTLcnw4, ODTLcnw8, ODTH4,ODTH8,andtADC.

DynamicODTisonlyapplicableduringWRITEcycles.IfODT(RTT,nom)isdisabled,dynamicODT(RTT(WR))isstillpermitted.RTT,nomandRTT(WR)canbeused independentofoneother.Dynamic ODT is not available during write leveling mode,regardlessofthestateofODT(RTT,nom).FordetailsondynamicODToperation,refertoOn-DieTermination(ODT)(page103).

Page 64: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

64

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Mode Register 3 (MR3)

Themode register3 (MR3)controlsadditional functionsandfeatures not available in the othermode registers. Currentlydefined is the MULTIPURPOSE REGISTER (MPR). ThisfunctioniscontrolledviathebitsshowninFigure26.TheMR3is programmed via the LOADMODE command and retainsthestoredinformationuntilitisprogrammedagainoruntilthedevicelosespower.ReprogrammingtheMR3register

willnotalter thecontentsof thememoryarray,provided it isperformedcorrectly.TheMR3registermustbe loadedwhenallbanksareidleandnodataburstsareinprogress,andthecontrollermustwaitthespecifiedtimetMRDandtMODbeforeinitiatingasubsequentoperation.

Figure 26: Mode Register 3 (MR3) Definition

Notes:

1. MR3[16and13:3]arereservedforfutureuseandmustallbeprogrammedto0.

2. WhenMPRcontrolissetfornormalDRAMoperation,MR3[1,0]willbeignored.

3. IntendedtobeusedforREADsynchronization.

back to ODT (RTT,nom) at the completion of the WRITE burst. If RTT,nom is disabled, theRTT,nom value will be High-Z. Special timing parameters must be adhered to when dy-namic ODT (RTT(WR)) is enabled: ODTLcnw, ODTLcnw4, ODTLcnw8, ODTH4, ODTH8,and tADC.

Dynamic ODT is only applicable during WRITE cycles. If ODT (RTT,nom) is disabled, dy-namic ODT (RTT(WR)) is still permitted. RTT,nom and RTT(WR) can be used independent ofone other. Dynamic ODT is not available during write leveling mode, regardless of thestate of ODT (RTT,nom). For details on dynamic ODT operation, refer to On-Die Termina-tion (ODT) (page 193).

Mode Register 3 (MR3)The mode register 3 (MR3) controls additional functions and features not available inthe other mode registers. Currently defined is the MULTIPURPOSE REGISTER (MPR).This function is controlled via the bits shown in Figure 59 (page 147). The MR3 is pro-grammed via the LOAD MODE command and retains the stored information until it isprogrammed again or until the device loses power. Reprogramming the MR3 registerwill not alter the contents of the memory array, provided it is performed correctly. TheMR3 register must be loaded when all banks are idle and no data bursts are in progress,and the controller must wait the specified time tMRD and tMOD before initiating a sub-sequent operation.

Figure 59: Mode Register 3 (MR3) Definition

A9 A7 A6 A5 A4 A3A8 A2 A1 A0

Mode register 3 (MR3)

Address bus

9 7 6 5 4 38 2 1 0

A10A12 A11BA0BA1

101112131415

A13

1 01 01 01 01 01 01 01 MPR 1

BA2

16

01 01 01 01 01

M2

0

1

MPR Enable

Normal DRAM operations2

Dataflow from MPR

MPR_RF

M14

0

1

0

1

M15

0

0

1

1

Mode Register

Mode register set (MR0)

Mode register set 1 (MR1)

Mode register set 2 (MR2)

Mode register set 3 (MR3)

MPR READ Function

Predefined pattern3

Reserved

Reserved

Reserved

M0

0

1

0

1

M1

0

0

1

1

Notes: 1. MR3[16 and 13:3] are reserved for future use and must all be programmed to 0.2. When MPR control is set for normal DRAM operation, MR3[1, 0] will be ignored.3. Intended to be used for READ synchronization.

MULTIPURPOSE REGISTER (MPR)

The MULTIPURPOSE REGISTER function is used to output a predefined system timingcalibration bit sequence. Bit 2 is the master bit that enables or disables access to theMPR register, and bits 1 and 0 determine which mode the MPR is placed in. The basicconcept of the multipurpose register is shown in Figure 60 (page 148).

If MR3[2] is a 0, then the MPR access is disabled, and the DRAM operates in normalmode. However, if MR3[2] is a 1, then the DRAM no longer outputs normal read databut outputs MPR data as defined by MR3[0, 1]. If MR3[0, 1] is equal to 00, then a prede-fined read pattern for system calibration is selected.

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 3 (MR3)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 147 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 65: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

65

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

MULTIPURPOSE REGISTER (MPR)

TheMULTIPURPOSEREGISTERfunctionisusedtooutputapredefinedsystemtimingcalibrationbitsequence.Bit2isthemasterbitthatenablesordisablesaccesstotheMPRregister,andbits1and0determinewhichmode theMPR isplacedin.ThebasicconceptofthemultipurposeregisterisshowninFigure27(page65).

IfMR3[2] is a 0, then theMPRaccess is disabled, and theDRAMoperates innormalmode.However, ifMR3[2] isa1,thentheDRAMnolongeroutputsnormalreaddatabutoutputsMPRdataasdefinedbyMR3[0,1]. IfMR3[0,1] isequal to00, then a predefined read pattern for system calibration isselected.

ToenabletheMPR,theMRScommandisissuedtoMR3,andMR3[2]=1.PriortoissuingtheMRScommand,allbanksmustbeintheidlestate(allbanksareprecharged,andtRPismet).When theMPR isenabled,anysubsequentREADorRDAPcommands are redirected to the multipurpose register. TheresultingoperationwheneitheraREADoraRDAPcommandis issued, isdefinedbyMR3[1:0]when theMPR is enabled(see Table 28 (page 66)). When the MPR is enabled, onlyREAD or RDAP commands are allowed until a subsequentMRScommand is issuedwith theMPRdisabled (MR3[2] =0).Power-downmode,selfrefresh,andanyothernonREAD/RDAPcommandsarenotallowedduringMPRenablemode.TheRESETfunctionissupportedduringMPRenablemode.

Figure 27: Multipurpose Register (MPR) Block Diagram

To enable the MPR, the MRS command is issued to MR3, and MR3[2] = 1. Prior to issu-ing the MRS command, all banks must be in the idle state (all banks are precharged,and tRP is met). When the MPR is enabled, any subsequent READ or RDAP commandsare redirected to the multipurpose register. The resulting operation when either a READor a RDAP command is issued, is defined by MR3[1:0] when the MPR is enabled (seeTable 78 (page 149)). When the MPR is enabled, only READ or RDAP commands are al-lowed until a subsequent MRS command is issued with the MPR disabled (MR3[2] = 0).Power-down mode, self refresh, and any other nonREAD/RDAP commands are not al-lowed during MPR enable mode. The RESET function is supported during MPR enablemode.

Figure 60: Multipurpose Register (MPR) Block Diagram

Memory core

MR3[2] = 0 (MPR off)

DQ, DM, DQS, DQS#

Multipurpose registerpredefined data for READs

MR3[2] = 1 (MPR on)

Notes: 1. A predefined data pattern can be read out of the MPR with an external READ com-mand.

2. MR3[2] defines whether the data flow comes from the memory core or the MPR. Whenthe data flow is defined, the MPR contents can be read out continuously with a regularREAD or RDAP command.

Table 77: MPR Functional Description of MR3 Bits

MR3[2] MR3[1:0]

FunctionMPR MPR READ Function

0 “Don’t Care” Normal operation, no MPR transactionAll subsequent READs come from the DRAM memory array

All subsequent WRITEs go to the DRAM memory array

1 A[1:0](see Table 78 (page 149))

Enable MPR mode, subsequent READ/RDAP commands defined by bits 1 and2

MPR Functional Description

The MPR JEDEC definition enables either a prime DQ (DQ0 on a x4 and a x8; on a x16,DQ0 = lower byte and DQ8 = upper byte) to output the MPR data with the remainingDQs driven LOW, or for all DQs to output the MPR data. The MPR readout supports

1Gb: x4, x8, x16 DDR3 SDRAMMode Register 3 (MR3)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 148 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. ApredefineddatapatterncanbereadoutoftheMPRwithanexternalREADcommand.

2. MR3[2]defineswhetherthedataflowcomesfromthememorycoreortheMPR.Whenthedataflowisdefined,theMPRcontentscanbereadoutcontinuouslywitharegularREADorRDAPcommand.

Table 27: MPR Functional Description of MR3 Bits

MR3[2] MR3[1:0]Function

MPR MPR READ Function

0 “Don’t Care”Normal operation, no MPR transaction

All subsequent READs come from the DRAM memory arrayAll subsequent WRITEs go to the DRAM memory array

1A[1:0]

(see Table 28 (page 66))Enable MPR mode, subsequent READ/RDAP commands defined by bits 1 and 2

Page 66: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

66

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

MPR Functional Description

TheMPRJEDECdefinitionenableseitheraprimeDQ(DQ0onax4andax8;onax16,DQ0=lowerbyteandDQ8=upperbyte)tooutputtheMPRdatawiththeremainingDQsdrivenLOW,orforallDQstooutputtheMPRdata.TheMPRreadoutsupportsfixedREADburstandREADburstchop(MRSandOTFviaA12/BC#)withregularREADlatenciesandACtimingsapplicable,providedtheDLLislockedasrequired.

MPRaddressingforavalidMPRreadisasfollows:

• A[1:0]mustbesetto00astheburstorderisfixedpernibble

• A2selectstheburstorder:

• BL8,A2issetto0,andtheburstorderisfixedto0,1,2,3,4,5,6,7

• Forburstchop4cases,theburstorderisswitchedonthenibblebasealongwiththefollowing:

• A2=0;burstorder=0,1,2,3

• A2=1;burstorder=4,5,6,7

• Burstorderbit0(thefirstbit)isassignedtoLSB,andburstorderbit7(thelastbit)isassignedtoMSB

• A[9:3]area“Don’tCare”

• A10isa“Don’tCare”

• A11isa“Don’tCare”

• A12:Selectsburstchopmodeon-the-fly,ifenabledwithinMR0

• A13isa“Don’tCare”

• BA[2:0]area“Don’tCare”

MPR Register Address Definitions and Bursting Order

TheMPRcurrently supports a singledata format. This dataformat is a predefined read pattern for system calibration.Thepredefinedpatternisalwaysarepeating0–1bitpattern.Examples of the different types of predefinedREADpatternburstsareshowninthefollowingfigures.

Table 28: MPR Readouts and Burst Order Bit Mapping

MR3[2] MR3[1:0] FunctionBurst

LengthRead A[2:0]

Burst Order and Data Pattern

1 00 READ predefined pattern for system calibration

BL8000

Burst order: 0, 1, 2, 3, 4, 5, 6, 7; Predefined pattern: 0, 1, 0, 1, 0, 1, 0, 1

BC4 Burst order: 0, 1, 2, 3; Predefined pattern: 0, 1, 0, 1

BC4 100 Burst order: 4, 5, 6, 7; Predefined pattern: 0, 1, 0, 1

1 01

RFU N/A N/A N/A1 10

1 11

Note:

1. Burstorderbit0isassignedtoLSB,andburstorderbit7isassignedtoMSBoftheselectedMPRagent.

Page 67: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

67

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

MPR Read Predefined Pattern

Thepredeterminedreadcalibrationpattern isafixedpatternof0,1,0,1,0,1,0,1.Thefollowingisanexampleofusingthe read out predetermined read calibration pattern. Theexample is to performmultiple reads from themultipurposeregistertodosystemlevelreadtimingcalibrationbasedonthepredeterminedandstandardizedpattern.

Thefollowingprotocoloutlinesthestepsusedtoperformthereadcalibration:

1. Prechargeallbanks

2. AftertRPissatisfied,setMRS,MR3[2]=1andMR3[1:0]=00.ThisredirectsallsubsequentreadsandloadsthepredefinedpatternintotheMPR.AssoonastMRDandtMODaresatisfied,theMPRisavailable

3. DataWRITEoperationsarenotalloweduntiltheMPRreturnstothenormalDRAMstate

4. Issueareadwithburstorderinformation(allotheraddresspinsare“Don’tCare”):

• A[1:0]=00(databurstorderisfixedstartingatnibble)

• A2=0(forBL8,burstorderisfixedas0,1,2,3,4,5,6,7)

• A12=1(useBL8)

5. AfterRL=AL+CL,theDRAMburstsoutthepredefinedreadcalibrationpattern(0,1,0,1,0,1,0,1)

6. Thememorycontrollerrepeatsthecalibrationreadsuntilreaddatacaptureatmemorycontrollerisoptimized

7. AfterthelastMPRREADburstandaftertMPRRhasbeensatisfied,issueMRS,MR3[2]=0,andMR3[1:0]=“Don’tCare”tothenormalDRAMstate.Allsubsequentreadandwriteaccesseswillberegularreadsandwritesfrom/totheDRAMarray

8. WhentMRDandtMODaresatisfiedfromthelastMRS,theregularDRAMcommands(suchasactivateamemorybankforregularreadorwriteaccess)arepermitted

MODE REGISTER SET (MRS) CommandThe mode registers are loaded via inputs BA[2:0], A[13:0].BA[2:0]determinewhichmoderegisterisprogrammed:

• BA2=0,BA1=0,BA0=0forMR0

• BA2=0,BA1=0,BA0=1forMR1

• BA2=0,BA1=1,BA0=0forMR2

• BA2=0,BA1=1,BA0=1forMR3

TheMRScommandcanonlybeissued(orre-issued)whenallbanksareidleandintheprechargedstate(tRPissatisfiedandnodataburstsare inprogress).Thecontrollermustwait thespecified time tMRDbefore initiatingasubsequentoperationsuch as an ACTIVATE command (see Figure 18 (page 52)).There is also a restriction after issuing an MRS commandwithregardtowhentheupdatedfunctionsbecomeavailable.Thisparameter isspecifiedby tMOD.Both tMRDand tMODparametersareshown inFigure18 (page52)andFigure19(page53).Violatingeitherof these requirementswill result inunspecifiedoperation.

Page 68: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

68

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

ZQ CALIBRATION Operation

The ZQ CALIBRATION command is used to calibrate theDRAMoutputdrivers(RON)andODTvalues(RTT)overprocess,voltage,andtemperature,providedadedicated240Ω (±1%)external resistor is connected from the DRAM’s ZQ ball toVSSQ.

DDR3SDRAMrequirealongertimetocalibrateRONandODTatpower-up initializationandself refreshexit,andarelativelyshorter time toperformperiodic calibrations.DDR3SDRAMdefinestwoZQCALIBRATIONcommands:ZQCLandZQCS.AnexampleofZQcalibrationtimingisshownbelow.

Allbanksmustbeprechargedand tRPmustbemetbeforeZQCLorZQCScommandscanbeissuedtotheDRAM.No

other activities (other than issuing another ZQCL or ZQCScommand) canbeperformedon theDRAMchannel by thecontrollerforthedurationoftZQinitortZQoper.ThequiettimeontheDRAMchannelhelpsaccuratelycalibrateRONandODT.AfterDRAMcalibrationisachieved,theDRAMshoulddisabletheZQball’scurrentconsumptionpathtoreducepower.

ZQCALIBRATIONcommandscanbeissuedinparalleltoDLLRESET and locking time. Upon self refresh exit, an explicitZQCLisrequiredifZQcalibrationisdesired.

In dual-rank systems that share the ZQ resistor betweendevices, the controller must not enable overlap of tZQinit,tZQoper,ortZQCSbetweenranks.

ZQ CALIBRATION OperationThe ZQ CALIBRATION command is used to calibrate the DRAM output drivers (RON)and ODT values (RTT) over process, voltage, and temperature, provided a dedicated240Ω (±1%) external resistor is connected from the DRAM’s ZQ ball to VSSQ.

DDR3 SDRAM require a longer time to calibrate RON and ODT at power-up initializationand self refresh exit, and a relatively shorter time to perform periodic calibrations.DDR3 SDRAM defines two ZQ CALIBRATION commands: ZQCL and ZQCS. An exampleof ZQ calibration timing is shown below.

All banks must be precharged and tRP must be met before ZQCL or ZQCS commandscan be issued to the DRAM. No other activities (other than issuing another ZQCL orZQCS command) can be performed on the DRAM channel by the controller for the du-ration of tZQinit or tZQoper. The quiet time on the DRAM channel helps accurately cali-brate RON and ODT. After DRAM calibration is achieved, the DRAM should disable theZQ ball’s current consumption path to reduce power.

ZQ CALIBRATION commands can be issued in parallel to DLL RESET and locking time.Upon self refresh exit, an explicit ZQCL is required if ZQ calibration is desired.

In dual-rank systems that share the ZQ resistor between devices, the controller must notenable overlap of tZQinit, tZQoper, or tZQCS between ranks.

Figure 65: ZQ CALIBRATION Timing (ZQCL and ZQCS)

NOPZQCL NOP NOP Valid Valid ZQCS NOP NOP NOP ValidCommand

Indicates breakin time scale

T0 T1 Ta0 Ta1 Ta2 Ta3 Tb0 Tb1 Tc0 Tc1 Tc2

Address Valid ValidValid

A10 Valid ValidValid

CK

CK#

Don’t Care

DQ High-Z High-Z33 Activities Activ-ities

Valid ValidODT 2 2 Valid

1CKE 1 Valid Valid Valid

tZQCStZQinit or tZQoper

Notes: 1. CKE must be continuously registered HIGH during the calibration procedure.2. ODT must be disabled via the ODT signal or the MRS during the calibration procedure.3. All devices connected to the DQ bus should be High-Z during calibration.

1Gb: x4, x8, x16 DDR3 SDRAMZQ CALIBRATION Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 156 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 28: ZQ CALIBRATION Timing (ZQCL and ZQCS)

Notes:

1. CKEmustbecontinuouslyregisteredHIGHduringthecalibrationprocedure.

2. ODTmustbedisabledviatheODTsignalortheMRSduringthecalibrationprocedure.

3. AlldevicesconnectedtotheDQbusshouldbeHigh-Zduringcalibration.

Page 69: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

69

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

ACTIVATE OperationBefore anyREADorWRITEcommandscanbe issued to abankwithin theDRAM,a row in thatbankmustbeopened(activated).ThisisaccomplishedviatheACTIVATEcommand,whichselectsboththebankandtherowtobeactivated.

AfterarowisopenedwithanACTIVATEcommand,aREADorWRITE commandmay be issued to that row, subject tothe tRCD specification. However, if the additive latency isprogrammedcorrectly,aREADorWRITEcommandmaybeissuedpriortotRCD(MIN).Inthisoperation,theDRAMenablesaREADorWRITEcommandtobeissuedaftertheACTIVATEcommand for that bank, but prior to tRCD (MIN) with therequirement that (ACTIVATE-to-READ/WRITE) + AL ≥ tRCD(MIN)(seePostedCASAdditiveLatency).tRCD(MIN)shouldbedividedby the clockperiod and roundedup to the nextwholenumber todetermine theearliestclockedgeafter theACTIVATEcommandonwhichaREADorWRITEcommandcanbeentered.Thesameprocedureisusedtoconvertotherspecificationlimitsfromtimeunitstoclockcycles.

Whenatleastonebankisopen,anyREAD-to-READcommanddelay or WRITE-to-WRITE command delay is restricted totCCD(MIN).

AsubsequentACTIVATEcommand toadifferent row in thesamebankcanonlybe issuedafter thepreviousactive rowhas been closed (precharged). The minimum time intervalbetween successive ACTIVATE commands to the samebank isdefinedby tRC.AsubsequentACTIVATEcommandto another bank canbe issuedwhile the first bank is beingaccessed, which results in a reduction of total row-accessoverhead. The minimum time interval between successiveACTIVATEcommandstodifferentbanks isdefinedby tRRD.NomorethanfourbankACTIVATEcommandsmaybeissuedinagiventFAW(MIN)period,andthetRRD(MIN)restrictionstillapplies.ThetFAW(MIN)parameterapplies,regardlessofthenumberofbanksalreadyopenedorclosed.

Page 70: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

70

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

READ OperationREAD bursts are initiated with a READ command. The starting column and bank ad-dresses are provided with the READ command and auto precharge is either enabled ordisabled for that burst access. If auto precharge is enabled, the row being accessed isautomatically precharged at the completion of the burst. If auto precharge is disabled,the row will be left open after the completion of the burst.

During READ bursts, the valid data-out element from the starting column address isavailable READ latency (RL) clocks later. RL is defined as the sum of posted CAS additivelatency (AL) and CAS latency (CL) (RL = AL + CL). The value of AL and CL is programma-ble in the mode register via the MRS command. Each subsequent data-out element isvalid nominally at the next positive or negative clock edge (that is, at the next crossingof CK and CK#). Figure 68 shows an example of RL based on a CL setting of 8 and an ALsetting of 0.

Figure 68: READ Latency

CK

CK#

Command READ NOP NOP NOP NOP NOP NOP NOP

AddressBank a,Col n

CL = 8, AL = 0

DQ

DQS, DQS#

DOn

T0 T7 T8 T9 T10 T11

Don’t CareTransitioning Data

T12 T12

Indicates breakin time scale

Notes: 1. DO n = data-out from column n.2. Subsequent elements of data-out appear in the programmed order following DO n.

DQS, DQS# is driven by the DRAM along with the output data. The initial LOW state onDQS and HIGH state on DQS# is known as the READ preamble (tRPRE). The LOW stateon DQS and the HIGH state on DQS#, coincident with the last data-out element, isknown as the READ postamble (tRPST). Upon completion of a burst, assuming no othercommands have been initiated, the DQ goes High-Z. A detailed explanation of tDQSQ(valid data-out skew), tQH (data-out window hold), and the valid data window are de-picted in Figure 79 (page 167). A detailed explanation of tDQSCK (DQS transition skewto CK) is also depicted in Figure 79 (page 167).

Data from any READ burst may be concatenated with data from a subsequent READcommand to provide a continuous flow of data. The first data element from the newburst follows the last element of a completed burst. The new READ command should beissued tCCD cycles after the first READ command. This is shown for BL8 in Figure 69(page 161). If BC4 is enabled, tCCD must still be met, which will cause a gap in the dataoutput, as shown in Figure 70 (page 161). Nonconsecutive READ data is reflected in

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 159 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

READ Operation

READburstsareinitiatedwithaREADcommand.Thestartingcolumn and bank addresses are provided with the READcommandandautoprechargeiseitherenabledordisabledforthatburstaccess.Ifautoprechargeisenabled,therowbeingaccessedisautomaticallyprechargedatthecompletionoftheburst. Ifautoprecharge isdisabled,therowwillbe leftopenafterthecompletionoftheburst.

During READ bursts, the valid data-out element from thestarting column address is available READ latency (RL)

clockslater.RLisdefinedasthesumofpostedCASadditivelatency(AL)andCASlatency(CL)(RL=AL+CL).ThevalueofALandCL isprogrammable in themode register via theMRScommand.Each subsequentdata-out element is validnominallyatthenextpositiveornegativeclockedge(thatis,atthenextcrossingofCKandCK#).Figure29showsanexampleofRLbasedonaCLsettingof8andanALsettingof0.

Figure 29: READ Latency

Notes:

1. DOn=data-outfromcolumnn.

2. Subsequentelementsofdata-outappearintheprogrammedorderfollowingDOn.

DQS,DQS#isdrivenbytheDRAMalongwiththeoutputdata.The initial LOW state on DQS andHIGH state on DQS# isknownastheREADpreamble(tRPRE).TheLOWstateonDQSandtheHIGHstateonDQS#,coincidentwith the lastdata-outelement,isknownastheREADpostamble(tRPST).Uponcompletion of a burst, assuming no other commands havebeeninitiated,theDQgoesHigh-Z.AdetailedexplanationoftDQSQ(validdata-outskew),tQH(data-outwindowhold),andthevaliddatawindowaredepictedinFigure40(page78).AdetailedexplanationoftDQSCK(DQStransitionskewtoCK)isalsodepictedinFigure40(page78).

Data fromanyREADburstmaybe concatenatedwith datafromasubsequentREADcommandtoprovideacontinuousflow of data. The first data element from the new burstfollowsthelastelementofacompletedburst.ThenewREADcommandshouldbeissuedtCCDcyclesafterthefirstREADcommand. This is shown for BL8 in Figure 30 (page 72).IfBC4isenabled,tCCDmuststillbemet,whichwillcauseagap in the data output, as shown in Figure 31 (page 72).Nonconsecutive READ data is reflected in Figure 32 (page73).DDR3SDRAMdoesnotallow interruptingor truncatinganyREADburst.

Page 71: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

71

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Data from any READ burst must be completed before asubsequentWRITEburst isallowed.AnexampleofaREADburstfollowedbyaWRITEburstforBL8isshowninFigure33(page 73) (BC4 is shown in Figure 34 (page 74). To ensuretheREADdataiscompletedbeforetheWRITEdataisonthebus,theminimumREAD-to-WRITEtimingisRL+tCCD-WL+2tCK.

AREADburstmaybefollowedbyaPRECHARGEcommandto thesamebank,providedautoprecharge isnotactivated.Theminimum READ-to-PRECHARGE command spacing tothesamebankisfourclocksandmustalsosatisfyaminimumanalogtimefromtheREADcommand.ThistimeiscalledtRTP(READ-to-PRECHARGE).tRTPstartsALcycleslaterthantheREADcommand.Examples forBL8areshown inFigure35(page 74) and BC4 in Figure 36 (page 75). Following thePRECHARGEcommand,asubsequentcommandtothesamebank cannot be issued until tRP is met. The PRECHARGEcommand followed by another PRECHARGE command tothesamebankisallowed.However,theprechargeperiodwillbedeterminedbythelastPRECHARGEcommandissuedtothebank.

IfA10isHIGHwhenaREADcommandisissued,theREADwithautoprechargefunctionisengaged.TheDRAMstartsanautoprechargeoperationon the rising edge,which isAL+tRTPcyclesaftertheREADcommand.DRAMsupportatRASlockout feature Figure 38 (page 75). If tRAS (MIN) is notsatisfiedattheedge,thestartingpointoftheautoprechargeoperationwillbedelayeduntil tRAS(MIN) issatisfied. If tRTP(MIN)isnotsatisfiedattheedge,thestartingpointoftheautoprechargeoperationisdelayeduntiltRTP(MIN)issatisfied.IncasetheinternalprechargeispushedoutbytRTP,tRPstartsatthepointatwhichtheinternalprechargehappens(notatthenext risingclockedgeafter thisevent).The time fromREADwithautoprecharge to thenextACTIVATEcommand to thesamebankisAL+(tRTP+tRP)*,where*meansroundeduptothenext integer. Inanyevent, internalprechargedoesnotstartearlierthanfourclocksafterthelast8n-bitprefetch.

READ Operation (continued)

Page 72: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

72

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

69: C

on

secu

tive R

EA

D B

urs

ts (

BL8

)

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

t RPS

T

NO

PRE

AD

REA

DN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

Bank

,Co

l nBa

nk,

Col b

Add

ress

2

RL

= 5

t RPR

E

t CC

D

RL

= 5

DO

n +

3D

O n

+ 2

DO

n +

1D

O nD

O n

+ 7

DO

n +

6D

O n

+ 5

DO

n

+ 4

DO

b +

3D

O b

+ 2

DO

b +

1D

O bD

O b

+ 7

DO

b +

6D

O b

+ 5

DO

b

+ 4

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

A12

= 1

du

rin

g R

EAD

co

mm

and

at

T0an

d T

4.3.

DO

n (

or

b)

= d

ata-

ou

t fr

om

co

lum

n n

(o

r co

lum

n b

).4.

BL8

, RL

= 5

(C

L =

5, A

L =

0).

Fig

ure

70: C

on

secu

tive R

EA

D B

urs

ts (

BC

4)

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

T0T1

T2T3

T4T5

T6T7

T8T9

Add

ress

2

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

REA

DRE

AD

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

Bank

,Co

l nBa

nk,

Col b

t RPS

Tt R

PRE

t RPS

Tt R

PRE

RL

= 5

DO

n +

3D

O n

+ 2

DO

n +

1D

O nD

O b

+ 3

DO

b +

2D

O b

+ 1

DO b

RL

= 5

t CC

D

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BC

4 se

ttin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

10

or

MR

0[1:

0] =

01

and

A12

= 0

du

rin

g R

EAD

co

mm

and

at

T0an

d T

4.3.

DO

n (

or

b)

= d

ata-

ou

t fr

om

co

lum

n n

(o

r co

lum

n b

).4.

BC

4, R

L =

5 (

CL

= 5

, AL

= 0

).

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 161 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

69: C

on

secu

tive R

EA

D B

urs

ts (

BL8

)

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

t RPS

T

NO

PRE

AD

REA

DN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

Bank

,Co

l nBa

nk,

Col b

Add

ress

2

RL

= 5

t RPR

E

t CC

D

RL

= 5

DO

n +

3D

O n

+ 2

DO

n +

1D

O nD

O n

+ 7

DO

n +

6D

O n

+ 5

DO

n

+ 4

DO

b +

3D

O b

+ 2

DO

b +

1D

O bD

O b

+ 7

DO

b +

6D

O b

+ 5

DO

b

+ 4

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

A12

= 1

du

rin

g R

EAD

co

mm

and

at

T0an

d T

4.3.

DO

n (

or

b)

= d

ata-

ou

t fr

om

co

lum

n n

(o

r co

lum

n b

).4.

BL8

, RL

= 5

(C

L =

5, A

L =

0).

Fig

ure

70: C

on

secu

tive R

EA

D B

urs

ts (

BC

4)

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

T0T1

T2T3

T4T5

T6T7

T8T9

Add

ress

2

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

REA

DRE

AD

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

Bank

,Co

l nBa

nk,

Col b

t RPS

Tt R

PRE

t RPS

Tt R

PRE

RL

= 5

DO

n +

3D

O n

+ 2

DO

n +

1D

O nD

O b

+ 3

DO

b +

2D

O b

+ 1

DO b

RL

= 5

t CC

D

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BC

4 se

ttin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

10

or

MR

0[1:

0] =

01

and

A12

= 0

du

rin

g R

EAD

co

mm

and

at

T0an

d T

4.3.

DO

n (

or

b)

= d

ata-

ou

t fr

om

co

lum

n n

(o

r co

lum

n b

).4.

BC

4, R

L =

5 (

CL

= 5

, AL

= 0

).

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 161 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 3

0: C

onse

cutiv

e RE

AD B

urst

s (B

L8)

Figu

re 3

1: C

onse

cutiv

e RE

AD B

urst

s (B

C4)

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.TheBL8settingisactivatedbyeitherM

R0[1:0]=00orM

R0[1:0]=01andA12

=1duringREA

Dcom

mandatT0andT4

.

3.DOn(orb

)=data-outfromcolum

nn(orc

olum

nb).

4.BL8,R

L=5(CL=5,AL=0).

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.TheBC4settingisactivatedbyeitherM

R0[1:0]=10orM

R0[1:0]=01andA12

=0duringREA

Dcom

mandatT0andT4

.

3.DOn(orb

)=data-outfromcolum

nn(orc

olum

nb).

4.BC4,RL=5(CL=5,AL=0).

Page 73: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

73

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

71: N

on

con

secu

tive R

EA

D B

urs

ts

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

DQ

S, D

QS#

Com

man

dN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

REA

DN

OP

REA

D

Add

ress

Bank

a,

Col n

Bank

a,

Col b

CKCK#

DQ

DO n

DO b

CL

= 8

C

L =

8

No

tes:

1.A

L =

0, R

L =

8.

2.D

O n

(o

r b

) =

dat

a-o

ut

fro

m c

olu

mn

n (

or

colu

mn

b).

3.Se

ven

su

bse

qu

ent

elem

ents

of

dat

a-o

ut

app

ear

in t

he

pro

gra

mm

ed o

rder

fo

llow

ing

DO

n.

4.Se

ven

su

bse

qu

ent

elem

ents

of

dat

a-o

ut

app

ear

in t

he

pro

gra

mm

ed o

rder

fo

llow

ing

DO

b.

Fig

ure

72: R

EA

D (

BL8

) to

WR

ITE (

BL8

)

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

CKCK#

Com

man

d1N

OP

NO

PN

OP

NO

PN

OP

WRI

TEN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

t WPS

Tt R

PRE

t WPR

Et R

PST

DQ

S, D

QS#

DQ

3

WL

= 5

t WR

t WR

REA

D

DO n

DO

n +

1D

O n

+ 2

DO

n +

3D

O n

+ 4

DO

n +

5D

O n

+ 6

DO

n +

7D

I n

DI

n +

1D

I n

+ 2

DI

n +

3D

I n

+ 4

DI

n +

5D

I n

+ 6

DI

n +

7

REA

D-t

o-W

RIT

E co

mm

and

del

ay =

RL

+ t C

CD

+ 2

t CK

- W

Lt B

L =

4 c

lock

s

Add

ress

2Ba

nk,

Col b

Bank

,Co

l n

RL

= 5

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

A12

= 1

du

rin

g t

he

REA

D c

om

man

d a

tT0

, an

d t

he

WR

ITE

com

man

d a

t T6

.3.

DO

n =

dat

a-o

ut

fro

m c

olu

mn

, DI b

= d

ata-

in f

or

colu

mn

b.

4.B

L8, R

L =

5 (

AL

= 0

, CL

= 5

), W

L =

5 (

AL

= 0

, CW

L =

5).

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 162 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

71: N

on

con

secu

tive R

EA

D B

urs

ts

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

DQ

S, D

QS#

Com

man

dN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

REA

DN

OP

REA

D

Add

ress

Bank

a,

Col n

Bank

a,

Col b

CKCK#

DQ

DO n

DO b

CL

= 8

C

L =

8

No

tes:

1.A

L =

0, R

L =

8.

2.D

O n

(o

r b

) =

dat

a-o

ut

fro

m c

olu

mn

n (

or

colu

mn

b).

3.Se

ven

su

bse

qu

ent

elem

ents

of

dat

a-o

ut

app

ear

in t

he

pro

gra

mm

ed o

rder

fo

llow

ing

DO

n.

4.Se

ven

su

bse

qu

ent

elem

ents

of

dat

a-o

ut

app

ear

in t

he

pro

gra

mm

ed o

rder

fo

llow

ing

DO

b.

Fig

ure

72: R

EA

D (

BL8

) to

WR

ITE (

BL8

)

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

CKCK#

Com

man

d1N

OP

NO

PN

OP

NO

PN

OP

WRI

TEN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

t WPS

Tt R

PRE

t WPR

Et R

PST

DQ

S, D

QS#

DQ

3

WL

= 5

t WR

t WR

REA

D

DO n

DO

n +

1D

O n

+ 2

DO

n +

3D

O n

+ 4

DO

n +

5D

O n

+ 6

DO

n +

7D

I n

DI

n +

1D

I n

+ 2

DI

n +

3D

I n

+ 4

DI

n +

5D

I n

+ 6

DI

n +

7

REA

D-t

o-W

RIT

E co

mm

and

del

ay =

RL

+ t C

CD

+ 2

t CK

- W

Lt B

L =

4 c

lock

s

Add

ress

2Ba

nk,

Col b

Bank

,Co

l n

RL

= 5

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

A12

= 1

du

rin

g t

he

REA

D c

om

man

d a

tT0

, an

d t

he

WR

ITE

com

man

d a

t T6

.3.

DO

n =

dat

a-o

ut

fro

m c

olu

mn

, DI b

= d

ata-

in f

or

colu

mn

b.

4.B

L8, R

L =

5 (

AL

= 0

, CL

= 5

), W

L =

5 (

AL

= 0

, CW

L =

5).

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 162 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 3

2: N

onco

nsec

utiv

e RE

AD B

urst

s

Figu

re 3

3: R

EAD

(BL8

) to

WRI

TE (B

L8)

Notes:

1.AL=0,RL=8.

2.DOn(orb

)=data-outfromcolum

nn(orc

olum

nb).

3.Sevensub

sequ

entelementsofd

ata-outapp

earintheprog

rammedorderfollowingDOn.

4.Sevensub

sequ

entelementsofd

ata-outapp

earintheprog

rammedorderfollowingDOb.

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.TheBL8settingisactivatedbyeitherM

R0[1:0]=00orM

R0[1:0]=01andA12

=1duringtheREA

Dcom

mandatT0,and

theWRITEcommandatT6.

3.DOn=data-outfromcolum

n,DIb=data-inforc

olum

nb.

4.BL8,R

L=5(AL=0,CL=5),W

L=5(AL=0,CWL=5).

Page 74: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

74

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

73: R

EA

D (

BC

4)

to W

RIT

E (

BC

4)

OTF

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

CKCK#

Add

ress

2

Com

man

d1

t WPS

Tt W

PRE

t RPS

T

DQ

S, D

QS#

DQ

3

WL

= 5

t WR

t WTR

t BL

= 4

clo

cks

t RPR

E

RL

= 5

REA

D-t

o-W

RIT

E co

mm

and

del

ay =

RL

+ t C

CD

/2 +

2t C

K -

WL

REA

D

DO n

DO

n +

1D

On

+ 2

DO

n +

3D

I nD

In

+ 1

DI

n +

2D

In

+ 3

Bank

,Co

l bBa

nk,

Col n

NO

PN

OP

NO

PW

RITE

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BC

4 O

TF s

etti

ng

is a

ctiv

ated

by

MR

0[1:

0] a

nd

A12

= 0

du

rin

g R

EAD

co

mm

and

at

T0 a

nd

WR

ITE

com

man

d a

tT4

.3.

DO

n =

dat

a-o

ut

fro

m c

olu

mn

n; D

I n =

dat

a-in

fro

m c

olu

mn

b.

4.B

C4,

RL

= 5

(A

L -

0, C

L =

5),

WL

= 5

(A

L =

0, C

WL

= 5

).

Fig

ure

74: R

EA

D t

o P

REC

HA

RG

E (

BL8

)

t RA

St RTP

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

PA

CTN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

NO

PRE

AD

Bank

a,

Col n

NO

PPR

E

Bank

a,

(or

all)

Bank

a,

Row

b

t RP

DO n

DO

n +

1D

On

+ 2

DO

n +

3D

On

+ 4

DO

n +

5D

On

+ 6

DO

n +

7

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 163 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

73: R

EA

D (

BC

4)

to W

RIT

E (

BC

4)

OTF

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

CKCK#

Add

ress

2

Com

man

d1

t WPS

Tt W

PRE

t RPS

T

DQ

S, D

QS#

DQ

3

WL

= 5

t WR

t WTR

t BL

= 4

clo

cks

t RPR

E

RL

= 5

REA

D-t

o-W

RIT

E co

mm

and

del

ay =

RL

+ t C

CD

/2 +

2t C

K -

WL

REA

D

DO n

DO

n +

1D

On

+ 2

DO

n +

3D

I nD

In

+ 1

DI

n +

2D

In

+ 3

Bank

,Co

l bBa

nk,

Col n

NO

PN

OP

NO

PW

RITE

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BC

4 O

TF s

etti

ng

is a

ctiv

ated

by

MR

0[1:

0] a

nd

A12

= 0

du

rin

g R

EAD

co

mm

and

at

T0 a

nd

WR

ITE

com

man

d a

tT4

.3.

DO

n =

dat

a-o

ut

fro

m c

olu

mn

n; D

I n =

dat

a-in

fro

m c

olu

mn

b.

4.B

C4,

RL

= 5

(A

L -

0, C

L =

5),

WL

= 5

(A

L =

0, C

WL

= 5

).

Fig

ure

74: R

EA

D t

o P

REC

HA

RG

E (

BL8

)

t RA

St RTP

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

PA

CTN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

NO

PRE

AD

Bank

a,

Col n

NO

PPR

E

Bank

a,

(or

all)

Bank

a,

Row

b

t RP

DO n

DO

n +

1D

On

+ 2

DO

n +

3D

On

+ 4

DO

n +

5D

On

+ 6

DO

n +

7

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 163 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 3

4: R

EAD

(BC4

) to

WRI

TE (B

C4) O

TF

Figu

re 3

5: R

EAD

to P

RECH

ARGE

(BL8

)

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.TheBC4OTFsettingisactivatedbyMR0[1:0]and

A12

=0duringREA

Dcom

mandatT0andWRITEcommandatT4.

3.DOn=data-outfromcolum

nn;DIn=data-infrom

colum

nb.

4.BC4,RL=5(AL-0,CL=5),W

L=5(AL=0,CWL=5).

Page 75: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

75

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

75: R

EA

D t

o P

REC

HA

RG

E (

BC

4)

CKCK#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

Com

man

dN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

ACT

NO

PN

OP

NO

PN

OP

NO

PRE

AD

NO

PPR

E

Add

ress

Bank

a,

Col n

Bank

a,

(or

all)

Bank

a,

Row

b

t RP

t RTP

DQ

S, D

QS# DQ

DO n

DO

n +

1D

On

+ 2

DO

n +

3

t RA

S

Fig

ure

76: R

EA

D t

o P

REC

HA

RG

E (

AL

= 5, C

L =

6)

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

NO

PRE

AD

Bank

a,

Col n

NO

PPR

E

Bank

a,

(or

all)

ACT

Bank

a,

Row

b

NO

PN

OP

t RA

S

CL

= 6

AL

= 5

t RTP

t RP

DO

n +

3D

On

+ 2

DO n

DO

n +

1

Fig

ure

77: R

EA

D w

ith

Au

to P

rech

arg

e (

AL

= 4, C

L =

6)

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

Ta0

t RTP

(M

IN)

NO

PRE

AD

NO

P

AL

= 4

NO

PN

OP

CL

= 6

NO

P

t RA

S (M

IN)

ACT

Ind

icat

es b

reak

in t

ime

scal

e

t RP

Bank

a,

Col n

Bank

a,

Row

b

DO n

DO

n +

1D

On

+ 2

DO

n +

3

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 164 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

75: R

EA

D t

o P

REC

HA

RG

E (

BC

4)

CKCK#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

Com

man

dN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

ACT

NO

PN

OP

NO

PN

OP

NO

PRE

AD

NO

PPR

E

Add

ress

Bank

a,

Col n

Bank

a,

(or

all)

Bank

a,

Row

b

t RP

t RTP

DQ

S, D

QS# DQ

DO n

DO

n +

1D

On

+ 2

DO

n +

3

t RA

S

Fig

ure

76: R

EA

D t

o P

REC

HA

RG

E (

AL

= 5, C

L =

6)

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

NO

PRE

AD

Bank

a,

Col n

NO

PPR

E

Bank

a,

(or

all)

ACT

Bank

a,

Row

b

NO

PN

OP

t RA

S

CL

= 6

AL

= 5

t RTP

t RP

DO

n +

3D

On

+ 2

DO n

DO

n +

1

Fig

ure

77: R

EA

D w

ith

Au

to P

rech

arg

e (

AL

= 4, C

L =

6)

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

Ta0

t RTP

(M

IN)

NO

PRE

AD

NO

P

AL

= 4

NO

PN

OP

CL

= 6

NO

P

t RA

S (M

IN)

ACT

Ind

icat

es b

reak

in t

ime

scal

e

t RP

Bank

a,

Col n

Bank

a,

Row

b

DO n

DO

n +

1D

On

+ 2

DO

n +

3

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 164 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

75: R

EA

D t

o P

REC

HA

RG

E (

BC

4)

CKCK#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

Com

man

dN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

ACT

NO

PN

OP

NO

PN

OP

NO

PRE

AD

NO

PPR

E

Add

ress

Bank

a,

Col n

Bank

a,

(or

all)

Bank

a,

Row

b

t RP

t RTP

DQ

S, D

QS# DQ

DO n

DO

n +

1D

On

+ 2

DO

n +

3

t RA

S

Fig

ure

76: R

EA

D t

o P

REC

HA

RG

E (

AL

= 5, C

L =

6)

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

NO

PRE

AD

Bank

a,

Col n

NO

PPR

E

Bank

a,

(or

all)

ACT

Bank

a,

Row

b

NO

PN

OP

t RA

S

CL

= 6

AL

= 5

t RTP

t RP

DO

n +

3D

On

+ 2

DO n

DO

n +

1

Fig

ure

77: R

EA

D w

ith

Au

to P

rech

arg

e (

AL

= 4, C

L =

6)

CKCK#

Com

man

dN

OP

NO

PN

OP

NO

P

Add

ress

DQ

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PN

OP

NO

PN

OP

NO

P

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

Ta0

t RTP

(M

IN)

NO

PRE

AD

NO

P

AL

= 4

NO

PN

OP

CL

= 6

NO

P

t RA

S (M

IN)

ACT

Ind

icat

es b

reak

in t

ime

scal

e

t RP

Bank

a,

Col n

Bank

a,

Row

b

DO n

DO

n +

1D

On

+ 2

DO

n +

3

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 164 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 3

6: R

EAD

to P

RECH

ARGE

(BC4

)

Figu

re 3

7: R

EAD

to P

RECH

ARGE

(AL

= 5

, CL

= 6

)

Figu

re 3

8: R

EAD

with

Aut

o Pr

echa

rge

(AL

= 4

, CL

= 6

)

Page 76: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

76

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

DQS toDQ output timing is shown in Figure 39 (page 77).TheDQtransitionsbetweenvaliddataoutputsmustbewithintDQSQofthecrossingpointofDQS,DQS#.DQSmustalsomaintainaminimumHIGHandLOWtimeoftQSHandtQSL.PriortotheREADpreamble,theDQballswilleitherbefloatingorterminated,dependingonthestatusoftheODTsignal.

Figure40 (page78)showsthestrobe-to-clock timingduringaREAD.ThecrossingpointDQS,DQS#musttransitionwithin±tDQSCKof the clock crossing point. The data out has notimingrelationshiptoCK,onlytoDQS,asshowninFigure40(page78).

Figure 40 (page 78) also shows the READ preamble andpostamble.Typically,bothDQSandDQS#areHigh-Ztosavepower (VDDQ). Prior todataoutput from theDRAM,DQS isdrivenLOWandDQS#isHIGHfortRPRE.This isknownastheREADpreamble.

TheREADpostamble, tRPST, isonehalfclock fromthe lastDQS,DQS# transition.During theREADpostamble,DQS isdrivenLOWandDQS# isHIGH.Whencomplete, theDQ isdisabledorcontinuesterminating,dependingonthestateoftheODTsignal.onpagedemonstrateshowtomeasuretRPST.

READ Operation (continued)

Page 77: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

77

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

78

: D

ata

Ou

tpu

t Ti

min

g –

tD

QSQ

an

d D

ata

Vali

d W

ind

ow

T0T1

T2T3

T4T5

T6T7

T8T9

T10

Bank

,Co

l n

t RPS

T

NO

PRE

AD

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

Add

ress

2

t DQ

SQ (

MA

X)

DQ

S, D

QS#

DQ

3 (la

st d

ata

valid

)

DQ

3 (f

irst

dat

a no

long

er v

alid

)

All

DQ

col

lect

ivel

y

DO n

DO

n +

3D

On

+ 2

DO

n +

1D

On

+ 7

DO

n +

6D

On

+ 5

DO

n +

4D

On

+ 2

DO

n +

1D

On

+ 7

DO

n +

6D

On

+ 5

DO

n +

4

DO

n +

3D

O n

+ 2

DO

n +

1D

O nD

O n

+ 7

DO

n +

6D

O n

+ 5

DO n

DO

n +

3

t RPR

E

Do

n’t

Car

e

Dat

a va

lidD

ata

valid

t QH

t QH

t HZD

Q (M

AX

)

DO

n

+ 4

RL

= A

L +

CL

t DQ

SQ (

MA

X)

t LZD

Q (M

IN)

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1,

0]

= 0

, 0 o

r M

R0[

0, 1

] =

0, 1

an

d A

12 =

1 d

uri

ng

REA

D c

om

man

d a

tT0

.3.

DO

n =

dat

a-o

ut

fro

m c

olu

mn

n.

4.B

L8, R

L =

5 (

AL

= 0

, CL

= 5

).5.

Ou

tpu

t ti

min

gs

are

refe

ren

ced

to

VD

DQ

/2 a

nd

DLL

on

an

d lo

cked

.6.

t DQ

SQ d

efin

es t

he

skew

bet

wee

n D

QS,

DQ

S# t

o d

ata

and

do

es n

ot

def

ine

DQ

S, D

QS#

to

CK

.7.

Earl

y d

ata

tran

siti

on

s m

ay n

ot

alw

ays

hap

pen

at

the

sam

e D

Q. D

ata

tran

siti

on

s o

f a

DQ

can

be

earl

y o

r la

te w

ith

ina

bu

rst.

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 166 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 3

9: D

ata

Outp

ut T

imin

g –

t DQS

Q an

d Da

ta V

alid

Win

dow

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybe

validatthesetimes.

2.TheBL8settingisactivatedbyeitherM

R0[1,0]=

0,0

orM

R0[0,1]=

0,1

and

A12

=1duringREA

Dcom

mandatT0.

3.DOn=data-outfromcolum

nn.

4.BL8,R

L=5(AL=0,CL=5).

5.Outpu

ttimingsarereferencedto

VD

DQ/2and

DLLonandlocked.

6.

t DQSQdefinestheskew

betweenDQS,D

QS#todataanddo

esnotdefine

DQS,D

QS#toCK.

7.Ea

rlydatatransitionsm

aynotalwayshapp

enatthesam

eDQ.D

atatransitions

ofaDQcanbeearlyorlatewithinaburst.

Page 78: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

78

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

tHZandtLZtransitionsoccurinthesameaccesstimeasvaliddatatransitions.TheseparametersarereferencedtoaspecificvoltagelevelthatspecifieswhenthedeviceoutputisnolongerdrivingtHZDQSandtHZDQ,orbeginsdrivingtLZDQS,tLZDQ.Figure41(page79)showsamethodofcalculatingthepointwhenthedeviceisnolongerdrivingtHZDQSandtHZDQ,orbeginsdrivingtLZDQS,tLZDQ,bymeasuringthesignalattwodifferent voltages. The actual voltage measurement pointsare not critical as long as the calculation is consistent. TheparameterstLZDQS,tLZDQ,tHZDQS,andtHZDQaredefinedassingle-ended.

Figure 40: Data Strobe Timing – READs

tHZ and tLZ transitions occur in the same access time as valid data transitions. Theseparameters are referenced to a specific voltage level that specifies when the device out-put is no longer driving tHZDQS and tHZDQ, or begins driving tLZDQS, tLZDQ. Fig-ure 80 (page 168) shows a method of calculating the point when the device is no longerdriving tHZDQS and tHZDQ, or begins driving tLZDQS, tLZDQ, by measuring the signalat two different voltages. The actual voltage measurement points are not critical as longas the calculation is consistent. The parameters tLZDQS, tLZDQ, tHZDQS, and tHZDQare defined as single-ended.

Figure 79: Data Strobe Timing – READs

RL measuredto this point

DQS, DQS#early strobe

CK

tLZDQS (MIN)

tHZDQS (MIN)

DQS, DQS#late strobe

tLZDQS (MAX) tHZDQS (MAX)tDQSCK (MAX) tDQSCK (MAX) tDQSCK (MAX) tDQSCK (MAX)

tDQSCK (MIN) tDQSCK (MIN) tDQSCK (MIN) tDQSCK (MIN)

CK#

tRPRE

tQSH tQSHtQSL tQSL

tQSL tQSLtQSH tQSH

Bit 0 Bit 1 Bit 2 Bit 7

tRPRE

Bit 0 Bit 1 Bit 2 Bit 7Bit 6Bit 3 Bit 4 Bit 5

Bit 6Bit 4Bit 3 Bit 5

tRPST

tRPST

T0 T1 T2 T3 T4 T5 T6

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 167 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 79: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

79

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 41: Method for Calculating tLZ and tHZ

Figure 42: tRPRE Timing

Notes:

1. Withinaburst,therisingstrobeedgeisnotnecessarilyfixedattDQSCK(MIN)ortDQSCK(MAX).Instead,therisingstrobeedgecanvarybetweentDQSCK(MIN)andtDQSCK(MAX).

2. TheDQSHIGHpulsewidthisdefinedbytQSH,andtheDQSLOWpulsewidthisdefinedbytQSL.Likewise,tLZDQS(MIN)andtHZDQS(MIN)arenottiedtotDQSCK(MIN)(earlystrobe

Figure 80: Method for Calculating tLZ and tHZ

tHZDQS, tHZDQ

tHZDQS, tHZDQ end point = 2 × T1 - T2

VOH - xmV

VTT - xmV

VOL + xmV

VTT + xmVVOH - 2xmV

VTT - 2xmV

VOL + 2xmV

VTT + 2xmV

tLZDQS, tLZDQ

tLZDQS, tLZDQ begin point = 2 × T1 - T2

T1

T1T2

T2

Notes: 1. Within a burst, the rising strobe edge is not necessarily fixed at tDQSCK (MIN) or tDQSCK(MAX). Instead, the rising strobe edge can vary between tDQSCK (MIN) and tDQSCK(MAX).

2. The DQS HIGH pulse width is defined by tQSH, and the DQS LOW pulse width is definedby tQSL. Likewise, tLZDQS (MIN) and tHZDQS (MIN) are not tied to tDQSCK (MIN) (earlystrobe case), and tLZDQS (MAX) and tHZDQS (MAX) are not tied to tDQSCK (MAX) (latestrobe case); however, they tend to track one another.

3. The minimum pulse width of the READ preamble is defined by tRPRE (MIN). The mini-mum pulse width of the READ postamble is defined by tRPST (MIN).

Figure 81: tRPRE Timing

tRPREDQS - DQS#

DQS

DQS#

T1tRPRE begins

T2tRPRE ends

CK

CK#

VTT

Resulting differential signal relevant for tRPRE specification

tC

tA tB

tD

Single-ended signal providedas background information

0V

Single-ended signal providedas background information

VTT

VTT

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 168 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 80: Method for Calculating tLZ and tHZ

tHZDQS, tHZDQ

tHZDQS, tHZDQ end point = 2 × T1 - T2

VOH - xmV

VTT - xmV

VOL + xmV

VTT + xmVVOH - 2xmV

VTT - 2xmV

VOL + 2xmV

VTT + 2xmV

tLZDQS, tLZDQ

tLZDQS, tLZDQ begin point = 2 × T1 - T2

T1

T1T2

T2

Notes: 1. Within a burst, the rising strobe edge is not necessarily fixed at tDQSCK (MIN) or tDQSCK(MAX). Instead, the rising strobe edge can vary between tDQSCK (MIN) and tDQSCK(MAX).

2. The DQS HIGH pulse width is defined by tQSH, and the DQS LOW pulse width is definedby tQSL. Likewise, tLZDQS (MIN) and tHZDQS (MIN) are not tied to tDQSCK (MIN) (earlystrobe case), and tLZDQS (MAX) and tHZDQS (MAX) are not tied to tDQSCK (MAX) (latestrobe case); however, they tend to track one another.

3. The minimum pulse width of the READ preamble is defined by tRPRE (MIN). The mini-mum pulse width of the READ postamble is defined by tRPST (MIN).

Figure 81: tRPRE Timing

tRPREDQS - DQS#

DQS

DQS#

T1tRPRE begins

T2tRPRE ends

CK

CK#

VTT

Resulting differential signal relevant for tRPRE specification

tC

tA tB

tD

Single-ended signal providedas background information

0V

Single-ended signal providedas background information

VTT

VTT

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 168 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

case),andtLZDQS(MAX)andtHZDQS(MAX)arenottiedtotDQSCK(MAX)(latestrobecase);however,theytendtotrackoneanother.

3. TheminimumpulsewidthoftheREADpreambleisdefinedbytRPRE(MIN).TheminimumpulsewidthoftheREADpostambleisdefinedbytRPST(MIN).

Page 80: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

80

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 82: tRPST Timing

tRPSTDQS - DQS#

DQS

DQS#

T1tRPST begins

T2tRPST ends

Resulting differential signal relevant for tRPST specification

CK

CK#

VTT

tC

tA

tB

tD

Single-ended signal, providedas background information

Single-ended signal, providedas background information

0V

VTT

VTT

1Gb: x4, x8, x16 DDR3 SDRAMREAD Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 169 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 43: tRPST Timing

Page 81: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

81

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

WRITE OperationWRITE bursts are initiated with a WRITE command. Thestarting column and bank addresses are provided with theWRITE command, and auto precharge is either enabled ordisabled for that access. If auto precharge is selected, therowbeingaccessed isprechargedat theendof theWRITEburst. If auto precharge is not selected, the rowwill remainopenforsubsequentaccesses.AfteraWRITEcommandhasbeen issued, theWRITE burst may not be interrupted. Forthe genericWRITE commands used in Figure 46 (page 83)throughFigure54(page88),autoprechargeisdisabled.

DuringWRITEbursts,thefirstvaliddata-inelementisregisteredon a rising edge of DQS following theWRITE latency (WL)clocks laterandsubsequentdataelementswillberegisteredonsuccessiveedgesofDQS.WRITElatency(WL)isdefinedasthesumofpostedCASadditivelatency(AL)andCASWRITElatency(CWL):WL=AL+CWL.ThevaluesofALandCWLareprogrammedintheMR0andMR2registers,respectively.PriortothefirstvalidDQSedge,afullcycleisneeded(includingadummycrossoverofDQS,DQS#)andspecifiedastheWRITEpreamble shown in Figure 46 (page 83). The half cycle onDQSfollowingthelastdata-inelementisknownastheWRITEpostamble.

The time between the WRITE command and the first validedge of DQS is WL clocks ±tDQSS. Figure 47 (page 84)through Figure 54 (page 88) show the nominal case wheretDQSS=0ns;however,Figure46 (page83) includes tDQSS(MIN)andtDQSS(MAX)cases.

Datamaybemasked fromcompleting aWRITE using datamask.Thedatamaskoccurson theDMball aligned to theWRITEdata.IfDMisLOW,theWRITEcompletesnormally.IfDMisHIGH,thatbitofdataismasked.

Uponcompletionof aburst, assumingnoother commandshave been initiated, the DQ will remain High-Z, and anyadditionalinputdatawillbeignored.

Data for any WRITE burst may be concatenated with asubsequent WRITE command to provide a continuousflowof inputdata.ThenewWRITEcommandcanbe tCCDclocksfollowingthepreviousWRITEcommand.Thefirstdataelement from thenewburst isappliedafter the lastelement

of a completed burst. Figure 47 (page 84) and Figure 48(page 84) show concatenated bursts. An example ofnonconsecutiveWRITEsisshowninFigure49(page85).

DataforanyWRITEburstmaybefollowedbyasubsequentREADcommandaftertWTRhasbeenmet(seeFigure50(page85),Figure51(page86),andFigure52(page87)).

DataforanyWRITEburstmaybefollowedbyasubsequentPRECHARGE command, providing tWR has been met, asshowninFigure53(page88)andFigure54(page88).

BothtWTRandtWRstartingtimemayvary,dependingonthemoderegistersettings(fixedBC4,BL8versusOTF).

Page 82: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

82

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 44: tWPRE Timing

Figure 45: tWPST Timing

Figure 83: tWPRE Timing

DQS - DQS#

T1tWPRE begins

T2tWPRE ends

tWPREResulting differential

signal relevant for tWPRE specification

0V

CK

CK#

VTT

Figure 84: tWPST Timing

tWPSTDQS - DQS#

T1tWPST begins

T2tWPST ends

Resulting differential signal relevant for tWPST specification

0V

CK

CK#

VTT

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 171 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 83: tWPRE Timing

DQS - DQS#

T1tWPRE begins

T2tWPRE ends

tWPREResulting differential

signal relevant for tWPRE specification

0V

CK

CK#

VTT

Figure 84: tWPST Timing

tWPSTDQS - DQS#

T1tWPST begins

T2tWPST ends

Resulting differential signal relevant for tWPST specification

0V

CK

CK#

VTT

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 171 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 83: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

83

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 85: WRITE Burst

DIn + 3

DI n + 2

DIn + 1

DIn

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Don’t CareTransitioning Data

DIn + 7

DI n + 6

DIn + 5

DIn + 4

Bank,Col n

NOPWRITE NOPNOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command1

DQ3

DQS, DQS#

Address2

tWPST

tWPRE tWPST

tDQSL

DQ3

DQ3

tWPST

DQS, DQS#

DQS, DQS#

tDQSL

tWPRE

tDQSS

tDQSS tDSH tDSH tDSH tDSH

tDSS tDSS tDSS tDSS tDSS

tDSS tDSS tDSS tDSS tDSS

tDSH tDSH tDSH tDSH

tDQSLtDQSH tDQSLtDQSH tDQSLtDQSH tDQSH tDQSL

tDQSL

tDQSL

tDQSLtDQSHtDQSH

tDQSH

tDQSH

tDQSLtDQSH tDQSLtDQSH tDQSH

tDQSLtDQSH tDQSLtDQSH tDQSLtDQSH tDQSH

WL = AL + CWL

tDQSS (MIN)

tDQSS (NOM)

tDQSS (MAX)

tDQSL

tWPRE

DI n + 3

DI n + 2

DI n + 1

DI n

DIn + 7

DI n + 6

DI n + 5

DIn + 4

DIn + 3

DIn + 2

DIn + 1

DI n

DIn + 7

DIn + 6

DIn + 5

DIn + 4

Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid atthese times.

2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 duringthe WRITE command at T0.

3. DI n = data-in for column n.4. BL8, WL = 5 (AL = 0, CWL = 5).5. tDQSS must be met at each rising clock edge.6. tWPST is usually depicted as ending at the crossing of DQS, DQS#; however, tWPST ac-

tually ends when DQS no longer drives LOW and DQS# no longer drives HIGH.

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 172 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 46: WRITE Burst

Notes:

1. NOPcommandsareshownforeaseofillustration;othercommandsmaybevalidatthesetimes.

2. TheBL8settingisactivatedbyeitherMR0[1:0]=00orMR0[1:0]=01andA12=1duringtheWRITEcommandatT0.

3. DIn=data-inforcolumnn.

4. BL8,WL=5(AL=0,CWL=5).

5. tDQSSmustbemetateachrisingclockedge.

6. tWPSTisusuallydepictedasendingatthecrossingofDQS,DQS#;however,tWPSTactuallyendswhenDQSnolongerdrivesLOWandDQS#nolongerdrivesHIGH.

Page 84: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

84

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

86: C

on

secu

tive W

RIT

E (

BL8

) to

WR

ITE (

BL8

)

WL

= 5

WL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

t CC

D

t WPR

E

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

Valid

Valid

NO

PW

RITE

WRI

TEN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

Add

ress

2

t WPS

T

t WR

t WTR

t BL

= 4

clo

cks

DI

n +

3D

I n

+ 2

DI

n +

1D

I n

DI

n +

7D

I n

+ 6

DI

n +

5D

In

+ 4

DI

b +

3D

I b

+ 2

DI

b +

1D

I b

DI

b +

7D

I b

+ 6

DI

b +

5D

Ib

+ 4

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

A12

= 1

du

rin

g t

he

WR

ITE

com

man

ds

atT0

an

d T

4.3.

DI n

(o

r b

) =

dat

a-in

fo

r co

lum

n n

(o

r co

lum

n b

).4.

BL8

, WL

= 5

(A

L =

0, C

WL

= 5

).

Fig

ure

87: C

on

secu

tive W

RIT

E (

BC

4)

to W

RIT

E (

BC

4)

via

OTF

WL

= 5

WL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

t CC

D

t WPR

E

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

Valid

Valid

NO

PW

RITE

WRI

TEN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

Add

ress

2

t WPS

T

t WR

t WTR

t WPS

Tt W

PRE

DI

n +

3D

I n

+ 2

DI

n +

1D

I nD

I b

+ 3

DI

b +

2D

I b

+ 1

DI

b

t BL

= 4

clo

cks

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

BC

4, W

L =

5 (

AL

= 0

, CW

L =

5).

3.D

I n (

or

b)

= d

ata-

in f

or

colu

mn

n (

or

colu

mn

b).

4.Th

e B

C4

sett

ing

is a

ctiv

ated

by

MR

0[1:

0] =

01

and

A12

= 0

du

rin

g t

he

WR

ITE

com

man

d a

t T0

an

d T

4.5.

If s

et v

ia M

RS

(fix

ed)

t WR

an

d t W

TR w

ou

ld s

tart

T11

(2

cycl

es e

arlie

r).

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 173 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

86: C

on

secu

tive W

RIT

E (

BL8

) to

WR

ITE (

BL8

)

WL

= 5

WL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

t CC

D

t WPR

E

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

Valid

Valid

NO

PW

RITE

WRI

TEN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

Add

ress

2

t WPS

T

t WR

t WTR

t BL

= 4

clo

cks

DI

n +

3D

I n

+ 2

DI

n +

1D

I n

DI

n +

7D

I n

+ 6

DI

n +

5D

In

+ 4

DI

b +

3D

I b

+ 2

DI

b +

1D

I b

DI

b +

7D

I b

+ 6

DI

b +

5D

Ib

+ 4

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

A12

= 1

du

rin

g t

he

WR

ITE

com

man

ds

atT0

an

d T

4.3.

DI n

(o

r b

) =

dat

a-in

fo

r co

lum

n n

(o

r co

lum

n b

).4.

BL8

, WL

= 5

(A

L =

0, C

WL

= 5

).

Fig

ure

87: C

on

secu

tive W

RIT

E (

BC

4)

to W

RIT

E (

BC

4)

via

OTF

WL

= 5

WL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

t CC

D

t WPR

E

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

T12

T13

T14

Valid

Valid

NO

PW

RITE

WRI

TEN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

DQ

3

DQ

S, D

QS#

Add

ress

2

t WPS

T

t WR

t WTR

t WPS

Tt W

PRE

DI

n +

3D

I n

+ 2

DI

n +

1D

I nD

I b

+ 3

DI

b +

2D

I b

+ 1

DI

b

t BL

= 4

clo

cks

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

BC

4, W

L =

5 (

AL

= 0

, CW

L =

5).

3.D

I n (

or

b)

= d

ata-

in f

or

colu

mn

n (

or

colu

mn

b).

4.Th

e B

C4

sett

ing

is a

ctiv

ated

by

MR

0[1:

0] =

01

and

A12

= 0

du

rin

g t

he

WR

ITE

com

man

d a

t T0

an

d T

4.5.

If s

et v

ia M

RS

(fix

ed)

t WR

an

d t W

TR w

ou

ld s

tart

T11

(2

cycl

es e

arlie

r).

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 173 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 4

7: C

onse

cutiv

e W

RITE

(BL8

) to

WRI

TE (B

L8)

Figu

re 4

8: C

onse

cutiv

e W

RITE

(BC4

) to

WRI

TE (B

C4) v

ia O

TF

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.TheBL8settingisactivatedbyeitherM

R0[1:0]=00orM

R0[1:0]=01andA12

=1duringtheWRITEcommandsatT

0andT4

.

3.DIn(orb

)=data-inforc

olum

nn(orc

olum

nb).

4.BL8,W

L=5(AL=0,CWL=5).

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.BC4,W

L=5(AL=0,CWL=5).

3.DIn(orb

)=data-inforc

olum

nn(orc

olum

nb).

4.TheBC4settingisactivatedbyMR0[1:0]=01andA12

=0duringtheWRITEcommandatT0andT4

.

5.IfsetviaM

RS(fixed)t W

Rand

t WTR

wouldstartT11

(2cyclesearlier).

Page 85: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

85

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

88: N

on

con

secu

tive W

RIT

E t

o W

RIT

E

CKCK#

Com

man

dN

OP

NO

PN

OP

Add

ress

DQ

DM

DQ

S, D

QS#

Tran

siti

on

ing

Dat

a

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

NO

PW

RITE

NO

PW

RITE

Valid

Valid

NO

P

DI n

DI

n +

1D

In

+ 2

DI

n +

3D

In

+ 4

DI

n +

5D

In

+ 6

Do

n't

Car

e

DI

n +

7D

I bD

Ib

+ 1

DI

b +

2D

Ib

+ 3

DI

b +

4D

Ib

+ 5

DI

b +

6D

Ib

+ 7

WL

= C

WL

+ A

L =

7W

L =

CW

L +

AL

= 7

No

tes:

1.D

I n (

or

b)

= d

ata-

in f

or

colu

mn

n (

or

colu

mn

b).

2.Se

ven

su

bse

qu

ent

elem

ents

of

dat

a-in

are

ap

plie

d in

th

e p

rog

ram

med

ord

er f

ollo

win

g D

O n

.3.

Each

WR

ITE

com

man

d m

ay b

e to

an

y b

ank.

4.Sh

ow

n f

or

WL

= 7

(C

WL

= 7

, AL

= 0

).

Fig

ure

89: W

RIT

E (

BL8

) to

REA

D (

BL8

)

WL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

t WPR

E

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

Ta0

NO

PW

RITE

REA

D

Valid

Valid

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

CKCK#

Com

man

d1

DQ

4

DQ

S, D

QS#

Add

ress

3

t WPS

T

t WTR

2

Ind

icat

es b

reak

in t

ime

scal

e

DI

n +

3D

In

+ 2

DI

n +

1D

I nD

In

+ 7

DI

n +

6D

In

+ 5

DI

n +

4

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

t WTR

co

ntr

ols

th

e W

RIT

E-to

-REA

D d

elay

to

th

e sa

me

dev

ice

and

sta

rts

wit

h t

he

firs

t ri

sin

g c

lock

ed

ge

afte

r th

e la

stw

rite

dat

a sh

ow

n a

t T9

.3.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

MR

0[12

] =

1 d

uri

ng

th

e W

RIT

E co

mm

and

at T

0. T

he

REA

D c

om

man

d a

t Ta

0 ca

n b

e ei

ther

BC

4 o

r B

L8, d

epen

din

g o

n M

R0[

1:0]

an

d t

he

A12

sta

tus

at T

a0.

4.D

I n =

dat

a-in

fo

r co

lum

n n

.5.

RL

= 5

(A

L =

0, C

L =

5),

WL

= 5

(A

L =

0, C

WL

= 5

).

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 174 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

88: N

on

con

secu

tive W

RIT

E t

o W

RIT

E

CKCK#

Com

man

dN

OP

NO

PN

OP

Add

ress

DQ

DM

DQ

S, D

QS#

Tran

siti

on

ing

Dat

a

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

T0T1

T2T3

T4T5

T6T7

T8T9

T10

T11

T12

T13

T14

T15

T16

T17

NO

PW

RITE

NO

PW

RITE

Valid

Valid

NO

P

DI n

DI

n +

1D

In

+ 2

DI

n +

3D

In

+ 4

DI

n +

5D

In

+ 6

Do

n't

Car

e

DI

n +

7D

I bD

Ib

+ 1

DI

b +

2D

Ib

+ 3

DI

b +

4D

Ib

+ 5

DI

b +

6D

Ib

+ 7

WL

= C

WL

+ A

L =

7W

L =

CW

L +

AL

= 7

No

tes:

1.D

I n (

or

b)

= d

ata-

in f

or

colu

mn

n (

or

colu

mn

b).

2.Se

ven

su

bse

qu

ent

elem

ents

of

dat

a-in

are

ap

plie

d in

th

e p

rog

ram

med

ord

er f

ollo

win

g D

O n

.3.

Each

WR

ITE

com

man

d m

ay b

e to

an

y b

ank.

4.Sh

ow

n f

or

WL

= 7

(C

WL

= 7

, AL

= 0

).

Fig

ure

89: W

RIT

E (

BL8

) to

REA

D (

BL8

)

WL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

t WPR

E

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

Ta0

NO

PW

RITE

REA

D

Valid

Valid

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

CKCK#

Com

man

d1

DQ

4

DQ

S, D

QS#

Add

ress

3

t WPS

T

t WTR

2

Ind

icat

es b

reak

in t

ime

scal

e

DI

n +

3D

In

+ 2

DI

n +

1D

I nD

In

+ 7

DI

n +

6D

In

+ 5

DI

n +

4

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

t WTR

co

ntr

ols

th

e W

RIT

E-to

-REA

D d

elay

to

th

e sa

me

dev

ice

and

sta

rts

wit

h t

he

firs

t ri

sin

g c

lock

ed

ge

afte

r th

e la

stw

rite

dat

a sh

ow

n a

t T9

.3.

The

BL8

set

tin

g is

act

ivat

ed b

y ei

ther

MR

0[1:

0] =

00

or

MR

0[1:

0] =

01

and

MR

0[12

] =

1 d

uri

ng

th

e W

RIT

E co

mm

and

at T

0. T

he

REA

D c

om

man

d a

t Ta

0 ca

n b

e ei

ther

BC

4 o

r B

L8, d

epen

din

g o

n M

R0[

1:0]

an

d t

he

A12

sta

tus

at T

a0.

4.D

I n =

dat

a-in

fo

r co

lum

n n

.5.

RL

= 5

(A

L =

0, C

L =

5),

WL

= 5

(A

L =

0, C

WL

= 5

).

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 174 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 4

9: N

onco

nsec

utiv

e W

RITE

to W

RITE

Figu

re 5

0: W

RITE

(BL8

) to

READ

(BL8

)

Notes:

1.DIn(orb

)=data-inforc

olum

nn(orc

olum

nb).

2.Sevensub

sequ

entelementsofd

ata-inareapp

liedinth

eprog

rammedorderfollowingDOn.

3.Ea

chW

RITEcommandmaybetoanybank.

4.ShownforW

L=7(CWL=7,AL=0).

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.

t WTR

contro

lsth

eWRITE-to-REA

Ddelayto

thesamedeviceand

startswithth

efirstrisingclockedg

eafterthelastwritedatashownatT9.

3.TheBL8settingisactivatedbyeitherM

R0[1:0]=00orM

R0[1:0]=01andMR0[12

]=1duringtheWRITEcommandatT0.TheREA

Dcom

mandat

Ta0canbeeitherBC4orBL8,d

ependingonMR0[1:0]and

theA12

statusatTa0.

4.DIn=data-inforc

olum

nn.

5.RL=5(AL=0,CL=5),W

L=5(AL=0,CWL=5).

Page 86: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

86

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

90: W

RIT

E t

o R

EA

D (

BC

4 M

od

e R

eg

iste

r Sett

ing

)

WL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

Ta0

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

NO

PW

RITE

Valid

REA

D

Valid

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

CKCK#

Com

man

d1

DQ

4

DQ

S, D

QS#

Add

ress

3

t WPS

T

t WTR

2

t WPR

E

Ind

icat

es b

reak

in t

ime

scal

e

DI

n +

3D

In

+ 2

DI

n +

1D

I n

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

t WTR

co

ntr

ols

th

e W

RIT

E-to

-REA

D d

elay

to

th

e sa

me

dev

ice

and

sta

rts

wit

h t

he

firs

t ri

sin

g c

lock

ed

ge

afte

r th

e la

stw

rite

dat

a sh

ow

n a

t T7

.3.

The

fixe

d B

C4

sett

ing

is a

ctiv

ated

by

MR

0[1:

0] =

10

du

rin

g t

he

WR

ITE

com

man

d a

t T0

an

d t

he

REA

D c

om

man

d a

tTa

0.4.

DI n

= d

ata-

in f

or

colu

mn

n.

5.B

C4

(fix

ed),

WL

= 5

(A

L =

0, C

WL

= 5

), R

L =

5 (

AL

= 0

, CL

= 5

).

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 175 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 5

1: W

RITE

to R

EAD

(BC4

Mod

e Re

gist

er S

ettin

g)

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.

t WTR

contro

lsth

eWRITE-to-REA

Ddelayto

thesamedeviceand

startswithth

efirstrisingclock

edgeafterthelastwritedatashownatT7.

3.ThefixedBC4settingisactivatedbyMR0[1:0]=10du

ringtheWRITEcommandatT0andthe

REA

Dcom

mandatTa0.

4.DIn=data-inforc

olum

nn.

5.BC4(fixed),W

L=5(AL=0,CWL=5),R

L=5(AL=0,CL=5).

Page 87: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

87

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figu

re 5

2: W

RITE

(BC4

OTF

) to

READ

(BC4

OTF

)

Notes:

1.NOPcom

mandsareshownfore

aseofillustration;othercom

mandsm

aybevalidatthesetimes.

2.

t WTR

contro

lsth

eWRITE-to-REA

Ddelayto

thesamedeviceand

startsaftertBL.

3.TheBC4OTFsettingisactivatedbyMR0[1:0]=01andA12

=0duringtheWRITEcommandat

T0and

theREA

Dcom

mandatT

n.

4.DIn=data-inforc

olum

nn.

5.BC4,RL=5(AL=0,CL=5),W

L=5(AL=0,CWL=5).

Fig

ure

91: W

RIT

E (

BC

4 O

TF)

to R

EA

D (

BC

4 O

TF)

WL

= 5

RL

= 5

T0T1

T2T3

T4T5

T6T7

T8T9

t WPR

E

T10

T11

Do

n’t

Car

eTr

ansi

tio

nin

g D

ata

Tn

NO

PW

RITE

REA

D

Valid

Valid

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

P

CKCK#

Com

man

d1

DQ

4

DQ

S, D

QS#

Add

ress

3

t WPS

T

t BL

= 4

clo

cks

NO

P

t WTR

2

Ind

icat

es b

reak

in t

ime

scal

e

DI

n +

3D

In

+ 2

DI

n +

1D

I n

No

tes:

1.N

OP

com

man

ds

are

sho

wn

fo

r ea

se o

f ill

ust

rati

on

; oth

er c

om

man

ds

may

be

valid

at

thes

e ti

mes

.2.

t WTR

co

ntr

ols

th

e W

RIT

E-to

-REA

D d

elay

to

th

e sa

me

dev

ice

and

sta

rts

afte

r t B

L.3.

The

BC

4 O

TF s

etti

ng

is a

ctiv

ated

by

MR

0[1:

0] =

01

and

A12

= 0

du

rin

g t

he

WR

ITE

com

man

d a

t T0

an

d t

he

REA

Dco

mm

and

at

Tn.

4.D

I n =

dat

a-in

fo

r co

lum

n n

.5.

BC

4, R

L =

5 (

AL

= 0

, CL

= 5

), W

L =

5 (

AL

= 0

, CW

L =

5).

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 176 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 88: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

88

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 92: WRITE (BL8) to PRECHARGE

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Ta0 Ta1

DIn + 3

DIn + 2

DIn + 1

DIn

DIn + 6

DIn + 7

DIn + 5

DIn + 4

NOPWRITE

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP PRE

CK

CK#

Command

DQ BL8

DQS, DQS#

Address

Don’t CareTransitioning DataIndicates breakin time scale

tWRWL = AL + CWL

Valid

Notes: 1. DI n = data-in from column n.2. Seven subsequent elements of data-in are applied in the programmed order following

DO n.3. Shown for WL = 7 (AL = 0, CWL = 7).

Figure 93: WRITE (BC4 Mode Register Setting) to PRECHARGE

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Ta0 Ta1

DIn + 3

DIn + 2

DIn + 1

DIn

NOPWRITE

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP PRE

CK

CK#

Command

DQ BC4

DQS, DQS#

Address

Don’t CareTransitioning DataIndicates breakin time scale

tWRWL = AL + CWL

Valid

Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid atthese times.

2. The write recovery time (tWR) is referenced from the first rising clock edge after the lastwrite data is shown at T7. tWR specifies the last burst WRITE cycle until the PRECHARGEcommand can be issued to the same bank.

3. The fixed BC4 setting is activated by MR0[1:0] = 10 during the WRITE command at T0.4. DI n = data-in for column n.5. BC4 (fixed), WL = 5, RL = 5.

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 177 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 92: WRITE (BL8) to PRECHARGE

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Ta0 Ta1

DIn + 3

DIn + 2

DIn + 1

DIn

DIn + 6

DIn + 7

DIn + 5

DIn + 4

NOPWRITE

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP PRE

CK

CK#

Command

DQ BL8

DQS, DQS#

Address

Don’t CareTransitioning DataIndicates breakin time scale

tWRWL = AL + CWL

Valid

Notes: 1. DI n = data-in from column n.2. Seven subsequent elements of data-in are applied in the programmed order following

DO n.3. Shown for WL = 7 (AL = 0, CWL = 7).

Figure 93: WRITE (BC4 Mode Register Setting) to PRECHARGE

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Ta0 Ta1

DIn + 3

DIn + 2

DIn + 1

DIn

NOPWRITE

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP PRE

CK

CK#

Command

DQ BC4

DQS, DQS#

Address

Don’t CareTransitioning DataIndicates breakin time scale

tWRWL = AL + CWL

Valid

Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid atthese times.

2. The write recovery time (tWR) is referenced from the first rising clock edge after the lastwrite data is shown at T7. tWR specifies the last burst WRITE cycle until the PRECHARGEcommand can be issued to the same bank.

3. The fixed BC4 setting is activated by MR0[1:0] = 10 during the WRITE command at T0.4. DI n = data-in for column n.5. BC4 (fixed), WL = 5, RL = 5.

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 177 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 53: WRITE (BL8) to PRECHARGE

Figure 54: WRITE (BC4 Mode Register Setting) to PRECHARGE

Notes:

1. DIn=data-infromcolumnn.

2. Sevensubsequentelementsofdata-inareappliedintheprogrammedorderfollowingDOn.

3. ShownforWL=7(AL=0,CWL=7).

Notes:

1. NOPcommandsareshownforeaseofillustration;othercommandsmaybevalidatthesetimes.

2. Thewriterecoverytime(tWR)isreferencedfromthefirstrisingclockedgeafterthelastwritedataisshownatT7.tWRspecifiesthelastburstWRITEcycleuntilthePRECHARGEcommandcanbeissuedtothesamebank.

3. ThefixedBC4settingisactivatedbyMR0[1:0]=10duringtheWRITEcommandatT0.

4. DIn=data-inforcolumnn.

5. BC4(fixed),WL=5,RL=5.

Page 89: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

89

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 55: WRITE (BC4 OTF) to PRECHARGEFigure 94: WRITE (BC4 OTF) to PRECHARGE

WL = 5

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 Tn

Don’t CareTransitioning Data

Bank,Col n

NOPWRITE PRENOP NOP NOP NOP NOP NOP NOPNOP

CK

CK#

Command1

DQ4

DQS, DQS#

Address3

tWPSTtWPRE

Indicates breakin time scale

DIn + 3

DIn + 2

DIn + 1

DIn

tWR2

Valid

Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid atthese times.

2. The write recovery time (tWR) is referenced from the rising clock edge at T9. tWR speci-fies the last burst WRITE cycle until the PRECHARGE command can be issued to the samebank.

3. The BC4 setting is activated by MR0[1:0] = 01 and A12 = 0 during the WRITE commandat T0.

4. DI n = data-in for column n.5. BC4 (OTF), WL = 5, RL = 5.

DQ Input Timing

Figure 85 (page 172) shows the strobe-to-clock timing during a WRITE burst. DQS,DQS# must transition within 0.25tCK of the clock transitions, as limited by tDQSS. Alldata and data mask setup and hold timings are measured relative to the DQS, DQS#crossing, not the clock crossing.

The WRITE preamble and postamble are also shown in Figure 85 (page 172). One clockprior to data input to the DRAM, DQS must be HIGH and DQS# must be LOW. Then fora half clock, DQS is driven LOW (DQS# is driven HIGH) during the WRITE preamble,tWPRE. Likewise, DQS must be kept LOW by the controller after the last data is writtento the DRAM during the WRITE postamble, tWPST.

Data setup and hold times are also shown in Figure 85 (page 172). All setup and holdtimes are measured from the crossing points of DQS and DQS#. These setup and holdvalues pertain to data input and data mask input.

Additionally, the half period of the data input strobe is specified by tDQSH and tDQSL.

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 178 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. NOPcommandsareshownforeaseofillustration;othercommandsmaybevalidatthesetimes.

2. Thewriterecoverytime(tWR)isreferencedfromtherisingclockedgeatT9.tWRspecifiesthelastburstWRITEcycleuntilthePRECHARGEcommandcanbeissuedtothesamebank.

3. TheBC4settingisactivatedbyMR0[1:0]=01andA12=0duringtheWRITEcommandatT0.

4. DIn=data-inforcolumnn.

5. BC4(OTF),WL=5,RL=5.

DQ Input Timing

Figure46 (page83)showsthestrobe-to-clock timingduringaWRITEburst.DQS,DQS#musttransitionwithin0.25tCKoftheclock transitions,as limitedby tDQSS.Alldataanddatamask setup and hold timings are measured relative to theDQS,DQS#crossing,nottheclockcrossing.

TheWRITEpreambleandpostamblearealsoshowninFigure46 (page 83). One clock prior to data input to the DRAM,DQSmustbeHIGHandDQS#mustbeLOW.Thenforahalfclock,DQSisdrivenLOW(DQS# isdrivenHIGH)duringtheWRITEpreamble,tWPRE.Likewise,DQSmustbekeptLOWby the controller after the last data is written to the DRAMduringtheWRITEpostamble,tWPST.

DatasetupandholdtimesarealsoshowninFigure46(page83).AllsetupandholdtimesaremeasuredfromthecrossingpointsofDQSandDQS#.Thesesetupandholdvaluespertaintodatainputanddatamaskinput.Additionally,thehalfperiodofthedatainputstrobeisspecifiedbytDQSHandtDQSL.

Page 90: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

90

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 56: Data Input TimingFigure 95: Data Input Timing

tDH tDHtDS tDS

DM

DQ DIb

DQS, DQS#

Don’t CareTransitioning Data

tDQSH tDQSLtWPRE tWPST

1Gb: x4, x8, x16 DDR3 SDRAMWRITE Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 179 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 91: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

91

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

PRECHARGE OperationInputA10determineswhetheronebankor all banksare tobeprechargedand,inthecasewhereonlyonebankistobeprecharged,inputsBA[2:0]selectthebank.

When all banks are to be precharged, inputs BA[2:0] aretreatedas“Don’tCare.”Afterabankisprecharged,itisintheidlestateandmustbeactivatedpriortoanyREADorWRITEcommandsbeingissued.

SELF REFRESH OperationThe SELF REFRESH operation is initiated like a REFRESHcommand except CKE is LOW. The DLL is automaticallydisableduponenteringSELFREFRESHand isautomaticallyenabledandresetuponexitingSELFREFRESH.

Allpowersupply inputs (includingVREFCAandVREFDQ)mustbemaintained at valid levels upon entry/exit andduring selfrefreshmodeoperation.VREFDQmayfloatornotdriveVDDQ/2whileinselfrefreshmodeundercertainconditions:

• VSS<VREFDQ<VDDismaintained.

• VREFDQisvalidandstablepriortoCKEgoingbackHIGH.

• ThefirstWRITEoperationmaynotoccurearlierthan512clocksafterVREFDQisvalid.

• Allotherselfrefreshmodeexittimingrequirementsaremet.

TheDRAMmustbeidlewithallbanksintheprechargestate(tRP is satisfiedandnobursts are inprogress)beforea selfrefresh entry command can be issued. ODT must also beturned off before self refresh entry by registering the ODTball LOW prior to the self refresh entry command (see On-DieTermination (ODT) (page103) for timing requirements). IfRTT,nomandRTT(WR)aredisabledinthemoderegisters,ODTcanbea“Don’tCare.”Aftertheselfrefreshentrycommandisregistered,CKEmustbeheldLOWtokeeptheDRAMinselfrefreshmode.

After the DRAM has entered self refresh mode, all externalcontrol signals, exceptCKEandRESET#, are “Don’tCare.”TheDRAM initiatesaminimumofoneREFRESHcommandinternally within the tCKE period when it enters self refreshmode.

The requirements for entering and exiting self refreshmodedepend on the state of the clock during self refreshmode.First and foremost, the clock must be stable (meeting tCKspecifications)whenselfrefreshmodeisentered.Iftheclockremains stable and the frequency is not alteredwhile in selfrefreshmode, then theDRAM is allowed to exit self refreshmodeafter tCKESR is satisfied (CKE is allowed to transitionHIGHtCKESRlaterthanwhenCKEwasregisteredLOW).Sincethe clock remains stable in self refreshmode (no frequencychange), tCKSREand tCKSRXare not required.However, iftheclockisalteredduringselfrefreshmode(if it isturned-offoritsfrequencychanges),thentCKSREandtCKSRXmustbesatisfied.Whenenteringself refreshmode, tCKSREmustbesatisfiedpriortoalteringtheclock'sfrequency.Priortoexitingselfrefreshmode,tCKSRXmustbesatisfiedpriortoregisteringCKEHIGH.

WhenCKEisHIGHduringselfrefreshexit,NOPorDESmustbe issued for tXS time. tXS is required for thecompletionofanyinternalrefreshalreadyinprogressandmustbesatisfiedbefore a valid commandnot requiringa lockedDLLcanbeissuedto thedevice. tXS isalso theearliest timeself refreshre-entrymayoccur.BeforeacommandrequiringalockedDLLcanbeapplied,aZQCLcommandmustbeissued,tZQOPERtimingmustbemet,andtXSDLLmustbesatisfied.ODTmustbeoffduringtXSDLL.

Page 92: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

92

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 57: Self Refresh Entry/Exit Timing

Notes:

1. Theclockmustbevalidandstable,meetingtCKspecificationsatleasttCKSREafterenteringselfrefreshmode,andatleasttCKSRXpriortoexitingselfrefreshmode,iftheclockisstoppedoralteredbetweenstatesTa0andTb0.Iftheclockremainsvalidandunchangedfromentryandduringselfrefreshmode,thentCKSREandtCKSRXdonotapply;however,tCKESRmustbesatisfiedpriortoexitingatSRX.

2. ODTmustbedisabledandRTToffpriortoenteringselfrefreshatstateT1.IfbothRTT,nomandRTT(WR)aredisabledinthemoderegisters,ODTcanbea“Don’tCare.”

3. Selfrefreshentry(SRE)issynchronousviaaREFRESHcommandwithCKELOW.

4. ANOPorDEScommandisrequiredatT2aftertheSREcommandisissuedpriortotheinputsbecoming“Don’tCare.”

Figure 96: Self Refresh Entry/Exit Timing

CK

CK#

Command NOP NOP4SRE (REF)3

Address

CKE

ODT2

RESET#2

Valid

Valid6SRX (NOP) NOP5

tRP8

tXSDLL7, 9

ODTL

tIStCPDEDtIS

tIS

Enter self refresh mode(synchronous)

Exit self refresh mode(asynchronous)

T0 T1 T2 Tc0 Tc1 Td0Tb0

Don’t Care

Te0

Valid

Valid7

Valid

Valid Valid

tIH

Ta0 Tf0

Indicates breakin time scale

tCKSRX1tCKSRE1

tXS6, 9

tCKESR (MIN)1

Notes: 1. The clock must be valid and stable, meeting tCK specifications at least tCKSRE after en-tering self refresh mode, and at least tCKSRX prior to exiting self refresh mode, if theclock is stopped or altered between states Ta0 and Tb0. If the clock remains valid andunchanged from entry and during self refresh mode, then tCKSRE and tCKSRX do notapply; however, tCKESR must be satisfied prior to exiting at SRX.

2. ODT must be disabled and RTT off prior to entering self refresh at state T1. If bothRTT,nom and RTT(WR) are disabled in the mode registers, ODT can be a “Don’t Care.”

3. Self refresh entry (SRE) is synchronous via a REFRESH command with CKE LOW.4. A NOP or DES command is required at T2 after the SRE command is issued prior to the

inputs becoming “Don’t Care.”5. NOP or DES commands are required prior to exiting self refresh mode until state Te0.6. tXS is required before any commands not requiring a locked DLL.7. tXSDLL is required before any commands requiring a locked DLL.8. The device must be in the all banks idle state prior to entering self refresh mode. For

example, all banks must be precharged, tRP must be met, and no data bursts can be inprogress.

9. Self refresh exit is asynchronous; however, tXS and tXSDLL timings start at the first risingclock edge where CKE HIGH satisfies tISXR at Tc1. tCKSRX timing is also measured so thattISXR is satisfied at Tc1.

1Gb: x4, x8, x16 DDR3 SDRAMSELF REFRESH Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 181 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

5. NOPorDEScommandsarerequiredpriortoexitingselfrefreshmodeuntilstateTe0.

6. tXSisrequiredbeforeanycommandsnotrequiringalockedDLL.

7. tXSDLLisrequiredbeforeanycommandsrequiringalockedDLL.

8. Thedevicemustbeintheallbanksidlestatepriortoenteringselfrefreshmode.Forexample,allbanksmustbeprecharged,tRPmustbemet,andnodataburstscanbeinprogress.

9. Selfrefreshexitisasynchronous;however,tXSandtXSDLLtimingsstartatthefirstrisingclockedgewhereCKEHIGHsatisfiestISXRatTc1.tCKSRXtimingisalsomeasuredsothattISXRissatisfiedatTc1.

Page 93: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

93

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Extended Temperature Usage

Table 29: Self Refresh Temperature and Auto Self Refresh Description

FieldMR2 Bits

Description

Self Refresh Temperature (SRT)

SRT 7

If ASR is disabled (MR2[6] = 0), SRT must be programmed to indicate TOPER during self refresh:• MR2[7] = 0: Normal operating temperature range (0°C to 85°C)• MR2[7] = 1: Extended operating temperature range (0°C to 95°C)

If ASR is enabled (MR2[7] = 1), SRT must be set to 0, even if the extended temperature range is supported• MR2[7] = 0: SRT is disabled

Auto Self Refresh (ASR)

ASR 6

When ASR is enabled, the DRAM automatically provides SELF REFRESH power management functions, (refresh rate for all supported operating temperature values).

• MR2[6] = 1: ASR is enabled (M7 must = 0)

When ASR is not enabled, the SRT bit must be programmed to indicate TOPER during SELF REFRESH operation.• MR2[6] = 0: ASR is disabled; must use manual self refresh temperature (SRT)

Table 30: Self Refresh Mode Summary

MR2[6](ASR)

MR2[7](SRT)

SELF REFRESH Operation Permitted Operating Temperature Range for Self Refresh Mode

0 0 Self refresh mode is supported in the normal temperature range Normal (0°C to 85°C)

0 1Self refresh mode is supported in normal and extended temperature ranges; When SRT is enabled, it increases self refresh power consumption

Normal and extended (0°C to 95°C)

1 0Self refresh mode is supported in normal and extended temperature ranges; Self refresh power consumption may be temperature-dependent

Normal and extended (0°C to 95°C)

1 1 Illegal

Micron’sDDR3SDRAMsupport theoptionalextendedcasetemperature (TC) range of 0°C to 95°C. Thus, theSRT andASRoptionsmustbeusedataminimum.

The extended temperature range DRAMmust be refreshedexternallyat2x(doublerefresh)anytimethecasetemperatureisabove85°C(anddoesnotexceed95°C).Theexternalrefreshrequirement is accomplished by reducing the refresh period

from64msto32ms.However,selfrefreshmoderequireseitherASRorSRTtosupporttheextendedtemperature.Thus,eitherASRorSRTmustbeenabledwhenTCisabove85°CorselfrefreshcannotbeuseduntilTCisatorbelow85°C.Table29summarizesthetwoextendedtemperatureoptionsandTable30 summarizes how the two extended temperature optionsrelatetooneanother.

Page 94: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

94

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Power-Down ModePower-downissynchronouslyenteredwhenCKEisregisteredLOWcoincidentwith aNOPorDEScommand.CKE is notallowed to go LOW while an MRS, MPR, ZQCAL, READ,or WRITE operation is in progress. CKE is allowed to goLOWwhile anyof theother legal operations (such asROWACTIVATION, PRECHARGE, auto precharge, or REFRESH)are inprogress.However, thepower-down IDDspecificationsare not applicable until such operations have completed.Depending on the previous DRAM state and the commandissuedpriortoCKEgoingLOW,certaintimingconstraintsmustbesatisfied(asnotedinTable31).Timingdiagramsdetailingthedifferentpower-downmodeentryandexitsareshowninFigure58(page96)throughFigure67(page100).

Table 31: Command to Power-Down Entry Parameters

DRAM Status Last Command Prior to CKE LOW1 Parameter (Min) Parameter Value Figure

Idle or active ACTIVATE tACTPDEN 1tCK Figure 65 (page 99)

Idle or active PRECHARGE tPRPDEN 1tCK Figure 66 (page 100)

Active READ or READAP tRDPDEN RL + 4tCK + 1tCK Figure 61 (page 97)

Active WRITE: BL8OTF, BL8MRS, BC4OTFtWRPDEN

WL + 4tCK + tWR/tCK Figure 62 (page 98)

Active WRITE: BC4MRS WL + 2tCK + tWR/tCK Figure 62 (page 98)

Active WRITEAP: BL8OTF, BL8MRS, BC4OTFtWRAPDEN

WL + 4tCK + WR + 1tCK Figure 63 (page 98)

Active WRITEAP: BC4MRS WL + 2tCK + WR + 1tCK Figure 63 (page 98)

Idle REFRESH tREFPDEN 1tCK Figure 64 (page 99)

Power-down REFRESH tXPDLL Greater of 10tCK or 24ns Figure 68 (page 101)

Idle MODE REGISTER SET tMRSPDEN tMOD Figure 67 (page 100)

Notes:

1. Ifslow-exitmodeprechargepower-downisenabledandentered,ODTbecomesasynchronoustANPDpriortoCKEgoingLOWandremainsasynchronousuntiltANPD+tXPDLLafterCKEgoesHIGH.

Page 95: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

95

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Power-Down Mode (continued)

Entering power-down disables the input and output buffers,excludingCK,CK#,ODT,CKE, andRESET#.NOP orDEScommandsare requireduntil tCPDEDhasbeen satisfied, atwhichtimeallspecifiedinput/outputbuffersaredisabled.TheDLLshouldbeinalockedstatewhenpower-downisenteredforthefastestpower-downexittiming.IftheDLLisnotlockedduringpower-downentry,theDLLmustberesetafterexitingpower-down mode for proper READ operation as well assynchronousODToperation.

Duringpower-downentry,ifanybankremainsopenafterallin-progresscommandsarecomplete,theDRAMwillbeinactivepower-downmode.Ifallbanksareclosedafterallin-progresscommands are complete, the DRAM will be in prechargepower-downmode. Precharge power-downmodemust beprogrammedtoexitwitheitheraslowexitmodeorafastexitmode.Whenenteringprechargepower-donmode,theDLListurnedoffinslowexitmodeorkeptoninfastexitmode.

TheDLLalsoremainsonwhenenteringactivepower-down.ODT has special timing constraints when slow exit modeprecharge power-down is enabled and entered. Refer toAsynchronousODTMode(page114)fordetailedODTusagerequirements in slow exit mode precharge power-down. Asummaryofthetwopower-downmodesislistedinTable32(page95).

Whileineitherpower-downstate,CKEisheldLOW,RESET#isheldHIGH,andastableclocksignalmustbemaintained.

ODTmust be in a valid state but all other input signals are“Don’tCare.” IfRESET#goesLOWduringpower-down, theDRAMwill switchoutofpower-downmodeandgo into thereset state. AfterCKE is registered LOW,CKEmust remainLOWuntil tPD (MIN) hasbeen satisfied.Themaximum timeallowedforpowerdowndurationistPD(MAX)(9×tREFI).

Thepower-downstatesaresynchronouslyexitedwhenCKEis registeredHIGH (witha requiredNOPorDEScommand).CKEmustbemaintainedHIGHuntiltCKEhasbeensatisfied.Avalid,executablecommandmaybeappliedafterpower-downexitlatency,tXP,andtXPDLLhavebeensatisfied.Asummaryofthepower-downmodesislistedbelow.

For specific CKE-intensive operations, such as repeating apower-down-exit-to-refreshto-power-down-entry sequence,the number of clock cycles between power-down exit andpower-down entry may not be sufficient to keep the DLLproperly updated. In addition to meeting tPD when theREFRESHcommand isusedbetweenpower-downexitandpower-downentry, twoother conditionsmust bemet. First,tXPmustbesatisfiedbeforeissuingtheREFRESHcommand.Second, tXPDLL must be satisfied before the next power-downmaybeentered.AnexampleisshowninFigure68(page101).

Table 32: Power-Down Modes

DRAM State MR0[12] DLL State Power-Down Exit Relevant Parameters

Active (any bank open) “Don’t Care” On Fast tXP to any other valid command

Precharged(all banks precharged)

1 On Fast tXP to any other valid command

0 Off SlowtXPDLL to commands that require the DLL to be locked (READ, RDAP, or ODT on); tXP to any other valid command

Page 96: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

96

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 98: Precharge Power-Down (Fast-Exit Mode) Entry and Exit

CK

CK#

Command NOP NOP NOP NOP

CKE

tCK

tCH

tCL

Enter power-downmode

Exit power-downmode

tPD

Valid

tCPDED

tIS

tIHt

IS

T0 T1 T2 T3 T4 T5 Ta0 Ta1

NOP

Don’t CareIndicates breakin time scale

tXP

tCKE (MIN)

Figure 99: Precharge Power-Down (Slow-Exit Mode) Entry and Exit

CK

CK#

Command NOP NOP NOP

CKE

tCK tCH tCL

Enter power-downmode

Exit power-downmode

tPD

Valid2Valid1PRE

tXPDLL

tCPDED

tIS

tIHtIS

T0 T1 T2 T3 T4 Ta Ta1 Tb

NOP

Don’t CareIndicates breakin time scale

tXP

tCKE (MIN)

Notes: 1. Any valid command not requiring a locked DLL.2. Any valid command requiring a locked DLL.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 186 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 97: Active Power-Down Entry and Exit

CK

CK#

Command NOP NOP NOP NOP

Address

CKE

tCK tCH tCL

Enter power-downmode

Exit power-downmode

Don’t Care

ValidValid

Valid

tCPDED

Valid

tIS

tIH

tIH

tIS

T0 T1 T2 Ta0 Ta1 Ta2 Ta3 Ta4

NOP

tXP

tCKE (MIN)

Indicates breakin time scale

tPD

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 185 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 58: Active Power-Down Entry and Exit

Figure 59: Precharge Power-Down (Fast-Exit Mode) Entry and Exit

Page 97: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

97

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 60: Precharge Power-Down (Slow-Exit Mode) Entry and Exit

Figure 61: Power-Down Entry After READ or READ with Auto Precharge (RDAP)

Figure 98: Precharge Power-Down (Fast-Exit Mode) Entry and Exit

CK

CK#

Command NOP NOP NOP NOP

CKE

tCK

tCH

tCL

Enter power-downmode

Exit power-downmode

tPD

Valid

tCPDED

tIS

tIHt

IS

T0 T1 T2 T3 T4 T5 Ta0 Ta1

NOP

Don’t CareIndicates breakin time scale

tXP

tCKE (MIN)

Figure 99: Precharge Power-Down (Slow-Exit Mode) Entry and Exit

CK

CK#

Command NOP NOP NOP

CKE

tCK tCH tCL

Enter power-downmode

Exit power-downmode

tPD

Valid2Valid1PRE

tXPDLL

tCPDED

tIS

tIHtIS

T0 T1 T2 T3 T4 Ta Ta1 Tb

NOP

Don’t CareIndicates breakin time scale

tXP

tCKE (MIN)

Notes: 1. Any valid command not requiring a locked DLL.2. Any valid command requiring a locked DLL.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 186 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 100: Power-Down Entry After READ or READ with Auto Precharge (RDAP)

T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9

Don’t CareTransitioning Data

Ta10 Ta11 Ta12

NOP

Valid

READ/RDAP NOP NOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command

DQ BL8

DQ BC4

DQS, DQS#

Address

CKE

tCPDEDtIS

tPD

Power-down orself refresh entry

Indicates breakin time scale

tRDPDEN

DIn + 3

DIn + 1

DIn + 2

DIn

RL = AL + CL

DIn + 3

DIn + 2

DIn + 1

DIn

DIn + 6

DIn + 7

DIn+ 5

DIn + 4

Figure 101: Power-Down Entry After WRITE

T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Tb0 Tb1 Tb2 Tb3 Tb4

NOPWRITE

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command

DQ BL8

DQ BC4

DQS, DQS#

Address

CKE

tCPDED

Power-down orself refresh entry1

Don’t CareTransitioning Data

tWRPDEN

DIn + 3

DIn + 1

DIn + 2

DIn

tPD

Indicates breakin time scale

DI n + 3

DI n + 2

DI n + 1

DI n

DI n + 6

DI n + 7

DI n + 5

DI n + 4

tIS

WL = AL + CWL tWR

Note: 1. CKE can go LOW 2tCK earlier if BC4MRS.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 187 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. AnyvalidcommandnotrequiringalockedDLL.

2. AnyvalidcommandrequiringalockedDLL.

Page 98: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

98

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 102: Power-Down Entry After WRITE with Auto Precharge (WRAP)

T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Tb0 Tb1

Don’t CareTransitioning Data

Tb2 Tb3 Tb4

NOPWRAP

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command

DQ BL8

DQ BC4

DQS, DQS#

Address

A10

CKE

tPD

tWRAPDEN

Power-down orself refresh entry2

Start internalprecharge

tCPDEDtIS

Indicates breakin time scale

DI n + 3

DI n + 2

DI n + 1

DIn

DI n + 6

DI n + 7

DI n + 5

DI n + 4

DI n + 3

DI n + 2

DI n + 1

DI n

WR1WL = AL + CWL

Notes: 1. tWR is programmed through MR0[11:9] and represents tWRmin (ns)/tCK rounded up tothe next integer tCK.

2. CKE can go LOW 2tCK earlier if BC4MRS.

Figure 103: REFRESH to Power-Down Entry

CK

CK#

Command REFRESH NOP NOP NOP NOP Valid

CKE

tCK tCH tCL

tCPDED

tREFPDEN

tIS

T0 T1 T2 T3 Ta0 Ta1 Ta2 Tb0

tXP (MIN)

tRFC (MIN)1

Don’t CareIndicates breakin time scale

tCKE (MIN)

tPD

Note: 1. After CKE goes HIGH during tRFC, CKE must remain HIGH until tRFC is satisfied.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 188 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 100: Power-Down Entry After READ or READ with Auto Precharge (RDAP)

T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9

Don’t CareTransitioning Data

Ta10 Ta11 Ta12

NOP

Valid

READ/RDAP NOP NOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command

DQ BL8

DQ BC4

DQS, DQS#

Address

CKE

tCPDEDtIS

tPD

Power-down orself refresh entry

Indicates breakin time scale

tRDPDEN

DIn + 3

DIn + 1

DIn + 2

DIn

RL = AL + CL

DIn + 3

DIn + 2

DIn + 1

DIn

DIn + 6

DIn + 7

DIn+ 5

DIn + 4

Figure 101: Power-Down Entry After WRITE

T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Tb0 Tb1 Tb2 Tb3 Tb4

NOPWRITE

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command

DQ BL8

DQ BC4

DQS, DQS#

Address

CKE

tCPDED

Power-down orself refresh entry1

Don’t CareTransitioning Data

tWRPDEN

DIn + 3

DIn + 1

DIn + 2

DIn

tPD

Indicates breakin time scale

DI n + 3

DI n + 2

DI n + 1

DI n

DI n + 6

DI n + 7

DI n + 5

DI n + 4

tIS

WL = AL + CWL tWR

Note: 1. CKE can go LOW 2tCK earlier if BC4MRS.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 187 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 62: Power-Down Entry After WRITE

Figure 63: Power-Down Entry After WRITE with Auto Precharge (WRAP)

Note:

1. CKEcangoLOW2tCKearlierifBC4MRS.

Notes:

1. tWRisprogrammedthroughMR0[11:9]andrepresentstWRmin(ns)/tCKroundeduptothenextintegertCK.

2. CKEcangoLOW2tCKearlierifBC4MRS.

Page 99: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

99

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 64: REFRESH to Power-Down Entry

Figure 65: ACTIVATE to Power-Down Entry

Figure 102: Power-Down Entry After WRITE with Auto Precharge (WRAP)

T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Tb0 Tb1

Don’t CareTransitioning Data

Tb2 Tb3 Tb4

NOPWRAP

Valid

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP

CK

CK#

Command

DQ BL8

DQ BC4

DQS, DQS#

Address

A10

CKE

tPD

tWRAPDEN

Power-down orself refresh entry2

Start internalprecharge

tCPDEDtIS

Indicates breakin time scale

DI n + 3

DI n + 2

DI n + 1

DIn

DI n + 6

DI n + 7

DI n + 5

DI n + 4

DI n + 3

DI n + 2

DI n + 1

DI n

WR1WL = AL + CWL

Notes: 1. tWR is programmed through MR0[11:9] and represents tWRmin (ns)/tCK rounded up tothe next integer tCK.

2. CKE can go LOW 2tCK earlier if BC4MRS.

Figure 103: REFRESH to Power-Down Entry

CK

CK#

Command REFRESH NOP NOP NOP NOP Valid

CKE

tCK tCH tCL

tCPDED

tREFPDEN

tIS

T0 T1 T2 T3 Ta0 Ta1 Ta2 Tb0

tXP (MIN)

tRFC (MIN)1

Don’t CareIndicates breakin time scale

tCKE (MIN)

tPD

Note: 1. After CKE goes HIGH during tRFC, CKE must remain HIGH until tRFC is satisfied.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 188 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 104: ACTIVATE to Power-Down Entry

CK

CK#

Command

Address

ACTIVE NOP NOP

CKE

tCK tCH tCL

Don’t Care

tCPDED

tACTPDEN

Valid

tIS

T0 T1 T2 T3 T4 T5 T6 T7

tPD

Figure 105: PRECHARGE to Power-Down Entry

CK

CK#

Command

Address

CKE

tCK tCH tCL

Don’t Care

tCPDED

tPREPDEN

tIS

T0 T1 T2 T3 T4 T5 T6 T7

tPD

All/singlebank

PRE NOP NOP

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 189 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Note:

1. AfterCKEgoesHIGHduringtRFC,CKEmustremainHIGHuntiltRFCissatisfied.

Page 100: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

100

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 66: PRECHARGE to Power-Down Entry

Figure 67: MRS Command to Power-Down Entry

Figure 104: ACTIVATE to Power-Down Entry

CK

CK#

Command

Address

ACTIVE NOP NOP

CKE

tCK tCH tCL

Don’t Care

tCPDED

tACTPDEN

Valid

tIS

T0 T1 T2 T3 T4 T5 T6 T7

tPD

Figure 105: PRECHARGE to Power-Down Entry

CK

CK#

Command

Address

CKE

tCK tCH tCL

Don’t Care

tCPDED

tPREPDEN

tIS

T0 T1 T2 T3 T4 T5 T6 T7

tPD

All/singlebank

PRE NOP NOP

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 189 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 106: MRS Command to Power-Down Entry

CK

CK#

CKE

tCK tCH tCL tCPDED

Address

tIS

T0 T1 T2 Ta0 Ta1 Ta2 Ta3 Ta4

tPD

Don’t CareIndicates breakin time scale

Valid

Command MRS NOPNOP NOP NOP NOP

tMRSPDEN

Figure 107: Power-Down Exit to Refresh to Power-Down Entry

CK

CK#

CKE

tCK tCH tCL

Enter power-downmode

Enter power-downmode

Exit power-downmode

tPD

tCPDED

tIS

tIHtIS

T0 T1 T2 T3 T4 Ta0 Ta1 Tb0

Don’t CareIndicates breakin time scale

Command NOP NOP NOP NOPREFRESH NOPNOP

tXP1

tXPDLL2

Notes: 1. tXP must be satisfied before issuing the command.2. tXPDLL must be satisfied (referenced to the registration of power-down exit) before the

next power-down can be entered.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 190 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Page 101: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

101

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 68: Power-Down Exit to Refresh to Power-Down Entry

Figure 106: MRS Command to Power-Down Entry

CK

CK#

CKE

tCK tCH tCL tCPDED

Address

tIS

T0 T1 T2 Ta0 Ta1 Ta2 Ta3 Ta4

tPD

Don’t CareIndicates breakin time scale

Valid

Command MRS NOPNOP NOP NOP NOP

tMRSPDEN

Figure 107: Power-Down Exit to Refresh to Power-Down Entry

CK

CK#

CKE

tCK tCH tCL

Enter power-downmode

Enter power-downmode

Exit power-downmode

tPD

tCPDED

tIS

tIHtIS

T0 T1 T2 T3 T4 Ta0 Ta1 Tb0

Don’t CareIndicates breakin time scale

Command NOP NOP NOP NOPREFRESH NOPNOP

tXP1

tXPDLL2

Notes: 1. tXP must be satisfied before issuing the command.2. tXPDLL must be satisfied (referenced to the registration of power-down exit) before the

next power-down can be entered.

1Gb: x4, x8, x16 DDR3 SDRAMPower-Down Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 190 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. tXPmustbesatisfiedbeforeissuingthecommand.

2. tXPDLLmustbesatisfied(referencedtotheregistrationofpower-downexit)beforethenextpower-downcanbeentered.

RESET OperationTheRESETsignal (RESET#) isanasynchronousresetsignalthattriggersanytimeitdropsLOW,andtherearenorestrictionsaboutwhenitcangoLOW.AfterRESET#goesLOW,itmustremain LOW for 100ns. During this time, the outputs aredisabled,ODT(RTT) turnsoff (High-Z),andtheDRAMresetsitself. CKE should be driven LOW prior to RESET# beingdrivenHIGH.AfterRESET#goesHIGH, theDRAMmustbere-initializedasthoughanormalpower-upwasexecuted.Allrefreshcounterson theDRAMare reset,anddatastored intheDRAMisassumedunknownafterRESET#hasgoneLOW.

Page 102: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

102

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 69: RESET SequenceFigure 108: RESET Sequence

CKE

RTT

BA[2:0]

All voltagesupplies validand stable

High-Z

DM

DQSHigh-Z

Address

A10

CK

CK#

tCL

Command NOP

T0 Ta0

Don’t Care

tCL

ODT

DQ High-Z

Tb0

tDLLK

MR1 withDLL ENABLE

MRSMRS

BA0 = HBA1 = LBA2 = L

BA0 = LBA1 = LBA2 = L

Code Code

Code Code

Valid

Valid

Valid

Valid

Normaloperation

MR2 MR3

MRSMRS

BA0 = LBA1 = HBA2 = L

BA0 = HBA1 = HBA2 = L

Code Code

Code Code

Tc0 Td0

RESET#

Stable andvalid clock

Valid Valid

DRAM readyfor externalcommands

T1

tZQinit

A10 = H

ZQCL

tIS

Valid

Valid

System RESET(warm boot)

ZQCALMR0 withDLL RESET

T = 10ns (MIN)

T = 100ns (MIN)

Indicates breakin time scale

T = 500μs (MIN) tXPR tMRD tMRD tMRD tMOD

tCK

t CKSRX1

tIOZ = 20ns

tIS

tIS

Static LOW in case RTT_Nom is enabled at time Ta0, otherwise static High or Low

tIS

Note: 1. The minimum time required is the longer of 10ns or 5 clocks.

1Gb: x4, x8, x16 DDR3 SDRAMRESET Operation

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 192 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Note:

1. Theminimumtimerequiredisthelongerof10nsor5clocks.

Page 103: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

103

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

On-Die Termination (ODT)On-dietermination(ODT)isafeaturethatenablestheDRAMtoenable/disableandturnon/offterminationresistanceforeachDQ,UDQS,UDQS#,LDQS,LDQS#,UDM,andLDMsignalforthex16configuration.

ODT is designed to improve signal integrity of the memorychannel by enabling the DRAM controller to independentlyturnon/offtheDRAM’sinternalterminationresistanceforanygroupingofDRAMdevices.ODTisnotsupportedduringDLLdisablemode(simplefunctionalrepresentationshownbelow).TheswitchisenabledbytheinternalODTcontrollogic,whichusestheexternalODTballandothercontrolinformation.

On-Die Termination (ODT)On-die termination (ODT) is a feature that enables the DRAM to enable/disable andturn on/off termination resistance for each DQ, DQS, DQS#, and DM for the x4 and x8configurations (and TDQS, TDQS# for the x8 configuration, when enabled). ODT is ap-plied to each DQ, UDQS, UDQS#, LDQS, LDQS#, UDM, and LDM signal for the x16 con-figuration.

ODT is designed to improve signal integrity of the memory channel by enabling theDRAM controller to independently turn on/off the DRAM’s internal termination resist-ance for any grouping of DRAM devices. ODT is not supported during DLL disablemode (simple functional representation shown below). The switch is enabled by the in-ternal ODT control logic, which uses the external ODT ball and other control informa-tion.

Figure 109: On-Die Termination

ODTVDDQ/2

RTT

SwitchDQ, DQS, DQS#, DM, TDQS, TDQS#

To othercircuitrysuch asRCV, . . .

Functional Representation of ODT

The value of RTT (ODT termination resistance value) is determined by the settings ofseveral mode register bits (see Table 87 (page 196)). The ODT ball is ignored while inself refresh mode (must be turned off prior to self refresh entry) or if mode registersMR1 and MR2 are programmed to disable ODT. ODT is comprised of nominal ODT anddynamic ODT modes and either of these can function in synchronous or asynchronousmode (when the DLL is off during precharge power-down or when the DLL is synchro-nizing). Nominal ODT is the base termination and is used in any allowable ODT state.Dynamic ODT is applied only during writes and provides OTF switching from no RTT orRTT,nom to RTT(WR).

The actual effective termination, RTT(EFF), may be different from RTT targeted due tononlinearity of the termination. For RTT(EFF) values and calculations, see ODT Charac-teristics (page 57).

Nominal ODT

ODT (NOM) is the base termination resistance for each applicable ball; it is enabled ordisabled via MR1[9, 6, 2] (see Mode Register 1 (MR1) Definition), and it is turned on oroff via the ODT ball.

1Gb: x4, x8, x16 DDR3 SDRAMOn-Die Termination (ODT)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 193 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Functional Representation of ODT

The value of RTT (ODT termination resistance value) isdeterminedbythesettingsofseveralmoderegisterbits(seeTable 36 (page 107)). The ODT ball is ignored while in selfrefreshmode(mustbeturnedoffpriortoselfrefreshentry)orifmoderegistersMR1andMR2areprogrammedtodisableODT.ODT is comprisedof nominalODTanddynamicODTmodes and either of these can function in synchronous orasynchronousmode (when the DLL is off during prechargepower-downorwhentheDLLissynchronizing).NominalODTisthebaseterminationandisusedinanyallowableODTstate.DynamicODTisappliedonlyduringwritesandprovidesOTFswitchingfromnoRTTorRTT,nomtoRTT(WR).

Theactualeffectivetermination,RTT(EFF),maybedifferentfromRTTtargetedduetononlinearityofthetermination.ForRTT(EFF)valuesandcalculations,seeODTCharacteristics(page17).

Nominal ODT

ODT (NOM) is the base termination resistance for eachapplicableball;itisenabledordisabledviaMR1[9,6,2](seeModeRegister1(MR1)Definition),anditisturnedonoroffviatheODTball.

Figure 70: On-Die Termination

Page 104: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

104

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 33: Truth Table – ODT (Nominal)

Note1appliestotheentiretable.

MR1[9, 6, 2] ODT Pin DRAM Termination State DRAM State Notes

0 0 RTT,nom disabled, ODT off Any valid 2

0 1 RTT,nom disabled, ODT on Any valid except self refresh, read 3

000–101 0 RTT,nom enabled, ODT off Any valid 2

000–101 1 RTT,nom enabled, ODT on Any valid except self refresh, read 3

110 and 111 X RTT,nom reserved, ODT on or off Illegal

Notes:

1. AssumesdynamicODTisdisabled(seeDynamicODT(page106)whenenabled).

2. ODTisenabledandactiveduringmostwritesforpropertermination,butitisnotillegalforittobeoffduringwrites.

3. ODTmustbedisabledduringreads.TheRTT,nomvalueisrestrictedduringwrites.DynamicODTisapplicableifenabled.

NominalODT resistanceRTT,nom isdefinedbyMR1[9,6,2],as shown inModeRegister 1 (MR1)Definition. TheRTT,nomtermination value applies to the output pins previouslymentioned. DDR3SDRAM supportsmultiple RTT,nom valuesbasedonRZQ/nwherencanbe2,4,6,8,or12andRZQis240Ω.RTT,nomterminationisallowedanytimeaftertheDRAMis initialized, calibrated, and not performing read access, orwhenitisnotinselfrefreshmode.

Write accesses use RTT,nom if dynamic ODT (RTT(WR)) isdisabled.IfRTT,nomisusedduringwrites,onlyRZQ/2,RZQ/4,and RZQ/6 are allowed (see Table 37 (page 107)). ODTtimings are summarized in Table 34 (page 105), as well aslistedinTable19(page23).

Examples of nominal ODT timing are shown in conjunctionwiththesynchronousmodeofoperationinSynchronousODTMode(page112).

Page 105: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

105

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 34: ODT Parameters

Symbol Description Begins at Defined toDefinition for All DDR3L Speed Bins

Unit

ODTLon ODT synchronous turn-on delay ODT registered HIGH RTT(ON) ±tAON CWL + AL - 2 tCK

ODTLoff ODT synchronous turn-off delay ODT registered HIGH RTT(OFF) ±tAOF CWL + AL - 2 tCK

tAONPD ODT asynchronous turn-on delay ODT registered HIGH RTT(ON) 2–8.5 ns

tAOFPD ODT asynchronous turn-off delay ODT registered HIGH RTT(OFF) 2–8.5 ns

ODTH4ODT minimum HIGH time after ODT assertion or write (BC4)

ODT registered HIGH or write registration with ODT HIGH

ODT registered LOW 4tCK tCK

ODTH8 ODT minimum HIGH time after write (BL8) Write registration with ODT HIGH ODT registered LOW 6tCK tCK

tAON ODT turn-on relative to ODTLon completion Completion of ODTLon RTT(ON) See Table 19 (page 23) ps

tAOF ODT turn-off relative to ODTLoff completion Completion of ODTLoff RTT(OFF) 0.5tCK ± 0.2tCK tCK

Page 106: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

106

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Dynamic ODTIn certain application cases, and to further enhance signalintegrity on the data bus, it is desirable that the terminationstrengthoftheDDR3SDRAMcanbechangedwithoutissuinganMRScommand,essentiallychangingtheODTterminationon the fly. With dynamic ODT RTT(WR) enabled, the DRAMswitchesfromnominalODTRTT,nomtodynamicODTRTT(WR)when beginning a WRITE burst and subsequently switchesbacktonominalODTRTT,nomatthecompletionoftheWRITEburst. This requirement is supported by the dynamic ODTfeature,asdescribedbelow.

Dynamic ODT Special Use Case

WhenDDR3devices are architect as a single rankmemoryarray,dynamicODToffersaspecialusecase:theODTballcanbewiredhigh(viaacurrentlimitingresistorpreferred)byhavingRTT,nomdisabledviaMR1andRTT(WR)enabledviaMR2.ThiswillallowtheODTsignalnottohavetoberoutedyettheDRAMcanprovideODTcoverageduringwriteaccesses.

Whenenablingthisspecialusecase,somestandardODTspecconditionsmaybeviolated:ODTissometimessupposetobeheldlow.SuchODTspecviolation(ODTnotLOW)isallowedunderthisspecialusecase.Mostnotably,ifWriteLevelingisused,thiswouldappeartobeaproblemsinceRTT(WR)cannotbeused (shouldbedisabled)andRTT(NOM)shouldbeused.ForWrite levelingduring thisspecialusecase,with theDLLlocked, then RTT(NOM) maybe enabled when entering WriteLevelingmodeanddisabledwhenexitingWriteLevelingmode.More so, RTT(NOM) must be enabled when enabling WriteLeveling, via sameMR1 load, and disabled when disablingWriteLeveling,viasameMR1loadifRTT(NOM)istobeused.

ODTwillturn-onwithinadelayofODTLon+tAON+tMOD+1CK(enablingviaMR1)or turn-offwithinadelayofODTLoff+tAOF+tMOD+1CK.Asseeninthetablebelow,betweentheLoadModeofMR1andthepreviouslyspecifieddelay,thevalueofODTisuncertain.thismeanstheDQODTterminationcould turn-on and then turn-off again during the period ofstateduncertainty.

Table 35: Write Leveling with Dynamic ODT Special Case

Begin RTT,nom Uncertainty End RTT,nom Uncertainty I/Os RTT,nom Final State

MR1 load mode command: Enable Write Leveling and RTT(NOM)

ODTLon + tAON + tMOD + 1CKDQS, DQS# Drive RTT,nom value

DQs No RTT,nom

MR1 load mode command: Disable Write Leveling and RTT(NOM)

ODTLoff + tAOFF + tMOD + 1CKDQS, DQS# No RTT,nom

DQs No RTT,nom

Page 107: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

107

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Functional Description

ThedynamicODTmodeisenabledifeitherMR2[9]orMR2[10]issetto1.DynamicODTisnotsupportedduringDLLdisablemodesoRTT(WR)mustbedisabled.ThedynamicODTfunctionisdescribedbelow:

• TwoRTTvaluesareavailable—RTT,nomandRTT(WR).

• ThevalueforRTT,nomispreselectedviaMR1[9,6,2].

• ThevalueforRTT(WR)ispreselectedviaMR2[10,9].

• DuringDRAMoperationwithoutREADorWRITEcommands,theterminationiscontrolled.

• NominalterminationstrengthRTT,nomisused.

• Terminationon/offtimingiscontrolledviatheODTballandlatenciesODTLonandODTLoff.

• WhenaWRITEcommand(WR,WRAP,WRS4,WRS8,WRAPS4,WRAPS8)isregistered,andifdynamicODT

isenabled,theODTterminationiscontrolled.

• AlatencyofODTLcnwaftertheWRITEcommand:terminationstrengthRTT,nomswitchestoRTT(WR)

• AlatencyofODTLcwn8(forBL8,fixedorOTF)orODTLcwn4(forBC4,fixedorOTF)aftertheWRITEcommand:terminationstrengthRTT(WR)switchesbacktoRTT,nom.

• On/offterminationtimingiscontrolledviatheODTballanddeterminedbyODTLon,ODTLoff,ODTH4,andODTH8.

• DuringthetADCtransitionwindow,thevalueofRTTisundefined.

ODT isconstrainedduringwritesandwhendynamicODT isenabled (seeTable36).ODTtimings listed inTable34 (page105)alsoapplytodynamicODTmode.

Table 36: Dynamic ODT Specific Parameters

Symbol Description Begins at Defined toDefinition for All DDR3L

Speed BinsUnit

ODTLcnw Change from RTT,nom to RTT(WR) Write registration RTT switched from RTT,nom to RTT(WR) WL - 2 tCK

ODTLcwn4 Change from RTT(WR) to RTT,nom (BC4) Write registration RTT switched from RTT(WR) to RTT,nom 4tCK + ODTL off tCK

ODTLcwn8 Change from RTT(WR) to RTT,nom (BL8) Write registration RTT switched from RTT(WR) to RTT,nom 6tCK + ODTL off tCK

tADC RTT change skew ODTLcnw completed RTT transition complete 0.5tCK ± 0.2tCK tCK

Table 37: Mode Registers for RTT,nom

MR1 (RTT,nom)RTT,nom (RZQ) RTT,nom (Ohm)

RTT,nom Mode RestrictionM9 M6 M2

0 0 0 Off Off n/a

0 0 1 RZQ/4 60 Self refresh

0 1 0 RZQ/2 120

0 1 1 RZQ/6 40

1 0 0 RZQ/12 20 Self refresh, write

1 0 1 RZQ/8 30

1 1 0 Reserved Reserved n/a

1 1 1 Reserved Reserved n/a

Note:1.RZQ=240Ω.IfRTT,nomisusedduringWRITEs,onlyRZQ/2,RZQ/4,RZQ/6areallowed.

Page 108: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

108

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 38: Mode Registers for RTT(WR)

MR2 (RTT(WR))RTT(WR) (RZQ) RTT(WR) (Ohm)

M10 M9

0 0 Dynamic ODT off: WRITE does not affect RTT,nom

0 1 RZQ/4 60

1 0 RZQ/2 120

1 1 Reserved Reserved

Table 39: Timing Diagrams for Dynamic ODT

Figure and Page Title

Figure 71 (page 109) Dynamic ODT: ODT Asserted Before and After the WRITE, BC4

Figure 72 (page 109) Dynamic ODT: Without WRITE Command

Figure 73 (page 110) Dynamic ODT: ODT Pin Asserted Together with WRITE Command for 6 Clock Cycles, BL8

Figure 74 (page 111) Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4

Figure 75 (page 111) Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Clock Cycles, BC4

Page 109: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

109

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

110: D

yn

am

ic O

DT:

OD

T A

ssert

ed

Befo

re a

nd

Aft

er

the W

RIT

E, B

C4

T0T1

T2T3

T4T5

T6T7

T8T9

OD

TLo

nO

DTL

cwn

4

OD

TLcn

w

WL

OD

TLo

ff

T10

T11

T12

T13

T14

T15

T17

T16

CKCK#

Com

man

d

Add

ress

R TT

OD

T

DQ

DQ

S, D

QS#

Valid

WRS

4N

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

Do

n’t

Car

eTr

ansi

tio

nin

g

R TT(W

R)R TT

,nom

R TT,n

om

DI

n +

3D

In

+ 2

DI

n +

1D

I n

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

OD

TH4

OD

TH4

t AO

N (

MIN

)t A

DC

(M

IN)

t AD

C (

MIN

)t A

OF

(MIN

)

t AO

N (

MA

X)

t AD

C (

MA

X)

t AD

C (

MA

X)

t AO

F (M

AX

)

No

tes:

1.V

ia M

RS

or

OTF

. AL

= 0

, CW

L =

5. R

TT,n

om

an

d R

TT(W

R) a

re e

nab

led

.2.

OD

TH4

app

lies

to f

irst

reg

iste

rin

g O

DT

HIG

H a

nd

th

en t

o t

he

reg

istr

atio

n o

f th

e W

RIT

E co

mm

and

. In

th

is e

xam

ple

,O

DTH

4 is

sat

isfi

ed if

OD

T g

oes

LO

W a

t T8

(fo

ur

clo

cks

afte

r th

e W

RIT

E co

mm

and

).

Fig

ure

111: D

yn

am

ic O

DT:

Wit

ho

ut

WR

ITE C

om

man

d

T0T1

T2T3

T4T5

T6T7

T8T9

OD

TLo

ff

T10

T11

CKCK#

R TT

Do

n’t

Car

eTr

ansi

tio

nin

g

Com

man

dV

alid

Val

idV

alid

Val

idV

alid

Val

idV

alid

Val

idV

alid

Val

idV

alid

Val

id

Add

ress

DQ

S, D

QS#

DQ

OD

TH4

OD

TLo

n

t AO

N (

MA

X)

t AO

N (

MIN

)

t AO

F (M

IN)

t AO

F (M

AX

)

OD

T

R TT,n

om

No

tes:

1.A

L =

0, C

WL

= 5

. RTT

,no

m is

en

able

d a

nd

RTT

(WR

) is

eith

er e

nab

led

or

dis

able

d.

2.O

DTH

4 is

def

ined

fro

m O

DT

reg

iste

red

HIG

H t

o O

DT

reg

iste

red

LO

W; i

n t

his

exa

mp

le, O

DTH

4 is

sat

isfi

ed. O

DT

reg

-is

tere

d L

OW

at

T5 is

als

o le

gal

.

1Gb: x4, x8, x16 DDR3 SDRAMDynamic ODT

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 198 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

110: D

yn

am

ic O

DT:

OD

T A

ssert

ed

Befo

re a

nd

Aft

er

the W

RIT

E, B

C4

T0T1

T2T3

T4T5

T6T7

T8T9

OD

TLo

nO

DTL

cwn

4

OD

TLcn

w

WL

OD

TLo

ff

T10

T11

T12

T13

T14

T15

T17

T16

CKCK#

Com

man

d

Add

ress

R TT

OD

T

DQ

DQ

S, D

QS#

Valid

WRS

4N

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

Do

n’t

Car

eTr

ansi

tio

nin

g

R TT(W

R)R TT

,nom

R TT,n

om

DI

n +

3D

In

+ 2

DI

n +

1D

I n

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

OD

TH4

OD

TH4

t AO

N (

MIN

)t A

DC

(M

IN)

t AD

C (

MIN

)t A

OF

(MIN

)

t AO

N (

MA

X)

t AD

C (

MA

X)

t AD

C (

MA

X)

t AO

F (M

AX

)

No

tes:

1.V

ia M

RS

or

OTF

. AL

= 0

, CW

L =

5. R

TT,n

om

an

d R

TT(W

R) a

re e

nab

led

.2.

OD

TH4

app

lies

to f

irst

reg

iste

rin

g O

DT

HIG

H a

nd

th

en t

o t

he

reg

istr

atio

n o

f th

e W

RIT

E co

mm

and

. In

th

is e

xam

ple

,O

DTH

4 is

sat

isfi

ed if

OD

T g

oes

LO

W a

t T8

(fo

ur

clo

cks

afte

r th

e W

RIT

E co

mm

and

).

Fig

ure

111: D

yn

am

ic O

DT:

Wit

ho

ut

WR

ITE C

om

man

d

T0T1

T2T3

T4T5

T6T7

T8T9

OD

TLo

ff

T10

T11

CKCK#

R TT

Do

n’t

Car

eTr

ansi

tio

nin

g

Com

man

dV

alid

Val

idV

alid

Val

idV

alid

Val

idV

alid

Val

idV

alid

Val

idV

alid

Val

id

Add

ress

DQ

S, D

QS#

DQ

OD

TH4

OD

TLo

n

t AO

N (

MA

X)

t AO

N (

MIN

)

t AO

F (M

IN)

t AO

F (M

AX

)

OD

T

R TT,n

om

No

tes:

1.A

L =

0, C

WL

= 5

. RTT

,no

m is

en

able

d a

nd

RTT

(WR

) is

eith

er e

nab

led

or

dis

able

d.

2.O

DTH

4 is

def

ined

fro

m O

DT

reg

iste

red

HIG

H t

o O

DT

reg

iste

red

LO

W; i

n t

his

exa

mp

le, O

DTH

4 is

sat

isfi

ed. O

DT

reg

-is

tere

d L

OW

at

T5 is

als

o le

gal

.

1Gb: x4, x8, x16 DDR3 SDRAMDynamic ODT

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 198 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 7

1: D

ynam

ic O

DT: O

DT A

sser

ted

Befo

re a

nd A

fter t

he W

RITE

, BC4

Notes:

1.ViaMRSorO

TF.A

L=0,CWL=5.R

TT,nom

and

RTT

(WR)areenabled.

2.ODTH

4appliestofirstregisteringODTHIGHand

thento

theregistrationofth

eWRITEcommand.Inth

isexample,ODTH

4issatisfiedifODT

goesLOWatT

8(fourclocksaftertheW

RITEcommand).

Figu

re 7

2: D

ynam

ic O

DT: W

ithou

t WRI

TE C

omm

and

Notes:

1.AL=0,CWL=5.R

TT,nom

isenabledand

RTT

(WR)iseitherenabledord

isabled.

2.ODTH

4isdefinedfro

mODTregisteredHIGHto

ODTregisteredLOW;inthisexample,ODTH

4issatisfied.ODTregisteredLOWatT

5isalsolegal.

Page 110: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

110

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

112: D

yn

am

ic O

DT:

OD

T Pin

Ass

ert

ed

To

geth

er

wit

h W

RIT

E C

om

man

d f

or

6 C

lock

Cycl

es,

BL8

T0T1

T2T3

T4T5

T6T7

T8T9

OD

TLcw

n8

OD

TLo

n

OD

TLcn

w

WL

t AO

F (M

AX

)

T10

T11

CK

CK

#

Ad

dre

ss

R TT

OD

T

DQ

DQ

S, D

QS#

DI

b +

3D

Ib

+ 2

DI

b +

1D

I bD

Ib

+ 7

DI

b +

6D

Ib

+ 5

DI

b +

4

Val

id

Do

n’t

Car

eTr

ansi

tio

nin

g

Co

mm

and

WR

S8N

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

R TT(

WR

)

OD

TH8

OD

TLo

ff

t AD

C (

MA

X)

t AO

N (

MIN

)

t AO

F (M

IN)

No

tes:

1.V

ia M

RS

or

OTF

; AL

= 0

, CW

L =

5. I

f R

TT,n

om

can

be

eith

er e

nab

led

or

dis

able

d, O

DT

can

be

HIG

H. R

TT(W

R) i

s en

able

d.

2.In

th

is e

xam

ple

, OD

TH8

= 6

is s

atis

fied

exa

ctly

.

1Gb: x4, x8, x16 DDR3 SDRAMDynamic ODT

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 199 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 7

3: D

ynam

ic O

DT: O

DT P

in A

sser

ted

Toge

ther

with

WRI

TE C

omm

and

for 6

Clo

ck C

ycle

s, B

L8

Notes:

1.ViaMRSorO

TF;A

L=0,CWL=5.IfR

TT,nom

canbeeitherenabledord

isabled,ODTcanbeHIGH.R

TT(W

R)isenabled.

2.Inth

isexample,ODTH

8=6issatisfiedexactly.

Page 111: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

111

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 74: Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4

Figure 75: Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Clock Cycles, BC4

Figure 113: Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ODTLon

ODTLcnw

WL

T10 T11

CKCK#

ODTLcwn4

DQS, DQS#

Address Valid

Don’t CareTransitioning

ODTLoff

Command WRS4NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP

DQ DIn + 3

DIn + 2

DIn + 1

DIn

tADC (MIN) tAOF (MIN)

tAOF (MAX)tADC (MAX)

tADC (MAX)

tAON (MIN)

ODTH4

ODT

RTT RTT(WR) RTT,nom

Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT,nom and RTT(WR) are enabled.2. ODTH4 is defined from ODT registered HIGH to ODT registered LOW, so in this example,

ODTH4 is satisfied. ODT registered LOW at T5 is also legal.

Figure 114: Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Clock Cycles, BC4

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ODTLon

ODTLcnw

WL

T10 T11

CKCK#

ODTLcwn4

DQS, DQS#

Address Valid

Command WRS4NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP

Don’t CareTransitioning

DQ DIn

DIn + 3

DIn + 2

DIn + 1

ODTH4

tADC (MAX)

tAON (MIN)

tAOF (MIN)

tAOF (MAX)

ODTLoff

RTT RTT(WR)

ODT

Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT,nom can be either enabled or disabled. If disabled,ODT can remain HIGH. RTT(WR) is enabled.

2. In this example ODTH4 = 4 is satisfied exactly.

1Gb: x4, x8, x16 DDR3 SDRAMDynamic ODT

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 200 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figure 113: Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ODTLon

ODTLcnw

WL

T10 T11

CKCK#

ODTLcwn4

DQS, DQS#

Address Valid

Don’t CareTransitioning

ODTLoff

Command WRS4NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP

DQ DIn + 3

DIn + 2

DIn + 1

DIn

tADC (MIN) tAOF (MIN)

tAOF (MAX)tADC (MAX)

tADC (MAX)

tAON (MIN)

ODTH4

ODT

RTT RTT(WR) RTT,nom

Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT,nom and RTT(WR) are enabled.2. ODTH4 is defined from ODT registered HIGH to ODT registered LOW, so in this example,

ODTH4 is satisfied. ODT registered LOW at T5 is also legal.

Figure 114: Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Clock Cycles, BC4

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ODTLon

ODTLcnw

WL

T10 T11

CKCK#

ODTLcwn4

DQS, DQS#

Address Valid

Command WRS4NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP

Don’t CareTransitioning

DQ DIn

DIn + 3

DIn + 2

DIn + 1

ODTH4

tADC (MAX)

tAON (MIN)

tAOF (MIN)

tAOF (MAX)

ODTLoff

RTT RTT(WR)

ODT

Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT,nom can be either enabled or disabled. If disabled,ODT can remain HIGH. RTT(WR) is enabled.

2. In this example ODTH4 = 4 is satisfied exactly.

1Gb: x4, x8, x16 DDR3 SDRAMDynamic ODT

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 200 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. ViaMRSorOTF.AL=0,CWL=5.RTT,nomandRTT(WR)areenabled.

2. ODTH4isdefinedfromODTregisteredHIGHtoODTregisteredLOW,sointhisexample,ODTH4issatisfied.ODTregisteredLOWatT5isalsolegal.

Notes:

1. ViaMRSorOTF.AL=0,CWL=5.RTT,nomcanbeeitherenabledordisabled.Ifdisabled,ODTcanremainHIGH.RTT(WR)isenabled.

2. InthisexampleODTH4=4issatisfiedexactly.

Page 112: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

112

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Synchronous ODT ModeSynchronous ODT mode is selected whenever the DLL isturned on and locked and when either RTT,nom or RTT(WR)is enabled. Based on the power-down definition, thesemodesare:

• AnybankactivewithCKEHIGH

• RefreshmodewithCKEHIGH

• IdlemodewithCKEHIGH

• Activepower-downmode(regardlessofMR0[12])

• Prechargepower-downmodeifDLLisenabledbyMR0[12]duringprechargepowerdown

ODT Latency and Posted ODT

InsynchronousODTmode,RTTturnsonODTLonclockcyclesafterODTissampledHIGHbyarisingclockedgeandturnsoffODTLoffclockcyclesafterODTisregisteredLOWbyarisingclockedge.Theactualon/offtimesvariesbytAONandtAOFaroundeachclockedge(seeTable40(page112)).TheODTlatencyistiedtotheWRITElatency(WL)byODTLon=WL-2andODTLoff=WL-2.

SincewritelatencyismadeupofCASWRITElatency(CWL)andadditivelatency(AL),theALprogrammedintothemode

register(MR1[4,3])alsoappliestotheODTsignal.Thedevice’sinternalODTsignalisdelayedanumberofclockcyclesdefinedbytheALrelativetotheexternalODTsignal.Thus,ODTLon=CWL+AL-2andODTLoff=CWL+AL-2.

Timing Parameters

SynchronousODTmodeusesthefollowingtimingparameters:ODTLon, ODTLoff, ODTH4, ODTH8, tAON, and tAOF. TheminimumRTTturn-ontime(tAON[MIN]) isthepointatwhichthedevice leavesHigh-ZandODTresistancebegins to turnon.MaximumRTT turn-on time (tAON [MAX]) is thepoint atwhichODTresistance is fullyon.BotharemeasuredrelativetoODTLon.TheminimumRTTturn-offtime(tAOF[MIN])isthepointatwhichthedevicestartstoturnoffODTresistance.ThemaximumRTTturnofftime(tAOF[MAX])isthepointatwhichODThasreachedHigh-Z.BotharemeasuredfromODTLoff.

WhenODT isasserted, itmust remainHIGHuntilODTH4 issatisfied.IfaWRITEcommandisregisteredbytheDRAMwithODTHIGH,thenODTmustremainHIGHuntilODTH4(BC4)orODTH8(BL8)aftertheWRITEcommand(seeFigure77(page113)).ODTH4andODTH8aremeasuredfromODTregisteredHIGH to ODT registered LOW or from the registration of aWRITEcommanduntilODTisregisteredLOW.

Table 40: Synchronous ODT Parameters

Symbol Description Begins at Defined toDefinition for All

DDR3L Speed BinsUnit

ODTLon ODT synchronous turn-on delay ODT registered HIGH RTT(ON) ±tAON CWL + AL - 2 tCK

ODTLoff ODT synchronous turn-off delay ODT registered HIGH RTT(OFF) ±tAOF CWL +AL - 2 tCK

ODTH4ODT minimum HIGH time after ODT assertion or WRITE (BC4)

ODT registered HIGH or write registration with ODT HIGH

ODT registered LOW 4tCK tCK

ODTH8 ODT minimum HIGH time after WRITE (BL8) Write registration with ODT HIGH ODT registered LOW 6tCK tCK

tAON ODT turn-on relative to ODTLon completion Completion of ODTLon RTT(ON)See Electrical Characteristics and

AC Operating Conditions tableps

tAOF ODT turn-off relative to ODTLoff completion Completion of ODTLoff RTT(OFF) 0.5tCK ± 0.2tCK tCK

Page 113: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

113

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Tab

le 9

0:

Syn

chro

no

us

OD

T Para

mete

rs

Sym

bo

lD

esc

rip

tio

nB

eg

ins

at

Defi

ned

to

Defi

nit

ion

fo

r A

llD

DR

3 S

peed

Bin

sU

nit

OD

TLo

nO

DT

syn

chro

no

us

turn

-on

del

ayO

DT

reg

iste

red

HIG

HR

TT(O

N) ±

t AO

NC

WL

+ A

L -

2t C

K

OD

TLo

ffO

DT

syn

chro

no

us

turn

-off

del

ayO

DT

reg

iste

red

HIG

HR

TT(O

FF) ±

t AO

FC

WL

+A

L -

2t C

K

OD

TH4

OD

T m

inim

um

HIG

H t

ime

afte

r O

DT

asse

rtio

n o

r W

RIT

E (B

C4)

OD

T re

gis

tere

d H

IGH

or

wri

te r

egis

-tr

atio

n w

ith

OD

T H

IGH

OD

T re

gis

tere

d L

OW

4t CK

t CK

OD

TH8

OD

T m

inim

um

HIG

H t

ime

afte

r W

RIT

E(B

L8)

Wri

te r

egis

trat

ion

wit

h O

DT

HIG

HO

DT

reg

iste

red

LO

W6t C

Kt C

K

t AO

NO

DT

turn

-on

rel

ativ

e to

OD

TLo

nco

mp

leti

on

Co

mp

leti

on

of

OD

TLo

nR

TT(O

N)

See

Tab

le 5

6(p

age

79)

ps

t AO

FO

DT

turn

-off

rel

ativ

e to

OD

TLo

ffco

mp

leti

on

Co

mp

leti

on

of

OD

TLo

ffR

TT(O

FF)

0.5t C

K ±

0.2

t CK

t CK

Fig

ure

11

5:

Syn

chro

no

us

OD

T

T0T1

T2T3

T4T5

T6T7

T8T9

CW

L -

2A

L =

3A

L =

3

t AO

N (

MA

X)

t AO

F (M

AX

)

T10

T11

T12

T13

T14

T15

CKCK#

R TT

OD

T

Do

n’t

Car

eTr

ansi

tio

nin

g

R TT,n

om

CKE

t AO

F (M

IN)

OD

TLo

ff =

CW

L +

AL

- 2

OD

TLo

n =

CW

L +

AL

- 2

OD

TH4

(MIN

)

t AO

N (

MIN

)

No

te:

1.A

L =

3; C

WL

= 5

; OD

TLo

n =

WL

= 6

.0; O

DTL

off

= W

L -

2 =

6. R

TT,n

om

is e

nab

led

.

1Gb: x4, x8, x16 DDR3 SDRAMSynchronous ODT Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 202 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

11

6:

Syn

chro

no

us

OD

T (B

C4

)

T0T1

T2T3

T4T5

T6T7

T8T9

t AO

F (M

AX

)

t AO

F (M

IN)

t AO

N (

MA

X)

t AO

F (M

AX

)

T10

T11

T12

T13

T14

T15

T17

T16

CKCK#

R TT

CKE

NO

PW

RS4

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

Com

man

d

Do

n’t

Car

eTr

ansi

tio

nin

g

t AO

N (

MIN

)

R TT,n

om

OD

TLo

ff =

WL

- 2

OD

TH4

(MIN

) O

DTH

4

OD

TLo

ff =

WL

- 2

OD

TLo

n =

WL

- 2

t AO

N (

MIN

)t A

ON

(M

AX

)

OD

TH4

OD

TLo

n =

WL

- 2

t AO

F (M

IN)

OD

T

R TT,n

om

No

tes:

1.W

L =

7. R

TT,n

om

is e

nab

led

. RTT

(WR

) is

dis

able

d.

2.O

DT

mu

st b

e h

eld

HIG

H f

or

at le

ast

OD

TH4

afte

r as

sert

ion

(T1

).3.

OD

T m

ust

be

kep

t H

IGH

OD

TH4

(BC

4) o

r O

DTH

8 (B

L8)

afte

r th

e W

RIT

E co

mm

and

(T7

).4.

OD

TH is

mea

sure

d f

rom

OD

T fi

rst

reg

iste

red

HIG

H t

o O

DT

firs

t re

gis

tere

d L

OW

or

fro

m t

he

reg

istr

atio

n o

f th

eW

RIT

E co

mm

and

wit

h O

DT

HIG

H t

o O

DT

reg

iste

red

LO

W.

5.A

lth

ou

gh

OD

TH4

is s

atis

fied

fro

m O

DT

reg

iste

red

HIG

H a

t T6

, OD

T m

ust

no

t g

o L

OW

bef

ore

T11

as

OD

TH4

mu

stal

so b

e sa

tisf

ied

fro

m t

he

reg

istr

atio

n o

f th

e W

RIT

E co

mm

and

at

T7.

1Gb: x4, x8, x16 DDR3 SDRAMSynchronous ODT Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 203 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 7

6: S

ynch

rono

us O

DT

Figu

re 7

7: S

ynch

rono

us O

DT (B

C4)

Note:

1.AL=3;CWL=5;ODTLon=W

L=6.0;ODTLoff=

WL-2=6.R

TT,nom

isenabled.

Notes:

1.WL=7.RTT,nom

isenabled.R

TT(W

R)isdisabled.

2.ODTmustb

eheldHIGHfora

tleastODTH

4aftera

ssertion(T1).

3.ODTmustb

ekeptHIGHODTH

4(BC4)orO

DTH

8(BL8)aftertheW

RITEcommand(T7).

4.ODTH

ism

easuredfro

mODTfirstregisteredHIGHto

ODTfirstregisteredLOWorfromth

eregistrationofth

eWRITE

commandwithODTHIGHto

ODTregisteredLOW.

5.AlthoughODTH

4issatisfiedfro

mODTregisteredHIGHatT

6,ODTmustn

otgoLO

WbeforeT1

1asODTH

4mustalsobe

satisfiedfro

mth

eregistrationofth

eWRITEcommandatT7.

Page 114: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

114

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

ODT Off During READs

Because thedevicecannot terminateanddriveat thesametime,RTTmustbedisabledatleastone-halfclockcyclebeforethe READ preamble by driving the ODT ball LOW (if eitherRTT,nomorRTT(WR) isenabled).RTTmaynotbeenableduntiltheendofthepostamble,asshowninthefollowingexample.

Note:ODTmaybedisabledearlierandenabledlaterthanshowninFigure78(page115).

Asynchronous ODT ModeAsynchronousODTmodeisavailablewhentheDRAMrunsinDLLonmodeandwheneitherRTT,nomorRTT(WR)isenabled;however, the DLL is temporarily turned off in prechargedpower-downstandby(viaMR0[12]).Additionally,ODToperatesasynchronously when the DLL is synchronizing after beingreset. See Power-Down Mode (page 94) for definition andguidanceoverpower-downdetails.

InasynchronousODTtimingmode,theinternalODTcommandisnotdelayedbyALrelativetotheexternalODTcommand.InasynchronousODTmode,ODTcontrolsRTTbyanalogtime.ThetimingparameterstAONPDandtAOFPDreplaceODTLon/tAON and ODTLoff/tAOF, respectively, when ODT operatesasynchronously.

TheminimumRTT turn-on time (tAONPD [MIN]) is the pointat which the device termination circuit leaves High-Z andODTresistancebeginstoturnon.MaximumRTTturnontime(tAONPD[MAX]) is thepointatwhichODTresistance is fullyon. tAONPD (MIN) and tAONPD (MAX) are measured fromODTbeingsampledHIGH.

Theminimum RTT turn-off time (tAOFPD [MIN]) is the pointatwhich thedevice terminationcircuitstarts to turnoffODTresistance.MaximumRTTturn-offtime(tAOFPD[MAX])isthepointatwhichODThas reachedHigh-Z. tAOFPD (MIN)andtAOFPD(MAX)aremeasuredfromODTbeingsampledLOW.

Page 115: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

115

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

11

8:

Asy

nch

ron

ou

s O

DT

Tim

ing

wit

h F

ast

OD

T Tr

an

siti

on

T0T1

T2T3

T4T5

T6T7

T8T9

t AO

NPD

(M

AX

)t A

OFP

D (

MA

X)

T10

T11

T12

T13

T14

T15

T17

T16

CKCK#

R TT

OD

T

R TT,n

om

Do

n’t

Car

eTr

ansi

tio

nin

g

CKE

t IHt IS

t IHt IS

t AO

FPD

(M

IN)

t AO

NPD

(M

IN)

No

te:

1.A

L is

ign

ore

d.

Tab

le 9

1:

Asy

nch

ron

ou

s O

DT

Tim

ing

Para

mete

rs f

or

All

Sp

eed

Bin

s

Sym

bo

lD

esc

rip

tio

nM

inM

ax

Un

itt A

ON

PDA

syn

chro

no

us

RTT

tu

rn-o

n d

elay

(p

ow

er-d

ow

n w

ith

DLL

off

)2

8.5

ns

t AO

FPD

Asy

nch

ron

ou

s R

TT t

urn

-off

del

ay (

po

wer

-do

wn

wit

h D

LL o

ff)

28.

5n

s

1Gb: x4, x8, x16 DDR3 SDRAMAsynchronous ODT Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 207 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

11

7:

OD

T D

uri

ng

REA

Ds

T0

T1T2

T3T4

T5T6

T7T8

T9T1

0T1

1T1

2T1

3T1

4T1

5T1

7T1

6

CKCK#

Valid

Add

ress

DI

b +

3D

Ib

+ 2

DI

b +

1D

I bD

Ib

+ 7

DI

b +

6D

Ib

+ 5

DI

b +

4D

Q

DQ

S, D

QS#

Do

n’t

Car

eTr

ansi

tio

nin

g

Com

man

dN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

REA

D

OD

TLo

n =

CW

L +

AL

- 2

OD

T

t AO

N (

MA

X)

RL

= A

L +

CL

OD

TLo

ff =

CW

L +

AL

- 2

t AO

F (M

IN)

R TTR TT

,nom

R TT,n

omt A

OF

(MA

X)

No

te:

1.O

DT

mu

st b

e d

isab

led

ext

ern

ally

du

rin

g R

EAD

s b

y d

rivi

ng

OD

T LO

W. F

or

exam

ple

, CL

= 6

; AL

= C

L -

1 =

5; R

L =

AL

+ C

L =

11;

CW

L =

5; O

DTL

on

= C

WL

+ A

L -

2 =

8; O

DTL

off

= C

WL

+ A

L -

2 =

8. R

TT,n

om

is e

nab

led

. RTT

(WR

) is

a “D

on

’tC

are.

1Gb: x4, x8, x16 DDR3 SDRAMSynchronous ODT Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 205 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 7

8: O

DT D

urin

g RE

ADs

Figu

re 7

9: A

sync

hron

ous

ODT

Tim

ing

with

Fas

t ODT

Tra

nsiti

on

Note:

1.ODTmustb

edisabledexternallyduringREA

DsbydrivingODTLO

W.Forexample,CL=6;AL=

CL-1=5;RL=AL+CL=11

;CWL=5;ODTLon=CWL+AL-2=8;ODTLoff=

CWL+AL-2

=8.R

TT,nom

isenabled.R

TT(W

R)isa“Don’tCare.”

Note:

1.ALisignored.

Page 116: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

116

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 41: Asynchronous ODT Timing Parameters for All Speed Bins

Symbol Description Min Max Unit

tAONPD Asynchronous RTT turn-on delay (power-down with DLL off)2 8.5 ns

tAOFPD Asynchronous RTT turn-off delay (power-down with DLL off)

Synchronous to Asynchronous ODT Mode Transition (Power-Down Entry)

There is a transition period aroundpower-down entry (PDE)where the DRAM’s ODT may exhibit either synchronous orasynchronousbehavior.ThistransitionperiodoccursiftheDLLis selected to be off when in precharge power-downmodebythesettingMR0[12]=0.Power-downentrybeginstANPDpriortoCKEfirstbeingregisteredLOW,andendswhenCKEisfirstregisteredLOW.tANPDisequaltothegreaterofODTLoff+1tCKorODTLon+1tCK.IfaREFRESHcommandhasbeenissued, and it is in progresswhenCKE goes LOW, power-downentryendstRFCaftertheREFRESHcommand,ratherthan when CKE is first registered LOW. Power-down entrythen becomes the greater of tANPD and tRFC - REFRESHcommandtoCKEregisteredLOW.

ODT assertion during power-down entry results in an RTTchangeasearlyasthelesseroftAONPD(MIN)andODTLon×tCK+tAON(MIN),oraslateasthegreateroftAONPD(MAX)andODTLon× tCK+ tAON(MAX).ODTde-assertionduringpower-downentrycanresultinanRTTchangeasearlyasthelesseroftAOFPD(MIN)andODTLoff×tCK+tAOF(MIN),oraslateasthegreateroftAOFPD(MAX)andODTLoff×tCK+tAOF(MAX).Table42(page117)summarizestheseparameters.

If AL has a large value, the uncertainty of the state of RTTbecomesquite large.This isbecauseODTLonandODTLoffarederivedfromtheWL;andWLisequaltoCWL+AL.Figure80(page118)showsthreedifferentcases:

• ODT_A:SynchronousbehaviorbeforetANPD.

• ODT_B:ODTstatechangesduringthetransitionperiodwithtAONPD(MIN)<ODTLon×tCK+tAON(MIN)andtAONPD(MAX)>ODTLon×tCK+tAON(MAX).

• ODT_C:ODTstatechangesafterthetransitionperiodwithasynchronousbehavior.

Page 117: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

117

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 42: ODT Parameters for Power-Down (DLL Off) Entry and Exit Transition Period

Description Min Max

Power-down entry transition period (power-down entry) Greater of: tANPD or tRFC - refresh to CKE LOW

Power-down exit transition period (power-down exit) tANPD + tXPDLL

ODT to RTT turn-on delay (ODTLon = WL - 2)Lesser of: tAONPD (MIN) (2ns) or

ODTLon × tCK + tAON (MIN)Greater of: tAONPD (MAX) (8.5ns) or

ODTLon × tCK + tAON (MAX)

ODT to RTT turn-off delay (ODTLoff = WL - 2)Lesser of: tAOFPD (MIN) (2ns) or

ODTLoff × tCK + tAOF (MIN)Greater of: tAOFPD (MAX) (8.5ns) or

ODTLoff × tCK + tAOF (MAX)

tANPD WL - 1 (greater of ODTLoff + 1 or ODTLon + 1)

Page 118: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

118

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Tab

le 9

2: O

DT

Para

mete

rs f

or

Po

wer-

Do

wn

(D

LL O

ff)

En

try a

nd

Exit

Tra

nsi

tio

n P

eri

od

Desc

rip

tio

nM

inM

ax

Pow

er-d

ow

n e

ntr

y tr

ansi

tio

n p

erio

d(p

ow

er-d

ow

n e

ntr

y)G

reat

er o

f: t A

NPD

or

t RFC

- r

efre

sh t

o C

KE

LOW

Pow

er-d

ow

n e

xit

tran

siti

on

per

iod

(po

wer

-do

wn

exi

t)

t AN

PD +

t XPD

LL

OD

T to

RTT

tu

rn-o

n d

elay

(OD

TLo

n =

WL

- 2)

Less

er o

f: t A

ON

PD (

MIN

) (2

ns)

or

OD

TLo

n ×

t CK

+ t A

ON

(M

IN)

Gre

ater

of:

t AO

NPD

(M

AX

) (8

.5n

s) o

rO

DTL

on

× t C

K +

t AO

N (

MA

X)

OD

T to

RTT

tu

rn-o

ff d

elay

(OD

TLo

ff =

WL

- 2)

Less

er o

f: t A

OFP

D (

MIN

) (2

ns)

or

OD

TLo

ff ×

t CK

+ t A

OF

(MIN

)G

reat

er o

f: t A

OFP

D (

MA

X)

(8.5

ns)

or

OD

TLo

ff ×

t CK

+ t A

OF

(MA

X)

t AN

PDW

L -

1 (g

reat

er o

f O

DTL

off

+ 1

or

OD

TLo

n +

1)

Fig

ure

119: Syn

chro

no

us

to A

syn

chro

no

us

Tran

siti

on

Du

rin

g P

rech

arg

e P

ow

er-

Do

wn

(D

LL O

ff)

En

try

T0T1

T2T3

T4T5

T6T7

T8T9

t AO

FPD

(M

AX

)

OD

TLo

ff

T10

T11

T12

T13

Ta0

Ta1

Ta3

Ta2

CKCK#

DRA

M R

TT B

as

ynch

rono

us

or s

ynch

rono

us

R TT,n

om

DRA

M R

TT C

asyn

chro

nous

R TT,n

om

Do

n’t

Car

eTr

ansi

tio

nin

g

CKE

NO

PN

OP

NO

PN

OP

NO

PCo

mm

and

NO

PRE

FN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

PDE

tran

siti

on

per

iod

Ind

icat

es b

reak

in t

ime

scal

e

OD

TLo

ff +

tA

OFP

D (

MIN

)

t AO

FPD

(M

AX

)

t AO

FPD

(M

IN)

OD

TLo

ff +

t AO

FPD

(M

AX

)

t AO

FPD

(M

IN)

t AN

PD

t AO

F (M

IN)

t AO

F (M

AX

)

DRA

M R

TT A

sy

nchr

onou

sR TT

,nom

OD

T A

sy

nchr

onou

s

OD

T C

asyn

chro

nous

OD

T B

asyn

chro

nous

or

syn

chro

nous

t RFC

(M

IN)

No

te:

1.A

L =

0; C

WL

= 5

; OD

TL(o

ff)

= W

L -

2 =

3.

1Gb: x4, x8, x16 DDR3 SDRAMAsynchronous ODT Mode

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 209 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 8

0: S

ynch

rono

us to

Asy

nchr

onou

s Tr

ansi

tion

Durin

g Pr

echa

rge

Pow

er-D

own

(DLL

Off)

Ent

ry

Note:

1.AL=0;CWL=5;ODTL(off)=W

L-2=3.

Page 119: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

119

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Asynchronous to Synchronous ODT Mode Transition (Power-Down Exit)The DRAM’s ODT can exhibit either asynchronous orsynchronous behavior during power-down exit (PDX). ThistransitionperiodoccursiftheDLLisselectedtobeoffwheninprechargepower-downmodebysettingMR0[12]to0.Power-down exit begins tANPD prior to CKE first being registeredHIGH, and ends tXPDLL after CKE is first registered HIGH.tANPDisequaltothegreaterofODTLoff+1tCKorODTLon+1tCK.ThetransitionperiodistANPD+tXPDLL.

ODT assertion during power-down exit results in an RTTchangeasearlyasthelesseroftAONPD(MIN)andODTLon×tCK+tAON(MIN),oraslateasthegreateroftAONPD(MAX)andODTLon× tCK+ tAON(MAX).ODTde-assertionduringpower-downexitmayresultinanRTTchangeasearlyasthelesseroftAOFPD(MIN)andODTLoff×tCK+tAOF(MIN),oraslateasthegreateroftAOFPD(MAX)andODTLoff×tCK+tAOF(MAX).Table42(page117)summarizestheseparameters.

IfALhasalargevalue,theuncertaintyoftheRTTstatebecomesquitelarge.ThisisbecauseODTLonandODTLoffarederivedfromWL,andWLisequaltoCWL+AL.Figure81(page120)showsthreedifferentcases:

• ODTC:AsynchronousbehaviorbeforetANPD.

• ODTB:ODTstatechangesduringthetransitionperiod,withtAOFPD(MIN)<ODTLoff×tCK+tAOF(MIN),andODTLoff×tCK+tAOF(MAX)>tAOFPD(MAX).

• ODTA:ODTstatechangesafterthetransitionperiodwithsynchronousresponse.

Asynchronous to Synchronous ODT Mode Transition (Short CKE Pulse)

Ifthetimeintheprechargepower-downoridlestatesisveryshort (short CKE LOW pulse), the power-down entry andpower-down exit transition periods overlap. When overlapoccurs, the responseof theDRAM’sRTT toachange in theODT state can be synchronous or asynchronous from thestartofthepower-downentrytransitionperiodtotheendofthepower-downexittransitionperiod,eveniftheentryperiodendslaterthantheexitperiod.

If the time in the idle state is very short (short CKE HIGHpulse),thepower-downexitandpower-downentrytransitionperiodsoverlap.Whenthisoverlapoccurs,theresponseoftheDRAM’sRTTtoachangeintheODTstatemaybesynchronousorasynchronousfromthestartofpower-downexittransitionperiodtotheendofthepowerdownentrytransitionperiod.

Page 120: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

120

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

12

0:

Asy

nch

ron

ou

s to

Syn

chro

no

us

Tran

siti

on

Du

rin

g P

rech

arg

e P

ow

er-

Do

wn

(D

LL O

ff)

Exit

T0T1

T2Ta

0Ta

1Ta

2Ta

3Ta

4Ta

5Ta

6Tb

0Tb

1Tb

2Tc

0Tc

1Td

0Td

1Tc

2

CKCK#

Do

n’t

Car

eTr

ansi

tio

nin

g

OD

T C

sync

hron

ous

NO

PN

OP

NO

PCO

MM

AN

DN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

R TT B

asyn

chro

nous

or s

ynch

rono

us

DRA

M R

TT A

asyn

chro

nous

DRA

M R

TT C

sync

hron

ous

R TT,n

om

NO

PN

OP

OD

T B

asyn

chro

nous

or s

ynch

rono

us

CKE

t AO

F (M

IN)

R TT,n

om

Ind

icat

es b

reak

in t

ime

scal

e

OD

TLo

ff +

tA

OF

(MIN

)

t AO

FPD

(M

AX

)

OD

TLo

ff +

tA

OF

(MA

X)

t XPD

LL

t AO

F (M

AX

)O

DTL

off

OD

T A

asyn

chro

nous

PDX

tra

nsi

tio

n p

erio

d

t AO

FPD

(M

IN)

t AO

FPD

(M

AX

)

R TT,n

om

t AN

PD

t AO

FPD

(M

IN)

No

te:

1.C

L =

6; A

L =

CL

- 1;

CW

L =

5; O

DTL

off

= W

L -

2 =

8.

1Gb: x4, x8, x16 DDR3 SDRAMAsynchronous to Synchronous ODT Mode Transition (Power-

Down Exit)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 211 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 8

1: A

sync

hron

ous

to S

ynch

rono

us T

rans

ition

Dur

ing

Prec

harg

e Po

wer

-Dow

n (D

LL O

ff) E

xit

Note:

1.CL=6;AL=CL-1;CWL=5;ODTLoff=

WL-2=8.

Page 121: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

121

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Fig

ure

12

1:

Tran

siti

on

Peri

od

fo

r Sh

ort

CK

E L

OW

Cycl

es

wit

h E

ntr

y a

nd

Exit

Peri

od

Overl

ap

pin

g

T0T1

T2T3

T4T5

T6T7

T8T9

Ta0

Ta1

Ta2

Ta3

Ta4

CKCK#

CKE

Com

man

d

Do

n’t

Car

eTr

ansi

tio

nin

g

t XPD

LL

t RFC

(M

IN)

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

REF

NO

PN

OP

NO

PN

OP

PDE

tran

siti

on

per

iod

PDX

tra

nsi

tio

n p

erio

d

Ind

icat

es b

reak

in t

ime

scal

e

t AN

PD

Sho

rt C

KE

low

tra

nsi

tio

n p

erio

d (

RTT

ch

ang

e as

ynch

ron

ou

s o

r sy

nch

ron

ou

s)

t AN

PD

No

te:

1.A

L =

0, W

L =

5, t A

NPD

= 4

.

Fig

ure

12

2:

Tran

siti

on

Peri

od

fo

r Sh

ort

CK

E H

IGH

Cycl

es

wit

h E

ntr

y a

nd

Exit

Peri

od

Overl

ap

pin

g

T0T1

T2T3

T4T5

T6T7

T8T9

CKCK#

Com

man

d

Do

n’t

Car

eTr

ansi

tio

nin

g

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

t AN

PDt X

PDLL

Ind

icat

es b

reak

in t

ime

scal

e

Ta0

Ta1

Ta2

Ta3

Ta4

CKE

t AN

PD

Sho

rt C

KE

HIG

H t

ran

siti

on

per

iod

(R

TT c

han

ge

asyn

chro

no

us

or

syn

cho

no

us)

No

te:

1.A

L =

0, W

L =

5, t A

NPD

= 4

.

1Gb: x4, x8, x16 DDR3 SDRAMAsynchronous to Synchronous ODT Mode Transition (Power-

Down Exit)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 213 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Fig

ure

12

1:

Tran

siti

on

Peri

od

fo

r Sh

ort

CK

E L

OW

Cycl

es

wit

h E

ntr

y a

nd

Exit

Peri

od

Overl

ap

pin

g

T0T1

T2T3

T4T5

T6T7

T8T9

Ta0

Ta1

Ta2

Ta3

Ta4

CKCK#

CKE

Com

man

d

Do

n’t

Car

eTr

ansi

tio

nin

g

t XPD

LL

t RFC

(M

IN)

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

REF

NO

PN

OP

NO

PN

OP

PDE

tran

siti

on

per

iod

PDX

tra

nsi

tio

n p

erio

d

Ind

icat

es b

reak

in t

ime

scal

e

t AN

PD

Sho

rt C

KE

low

tra

nsi

tio

n p

erio

d (

RTT

ch

ang

e as

ynch

ron

ou

s o

r sy

nch

ron

ou

s)

t AN

PD

No

te:

1.A

L =

0, W

L =

5, t A

NPD

= 4

.

Fig

ure

12

2:

Tran

siti

on

Peri

od

fo

r Sh

ort

CK

E H

IGH

Cycl

es

wit

h E

ntr

y a

nd

Exit

Peri

od

Overl

ap

pin

g

T0T1

T2T3

T4T5

T6T7

T8T9

CKCK#

Com

man

d

Do

n’t

Car

eTr

ansi

tio

nin

g

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

NO

PN

OP

t AN

PDt X

PDLL

Ind

icat

es b

reak

in t

ime

scal

e

Ta0

Ta1

Ta2

Ta3

Ta4

CKE

t AN

PD

Sho

rt C

KE

HIG

H t

ran

siti

on

per

iod

(R

TT c

han

ge

asyn

chro

no

us

or

syn

cho

no

us)

No

te:

1.A

L =

0, W

L =

5, t A

NPD

= 4

.

1Gb: x4, x8, x16 DDR3 SDRAMAsynchronous to Synchronous ODT Mode Transition (Power-

Down Exit)

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 213 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Figu

re 8

2: T

rans

ition

Per

iod

for S

hort

CKE

LOW

Cyc

les

with

Ent

ry a

nd E

xit P

erio

d Ov

erla

ppin

g

Figu

re 8

3: T

rans

ition

Per

iod

for S

hort

CKE

HIGH

Cyc

les

with

Ent

ry a

nd E

xit P

erio

d Ov

erla

ppin

g

Note:

1.AL=0,W

L=5,t A

NPD=4.

Note:

1.AL=0,W

L=5,t A

NPD=4.

Page 122: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

122

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Figure 84: 96-Ball FBGA – x16 (JT)Figure 13: 96-Ball FBGA – x16 (JT)

Seating plane

0.12 A

123789

A

B

C

D

E

F

G

H

J

K

L

M

N

Ball A1 ID Ball A1 ID

A

0.25 MIN

1.1 ±0.10.8 TYP

6.4 CTR

8 ±0.1

0.8 TYP

12 CTR

14 ±0.1

96X Ø0.45Dimensions applyto solder balls post-reflow on Ø0.35SMD ball pads.

0.155

P

R

T

1.8 CTRNonconductive

overmold

Notes: 1. All dimensions are in millimeters.2. Solder ball material: SAC305 (96.5% Sn, 3% Ag, 0.5% Cu)

1Gb: x4, x8, x16 DDR3 SDRAMPackage Dimensions

PDF: 09005aef826aa9061Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN 29 Micron Technology, Inc. reserves the right to change products or specifications without notice.

2006 Micron Technology, Inc. All rights reserved.

Notes:

1. Alldimensionsareinmillimeters.

2. Solderballmaterial:SAC305(96.5%Sn,3%Ag,0.5%Cu)

Page 123: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

123

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Table 43: Ordering Information

Part Number Data Rate (Mbps) Device Grade

MYX4DDR364M16JTBG-15EIT 1333 Industrial

MYX4DDR364M16JTBG-15E 1333 Commercial

MYX4DDR364M16JTBG-15EET 1333 Enhanced

PleasecontactaMicrosssalesrepresentativeforIBISorthermalmodelsatsales@micross.com.

Page 124: 1Gbit - 64M x 16 DDR3 SDRAM

MYX4DDR364M16JT*Revision 1.3 - 10/31/14

*Advanced information. Subject to change without notice.

124

1Gb SDRAM-DDR3MYX4DDR364M16JT*

Form #: CSI-D-685 Document 007

Document Title

1GByte, 128M x 16, DDR3 SDRAM, 8mm x 14mm - 96-ball FBGA Package

Revision History

Revision # History Release Date Status

1.0 Initial Release September 2014 Preliminary

1.1 Page 1: Added automotive option under “Operating temperature” in Options/Marking blue box. October 3, 2014 Preliminary

Page 124: Added enhanced parts to Table 44: Ordering Information.

Page 1: Changed “FPGA” to “FBGA” in blue box

Page 1: Changed “Marking” to “Code” in blue box

Page 1: Removed “-x16” after “(Sn63 / Pb37) in blue box

1.2 Changed speed grades -15 and -18 -to -15E and -187E October 22, 2014 Preliminary

1.3 Removed speed grade -187E October 31, 2014 Preliminary


Recommended