+ All Categories
Home > Documents > 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals...

29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals...

Date post: 02-Aug-2020
Category:
Upload: others
View: 3 times
Download: 1 times
Share this document with a friend
25
ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 3/29/16 Pierret, Semiconductor Device Fundamentals (SDF) pp.563-567
Transcript
Page 1: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

Lundstrom ECE 305 S16

ECE-305: Spring 2016

MOS Fundamentals

Professor Mark Lundstrom Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA [email protected]

3/29/16

Pierret, Semiconductor Device Fundamentals (SDF) pp.563-567

Page 2: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOS Fundamentals

2

1)  MOSFETs and MOS capacitors 2)  E-bands and workfunctions

Lundstrom ECE 305 S16

Page 3: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

Pep talk

3

“I hated every minute of training, but I said, 'Don't quit. Suffer now and live the rest of your life as a champion.’” -Muhammad Ali http://www.brainyquote.com/quotes/quotes/m/muhammadal148629.html.

Page 4: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

Pep talk

4

A dog weighing 10.0 lb is standing on a flatboat so that he is 20 ft from the shore. He walks 8.0 ft on the boat towards shore and then halts. The boat weighs 40 lbs, and one can assume that there is no friction between the it and the water. How far is he from shore at the end of this time? (Hint: The center of mass of boat + dog does not move. Why?) The shoreline is also to the left in Fig. 9-15.

Halliday and Resnick, Physics, 1966

Page 5: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOSFETs

5

source drain

SiO

2 silicon

G S D

(Texas Instruments, ~ 2000)

gate oxide EOT ~ 1.1 nm

channel ~ 20 nm

gate

electrode

Page 6: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOSFET (off)

6

VD

0

L

p-Si

n+-Si n+-Si

VG < VT ID = 0

Lundstrom ECE 305 S16

Page 7: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOSFET (on)

7

VD

0

L

p-Si

n+-Si n+-Si

VG > VT ID > 0

Lundstrom ECE 305 S16

Page 8: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOSFET and MOS C

8

p-Si

n+-Si n+-Si

MOS capacitor

Page 9: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOS capacitor

9

VG

p-Si or n-Si

metal or

heavily doped “polysilicon”

SiO2

tox ≈1− 2 nm

Lundstrom ECE 305 S16

Page 10: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

oxide scaling

10

Page 11: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOS Fundamentals

11

1)  MOSFET and MOS capacitors 2)  E-bands and workfunctions

Lundstrom ECE 305 S16

Page 12: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

EC

EV

Ei

SiO2

EG ≈ 8.9eV

χi

e-band diagram

12

EC

EV

Ei

EF

EG = 1.12eV

Si

metal

EFM

ΦM

E0

χS

Page 13: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

recall the MS junction

13

EC

EVEFP

Ei

aluminum

EFM

E0

ΦM = 4.08 eVΦS

χS = 4.05 eV

Lundstrom ECE 305 S16

Page 14: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

built-in potential

14

EC

EVEFS

Ei

aluminum

EFM

E0

ΦM = 4.08 eVΦS

χS = 4.05 eV

qVbi = EFM − EFS( ) = ΦS −ΦM( ) = − ΦM −ΦS( ) = −ΦMS

potential =VbiVbi =

−ΦMS

q= −φms

Page 15: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

example:

15

Aluminum metal and p-type Si

NA = 1016 cm-3

p0 = NVeEV −EFS( )/kBT cm-3

EFS − EV = kBT lnNV

NA

⎛⎝⎜

⎞⎠⎟

NV = 2mp*kBT( )2π!2

⎣⎢⎢

⎦⎥⎥

3/2

= 1.83×1019 cm-3

EFS − EVq

= 0.2

ΦM = 4.08 eV

ΦS = χS + EG − EFS − EV( ) q

ΦS = 4.97 eV

φms =ΦM − ΦS( )

q= −0.9 V

Vbi = −φms = +0.9 V

Page 16: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

now the band diagram

16

EC

EVEFS

Ei

metal

EFM

E0

ΦM = 4.5

Lundstrom ECE 305 S16

ΦS

Page 17: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

the band diagram

17

EC

EVEF

Ei

metal

EF

qVbi

Lundstrom ECE 305 S16

Page 18: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOS e-band diagram

18

EC

EV

Ei

SiO2

EG ≈ 8.9eV

EC

EV

Ei

EF

EG = 1.12eV

Si

metal

EFM

ΦM

E0

χS

χi

Page 19: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

MOS e-band diagram

19

1) Built-in potential is exactly the same. 2) But part of the voltage drop now occurs across the

semiconductor and part across the oxide.

Lundstrom ECE 305 S16

Page 20: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

equilibrium e-band diagram

20

EC

EV

Ei

EF

metal

ΔVS

ΔVox

Vbi = −φms φ x( ) = 0 in the bulk

φ x = 0( ) = φS surface potential

V metal( ) = ΔVox +φS

φS

V metal( ) =Vbi

Page 21: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

equilibrium e-band diagram

21

EC

EV

Ei

EF

metal

V metal( ) =Vbi

Applied gate voltage = 0

Energy bands are bent.

Page 22: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

e-band under “flat band” conditions

22

EC

EV

Ei

EF

Si

metal

What happens if we apply a negative voltage = ? φms

VG = −Vbi

MOS–C at the flat band voltage.

VG =VFB =ΦM −ΦS( )

q= φms

Page 23: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

“ideal” MOS structure

23

EC

EV

Ei

SiO2

EG ≈ 8eV

EC

EV

Ei

EF

EG = 1.12eV

Sihypothetical

metal

EFM

ΦM

E0

χS

χi

Vbi = 0

Page 24: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

flat band conditions

24

For an ideal MOS structure, flat band occurs for: For a real MOS structure, flat band occurs for:

VG =VFB = 0

VG =VFB = φms

′VG =VG −VFB

VFB = φms

Lundstrom ECE 305 S16

Page 25: 29 MOS Fundamentals - nanoHUBMOS... · Lundstrom ECE 305 S16 ECE-305: Spring 2016 MOS Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University,

in Chapter 16 of SDF by Pierret

25

VG means V’G; i.e. an ideal MOS structure with NO metal-semiconductor workfunction difference is assumed.

Lundstrom ECE 305 S16


Recommended