+ All Categories
Home > Documents > A 90nm Variable Frequency Clock System for a Power ...

A 90nm Variable Frequency Clock System for a Power ...

Date post: 21-Feb-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
20
A 90nm Variable Frequency Clock System for a Power- Managed Itanium® Architecture Processor Tim Fischer, Ferd Anderson, Ben Patella, Sam Naffziger Intel, Fort Collins, CO
Transcript
Page 1: A 90nm Variable Frequency Clock System for a Power ...

A 90nm Variable Frequency Clock System for a Power-

Managed Itanium® Architecture Processor

Tim Fischer, Ferd Anderson, Ben Patella, Sam Naffziger

Intel, Fort Collins, CO

Page 2: A 90nm Variable Frequency Clock System for a Power ...

Presentation Overview

• Montecito Clock System Architecture• Montecito Voltage to Frequency Converter

(VFC) Architecture– Digital Frequency Divider (DFD)– Regional Voltage Detector (RVD)

• Results• Summary and Acknowledgements

Page 3: A 90nm Variable Frequency Clock System for a Power ...

Clock SystemArchitecture

FixedSupply

VariableSupply

Bus Clock

I/Os

Foxton

Bus Logic

Core0

Core1

1/N

CVD

RAD

Gater

1/1

GaterCVD

RVD

DFD

DFD

SLCB CVD GaterPLL

DFD

SLCB CVD Gater

SLCB

DFD

CVD Gater

1/M

DFD

DFD

1/NRAD

SLCB

SLCB

DivisorsFrequency Translation Table

Fuses

PinsBalanced

Tree ClockDistribution

Phase Aligner

Page 4: A 90nm Variable Frequency Clock System for a Power ...

Montecito Clock Generation Overview

• PLL generates master clock: Fmax = M*Fbus_clock

• DFDs lock on Fmax using local DLLs– Synthesize core / uncore frequencies in 1.6% Fmax

steps (ticks)– DFD range is Fmax*1.0 to Fmax*0.504– Translation table sets DFD frequency at startup

• Supply / Clock Domains– 2 Cores : variable V, F– Uncore (bus logic): fixed V, F = N * bus clock– Foxton controller : fixed V, F = 1 GHZ, DSP algorithms– Master PLL : fixed V, F, within clock system only

Page 5: A 90nm Variable Frequency Clock System for a Power ...

Montecito Clock System Floorplan

PLL / PLL / translation translation table / table / clock clock controlcontrol

FSB FSB DFDsDFDs

Foxton Controller DFDFoxton Controller DFD

FSB FSB DFDsDFDs

Core Core DFDsDFDs

RVDsRVDs

CORE 1CORE 1

CORE 0CORE 0

Bus Logic DFDBus Logic DFD

Page 6: A 90nm Variable Frequency Clock System for a Power ...

Clock System Modes• Fixed Frequency (FFM)

– Cores/Uncore are frequency and phase aligned– Cores/Uncore interfaces synchronous

• Variable Frequency (VFM)– Core supply modulated by Foxton Controller to

manage power envelope– Core frequencies track Vcore via Regional

Voltage Detector (RVD) V-F curves• Respond to Foxton modulation and local transients• V-F curves match worst-scaling paths on chip

– Core/Uncore interfaces asynchronous

Page 7: A 90nm Variable Frequency Clock System for a Power ...

Voltage-to-Frequency Conversion (VFC)Per Core

DFD1 L1 Clock Route To SLCBS

L0 Clock Route from PLL

22

4

RVD4 RVD5 RVD6 RVD7

2

2

DFD2

RVD11

L1 Clock Route To SLCBS

4

RVD9 RVD10

2

8

8

DFD0

RVD3

L1 Clock Route To SLCBS

2

4

RVD0 RVD1 RVD22

8

RVD8

Utility Clocks

Utility Clocks

Utility Clocks

DOWN[11:8], HOLD[11:8]

DOWN[3:0], HOLD[3:0]

DOWN[7:4], HOLD[7:4]

+

Local Blocks

di/dt noise

VDD

Foxton-managed VDD from VR

Process,Temp

~2400um

RVD8 local environment

Page 8: A 90nm Variable Frequency Clock System for a Power ...

Increased delay asserts period “UP” for two cycles

Example VFC Supply Droop Response

DFD Output Clock

Vcore

RVD Delay Line Clock

Period “UP” to DFD

Clock period increased No Adjust needed this cycle

Droop increases RVD delay line delay

1 2 3 4 5

Page 9: A 90nm Variable Frequency Clock System for a Power ...

Digital Frequency Divider (DFD) Block Diagram

PLL CLOCK DIFFERENTIAL INPUT

64 PHASES

STATE MACHINE

FULL FREQUENCY DIFFERENTIAL “UTILITY” CLOCK ROUTES TO CLOCK SYSTEM

PCSM

PERIOD ADJUST +2 TO -1

16-PHASE DLL AND INTERPOLATION

TO / FROM SAME-CORE PCSMS

STARTUP CONTROL

RVD UP / DOWN REQUESTS

DIVIDE BY 2

DIVIDE BY 2

ODCS CONTROL

SCAN AND TRIGGERS

½ FREQUENCY QUADRATURE DIFFERENTIAL CLOCK ROUTES TO SLCBS

Page 10: A 90nm Variable Frequency Clock System for a Power ...

DFD Phase Selection Datapath

I

O

I

I

4:1 PHASE OR& CLOCK DRIVE

FROMDLL

FROMPCSM

FROMS/M

4:1 PHASEADJUST

16:1 PHASE SELECTION

rckVDD

adj3

psel3

VDD

fb_terms

sel1

phs1

sel7

phs7

VDD

sel8

phs8

sel9

phs9

sel15

phs15

GND GND

pd

GND

GND

VDD

VDD

pd1

GND

pd0sel0

phs0

GNDVDD

adj0

psel0

GND

clk_

63_4

8_ou

t

clk_

15_0

_out

clk_

47_3

2_ou

t

clk_

31_1

6_ou

t

CLO

CK

Page 11: A 90nm Variable Frequency Clock System for a Power ...

VFC/RVD Voltage Tracking andCMOS Critical Path Scaling

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

600 800 1000 1200

Supply Voltage (mV)

Del

ay (n

orm

to 1

100

mV

)

circuit1circuit2circuit3circuit4circuit5

Page 12: A 90nm Variable Frequency Clock System for a Power ...

RVD Block Diagram

Delay Line 0A

Delay Line 1A

Delay Line 0B

Delay Line 1B

RV

D F

SM

dly0in

dly1in

HOLD

DOWN

dly0out

dly1out

eval0

eval1eval0

eval1clk

additional delay CVDs create deadzone

eval1

eval0

Page 13: A 90nm Variable Frequency Clock System for a Power ...

RVD Delay LineFINE

in R R

COARSE

R RRR RR R

0 1 2 3 4 5 6 7

Dynamic Mux

delay line out

odd

coarse_sel

F FF F F F F F F

Coarse Delay Incremental Curves Fine Delay Incremental Curves

4.00E-10

5.00E-10

6.00E-10

7.00E-10

8.00E-10

9.00E-10

1.00E-09

1.10E-09

1.20E-09

1.30E-09

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

4 Coarse Elements

3 Coarse Elements2.00E-10

4.00E-10

6.00E-10

8.00E-10

1.00E-09

1.20E-09

1.40E-09

1.60E-09

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

Page 14: A 90nm Variable Frequency Clock System for a Power ...

RVD Coarse Delay Element

I

O

I

I

I

I I

I

Metal 1 Serpentine Resistor

out

VDD

nout

nrun

run

nrunfbn

runfbp

GND

VDD

even

clear

GND

nrun fetconfig_fet nfet

nrunrun

GND

VDDfbp

nclear

nodd

in

nfet

Page 15: A 90nm Variable Frequency Clock System for a Power ...

RVD Phase Comparator

I

O

I

I

I

I

I

nd1ev0 nd0

rckVDD

noh outin1in0

ev1

eck

GND

Page 16: A 90nm Variable Frequency Clock System for a Power ...

0

2

4

6

8

10

0 20 40 60 80 100 120Supply Noise (mV)

VFM

Per

form

ance

Incr

ease

(%

)

Average(50 MHzNoise)

Peak

0 500 1000

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Time (ps )

Vco

re

0 500 1000

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Time (ps )

Vco

re

2

4

6

8

10

12

14

16x 10

-3

VFM Performance vs. Supply Noise

b)

a)

c) 10-1

100

101

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

Frequency (GHz)

PS

D (d

BV

)

50% Activity Power Virus

Page 17: A 90nm Variable Frequency Clock System for a Power ...

FFM/VFM Core/Bus Clock Oscilloscope Traces

FFM, 1.2V

VFM, 1.2V

Core clock 1.6GHz

Bus Logic clock 1.6GHz

Core clock 2.14GHz

Bus Logic clock 1.6GHz

Page 18: A 90nm Variable Frequency Clock System for a Power ...

Core Clock Spectral Content

FFM

Fmax=2GHz, Ffixed=1.6GHz, 1.2Vcore

VFM

Fmax=2GHz, 1.2 Vcore +/- 100mV, slow RVD curve

Page 19: A 90nm Variable Frequency Clock System for a Power ...

Summary• Clock system enables a dynamic voltage-scaling power

management system (Foxton)– Generates low-skew fixed- and variable- frequency clocks

• High-BW Voltage-to-Frequency conversion (VFC)– Regional Voltage Detectors– Synchronized Digital Frequency Dividers– VFC follows programmed V/F response– VFC lock onto and tracks local supply voltage

• Tracks high-BW switching transients:1 cycle VFC loop response• Tracks low-BW Foxton-based supply modulation

• Performance benefits through reduced guardband:– Fast response to switching transients (3-8%, path dependent)– Tracks process, temperature (3%)

• VFM operation demonstrated above 2GHz

Page 20: A 90nm Variable Frequency Clock System for a Power ...

AcknowledgementsE. Fetzer, S. Ghahremani, B. Doyle, A. Barton, M. Peters, S. Hall, J. Desai, E. Lee, F. Verdico, C. Pie, C. Bendele, A. Allen, R. Alley, P. Wyatt, B. Johnson, S. Undy, G. Benjamin, R. McGowen, R. Sandoval, C. Zhu, C. Young, A. Shoning, J. McBride, K. Kerr, D. Newsome, D. Sherlock, B. Haskin, J. Platenak, A. Gouldey, V. Freytag, R. Sims, G. Kumar, J. Pettsinger, R. Weidner, P. Liu, S. Wells, D. Clifford, S. Liepe, J. Ignowski, G. Ranson, P. Kummrow, C. Keen, W. Kever


Recommended