+ All Categories
Home > Documents > 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

Date post: 04-Jun-2018
Category:
Upload: yetchan-quive
View: 215 times
Download: 0 times
Share this document with a friend

of 83

Transcript
  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    1/83

    March 5, 2009

    Scott HaislipSenior VP Pavement Engineering

    Municipal Pavement Designwith StreetPave Software

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    2/83

    Presentation Overview

    Background / history of the design procedure Concrete pavement design principles Discussion of the primary factors (inputs)

    affecting concrete pavement design Example using StreetPave design software

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    3/83

    Thickness Design Basics

    Municipal Pavement Design

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    4/83

    Streets and Local Roads Thickness Design Procedure

    Longitudinal joint

    Transverse joint

    Subgrade

    Subbase or base

    Surface Texture

    Surface smoothnessor r ideability

    Thickness Design

    Dowel bars

    Concrete materials

    Tiebars

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    5/83

    Thickness Design Procedures

    Empirical Design Based on observed performance

    AASHO Road Test

    Mechanistic Design Based calculated pavement

    responses PCA Design Procedure

    (PCAPAV)

    StreetPave (ACPA DesignMethod)

    AASHO Test Road:Ottawa, Illinois (approximately 80 miles southwest ofChicago) between 1956 and 1960

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    6/83

    StreetPave Design Software

    Pavement design toolgeared primarily forroads & streets

    Based on the PCAs pavement thicknessdesign methodology

    Checks adequacy ofconcrete thicknessusing both fatigue anderosion criteria

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    7/83

    Concrete Pavement Types

    Jointed Plain Undoweled Doweled

    Jointed Reinforced Continuously

    Reinforced Prestressed

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    8/83

    Jointed Plain

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    9/83

    SLR Pavement Design Street classification

    Traffic Geometric design Subgrade and subbase Concrete quality Thickness design

    Jointing Dowel Bar Recommendations

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    10/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    11/83

    Geometric DesignMunicipal Pavement Design

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    12/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    13/83

    Edge SupportConcrete Shoulder Curb & Gutter Widened Lane

    or

    s e p a r a

    t e

    i n t e g r a

    l

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    14/83

    Basic Two-Lane Sections

    No curb

    Integral curb

    25 to 28 wide

    Separate curb

    25-2818 min.

    L

    PLAN

    PROFILE

    No curb

    Integral curb

    28 to 42 wide

    Separate curb

    28-42

    18 min.1/3 width(typ.)

    L

    PLAN

    PROFILE

    NOT TO SCALE

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    15/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    16/83

    Subgrades and Subbases

    Municipal Pavement Design

    Subgrade Natural ground, graded, and compacted on which

    the pavement is built.

    Subbase

    Layer of material directly below the concrete pavement.

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    17/83

    Design for Uniform SupportThree Major Causes for Non-Uniform Support

    Expansive Soils

    Differential Frost Heave

    Pumping (loss of support)

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    18/83

    Subgrade Properties

    Modulus ofSubgrade Reaction,k-value

    Plate load on subgradePlate deflection on subgradek =

    5.0 psi

    0.5 ink = = 100 psi / in.

    Reaction

    Stacked PlatesPressure Gage

    Subgrade

    Plate-Load Test

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    19/83

    Type of Soil Support k value range)

    Fine-grained soils inwhich silt and clay-size particlespredominate

    Low 75 - 120 pci(20 - 34 MPa/m)

    Sands and sand-gravel mixtures withmoderate amounts

    of silt and clay

    Medium 130 - 170 pci(35 - 49 MPa/m)

    Sands and sand-gravel mixtures

    relatively free ofplastic fines

    High 180 - 220 pci

    (50 - 60 MPa/m)

    Subgrade Soil Types and Approximate k ValuesSubgrade Properties

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    20/83

    Subgrade Properties

    Soil Type SupportResil ient Modulus

    (MR), psi

    Fine-grained withhigh amounts ofsilt/clay

    Low 1455-2325

    Sand and sand-gravel with

    moderate silt/clay

    Medium 2500-3300

    Sand and sand-gravel with little or

    no silt/clay

    High 3500-4275

    Resilient Modulus of the Subgrade

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    21/83

    Subgrade Properties

    Subgradek-value

    (pci)

    Thickness of Unbound Granular orCrushed Stone Subbase4 6 9 12

    50 65 75 85 110

    100 130 140 160 190

    150 176 185 215 255

    200 220 230 270 320

    Typical composite k-values for unbound granular, aggregate, orcrushed stone subbase

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    22/83

    Subgrade and Subbases DesignSummary

    Subgrade strength is not a critical element in thethickness design . Has little impact on thickness.

    Need to know if pavement is on: Subgrade (k 100 psi/in. (25 MPa/m)),

    Granular subbase (k 150 psi/in. (40 MPa/m)),

    Asphalt treated subbase (k 300 psi/in. (80 MPa/m))

    Cement treated/lean concrete subbase (k 500 psi/in.(125 MPa/m)).

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    23/83

    Subbase EffectsAt the AASHO Road Test,

    concrete pavements withgranular bases could carryabout 30% more traffic.

    The current design proceduresallows concrete pavements

    built with granular bases to

    carry about 5 - 8% moretraffic.

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    24/83

    Fatigue Analysis

    Allowable number of

    load repetitions foreach axle group isdetermined

    % Fatigue iscalculated for eachaxle group

    Total fatigueconsumed should notexceed 100%.

    Midslab loading away fromtransverse joint producescritical edge stresses

    Fatigue

    Critical Loading Position

    Transverse joint

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    25/83

    Pavement Design Principle #1Stress / Fatigue

    Compressive strength: ~4000 psi Flexural strength: ~600 psi

    T

    C

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    26/83

    Pavement Design Principle #1Stress / Fatigue

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    27/83

    Thickness Design ProcedureConcrete Properties

    Flexural Strength(Modulus of Rupture, ASTM C78)

    Avg. 28-day strength in

    3rd-point loading Other Factors:

    Concrete Strength Gain

    w/ Age Fatigue Properties L/3

    Span Length = L

    d=L/ 6

    Third-point Loading

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    28/83

    Concrete Strength PropertiesIf specify minimum flexural

    strength at 28-day of 550psi & allow 10% of beams tofall below minimum:

    STEP 1Estimate SDEV:

    9% for typical ready mix.SDEV = 550 * 0.09 = 50 psi

    STEP 2

    Sc design = Sc minimum + z *SDEVSc design = 550 + 1.282 * 50Sc design = 614 psi

    40

    60

    80

    100

    120

    140

    160

    3d 7d 3m 3y 20y Age

    P e r c e n

    t a g e o

    f 2 8 - d a y

    S t r e n g

    t h

    Type I (GU)Type III (HE)

    28d 1y 5y 10y

    40

    60

    80

    100

    120

    140

    160

    3d 7d 3m 3y 20y Age

    P e r c e n

    t a g e o

    f 2 8 - d a y

    S t r e n g

    t h

    Type I (GU)Type III (HE)

    28d 1y 5y 10y

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    29/83

    Design Period/Life 20 to 35 years is commonly used Shorter or longer design period may be

    economically justified in some cases

    High performance concrete pavements Long-life pavements A special haul road to be used for only a few years

    Cross-overs Temporary lanes

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    30/83

    Reliability Is simply the factor of safety Usually expressed as % Is a measure of how likely the

    design will fail due to fatigueor erosion

    Or can be used to estimate theamount of pavement repairrequired at the end of design

    period/lifeProbability of Winning

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    31/83

    Reliability

    Functional Classificationof Roadway

    Recommended Reliability

    Urban Rural

    Interstates, Freeways, andTollways 85 - 99 80 99

    Principal Arterials 80 - 99 75 95

    Collectors 80 - 95 75 95

    Residential & Local Roads 50 - 80 50 80

    Levels of Reliability for Pavement Design

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    32/83

    Thickness Design

    Roadway Type

    Recommended

    Percent of SlabsCracked at End ofDesign Life

    (Default) 15%

    Interstate Highways,Expressways, Tollways,Turnpikes

    5%

    State Roads, Arterials 10%

    Collectors, County Roads 15%

    Residential Streets 25%

    Recommended Levels of Slab Cracking by Roadway Type

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    33/83

    Effects of Combined Reliability &Slab Cracking

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    34/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    35/83

    Pavement Design Principle #2

    Deflection / Erosion / PumpingFaulting

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    36/83

    Design - ErosionConditions for Pumping:

    Subgrade soil that will gointo Suspension Free water between slab

    and subgrade Frequent heavy wheel

    loads / large deflections

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    37/83

    Concrete Pavement Design for Municipal Streets

    Load Transfer = slabs ability to share its load with neighboring

    slabs Aggregate Interlock Dowels Edge Support

    Tied curb & gutter Integral curb & gutter Parking lane

    Tied concrete

    L= x

    U= 0

    Poor Load Transfer

    Good Load Transfer

    L= x/2 U = x/2

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    38/83

    Aggregate Interlock

    Shear between aggregate particles

    below the initial saw cut

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    39/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    40/83

    Dowel Recommendations Dowels

    recommendations: If pavement thickness is 7

    or less dowels notrecommended

    If pavement thickness is 7.0& 7.5 use 1 dowels,stabilized subgrade, or 4-6subbase. Note: If erosion isthe failure mechanism.

    If pavement thickness is 8or greater use 1 dowels

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    41/83

    Dowel bars Length 14 min.

    6.0 in. minimumembedment length Diameter:

    1.0 in streets and roads 1.25 - 1.50 in. for arterials roads

    Epoxy or other corrosion

    protection for harshclimates

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    42/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    43/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    44/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    45/83

    Jointing

    Control naturaltransverse and

    longitudinal crack frominternal slab stresses Divide pavement into

    construction lanes or

    increments Accommodate slab

    movements Provide load transfer Provide uniform sealant

    reservoir

    Longitudinal JointsDivides pavement lanes (8-12 ft.)Depth - 1/3 pavement thickness

    Transverse JointsTransverse Contraction Joints (8-15 ft.Depth - 1/3 pavement thickness

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    46/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    47/83

    StreetPave User Inputs & Outputs Global Settings

    Region Units (English or Metric) Terminal Serviceability Percent Slabs Cracked

    at end of design Life Design Life Reliability

    Traffic Pavement Properties Thickness/Dowel/Jointing Recommendations

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    48/83

    Design Example Inputs Design life = 30 years

    k-value = 100 pci Concrete flexural strength = 600 psi Load transfer (dowels) = No/yes

    Edge support = yes Traffic category = Collector 2-way ADTT = 100

    Reliability = 80% Percent Slabs Cracked = 15%

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    49/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    50/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    51/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    52/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    53/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    54/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    55/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    56/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    57/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    58/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    59/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    60/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    61/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    62/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    63/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    64/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    65/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    66/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    67/83

    Design and Analysis Summary Replace

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    68/83

    with PDF Desktop

    Sensitivity Charts

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    69/83

    y

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    70/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    71/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    72/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    73/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    74/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    75/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    76/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    77/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    78/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    79/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    80/83

    Summary StreetPave program incorporates reliability and

    slab cracking into fatigue for concrete pavement design Can be used to compare the outcome of

    altering design inputs to obtain cost-effective pavement sections

    Principles can also be applied to concreteoverlays

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    81/83

    StreetPave Software Availability

    Available from:

    Bob LongExecutive Director Mid-Atlantic Chapter ACPA

    Patch v1.3: www.pavement.com

    Questions?

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    82/83

  • 8/13/2019 6P-MunicipalPavementDesignwithStreetPaveSoftware-Haisl

    83/83

    Thank You!!!

    Please contact PRESENTER

    with questions or comments:[email protected]


Recommended