+ All Categories
Home > Documents > 662 Avalanche

662 Avalanche

Date post: 04-Apr-2018
Category:
Upload: ghulam-shabbir
View: 230 times
Download: 0 times
Share this document with a friend

of 29

Transcript
  • 7/30/2019 662 Avalanche

    1/29

    ECE 662

    Microwave Devices

    Transit-Time Diodes

    February 17, 2005

  • 7/30/2019 662 Avalanche

    2/29

    Two-Terminal Negative

    Resistance Devices

  • 7/30/2019 662 Avalanche

    3/29

    Avalanche Transit-Time Devices

  • 7/30/2019 662 Avalanche

    4/29

  • 7/30/2019 662 Avalanche

    5/29

    Avalanche Transit-Time Devices

  • 7/30/2019 662 Avalanche

    6/29

    Avalanche Transit-Time Devices

  • 7/30/2019 662 Avalanche

    7/29

    Measured Ionization

    rates for electrons andholes vs reciprocal field

    for Si and GaAs

  • 7/30/2019 662 Avalanche

    8/29

    Ref: Sze

  • 7/30/2019 662 Avalanche

    9/29

    Diode Configurations

    B

    mm

    m

    qN

    EWE

    W

    xExW

    np

    nip

    22

    1V

    ionconcentratbulkdopedlightlytheisNwhere

    )1()(qN

    E(x)

    diode,junctionAbrupt

    width)(depletionWEVisvoltagebreakdown

    andconstantisEfield,Diode,

    2

    sB

    B

    s

    B

    mB

    m

  • 7/30/2019 662 Avalanche

    10/29

    IMPATT Mode Diodes

  • 7/30/2019 662 Avalanche

    11/29

    IMPATT Mode Diodes

  • 7/30/2019 662 Avalanche

    12/29

    Injected carriers therefore traverse the length wD of the drift region

    During the negative half-cycle if we choose the transit time to be

    oscillation period.

    )()sin()(21Pand

    2I

    2IIII

    conservedisCharge.vcircuitexternalinCurrent

    )2/(for)/1(5.0/

    2

    0

    rfdc

    maxinjdcinjmax

    s

    tdtVtIIVP

    wvfvw

    rfindBdc

    dW

    d

    W

    DsDd

  • 7/30/2019 662 Avalanche

    13/29

    ;1cos2/

    )2/sin(

    s,IMPATT'

    )cos(cos

    2/

    )2/sin(

    ;2/

    )2/sin()cos(cos

    d

    m

    m

    dc

    dW

    W

    B

    rf

    m

    d

    dm

    W

    W

    B

    rf

    dc

    rf

    W

    W

    d

    Dm

    rfrf

    V

    V

    for

    V

    V

    P

    P

    VIP

  • 7/30/2019 662 Avalanche

    14/29

    W

    v

    W

    vf

    v

    Wnow

    VVMax

    V

    V

    ss

    s

    B

    rf

    dB

    rf

    W

    W

    W

    2

    74.0

    2

    30%to20typically,

    ,72.0so74.0whenoccurs

    1cos

    and,1

    2/

    )2/sin(so

    smallis,efficiencybestfor

    dd

    dmax

    d

  • 7/30/2019 662 Avalanche

    15/29

  • 7/30/2019 662 Avalanche

    16/29

    IMPATT Mode Diodes

  • 7/30/2019 662 Avalanche

    17/29

    Double-Drift Region IMPATTs

  • 7/30/2019 662 Avalanche

    18/29

    TUNNETT Mode

  • 7/30/2019 662 Avalanche

    19/29

    BARrier Injection Transit Time Devices

    (BARITTs)

  • 7/30/2019 662 Avalanche

    20/29

    BARrier Injection Transit Time Devices

    (BARITTs)

    The injected carrier density increases with the ac voltage.

    Then the carriers will traverse the drift region.

    The injected hole pulse at 90o

    and the corresponding

    induced current which travels 3/4s of a cycle to reach thenegative terminal. Or w/vs = (1/f)

    Note that for /2t, both the ac voltage and external

    current are positive therefore ac power is dissipated in the

    device.Consequently, the BARITT diodes have low power

    capabilities and low efficiencies but they also have low

    noise (avoiding the avalanche phenomena).

  • 7/30/2019 662 Avalanche

    21/29

    TRApped Plasma Avalanche Triggered

    Transit Time Devices (TRAPATTs)

  • 7/30/2019 662 Avalanche

    22/29

    TRApped Plasma Avalanche Triggered

    Transit Time Devices (TRAPATTs)

  • 7/30/2019 662 Avalanche

    23/29

    Comparison of Microwave

    Devices An important figure of merit for microwave

    devices is power output as a function of oscillation

    frequency.

    Due to limitations of semiconductor materials, themaximum power of a single device at a given

    frequency is limited.

    Two basic limitations: Critical field, at which avalanche breakdown occurs

    Saturation velocity which is the maximum attainable

    velocity in semiconductors

  • 7/30/2019 662 Avalanche

    24/29

    Power Output -1

    The maximum voltage that can be appliedacross a semiconductor sample is limited by

    the break down voltage.

    For a uniform avalanche this is Vm = EcWwhere W is the depletion layer width

    The maximum current that can be carried by

    the semiconductor is also limited by the

    avalanche breakdown process, because the

    current in the space charge region causes an

    in crease in the electric field.

  • 7/30/2019 662 Avalanche

    25/29

    Power Output -2

    W/AEIbetoallowedcurrentmaximumthefind

    EE(W)setting).IW/(A)dx/(W)E(x

    ischargespacethetoduefield

    electricin theE(x)edisturbancThearea.theisA

    densitychargespacetheiswhereA,Ithen

    :regiondepletiontheacross,velocity,saturationat theirtravelelectronsthat theAssume

    sscm

    css

    W

    0ss

    ssspchrg

    s

  • 7/30/2019 662 Avalanche

    26/29

    Power Output -3

    1

    sc

    c

    2s2cmm

    2

    m

    s

    ss

    2

    cmmm

    )/f(2reactancedevicetheisX

    where,X2

    EIVfP

    asRewritedomain.imetransit tunder the

    operatedTEDfor the1andBARITTfor3/4and

    IMPATTfor1/2iswhereW,/ffrequency,

    imetransit ttheandAEIVP:isinputpoweron thelimituppertheTherefore

    WA

  • 7/30/2019 662 Avalanche

    27/29

    Noise - Microwave Devices

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    Bip

    olar

    MES

    FET

    TUN

    NEL

    TED

    InP

    T

    ED

    G

    aAs

    BAR

    ITT

    IMP

    ATT

    Devices

    Noise

    Figure

    in dB

  • 7/30/2019 662 Avalanche

    28/29

    Solid-StateDevice

    Power

    Output vs

    Frequency

    ref: Sze

    and

    modifiedby Tian

  • 7/30/2019 662 Avalanche

    29/29


Recommended