+ All Categories
Home > Documents > ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf ·...

ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf ·...

Date post: 28-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
173
ACTA UNIVERSITATIS SZEGEDIENSIS ACTA MINERALOGICA-PETROGRAPHICA Tomus XXXVIII. SZEGED, HUNGARIA 1997
Transcript
Page 1: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

ACTA UNIVERSITATIS SZEGEDIENSIS

ACTA MINERALOGICA-PETROGRAPHICA

Tomus X X X V I I I .

SZEGED, HUNGARIA 1997

Page 2: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

NOTE TO CONTRIBUTORS

General

The Acta Mineralogica-Petrographica publishes original studies on the field of geochemistry mineralogy and petrology, first of all studies Hungarian researches, papers resulted in by cooperation of Hungarian researches and those of other countries and, in a limited volume, papers from abroad on topics of global interest.

Manuscripts should be written in English and submitted to the Editor-in-chief, Institute of Mineralogy, Geochemistry and Petrography, Attila József University, H-6701 Szeged, Pf. 651 Hungary.

The authors are responsible for the accuracy of their data, references and quotations from other sources.

Manuscript

Manuscript should be typewritten with double spacing, 25 lines on a page and space for 50 letter in a line. Each new paragraph should begin with an indented line. Underline only words that should be typed in italics.

Manuscript should be generally be organized in the following order: Title Name(s) of author(s) and their affiliations, in foot-note the address of the author to whom the correspondence should be sent Abstract Introduction Methods, techniques, material studied, description of the area investigated, etc. Results Discussion or conclusions Acknowledgement Explanation of plates (if any) Tables Captions of figures (drawings, photomicrographs, etc.)

Abstract

The abstract cannot be longer than 500 words.

Tables

The tables should be typewritten on separate sheets and numbered according to their sequence in the text, which refers to all tables.

The title of the table as well as the column headings must be brief, but sufficiently explanatory. The tables generally should not exceed the type-area of the journal, i.e. 12,5x18,5 cm. Foldouts can

only exceptionally be accepted.

(continuation on the inner side of verso)

Page 3: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

ACTA UNIVERSITATIS SZEGEDIENSIS

ACTA MINERALOGICA-PETROGRAPHICA

Tomus X X X V I I I .

SZEGED, HUNGARIA 1997

Page 4: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

HU ISSN 0 3 6 5 - 8 0 0 6 HU ISSN 0324 -6523

SERIES NOSTRA AB ISNSTITUTIS MINERALOGICIS, C E O C H E M I C I S PETROGRAPHICS UNIVERSITATUM HUNGARICUM A D l U V A T U R

Adjuvantibus

I M R E K U B O V I C S G Y Ö R G Y BUDA

F R I G Y E S E G E R E R PÁL G Y A R M A T I

B É L A K L E B

Regíüit

T I B O R S Z E D E R K É N Y I

Editor

Institut Mineralogicum, Geochcmicum et Pctrographicum Universitatis Szegediensis dc Attila József nominatae

Nota

Acta Miner. Peti., Szeged

Szerkeszti

S Z E D E R K É N Y I T I B O R

a szerkesztőbizottság tagjai

K U B O V I C S I M R E BUDA G Y Ö R G Y

E G E R E R F R I G Y E S G Y A R M A T I P Á L

K L E B BÉLA

Kiadja

a József Attila Tudományegyetem Ásványtani, Geokémiai és Kőzettani Tanszéke H-6722 Szeged, Egyetem u. 2 - 6 .

Kiadványunk címének rövidítése Acta Miner. Pctr., Szeged

S O R O Z A T U N K A M A G Y A R O R S Z Á G I E G Y E T E M E K R O K O N T A N S Z É K E I N E K T Á M O G A T Á S Á V A L J E L E N I K M E G

Printed ín JUHÁSZ NYOMDA, Szeged

Page 5: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

CONTENTS

L. FARKAS, F. PERTLIK: Crystal structure determinations of Felsőbányaite and Basumanite

Al.| (SO.|) TOIIII.-'HI-O 5

B. K. MOHAPATRA, B. R. NAYAK: Tirodite from Gangpur Group of rocks, India 17

A. N . K i s s , M . TÓTH, M . TAKÁCS, B . MORVÁI, Z . WIESZT: E f f e c t s o f c o p p e r - a d s o r p t i o n o n t h e

line-profile of first basal reflection of montmorillonite 25

Cs. SZABADOS. Pedogenesis oftrachyandesite and trachyte rocks in the Mórágy Hill, South Hungary .... 37

T. M. TÓTH: Evolution of partially retrograded eclogite from Kőrös Complex of ' f i s ia Composite

Terrane, Eastern Hungary 51

L. PÁPAY: Varieties of sulphur in low-rank Hungarian coals 65

1. FATHY, E. HERTELENDI, J. HAAS: Geochemistry and doloniitization of Pleistocene coral reefs in the Gulf of Aqaba region, South Sinai, Egypt 73 B. RAUCSIK: Stable isotopic composition of the Komló Calcareous Formation (''Spotted Marl'' s. Str.), Mecsek Mountains 95

I. KUBOVICS, S z . BÉRCZI, Z . DITRÓI-PUSKÁS, K. GÁL-SOLYMOS, B. NAGY. A. SZABÓ: Preliminary report of Kaposfured a new iron meteorite from Hungary 111

V. JÄGER, T. SZEDERKÉNYI: Native copper occurrence in the Kozár-quarry of W-Mecsck Mountains, Hungary 119

E. PÁL MOLNÁR: Composition of pyroxenes in hornblenditcs from the northern part of the Ditro Syenite Massif 123

A. BARTHA, É. BERTALAN: Determination of the rare earth elements of rock samples by ICP-MS using different sample decomposition methods .' 131

P. HORVÁTH: High-pressure mctamorphism and P-T path of the metaliasic rocks in the borehole Komjáti-11. Bódva valley area, NE Hungary 151

I. VICZIÁN. A. DEÉ NAGY: Domokos Teleki, der erste Präsident der Societal für die Gesamte Mineralogie zu Jena 165

Page 6: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Ada Mineralogica-Petrographica, Szeged. XXXVIII. 5-15, 1997

CRYSTAL STRUCTURE DETERMINATIONS OF FELSÖBÄNYAITE AND BASALUMINITE, AL4(S04) (OH)I0.4H2O

F A R K A S , L . 1 , a n d P E R T L I K , F . 2

Bolyai Kollegium, Budapest

Institut fiir Mineralogie und Kristallographie, Universität Wien

ABSTRACT

Single crystal X-ray structural data (T - 300 K) are reported for felsöbänyaite and basaluminite, AU (SO4) (OH)I0.4H2O. The X-ray work confirmed the identity of these two mineral species within limits of error. Structure parameters for felsöbänyaite: a = 13.026(1) Ä; b = 10.015(1) A; c = 11.115(1) Ä; ß = 104.34(1)°; Z = 4; space group P21-C2": 234 variable parameters were refined to R = 0.101, Rw = 0.092; 1044 X-ray reflections with Fo > l a Fo and sin x>/\ < 60°. The atomic arrangement exhibits a typical sheet structure, in which the individual AlOr, octahedra are combined via common O atom corners and edges to AI8O22 layers. These layers are interconnected by hydrogen bridges to SO4 tetrahedra and water molecules, forming the three dimensional arrangement. Basaluminite is a microcrystalline variety of felsöbänyaite.

Keywords: Felsöbänyaite; Basaluminite; Sulphate minerals; Chemical analyses; Crystal structure; Crystal chemistry.

INTRODUCTION

The very rare mineral felsőbányaite was discovered in the middle of the last century in Felsőbánya, Hungary (= Baia Sprie, Rumania) in the oxidation zone of the main lodge in the eastern part of Bányahegy. It forms spherulites on baryte and antimonite crystals up to 5 mm diameter, built by radially arranged platelets. For the first time this mineral was mentioned by K . E N N G O T T (1853), a detailed description was given by H A I D I N G E R (1854) together with a chemical analyses performed by K . v. H A U E R , yielding the formula AI4(S04) (OH)|0.5H2O. Optical data and heating experimens were reported by K R E N N E R

(1928), chemical analyses and X-ray powder data by K.OCL-1 and S A R U D L (1964). Single crystal X-ray experiments on felsőbányaite with determination of lattice constants and space group extinction were performed by P E R T L I K (1993).

The first description of two distinct minerals, hydrobasaluminite, A I 4 ( S 0 4 )

(OH)|0.36H2O, and basaluminite A 1 4 ( S 0 4 ) (OH),0.5H2O, from the Lodge pit of the Irchester Ironstone Company near Wellingborough is given by B A N N I S T E R and H O L L L N G W O R T H ( 1 9 4 8 ) . Chemical analyses and X-ray powder data for these two minerals together with the conditions of formation were reported by H O L L L N G W O R T H and B A N N I S T E R ( 1 9 5 0 ) . Further reports about basaluminite from different occurrences, especially weathering zones, were published by S P E N C E R ( 1 9 4 9 , 1 9 5 7 ) , F O M I N Y K H

1 H-l 145 Budapest, Amerikai út 96. 2 A-1090 Wien, Althanstraße 14

5

Page 7: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

( 1 9 6 5 ) , T I E N ( 1 9 6 8 ) , S R E B O D O L ' S K I Y ( 1 9 6 8 , 1 9 7 0 ) , B A L L ( 1 9 6 9 ) , B R Y D O N a n d S I N G H

( 1 9 6 9 ) , S U N D E R M A N N ( 1 9 6 9 ) , M I T C H E L L ( 1 9 7 0 ) and W I E S E R ( 1 9 7 4 ) . These reports include chemical analyses, X-ray powder data, differential thermal and thermogravic analyses as well as optical data for the visible and IR part of the spectrum.

The unit cell parameters for basaluminite from indexed X-ray powder patterns were derived by C L A Y T O N (1980). Refined unit cell parameters and indexed powder patterns of basaluminite from Sussex, England, taken with Guinier-Hagg-type focussing camera using monochromatized CuK. a , radiation were reported by F A R K A S (1980). These calculations were performed with the program system TREOR (cf. W E R N E R , 1 9 6 4 , 1 9 6 9 ) .

"Expressis verbis" the indentity of the two minerals felsobanyaite and basaluminite was presumed by P A P P and W E I S Z B U R G (1989) and W E I S Z B U R G and P A P P (1990). In the opinion of these authors basaluminite doesn't represent a distinct mineral species but only a microcrystalline variety of felsobanyaite. One of the aims of the present investigations was therefore to confirm or to refuse this statement.

EXPERIMENTAL

For the present investigations crystals of basaluminite from Sussex, England, were provided by the Swedish Museum of Natural History, crystals of felsobanyaite from the type locality by the Institute for Mineralogy and Crystallography, University of Vienna.

The A1:S proportion in basaluminite was determined by semiquantitative EDX-analyses. Further elements detected during these experiments are Na, K, Mg, Ca, Fe and P in wt% < 1.0. A compilation of chemical analyses data of basaluminite (different occurences) is given in Table 1.

Felsobanyaite was analized using classical chemical analytical methods for the main elements, by neutron activation for the trace elements and organic microprobe analytical method for hydrogen. The results of these analyses are compiled in Table 2 together with results from the literature.

Crystals of basaluminite and felsobanyaite, suitable for X-ray work, were checked by classical film methods. For unit cell parameters from the literature and from the present measurements for the two title compounds cf. Table 3.

The structure of basaluminite was solved by direct method strategy, using single crystal X-ray intensity data corrected for Lorentz- and polarization effects in usual ways. The parameters were refined by least squares method. These structural data, determined for basaluminite, were used as initial parameters for the structure determination of felsobanyaite based on X-ray intensity data measured directly on a felsobanyaite single crystal. This calculation resulted in a somewhat lower R value and smaller standard deviations than in the case of basaluminite. Especially for felsobanyaite: 1044 data with Fo > 1 o Fo, and 2 v < 60°. The R values (R and Rw) are 0.101 and 0.092, w = [o(Fo)]~2. The data were measured on a Stoe AED 2 four circle diffractometer with monochromatized MoK. radiation. The atomic parameters determined for felsobanyaite and some relevant interatomic distances are given in Table 4 and Table 5, respectively. Solution and refinement of the two structures were performed with the program system Shelxl-76 ( S H E L D R I C K , 1976) using neutral scattering functions ( I B E R S and H A M I L T O N ,

1974).

6

Page 8: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 1

Chemical analyses of basaluminite (in wt%) from the literature without any corrections or recalculations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A1203 39.70 43.0 41.3 43.8 44.8 44.08 43.77 47.48 44.49 44.75

so3 20.06 15.6 14.2 17.0 17.0 16.72 15.27 17.81 16.86 18.10

H 2 O 39.94 38.7 39.7 32.8 34.2 38.58 36.27 34.24 31.56 35.60

Fe 2 0 3 - 0.3 0.2 1.0 1.0 0.071 0.78 - 0.45 -

CaO - - - 2.4 1.0 - ' - 0.25 0.44 0.20

MgO - - - 0.1 0.1 - - 0.25 - -

K 2 0 - - - 0.1 0.1 - - - - -

N a 2 0 - - - trace trace - - - - -

P2O5 - trace 1.0 - - 0.021 0.25 - - -

Si0 2 - 2.4 3.6 1.4 1.4 0.37 2.90 0.15 6.20 -

(1) HOLLINGWORTH and BANNISTER (1950), analyzed by J. L Lassaigne

( 2 ) & ( 3 ) HOLLINGWORTH a n d BANNISTER ( 1 9 5 0 )

(4) & (5) TIEN (1968)

( 6 ) & ( 7 ) SUNDERMANN a n d BECK ( 1 9 6 9 )

( 8 ) SREBODOL'SKIY ( 1 9 6 8 , 1 9 7 0 )

( 9 ) WIESER ( 1 9 7 4 )

( 1 0 ) CLAYTON ( 1 9 8 0 )

Page 9: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 4

Chemical analyses offelsőbcmyaite in (wt %). E.s.d. 's in parentheses.

(1) (2a) (2b) (3) (4) A1203 45.63 37.27 44.70 48.5(5) 47.63

so, 16.47 14.50 17.39 15.9(5) 18.70

H 2 0 37.27 31.53 37.82 34.1(5) 33.66

Fe 20 3x

- 1.49 - 0.7(2) -

S b 2 0 5s

- - - 0.6(2) -

Si0 2 - 15.13 L < 0 . 5 -

x Arbitrary given for trevalent iron and pentavalent antimony

(1) HAIDINGER (1854) : A n a l y s t K. V. 1-LAUER

(2a,b) KOCH and SARUDI (1964). Results before and after substracting impurities (3) This work. Trace elements in (ppm):

Na380; Sc 0.2; La 8; V 515; Mn 265; Zn 700. (4) Calculated for the formula AI4(SO.tXOH)i0.4H2O

TABLE 3

Unit cell parameters for basaluminite andfelsobanyaite, respectively. E.s.d. 's in parentheses. (I) and (3) recalculated from the literature by a 3x3 matrix (I0I/0I0/00-1)

(1) (2) (3) (4) a (A) 12.950(3) 12.954(5) 12.94(7) 13.026(1)

b ( A ) 10.011(3) 10.004(6) 10.02(7) 10.015(1)

c ( Á ) 11.086 (3) 11.064(9) 11.23(6) 11.115(1)

ß ( ° ) 104.085(7) 104.1(1) 104.08(3) 104.34(1)

Z 4 4 - 4

space group - P2, - P2,

Basaluminite from (1) Oxford Clay at Crook Hill, Dorset; powder patterns (CLAYTON, 1980) (2) Sussex, England (collection of the Swedish Museum of Natural History'); single crystal data and powder patterns

(FARKAS, 1 9 8 0 )

Felsőbányaite from (3) Felsőbánya, Hungary (=Baia Sprie in Rumania); powder patterns (WEISZBURG and PAPP, 1990) (4) occurrence as (3), single crystal data (PERTLIK, 1993)

8

Page 10: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 4

Atomic parameters for felsobanyaite. The isotopic displacement factors in the range from 0.16 to 1.20 are not given, {defined as exp (Sn' u~ sin' 6/X-) [nm ]}

E.s.d. 's in parentheses. Denotation of the atoms according to Farkas (¡980).

Atom X Y Z

Al(l) 0.5813(8) 0.155(1) 0.6371(9) Al(2) 0.7053(7) 0.422(1) 0.7072(9) Al(3) 0.6906(7) 0.913(2) 0.7111(9) Al(4) 0.8157(9) 0.169(2) 0.7942(9) Al(5) 0.8177(7) 0.663(1) 0.7732(9) Al(6) 0.4659(7) 0.417(1) 0.5998(8) Al(7) 0.9238(8) 0.923(1) 0.8589(9) Al(8) 0.0432(9) 0.668(2) 0.9091(9)

0(11) 0.528(2) 0.086(3) 0.484(2) 0(12) 0.600(2) 0.334(3) 0.551(2) 0(13) 0.717(2) 0.079(3) 0.643(2) 0(14) 0.691(2) 0.240(3) 0.797(2) 0(15) 0.567(3) 0.003(4) 0.720(3) 0(16) 0.469(2) 0.243(4) 0.672(3) 0(22) 0.739(2) 0.577(3) 0.634(2) 0(23) 0.818(2) 0.324(3) 0.686(2) 0(24) 0.782(2) 0.508(3) 0.863(2) 0(26) 0.571(2) 0.489(3) 0.728(2) 0(31) 0.623(2) 0.851(3) 0.545(2) 0(33) 0.839(2) 0.838(3) 0.722(2) 0(34) 0.781(3) - 0 . 0 0 5 (5) 0.846(4) 0(35) 0.685(2) 0.756(3) 0.784(2) 0 (43) 0.930(2) 0.079(3) 0.758(3) 0(44) 0.881(3) 0.238(4) 0.938(3) 0(53) 0.949(2) 0.609(3) 0.765(2) 0(54) 0.887(2) 0.750(3) 0.921(2) 0(66) 0.364(2) 0.487(3) 0.682(2) 0(73) 0.042(2) 0.840(3) 0.846(2) 0(74) 0.975(2) 0.008(3) 0.005(2) 0(83) 0.163(2) 0.604(3) 0.865(2)

S(l) 0.9042(7) -0 .060(1) 0.4236(8) O s ( l l ) 0.853(4) 0.061(5) 0.474(4) Os(T2) 0.897(2) -0 .180(3) 0.499(2) Os( 13) 0.019(2) -0 .061(3) 0.407(3) Os(14) 0.833(2) - 0.089(4) 0.297(3)

S(2) 0.3887(8) 0.063(2) 0.9244(9) Os(21) 0.295(3) 0.010(5) 0.934(4) Os(22) 0.451(3) 0.113(4) 0.036(4) Os(23) 0.457(3) 0.962(4) 0.885(3) 0s(24) 0.357(3) 0,172(4) 0.826(3)

Ow(l) 0.871(2) -0 .294(3) 0.152(3) 0w(2) 0.327(3) 0.425(5) 0.969(3) Ow(3) 0.214(4) 0.097(5) 0.587(4) Ovv(4) 0.851(2) 0.332(3) 0.366(3) Ow(5) 0.648(2) 0.280(3) 0.335(3) Ow(6) 0.650(2) 0.226(3) 0.021(2)

9

Page 11: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 1

Selected interatomic distances for felsöbctnyaile (A) (E.s.d. 's in parentheses), <mean values>

A I ( D - 0(11) = 1.81(3) Al(2) - 0(12) = 2.13(2) 0(12) = 2.08(3) 0(14) = 2.11(3) 0(13) = 1.91(2) 0(22) = 1.85(3) 0(14) = 2.16(2) 0(23) = 1.83(3) 0(15) = 1.81(4) 0(24) = 1.97(3) 0(16) = 1.83(3) 0(26) = 1.94(2)

<1.93> <l.97>

Al(3) - 0(13) = 1.90(3) Al(4) - 0(13) = 2.06(3) 0(15) = 1.87(3) 0(14) = 1.79(2) 0(31) = 1.94(3) 0(23) = 1.97(3) 0(33) = 2.05(2) 0(34) = 1.93(5) 0(34) = 1.86(4) 0(43) - = 1.87(3) 0(35) = 1.78(3) 0(44) = 1.76(4)

<1.90> <1.90>

Al(5) - 0(22) = 1.85(3) Al(4) - O ( l l ) = 1.93(3) 0(24) = 1.97(3) 0(12) = 2.11(2) 0(33) = 1.88(3) 0(16) = 1.93(4) 0(35) = 1.99(2) 0(26) = 1.87(3) 0(53) = 1.82(2) 0(31) = 1.85(2) 0(54) = 1.88(3) 0(66) = 1.94(2)

<1.90> <1.94>

Al(7) - 0(33) = 1.85(3) Al(8) - 0(44) = 1.88(4) 0(34) = 1.97(4) 0(53) = 1.86(3) 0(43) = 1.94(3) 0(54) = 2.23(3) 0(54) = 1.97(3) 0(73) = 1.86(3) 0(73) = 1.79(3) 0(74) = 1.91(3) 0(74) = 1.81(3) 0(83) = 1.86(2)

<1.89> <1.93>

SCI) - Os ( l l ) = 1.55(5) S(2) - Os(21) = 1.35(5) 0s(12) = 1.48(3) Os(22) = 1.40(5) 0s(13) = 1.56(5) Os(23) = 1.48(3) Os(I4) = 1-51(3) Os(24) = 1.53(4)

<1.53> <1.44>

Page 12: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

The isotropic displacement factors for the single atoms are more or less terms for correcting extinction and absorption effects but without any physical significance. The reason for the inaccuracy of structure determination of felsôbânyaite and basaluminite is, that the X-ray beam generates a rapid dehydration of the crystals and the structures begin to collaps and change during the measurements. This behaviour is typical for other hydrated sulphate minerals also and explains the lack of high quality X-ray powder data and structure determinations for most of these sulphate minerals.

D I S C U S S I O N

In the felsobányaite (=basaluminite) structure each of the eight crystal Iographically different Al atoms are coordinated to six O atom neighbours, forming slight distorted A106 octahedra. The relatively high inaccuracy of the single AI-0 distances and the resulting standard deviations are consequences of the insufficient quality of the investigated ciystal caused by decomposition during X-ray experiments (cf. "Experimental", this article). The mean Al-O values within a range from 1.89 A to 1.97 A are comparable to those measured e.g. in the Al(OH)3 polymorphs with structures built up by A106 octahedra, too. The following values were determined: 1.94 A in nordstrandite (BOSMANS, 1970), 1.90 Á and 1.91 A in gibbsite ( S A A L F E L D and W E D D E ,

1974), and 1.90 A (2x) in bayerite ( Z L G A N et al. 1978). The structures of these three Al(OH)3 modifications are typical layer structures built up

by A106 octahedra arranged in sheets, and with a ratio AI.O = 1:3. Three common oxygen edges are characteristic of each octahedron. The ratio Al:0 in the comparable A106 octahedra sheets of the title compound is 8:22. It follows from this ratio, that two of the 22 oxygen atoms of the complex Al8022 layer are bonded to one Al atom only. The bond valence calculations for the oxygen atoms, bonded to Al atoms (cf. Table 6) confirm, that the atoms 0(66) and 0(83) in the notation by F A R K A S (1980) with v, values < 0.6 are O atoms of water molecules. An A18022 layer of this type is (to the best knowledge of the authors) unique in crystal chemistry. The mean Al-AI-distances in the layers of the AI(OH)3 polymorphs differ slightly from __ 2.89 Á ^(bayerite) to 2.92 A (gibbsite). Felsobányaite shows mean values from 2.82 A to 3.13 A.

TABLE 6 Bond valences (l')) for the aluminium bill noI sulfur bonded oxygen atoms in felsobdnyaite. The bond valence

parameter R,for AI-0 in equation Vi = exp [(RndJ/O.STJ is 1.651 (cf Bm-SicandO'Kmm:, 1991)

Atom v¡ Atom Vi

O ( l l ) 1.121 0(33) 1.457

0(12) 0.877 0(34) 1.460

0(13) 1.338 0(35) 1.106

0(14) 1.229 0(43) 1.011

0(15) 1.204 0(44) 1.284

0(16) 1.086 0(53) 1.201

0(22) 1.168 0(54) 0.748

0(23) 1.038 0(66) 0.458

0(24) 0.844 0(73) 1.255

0(26) 1.011 0(74) 1.148

0(31) 1.042 0(83) 0.568

11

Page 13: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

The connection of the AI06-octahedra - distorted hexagonal nets - determined in bayerite, gibbsite, and nordstrandite together with the individual identity periods are drawn in projections onto more or less the best plane of these layers (cf. Fig. /). Fig. 2 represents the arrangement of the A106 octahedra in felsobanyaite, which is quite different from the distorted hexagonal nets. The structures of boehmite ( C R I S T O P H et al., 1979) and diaspore ( H I L L , 1979) both with formula AIO(OH) are not discussed here because all the individual octahedra are interconnected by more than three common O atom edges.

Fig. I. The three AI(OH)3 polymorphs in a simplified graph showing the interconnection of the AIOfl octahredra and the individual identity periods, a) bayerite; b) gibbsite; c) nordstrandite.

12

Page 14: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig 2 The arrangement of AlOr, octahedra via common oxygen comers and edges to A U O 2 2 layers. A projection onto (100).

Q ) Q >

Fig. 3. The structure of felsobahyaite in a mixed technique projected parallel to [010] showing the Alg022-layers as well as the S0 4 tetrahedra and H 2 0 molecules (of which the 0 atoms are drawn as single balls).

13

Page 15: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Whereas in the Al(OH)3 polymorphs the layers are interconnected by hydrogen atoms with corresponding hydrogen bridges between adjacent layers, the motiv of layer interconnection in felsobanyaite or basaluminite is very complex. H 2 0 molecules and S0 4 groups are located between the individual layers, which are only bonded to each other by H atoms of hydrogen bridges. No clear system of bridges could be established, because it was not possible to determine the H atom positions by structure calculations. The Al8022-sheets, the arrangement of the isolated S04 tetrahedra and the O atoms of the H 2 0 molecules are visualized in a projection onto (010) in Fig. 3.

CONCLUSION

The identity of felsobanyaite and basaluminite as already assumed by P A P P and W E I S Z B U R G ( 1 9 8 9 ) and W E I S Z B U R G and P A P P ( 1 9 9 0 ) has been established. The identity of the two minerals based on the similarities in their morphology, physical properties (including optical and IR spectroscopical data) as well as the same chemical composition has been confirmed by the present single crystal structure determination and comparison on the structural data. Since the description of the mineral felsobanyaite given by K R E N N E R ( 1 9 2 8 ) is sufficient for the mineralogical characterization of a mineral species, and the structural identity of the two mineral samples has also been established, the name basaluminite is to be discredited (or used only as a synonym for microcristalline felsobanyaite). The original name felsobanyaite is to be regarded as correct for the basic aluminium sulfate mineral of composition Al4(SO4)(OH)|0.4H2O.

ACKNOWLEDGEMENT

One of the authors (F. L.) thank Dr. P.-E. W E R N E R , . Department of Structural Chemistry, Arrhenius Laboratory, University of Stockholm, for discussion and many helpful comments.

REFERENCES

BALL, D. F (1969): Basaluminite from Cambrian rocks near Harlech. Min. Mag. 37, 291-293. BANNISTER, F. A.-HOLLINGWORTII, S. E. (1948): Two new British minerals. Nature, London 162, 565. BOSNIANS, H. J. (1970): Unit cell and crystal structure of nordstrandite, Al(OH)3. Acta Cryst. B 26, 649-652 . BRESE, N. E.-O'KEEFFE, M. (1991): Bond valence parameters for solids. Acta Cryst. B47, 192-197. BRYDON, J. E.-SINGH, S. S. (1969): The nature of the synthetic crystalline basic aluminium sulphates as compared

with basaluminite. Canad. Mineral. 9, 644-654. CRISTOI'H, G. G.-CORBATO, C . E. -HOFMANN, D. A.-TETTENHORST, R. T. ( 1 9 7 9 ) : T h e crys ta l s t r u c t u r e o f

boehmite. Clays and Clay Minerals 27, 81-86. CLAYTON, F. (1980): Hydrobasaluminitc and basaluminite from Chickerell, Dorset. Min. Mag. 43, 931-937. FARKAS, L. (1980): A böhmit, az aluminit, a metaaluminit cs a basaluminit kristályszerkezeti jellemzőinek és azok

változékonyságának meghatározása. Thesis University Budapest. Libr. Hung. Acad. Sci., Budapest. FOMINYKH, N. Y. (¡965): Basaluminite from secondary quarzites in the Kalungisk deposits of the central Urals. Tr.

Inst. Geol. Akad. Nauk. SSSR, UraFsk Filial 70, 193-195. HAIDINGER, M. W. (1854): Über den Felsöbányt, eine neue Mineralspecies. Sitzungsber. Akad. Wien, 12, 183-190. HILL, R. J. (1979): Crystal structure refinement and electron density distribution in diaspore. Physics and Chemistry

of Minerals 5, 179-200. HOLLINGWORTH, S. E.-BANNISTER, F. A. (1950): Basaluminite and hydrobasaluminite, two new minerals from

Northamptonshire. Min. Mag. 29, 1-17.

14

Page 16: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

IBERS, J. A.-HAMILTON, W. C. (1974): International Tables for X-ray Crystallography, vol. IV. The Kynoch Press, Birmingham.

KENNGOTT, A. (1853): Mineralogische Notizen 9. Felsőbányt identisch mit Hydrargillit. Sitzungsber. Akad. Wien, 10, 294.

KOCH, S.-SARUDI, I. (1964): Data on felsőbányaite. Acta Miner.-Petr. Szeged, 16 ,49-53 . KRENNER, J. (1928): Mineralogische Mitteilungen aus Ungarn. 2. Beitrag zur näheren Kenntnis des Felsöbányaits.

Cbl. Min. Geol.Paläont., Abt. A, 138-140. MITCHELL, R. S. (1970): An occurrence of basaluminite in Maryland. Min. Record 1, 127-128. PAPP, G.-WEISZBURG, T. (1989): On the relationship of basaluminite and felsőbányaite. XIV congress CBGA

(Carpatho-Balkan Geological Associaton) Sofia, Bulgaria. Ext. Abstr. 65-68. PERTLIK, F. (1993): Chemische Analysen und röntgenographische Untersuchungen an Einkristallen des Minerals

Felsőbányait, AU(SO4)(OH)I0.5H2O. Ber. Deutsch. Miner. Ges., Beih. z. Eur. J. Mineral. 5(1), 177. SAALFELD, H.-WEDDE, M. (1974): Refinement ol ' lhc crystal structure of gibbsite. AI(OH).I. Z. Kristallogr. 139,

1 2 9 - 1 3 5 . SHELDRICK, G. M. (1976): SHELXL-76 Program for crystal structure determination, University of Göttingen. SPENCER, L. J. (1949): Eighteenth list of new mineral names. Min. Mag. 28, 722-742. SPENCER, L. J. (1957): Third supplementary list of British minerals. Min. Mag. 31, 787-810. SREBRODOL'SKIY, B. I. (1968): Basaluminite found for the first time in the USSR. Doki. Akad. Nauk. SSR 1980,

193-194 (in Russian). SREBRODOL'SKIY, B. I. (1970): New minerals present in the oxidation zone of sulfur deposits. Doki. Akad. Nauk.

S S R 190, 4 3 1 - 4 3 3 ( in R u s s i a n ) . SUNDERMANN, J. A.-Beck, C. W. (1969): Hydrobasaluminite from Shoals, Indiana. Amer. Mineral. 54, 1363-1373. TIEN, P.-L. (1968): Hydrobasaluminite and basaluminite in Cabaniss Formation (Middle Pennsylvanián)

southeastern Kansas. Amer. Mineral. 53, 722-732. WEISZBURG, T . - P A P P , G . ( 1 9 9 0 ) : O n the r e l a t i o n s h i p o f b a s a l u m i n i t e a n d f e l s ő b á n y a i t e . 15TH G e n . M e e t i n g I M A ,

Beijing, China. Abstr. Vol. 2, 713-715. WERNER, P.-E. (1964): Trial- and -error computer method for the indexing of unknown patterns. Z. Krist. 120, 357—

387. WERNER, P.-E. (1969): A foitran program for least squares refinement of crystal-structure cell dimensions. Ark.

Kemi 31, 523-551. WLESER, T. (1974): Basaluminite in Ihe weathering zone of Carpathian flysch deposits. Min. Polonica 5, 55-66. ZLGAN. F.-JOSWIG, W.-BURGER, N. (1978): Die Wasserstoffpositionen im Bayerit, Al(OH)?. Z. Kristallogr. 148,

255-273.

Manuscript received 26 June, 1997

15

Page 17: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Mmeralogica-Petmgraphica, Szeged. XXXVIII, 17-24, 1997

TIRODITE FROM GANGPUR GROUP OF ROCKS, INDIA

B. K . M O H A P A T R A 1 andB. R . N A Y A K '

Regional Research Laboratory

ABSTRACT

Manganese bearing amphibole is recorded in the Mn silicate-oxide rocks of Gangpur Group, India and is identified to be tirodite (Mn-cummingtonitc) with the composition [Mg4.65-4.08, Fe».31-0.01;, Mn2.04-1.73, Cao.i<M>.i3, Nao.42-o.37] [OH/Si4Oii]2. Tirodite, coexisting with rhodonite, occurs without carbonate and pyroxene and developed in a low and unbuffered Xco2 system with XMH < 0.32. Appreciable hematite in the assemblage and Fe in tirodite structure attests to an iron rich bulk composition and intermediate fo2 in the amphibolite facies condition.

I N T R O D U C T I O N

Tirodite, a manganese bearing amphibole, was first described and named by D U N N and ROY (1939) from Tirodi Mn-deposit in India. It was subsequently reported from a number of metamorphosed Mn-deposits of the world such as Nsuta, Ghana ( J A F F E et al.; 1961), Buritirama, Brazil ( P E T E R S et al., 1977), Balmat, U.S.A. ( P E T E R S O N et al., 1984): Precambrian Sausar Group of rocks containing this variety of Mn-amphibole are reported from Chikla (Bhandara dist., Maharastra), Tirodi (Balaghat dist., Madhya Pradesh) and Mansar-Kandri (Nagpur dist., Maharastra) manganese deposits in India ( D A S G U P T A et al., 1988). Similarly, the presence of tirodite from Gangpur Group, India was first reported by

C H A T T E R J E E (1964). But detail characteristic of this mineral from Gangpur Group of rocks has not been recorded so far. The present note describes the distinctive properties and chemistry of the Mn-amphibole from Goriajhar area in Gangpur Group of rocks with a view to discuss the prevailed metamorphic conditions of the mineral.

GEOLOGICAL SETTING

The manganese belt of Goriajhar area belonging to the Precambrian Gangpur Group of rocks (1700-2000 Ma) occurs over a strike length of about 10 km in the west central part of Sundargarh district of Orissa (Fig. I) and forms a part of Survey of India Toposheet No. 73 B/4. It comprises a volcanic free syn-sedimentary sequence of metapelites and metapsamites which are metamorphosed upto amphibolite facies. This sequence is well known for the occurrence of manganese oxide ores that are interstratified with Mn silicate rocks (ROY, 1966; 1981). Supergene alteration process enriched the manganese concentration and formed these units into workable deposits which were exploited from 1907 to 1933.

1 Bhubaneswar, India

17

Page 18: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr
Page 19: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Hg. 2. Tirodite ( I d) crystals occurring as clusters in a rhodonite (Rd) base Black crystals are hematite.

h g . j . A largo elongated grain ol tirodite (I d) along with small prismatic crystals (top right corner) sharing irregular boundary with rhodonite and hemalite (black). The other hazy phase is rhodonite. Note the fibrous growth of tirodite

(>•) at its one end.

19

Page 20: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

The manganese bearing rocks can be differentiated into three major types on the basis of predominant manganese bearing minerals: i) Mn silicate, ii) Mn silicate-oxide and iii) Mn silicate-carbonate-oxide rocks. All these manganiferous members are conformably interstratified with phyllites, mica schists and metacherts and show imprint of identical metamorphic history (850 Ma). The Mn silicates recorded in the area belong to garnet, pyroxene, pyroxenoid, amphibole, mica and olivine families. Tirodite, the only Mn-amphibole recorded, forms a part of the Mn silicate-oxide facies of rocks.

PETROGRAPHY OF TIRODITE

Tirodite is found to be associated with the Mn silicate-oxide rocks. However, in the field it is not distinguishable from other silicates. The mineral was identified from micro-scopic observations supported by X-ray diffraction studies. Tirodite looks pale yellow-green under transmitted light and pleochroic from greenish-yellow to dark greenish-brown colours. It is anisotropic and shows high order interference colours. The extinction angle varies between 15 to 21 degrees but most commonly it is 19 degrees. The crystals show varied shape (spindle, prismatic, needle like, bladed) and sizes (10-300 |im) and occur as isolated grains or in clusters (Fig. 2). Transverse fractures are recorded in many grains and replacement by secondary oxides (mainly cryptomelane) is prominent in the fracture and cleavage planes. The other coexisting silicate members are rhodonite and quartz. Hematite, with exsolved pyrophanite, is the single oxide phase associated with it. Baryte is recorded in traces. The mutual contact between tirodite and hematite appears irregular. Tirodite, generally, occurs scattered in a rhodonite base. However, inclusions of rhodonite and hematite within tirodite are also recorded. Often larger tirodite crystals develop a fibrous structure due to alteration and show irregular grain boundary with rhodonite (Fig. 3). The XRD pattern of tirodite and its associated members are shown in figure 4.

MINERAL CHEMISTRY

Electron microprobe analyses of tirodite crystals (Table 1) show MnO content ranging from 14% to 17% with an average of 15%. MgO (19 to 22%) is always found at a higher concentration level than MnO. Fe203 in tirodites, though remains below 4%, varies within limits of 2.6 to 4%. The maximum Na and Ca content recorded are 1.51% and 1.23% respectively, which are relatively low in comparision to tirodites reported elsewhere (ROY and M L T R A , 1 9 6 4 ; Y U 1 et al., 1 9 8 9 ) . The low substitution of Fe3+, Ca, and Na etc. in the structure results in a higher manganese value in Goriajhar tirodites.

The compositions of Goriajhar tirodites are plotted in the triangle Mg-Fe-Mn and have been compared with the results of K L E I N ( 1 9 6 6 ) and Yui et al. ( 1 9 8 9 ) (Fig. J).

DISCUSSION

The Mn-amphibole in Gangpur Group of rocks, India occurs only in Mn silicate-oxide assemblage. Microscopic and XRD observations support the Mn-amphibole to be tirodite/Mn-cummingtonite. The chemistry of mineral species confirms the identification. L E A K E ( 1 9 7 8 ) has indicated the limits of use of tirodite as Mn/(Mn+Mg+Fe2+) > 0 . 1 0 and Mg > Fe . The Mn/(Mn+M g+Fe") value of Goriajhar tirodite has been found to be > 0.25,

20

Page 21: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Q,Rd,Bo

Td, Rd

Td

Td Td , Hm

Hn>Td

w

Td I Hm

Td

\Jv

Bo,Q

Td

Ba

Td»Q Rd,Q

Td

Hm

Rd,Bo

Td,Hrr To

Q, Rd

Rd - Rhodonite

Q - Quartz

Hm- Hematite

Td - Tirodite

Ba - B a r y t e

Rd

I 1— 7 0 66

Cu K O L

— r ~ 62

1 1 T "I r 5 8 5 4 5 0 4 6 42

"1 I I I 1 3 8 34 3 0 26 2 2 18 14 10 6

2 9

Page 22: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 4

Eleclronprobe microanalysis (EPMA) of tirodite. Goriajhar, Cangpur Group, India.

t 2 3 4 5

S i O 55.02 54.11 55.78 56.03 55.41

AbOi 0.55 0.27 0.18 0.27 0.22

FeiOi 2.96 4.00 2.80 2.99 2.60

MnO 14.57 16.08 16.80 17.00 16.57

MgO 22.22 21.04 19.29 19.53 19.02

CaO 0.84 1.07 1.12 1.18 1.23

NaiO 1.36 1.48 1.33 1.24 1.51

H , 0 (calc.) 2.14 2.13 2.09 2.11 2.08

Total 99.66 100.18 99.39 100.35 98.64

On the basis of 15 cations Si 7.720 7.625 7.979 7.945 7.973

AI 0.091 0.045 0.021 0.045 0.027

Fe3+ 0.189 0.330 - 0.010 -

Total 1 8.000 8.000 8.000 8.000 8.000

Mg 4.647 4.419 4.113 4.129 4.079

Ca 0.127 0.162 0.172 0.179 0.190

Na 0.370 0.405 0.369 0.341 0.421

Fe ,+ 0.124 0.094 0.301 0.309 0.281

Mir1+ 0.246 0.311 0.059 0.032 0.130

Mn2+ 1.486 1.609 1.977 2.010 1.889

AI - - 0.009 - 0.010

Total 2 7.000 7.000 7.000 7.000 7.000

Mg End Mb. 66.39 63.13 58.76 58.99 58.27

Mn End Mb. . 21.23 22.98 28.24 28.71 26.99

Ca End Mb. 1.81 2.31 2.46 2.56 2.71

Na Fe3+ End Mb. 3.54 2.69 8.60 8.83 8.03

Na Mn3+ End Mb. 7.03 8.89 1.68 0.91 3.71

Na AI End Mb. - - 0.26 - 0.29

M n 7 S i e 0 2 ^ 0 H ) 2

Mn

Fig. 5. Compositional plots of tirodite in the triangle Mg-Fe-Mn; Closed circle ( • ) : Goriajhar, Gangpur Group, India, Closed square ( • ) : Southwestern Labrador (KLEIN, 1966), Star ( • ) : Eastern Taiwan (YUI et al., 1989).

22

Page 23: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

which is above the theoretical lower limit given by L E A K E (1978) and MgO content (19 to 22%) is more than FeO (2 to 3 . 6 % ) . Goriajhar tirodite is similar to tirodite of eastern Taiwan and differs from the Mn-amphibole of Southwestern Labrador in its chemical composition (Fig. 5).

H U E B N E R ( 1 9 8 6 ) indicated that in Mn-amphibole structure, Mn occupies sites other than M(4). The Mn-amphibole in the present case generally shows (Table 1) a structure where Mn is mostly greater than 2 (out of the total of 15 cations) and this corroborates the observation made by H U E B N E R ( 1 9 8 6 ) . This amphibole thus corresponds to Mn-cummingtonite which has been equated to the varietal name tirodite by L E A K E ( 1 9 7 8 ) .

In contrast to the Sausar Group of rocks, India, where Mn amphibole is present mainly in the silicate-carbonate rock and locally in the silicate-oxide rock ( D A S G U P T A et al., 1988), the Mn amphibole in Gangpur Group has been recorded only from the latte assemblage so far. Moreover, rhodonite coexists with tirodite in contrast to pyroxmangite. Presence of appreciable hematite in the assemblage attests to an iron-rich bulk composition. At the same time, the non-appearance of magnetite indicates that the ambient /o2 was above the HM buffer, thus restricting iron to the trivalent state.

The stability of coexisting tirodite and rhodonite was inferred through possible mineral reactions. It is apparent from the modal abundance of different phases in the assemblage that they evolved in rocks which can be represented by Mn-Mg-Fe-(Ca)-Si fluid system. The stabilization of tirodite alone from a bivalent cation-bearing residual unbuffered low to intermediate Xco2 assemblages with A^,, > 0.35 have been inferred by DASGUPTA et al. ( 1 9 8 8 ) and H U E B N E R ( 1 9 8 6 ) . In this context it is worth recording that tirodite-rhodonite pairs at Goriajhar have been stabilized with A""Mn = 0.26 to 0.32 in a single assemblage. Absence of any pyroxene mineral in this association evidently indicate both low and unbuffered Aco2 in the fluid phase during amphibolite fades condition that inhibit the development of pyroxene. The co-existing rhodonites have a maximum CaO of 3.48%. The association of low calcic pyroxenoids in the absence of any carbonate mineral, is also suggestive of a lowXco2 situtation (DASGUPTA et al., 1988) for these tirodites.

CONCLUSIONS

The results of the present study demonstrate that the Mn-bearing amphibole in Gangpur Group of rocks, India in general and Goriajhar Mn-deposit in particular, is tirodite (Mn-cummingtonite) having A'M,, (= Mn/Mn+Mg+Fe) less than the theoretical upper limit of 0.35. The general composition of tirodite in Mn silicate-oxide assemblage is observed to be [Mg4 6 5 _4 . 0 8 , Fe0.3i-o.o9, Mn2 04_173, Ca0.,9-0.13, Na0 .42_0 .37] [OH/Si4On]2. Further, the stability of Mn-amphibole and low calcic pyroxenoid pair is influenced by low and unbuffered Aco2 situation and are metamorphosed up to amphibolite facies in an intermediate fo2 condition.

ACKNOWLEDGEMENTS

The authors wish to record their gratitude to Prof. Dr. A. MUCKE, Mineralog. Petrolog. Institut, Gottingen, Germany for the electron probe support and Dr. R. K. SAHOO, R. R. L., Bhubaneswar for some fruitful discussions. Thanks are also due to S H R I P. K. S W A I N , Sr. Geologist, Geol. Surv. of India, for his help during the field visit. Director, RRL,

23

Page 24: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Bhubaneswar is acknowledged for his permission to publish this paper. One of the authors (BRN) is grateful to CS1R, India for a research fellowship.

REFERENCES

CHATTERJEE, P. B. (1964): Geology of the eastern extremity of Gondites and associated rock types in and around Ghoriajor, Sundargarh Dt., Orissa. Unpublished M. Sc. Thesis, Jadavpur University, Calcutta, India.

DASGUPTA, S. , BHATTACHARYA, P. K.., CHATTOPADHYAY, G . , BANERJEE, H. , M A J U M D A R , ' N . , FUKUOKA, M . and ROY, S. (1988): Petrology of Mg-Mn amphibole-bearing assemblages in manganese silicate rocks of the Sausar Group, India. Mineral. Mag. 52, pp. 105-111.

DUNN, J. A. and ROY, P. C. (1939): Tirodite, a manganese amphibole from Tirodi, Central Provinces. Rec. Geol. Surv. India, 73, pp. 295-298.

HUEBNER, J. S. (1986): Nature of phases synthesized along the join (Mg, Mn)?Si->Or,. Amer. Mineral. 71, pp. 111-122.

JAFFE, H. W., GROENEVELD, M. W. O. J. and SELCHOW, D. H. (1961): Mamganoan cummingtonite from Nsuta, Ghana. Amer. Mineral. 46, pp. 642-653.

KLEIN, C. (Jr.) (1966): Mineralogy and petrology of the metamorphosed Wabush Iron Fromation, Southwestern Labrador, Journ. Petrol., 7, pp. 246-305 .

LEAKE, B. E. (1978): Nomenclature of amphiboles. Canad. Mineral., 16, 4, pp. 501-520 . PETERS, T . , VALARELLI, J . , COUTINHO, J . M . V . , SOMMERAUER, J . a n d RAUMER, J . ( 1 9 7 7 ) : T h e m a n g a n e s e

deposits of Buritirama (Para, Brazil). Schweiz mineral Petrogr. Mitt., 57, pp. 313-327 . PETERSON, E . U. , ANOVITZ, L. M . a n d ESSENE, E . J. ( 1 9 8 4 ) : D o n p e a c o r i t e , ( M n , M g ) M g S i i O r , , a n e w

orthopyroxene and its proposed phase relations in the system MnSiO,-MgSiOi-FeSiO, . Amer. Mineral. , 69, pp. 472-480 .

ROY, S. (1966): Sygenetic manganese formations of India, Jadavpur University Publicaton, Calcutta, 219p. ROY, S. (1981): Manganese deposits. Academic Press, London, 457p. ROY, S. and MITRA, F. N. (1964): Mineralogy and genesis of the gondites associated with metamorphic

manganese ore bodies of Madhya Pradesh and Maharastra, India. Proc. Nat. Inst. Sci., India, 30, 3, pp. 3 9 5 ^ 3 8 .

Yui, T. F., LO, C. H. and LEE, C. W. (1989): Mineralogy and petrology of metamorpho-sed manganese-rich rocks in the.area of Santzan river, eastern .Taiwan, Neues Jahrb. Miner. Abh., 160, 3, pp. 2 4 9 - 2 6 8 .

Manuscript received 10 February, 1997

24

Page 25: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Mineralogica-Petrographica, Szeged. XXXVUl 25-36, 1997-

EFFECTS OF COPPER-ADSORPTION ON THE LINE-PROFILE OF FIRST BASAL REFLECTION OF MONTMORILLONITE

A N D R E A N . Kiss1, M Á R I A T Ó T H ' , M O N I K A T A K Á C S 2 , B A L Á Z S M O R V Á I 2 " 3 , Z Ó L T Á N

W I E S Z T '

1 Laboratory for Ceochemical Research, Hungarian Academy of Sciences 2 Department of Soil Science and Water Management, Horticultural and Food Industrial University 3 Research Institute for Soil Science and Agricultural Chemistry, Hungarian Academy of Sciences

A B S T R A C T

Montmorillonite containing mostly Ca as interlayer cation was used for examining the effects of copper-complex forming and adsorption on the surface of montmorillonite. Exchangeable cations were replaced with ammonium (NH4+) and sodium (Na+) ions, thus getting monoionic montmorillonite-forms.

Copper sorption on mineral surface may include several processes with different characteristics. In case óf montmorillonite ionexchange in the interlayer region and complexation on the surface hydroxyl groups can be taken into account. The Cu-uptake analysed by Langmuir's adsorption isotherm is the sum of these metal binding reactions.

Starting pH was 4.5 and equilibrium pH was observed. Different concentrations of solutions of CuSOj from 0 to 1400 ppm were used.

The place and profile of X-ray diffraction basal reflection d(xn of montmorillonite is very characteristic and depends on the features and amount of adsorbed cation and water:

As to the X-ray diffraction line-profile analysis, in the function of adsorbed amount of copper a significant change occured in crystallite size (size of domains coherently scatter X-rays) and degree of deformation even in half-width of the first basal reflection. Our result is that half-width (signed as SmC) does not but the other two variables does indicate the adsorptional process well and their variance correlate with on the adsorption isotherms.

Key words: montmorillonite, copper, adsorption, intercalation, XRD, domain size, deformation.

INTRODUCTION

Copper in soil originates from geological, industrial and agricultural processes, but agricultural origin is more considerable. As a bioessential microelement it is very important, but copper can be even toxic if its concentration is too high. Plants take copper up from the soil (by creating acidic agent where copper-hydroxydes are moveable) thus this element finally gets into the body of human being through food chain. From environmental point of view adsorption processes in the soil can be useful specially near chemical factories because they may not allow copper to get into ground water.

' Budaörsi út 45., Budapest 11-1112, Hungary 2 Villányi út 29/35, Budapest H-l 1 IS, Hungary 3 Herman Ottó út 15., Budapest H-1022, Hungary

25

Page 26: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

As the adsorption occurs through clay minerals the more we know about these processes the easier we can avoid environmental contamination. Adsorption of copper was examined on the surface of different forms of montmorillonite as it is an- important compound of soil.

Character of adsorptional processes depends on pH. Effects of pH and complex formation on the uptake of Cu-ions by Ca-montmorillonite has been investigated formerly. A comprehensive description of clay-metal interaction must include both ion exchange and surface complexation. Copper is sorbed through coordination to surface hydroxyl ions at the edges of the clay and by sorption, at negative sites on the mineral faces ( F A R R A H and P I C K E R I N G , 1 9 7 6 ) .

SPOSITO ( 1984 ) distinguished between two main processes: speci f ic adsorption (complexation on surface hydroxyl groups formation o f inner sphere complexes ) and unspecif ic adsorption (ion exchange at negative sites - outer sphere complexation) .

In water-clay systems the reactions are pH-dependent because H+ like any other cations available in recent solution competes for every possible binding sites with copper.

STADLER and SCHINDLER (1993) found that in the range of pH 3.5-4.5 mainly ion exchange occurred in the interfacial region of Ca-montmorillonite. The pH-dependent adsorption began at pH 4.5 and became more and more important at pH>5.5 based mainly on surface hydroxyls. Copper forms mainly CuOH+ at higher pH.

Further, depending on pH copper exists and can be sorbed in the form of hexa-aqua and penta-aqua-hydroxy species ( K O P P E L M A N , 1977).

Character of adsorption of different cations and number of water-layers existing in the interlayer-space are determined by the charge and size of the ion. Montmorillonites with different cations in the interlayer-space may have different interlayer distance (shown by DOOI of X-ray diffraction pattern) ( M A C E W A N and WILSON, 1980). Changes of the distance and line profile of basal reflection (001) may indicate some processes occurring in the structure during adsorption. Adsorption creates new conditions in the structure of montmorillonite. This process can be observed by the two data: domain size and lattice strain. In this work authors examine changes of structure of montmorillonite during intercalation process, and changes of half-widths (SmC), domains sizes and deformation in the function of Cu-intercalation. Understanding intercalational processes can promote a better knowledge of structure of montmorillonite and other clay minerals as adsorption mostly takes place in the interlayer space.

M E T H O D S

MATERIAL STUDIED. The material used for examination of the effects of copper-adsorption on montmorillonite is a bentonite from the locality of Istenmezeje, NE Hungary. This bentonite is a Wyoming-type bentonite.

Mineral composition of bentonite: montmorillonite 90% cristobalite 8% quartz 2% Chemical composition of bentonite (from Istenmezeje): Major components: SiO, A1,03 Fe203 MnO MgO CaO K 2 0 N a 2 0

(%) 59.95 12.65 2.00 0.01 3.16 1.75 0.31 0.15

2¡6

Page 27: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Minor components: Cu (ppm) 200

Basal reflection (001) of layer silicates is very characteristic. Montmorillonite • of •bentonite from Istenmezeje has a 15.5 Á basal spacing. Treating with ethylene gylcol

causes a swelling toT7.0 A. (Fig. I.) • •

Bentonite from Istenmezeje (NE Hungary)

Fig. I. Dilfractograms of bentonite from Istenmezeje (NE Hungary), original and glyeolated (M=montmorillonite, CI=cristobalite)

SAMPLE PREPARATION. The <2nm fraction has to be used for-preparation of monoionic minerals. Thus, bentonite sample was ground in grinding mill (Pulverisette-2) for 5 minutes. Grinding should not have been continued because mechanochemical acti-vating shatters the structure and examination of the original structure is required ( T O T H , 1980). The <2 ^m fraction was prepared using settling tubes filled with destilled water. -

. Mineral composition of the <2 jim fraction: montmorillonite 92% cristobalite 8% Mineral composition of original material and of the <2 pm fraction is practically the

same. The <2 urn fraction of bentonite was washed with IN NaCI at 25°C to prepare'a Na-

monoionic form. Then solution was removed and washing was repeated 3 times with IN NaCI again ( F A R R A H and PICKERING, 1 9 7 6 , T O K A R Z and SHABTAI, 1 9 8 5 ) .

NH4-inonoionic form was prepared in similar way with IN NH4C1 ( T O K A R Z et al., 1985). •• : -

After ion exchange CI~-ions were washed out with deionized water, centrifugated and washed out with deionized water again. This process was repeated until we could find no more Cf-ions in the in the solution. The samples were dried at 40°C for 24-36 hours.

• X-RAY'DIFFRACTION (XRD). For qualitative arid"quantitative analysis; domain-size and deformation calculations of materials X-ray'diffiaction has been used. Measurements were performed with a Philips PW-1710 diffractometer. (Table 1.)

27

Page 28: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 4 Instrumental conditions and measurement procedure

Equipment Diffractometer PW-1710 Radiation Cu Ka, 35 mA, 45 kV Slits divergence slit 1°, detector slit 0.2 mm, graphite monochromator Counter Proportional counter Goniometer routine measurement:

3 -70 ° 2 0 0.05° increment 1 sec. basal reflection (001) (for calculation of domain size, lattice strain): 3 -10 or 4 - 9 ° 2 0 0.01° increment 1 sec.

Computer IBM 486 DX Software APDPW-1877 3.5B version K.ct2 not stripped SmC (Smectite Crystallinity) measured from the unresolved 12-15 A complex Domain size calculated with variance- and Voigt-analysis Lattice strain calculated with variance- and Voigt-analysis

ADSORPTION ISOTHERMS. The monoionic montmorillonite-forms were equilibrated with 20 different concentrations of CuS04-solution from 0 to 1400 ppm. Starting pH was 4.5. Three parallel series were made for controlling adsorption data. Samples were stored at 25°C for 48 hours (shaked twice). We assumed that our system nearly reaches equilibrium within this period and further uptake can be neglected. We got this conclusion by previous studies ( G A R C I A - M I R A G A Y A et al., 1 9 8 6 , P U L S and B O H N ,

1 9 8 8 ) . The solid material was filtered and dried at 2 5 ° C . The simple way to examine the total amount of adsorbed metals is the analysis of

adsorption isotherms [plotted adsorbed amounts (mol/kg) vs. equilibrium metal concentration of solution (mol/dm3)]. (Equilibrium concentrations of the solutions were measured with atomic absorption spectrophometer Varian 10 AAS). This method cannot distinguish between different forms of adsorbed metal but gives special parameters related to the binding process itself applying relevant mathematical equations. We have chosen Langmuir-equation in spite of the fact that it is basically contributed to systems in which the binding sites of the surface are homogenic and the enthalpy remains the same during the sorbent uptake because statistical analysis of the experimental data based on it give average values of adsorption maximum (b) and binding energy (log K).

CHEMICAL ANALYSIS. Chemical composition of the original sample and of those treated with different concentrations of CuS04-solutions was analyzed by atomic adsorption spectroscopy (PERKIN ELMER 5000 AAS).

CALCULATION OF DOMAIN SIZE AND DEFORMATION. Montmorillonite (smectite) crystallinity index (SmC) is the calibrated width measured at half-height of the X-ray diffraction (001) basal reflection of smectite.

Connection between the degree of Cu-intercalation and SmC in different monoionic montmorillonite forms was examined. Value of SmC depends on a combination of different factors: instrumental effects, crystallite size (mean/effective size of the domains that scatter X-rays coherently, or effective thickness.in case of layer silicates) and the

28

Page 29: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

various kinds of lattice imperfections, e.g. lattice strain or lattice distortion (K.LUG and A L E X A N D E R , 1 9 7 4 ) .

There are several methods for calculating the effects of crystallite size and lattice strain by analyzing XRD line profiles. The following examinations were accomplished with variance analysis (WILSON, 1963, ÁRKAI and TÓTI-I, 1983, 1985, TÓTH, 1980) and Voigt method ( L A N G F O R D , 1 9 8 7 , Á R K A I et al. 1 9 9 6 ) .

FORMER INVESTIGATIONS. Original Ca-montmorillonite of bentonite (from Istenmezeje) treated with Cu was investigated from the point of changes in line profiles of basal reflection (001).

Original Ca-montmorillonite treated with four different concentrations of CuS04-solution show that adsorption of copper causes collapse in the structure of Ca-montmorillonite and line-broadening. Collapse means a decrease in basal spacing, from 1 4 . 7 1 to 1 2 . 7 5 Á . (Fig. 2.)

Ca-montmorillonite (001) treated with copper

Fig. 2. XRD basal reflections (001) of original bentonite from Istenmezeje treated with 0, 100, 500, 1000 ppm CuSOj-solution

RESULTS AND DISCUSSION

The two different montmorillonite-forms (Na- and NH4-forms) have different character during and after adsorption of copper. The reason is that a pre-treatment was applied on the original montmorillonite so as to create Na- and NH4-forms thus adsorption of Na and NH4 may have intervened in the structure in advance. This difference appears in adsorptional and structural characteristics.

The adsorptional processes can be well described by adsorption isotherms. Using .the Langmuir adsorption isotherm (it was followed by the experimental data in both cases) we evaluated log K (indicating the affinity of binding sites for metal cations) and b (the maxima of adsorption) values of the processes. These parameters cannot be regarded as absolute values but are sufficient to establish comparison between adsorption processes.

29

Page 30: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

pH was also measured in equilibrium solutions. After adding bentonite to solutions of pH=4.5 and different Cu-concentrations the value of equilibrium pH was in a range of 7.5^4.5. Because of the competition between Cu2+- and H+-ions the higher is the Cu-uptake the lower is the measured pH in solution. .

Cu-concentration (ppm)

Fig. 3. Changes in half-width of basal reflection (001) o f N a - and NHI-montmorillonites treated with 0 -1400 ppm CuS04-solution

Changes of half-width of basal reflection (001) can be observed in case of both montmorillonite-forms. (Fig. 3.) But as it is only one (and not the most significant) indicator for changes of structure more significant variables should be found for representing these changes. Size of domains coherently scatter X-rays and deformation (lattice strain) tends to be suitable for characterizing structural changes.

First a comparison follows between the Na- and NH4-forms from the point of adsorption and structural changes (half-width, domain size and lattice strain), then we try to correspond results obtained from different methods.

TABLE 2 Wyoming-type montmorillonite (MACEWAN and WILSON, 1980)

Interlayer cation 32% rel. humidity 52% rel. humidity 79% rel. humidity

Na+ 12.5 Â 12.5 A 14.8 Â (broad)

NH4+ 11.7Â 11.7 Ä (broad) 11.9 A

Ca2+ 15.2 Ä 15.1 A 15.5 A

30

Page 31: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

"S 0.25 T

0.005 0.01

Molarity (mol/dm*3)

0 .015

o 0 .25 t

0 .002 0.004 0.006 0 .008

Molarity (mol/dm*3)

0.01 0.012

Fig. 4. Cu-adsorption isotherms for Na- and NH4-form montmorillonites

NA-FORM MONTMORILLONITE

. The adsorption isotherm of Na-montmorillonite shows a sudden saturation. At low initial concentrations of Cu nearly the whole amount of sorbent .was taken up. Then the very steep slope of the curve changes rather sharply and becomes nearly linear and horizontal. It means that increasing of equilibrium concentrations the amount, of sorbed Cu remains the same. The calculated value of log K was .4,54 which shows quite,a strong binding. The adsorption capacity (b=0.195 mol/kg) is very close to the experimental.value of maximum adsorption (0.21 mol/kg). so the system can be considered to be saturated. (Fig. 4.) "

' In general, the binding sites of Na-montmorillonite had a great affinity, for Cu" cations and the maximum adsorption was reached very fast (at 500 pprn). .,

31

Page 32: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Na-montmorillonite (001) treated with copper

Basal'reflections (001) of XRD-patterns of Na-montmorillonite treated with CuS04-solutions of 3 different concentrations show that adsorption of copper on Na-montmorillo-nite does not cause significant changes in basal spacing, it remains around 12.7 A. The basal spacing of Cu-form montmorillonite is almost equal to that of the Na-form (Table 2), thus adsorptional process cannot be followed by this parameter but a line-broadening can be observed during adsorption. Half-width indicates some changes in structure but on the basis of half-width only a small transformation of structure could be suspected. (Fig. 5.)

In case of Na-montmorillonite a quite fast decrease then a slower increase in domain size can be observed as Cu-concentration increases (Table 3). Deformation has an opposite change of direction deformation increases first, then it decreases. Changes are variable, and stabilization cannot be observed even at higher concentrations. The smallest domain size and the strongest deformation is at 300 ppm. (Fig. 7.)

Results obtained by chemical analysis show that Cu-uptake is fast at the beginning (Cu-amount is 0.76% at 180 ppm of CuS04 , 1.65% at 400 ppm and 2.08 % at 1400 ppm), and adsorption does not continue so fast after that. Na-leaving is most significant also between 180 and 400 ppm (Na20-concentration is 2.16% at 60 ppm, 1.7% at 180 ppm, 0.77% at 400 ppm, and 0.47% at 1400 ppm of CuS04-solution).

A kind of correlation can be observed between changes of domain size and deformation and results of adsorption isotherms. When Cu starts to enter the structure of Na-montmorillonite, particles begin to separate easily at low concentrations, Cu can be gradually bound to the binding sites of the mineral and Na releases first from the edges of particles then from the space between layers. When domain size is large and deformation is weak, copper ions are bound mostly to the edges of particles. When domain size is the smallest and deformation is the strongest Cu-ions begin to enter the layer-space of montmorillonite.

Rebuilding (domain size increase) starts at 300 ppm, earlier than mineral reaches saturation on copper. After decay (when domains have the smallest size) montmorillonite

32

Page 33: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

can uptake a little more copper' but at 500 ppm Gu-concentration practically reaches saturation. The reason may be that copper-uptake causes a disordering among domains (domains become smaller) thus strong connection of layers does not prevent further Cu-uptake to binding sites of interlayer space. After that, layers can rebuild (order) again, but Cu continues'to be adsorbed oh the more and more ordered layers until saturation. The ordering process is slow and no stabilization can be seen in domain size and deformation even at the highest concentration of our work.

The process points to change from a disordered structure beginning at low concentration to a quasi ordered one.

NH4-FORM MONTMORILLONITE

On the surface of NH4-montmorillonite saturation occurs more gradually. The first part of the adsorption isotherm is also very steep but then the slope of the curve changes slowly. The log K (3.38) is significantly lower then in case of Na-form, b is very similar (0.212 mol/kg). The last part of the isotherm seems to have linear character with a rate higher than zero. This could happen because of loss of other Cu2+-ions from the solution. 0Fig. 4.)

In comparison with Na-form NH4-montmorillonite saturated more gradually at higher equilibrium concentration of Cu and the connection between copper and binding sites was not so strong.

NH4-montmorillonite (001) treated with copper

Fig. 6. XRD basal reflections (001) of NH4-montmorillonite treated with 60, 600 and 1400 ppm CuS0 4 -solution

Adsorption of copper on NH4-montmorillonite does not cause a change in basal-spacing practically. It can be seen from basal reflection (001) of XRD-pattern. In case of NH4-form and Cu-form montmorillonites basal spacing is almost equal (Table 2), but line-broadening shows an intensive tranformation in the structure of montmorillonite. Changes

-> -> J J -

Page 34: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

in half widths of basal reflections (001) are quite significant in case of NH4-montmorillonite. (Fig. 6.)

Domain-size and deformation show considerable effects (Table 3). Decreasing of domain size is quite slow and starts at concentration of 400 ppm. Deformation shows similar but opposite effect, starting to increase quite slowly. The smallest domain size and strongest deformation is at the concentration-range between 400 and 600 ppm. NH4-montmorillonite shows a faster ordering after saturation than Na-form. Above 1000 ppm domain size and deformation practically remain the same. (Fig 7.)

Results obtained by chemical analysis show that at 1400 ppm CuS04 concentration 0.24% NH4-ions remained in the structure and that Cu-uptake is quite fast below 400 ppm (amount was 0.25% at 40 ppm of CuS04, 0.58% at 140 ppm, 1.28% at 400 ppm and 1.77% at 1400 ppm). Copper concentration does not increase too much at higher concentrations and saturation cannot be observed even at 1400 ppm.

We tried to find some reasons for the considerable effects of changes in domain-size and deformation of NH4-montmorillonite. At the beginning of treatment copper tries to replace ammonium-ions. As montmorillonite has a great affinity for ammonium-ions ( F A R R A H and PICKERING, 1976) Cu cannot build in the structure easily, a competition begins between the two ions. When copper concentration is high enough copper starts to build in montmorillonite and domain size starts to decrease. Montmorillonite consisting of smaller particles has a larger specific surface thus more and more copper can be adsorbed on the mineral surface with domain size decrease. In the intermediate state when domains are the smallest and deformation is the strongest copper ions are not tied regularly yet and certain amount of NH4 remains in the structure. That is why domains cannot be connected to each other. At 600 ppm domain size increase begins (rebuilding starts). Cu-adsorption continues until saturation (that cannot be observed at these concentrations). Disordering and rebuilding are well shown by the change of domain-size and deformation.

Domain size(NH4-montmorillonite) Domain size (Na-montmorillonite)

5 150 4 © I "5 100 c | 50 o O oJ-

0 ' 500 1000

Cu-concentration (ppm)

1500 500 1000

Cu-concentration (ppm)

1500

Strain (NH4-montmorillonite) Strain (Na-montmorillonite)

* c 5

v>

500 1000 Cu-concentration (ppm)

1500

c «

500 1000 Cu-concentration (ppm)

Fig. 7. Changes in domain size and deformation /in the direction of Na- and NHj-montmorillonites treated with CuS04-solution

34

Page 35: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

CONCLUSION

SmC indices of monoionic montmorillonites treated by CuS04-solution are good indicators discribe the intercalation process (during adsorption). Correlation between formation of a quasi ordered structure form a disordered (amorphous) structure and half-width changes (increase and decrease) can be well detected particularly in case of NH4-montmorillonite. Tendency is similar in case of Na-montmorillonite, but changes are not so considerable. The determination of the two parameters (domain size and lattice strain) influencing half-width gives further opportunity to specify results. When SmC indices do not change significantly, the values of domain sizes and strain show considerable differences. Therefore, the knowledge of these parameters may promote the interpretation of sorptional processes.

TABLE 3 Domain sires and deformation of Na- and NHj-montmorillonites

N H 4 -form N a-form

Cu-c one. Half-width Domain Strain Cu-conc. Half-width ' Domain Strain

(ppm) (degree) size (A) (%) (ppm) (degree) size (A) (%) 0 0 . 7 6 6 5 1 3 2 1 .31 0 0 . 9 0 8 9 • 131 2 . 0 6

10 0 . 7 3 3 7 1 6 0 1 . 6 8 10 0 . 9 5 2 7 1 5 9 1 . 2 9

2 0 0 . 7 4 4 6 1 5 9 1 . 6 3 2 0 0 . 9 3 0 8 145 1 . 6 9

4 0 0 . 7 6 6 5 1 4 9 1 . 7 9

6 0 0 . 7 4 4 6 1 5 7 1 . 7 2 6 0 1 . 2 5 9 3 1 1 4 1 . 9 6

1 0 0 0 . 7 7 7 5 1 1 4 2 . 2 5 1 0 0 1 . 3 0 3 1 1 2 6 1 . 8 4

1 4 0 0 . 8 5 4 1 1 1 4 2 . 2 5 1 4 0 1 . 2 2 6 4 1 1 0 1 . 9 6

. 1 8 0 0 . 8 9 7 9 1 2 2 2 . 2 9 1 8 0 1 . 2 9 2 1 101 2 . 6 3

2 4 0 1 . 2 2 6 4 105 2 . 5 6

3 0 0 0 . 9 8 5 5 1 0 2 2 . 5 3 3 0 0 1 . 4 7 1 7 9 2 2 . 8 2

4 0 0 1 . 1 3 8 8 8 8 3 . 0 2 4 0 0 1 . 1 9 5 7 1 0 8 2 . 4 8

5 0 0 1 . 7 0 8 2 8 9 3 . 1 6 5 0 0 1 . 3 4 6 9 111 2 . 3 9 "

6 0 0 1 . 7 9 5 8 9 1 3 . 0 1 6 0 0 1 . 2 2 6 4 1 2 0 2 . 1 9

7 0 0 1 . 5 0 0 2 1 0 8 2 . 3 7

8 0 0 0 . 9 8 5 5 1 2 7 1 .98 8 0 0 1 . 2 0 4 5 1 2 8 1 . 9 5

9 0 0 0 . 9 8 5 5 1 5 2 1 .55

1 0 0 0 0 . 9 6 3 6 1 5 5 1 .25 1 0 0 0 1 . 1 8 2 6 151 1.81

1 1 0 0 0 . 9 8 5 5 1 5 5 1 .38

1 2 0 0 0 . 9 1 9 8 1 4 9 1 .47 1 2 0 0 1 . 3 1 4 1 5 0 1 .18

1 4 0 0 0 . 9 4 1 7 1 5 4 1 .48 1 4 0 0 1 . 1 8 2 6 1 6 0 1 .13

ACKNOWLEDGEMENT

Andrea N. Kiss gratefully acknowledges the suport of "Foundation for Hungarian Science" of Hungarian Credit Bank (Magyar Hitel Bank "Magyar Tudományért" Alapítványa).

35

Page 36: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

REFERENCES

ÁRKAI, P. and TÓTH, M. N. (1983): Illite crystallinity: combined effects of domain size and lattice distortion; Acta Geol. Hung. 26, 341-358.

ÁRKAI, P. and TÓTH, M. N. (1985): The Variance Method Investigation of Illite Crystallinity; 5TH Meeting of the European Clay Groups, Prague, p. 91-98, Charles University, Prague.

ÁRKAI, P . - M E R R I M A N , R. J . - R O B E R T S , B . - P E A C O R , D . R . - T Ó T H , M . ( 1 9 9 6 ) : E u r . J . M i n e r . , 8 . ( i n p r e s s ) FARRAH H. and PICKERING W. F. (1976): The Sorption of Copper Species by Clays. II. Illite and

Montmorillonite; Aust. J. Chem., 29, 1177-84. GARCIA-MIRAGAYA, J . -CARDENAS, R . - P A G E , A . L. ( 1 9 8 6 ) : S u r f a c e l o a d i n g e f f e c t o n C d a n d Z n s o r p t i o n b y

kaolinite and montmorillonite from low concentration solutions; Clays and Clay Minerals Vol 34, No. 2, . 1 8 1 - 1 8 7 .

K.LUG, H. P. and ALEXANDER, L. E. (1974): X-ray Diffraction Procedures (For Polycrystalline and Amorphous Materials); John Wiley & Sons, Inc.

KOPPELMAN, M. H. and DILLARD, J. G. (1977): A study of the adsorption ofNi(II) and Cu(ll) by clay minerals; Clays and Clay Minerals 25. 457-462.

LANGFORD, J. I. (1978): A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function; J. Appl. Cryst. 11, 10-14.

MACEWAN, D. M. C. and WILSON, M. J. (1980): Interlayer and Intercalation Complexes of Clay Minerals: in Crystal Structures of Clay Minerals and their X-ray Identification; in G. W. BRIDLEY-G. BROWN eds. Crystal Structures of Clay Minerals and their X-ray Identification; Monograph No. 5, Mineralogical Society, London 202-211.

POSNER, A. M. and QUIRK, J. P. (1964): Changes in basal spacing of montmorillonite in electrolyte solutions; - Journal of Colloid Science 19, 782-812.

PULS, R . W . a n d BOHN, H . L . ( 1 9 8 8 ) : S o r p t i o n o f C d , N i a n d Z n b y k a o l i n i t e a n d m o n t m o r i l l o n i t e s u s p e n s i o n s ; Soil. Sci. Sco. Am. J. 52., 1289-1292.

SPOSITO, G. (1984): The Surface Chemistry of Soils; Oxford University Press, Oxford. STADLER, M. and SCHINDLER, P. W. (1993): Modeling of H+ and Cu2+ adsorption on Calcium-montmorillonite;

Clays and Clay Minerals, Vol. 41, No. 3, 288-296. TOKARZ, M . a n d SHABTAI, J. ( 1 9 8 5 ) : C r o s s - l i n k e d s m e c t i t e s . IV. P r e p a r a t i o n a n d p r o p e r t i e s o f

hydroxylaluminium-pillared Ce- and La-montmorillonites and fluorinated NH4+-montmorillonite; Clays

and Clay Minerals, Vol. 33, No. 2, 89-98. TÓTH, M. N. (1980): X-ray variance method to determine the domain size and lattice distortion of ground

kaolinite samples. - Acta Miner. Petrogr. Szeged, 24: 115-119. WILSON, A. J. C. (1963): Mathematical theory of X-ray powder diffractometry. - Eindhoven, Philips technical

Library.

Manuscript received 15 April, 1997

36

Page 37: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Adu Mine'ralogica-Permgraplüca, Szeged, XXXVIII, 37-50, 1997

PETROGENESIS OF TRACHYANDESITE AND TRACHYTE ROCKS IN THE MÓRÁGY HILL, SOUTH HUNGARY

C s . S Z A B A D O S 1

Department of Mineralogy, Geochemistry and Petrography Attila József University

A B S T R A C T

Two alkaline, geochemically different rocks can be found in many places in the granite mass of the Mórágy Hill and Ófalu Complex, which described as "bostonites" by Mauritz and Csajághy (1952). In earlyer petrographical and penological articles the author proved that these rocks are not part of the Early Carboniferous granite magmatism, but consideration of these rocks happened parallely to that of the Early Cretaceous alkaline magmatism. The distribution of immobile trace elements of the trachiandesites of Kismórágy is very similar to the distribution of immobile trace elements of the Early Cretaceous phonotephrite rocks of the Mecsek Mts. While the distribution of immobile trace elements of trachytes of the Mórágy Hill and-Ófalu Complex is very similar to the distribution of immobile trace elements of the Early Cretaceous phonolite rocks of the Mecsek Mts. The alkaline, trachyte rocks of the Mórágy Hill and Ófalu Complex are the saturated end-members of the Early Cretaceous alkaline rock series of the Mecsek Mts. I have a question, as a fallow: What kind of petrogenetic processes generated the trachyte rocks of the Mórágy Hill and Ófalu Complex?

INTRODUCTION

Two petrographically and petrologically different rocks are outcropping in the granitic mass of the Mórágy Hill:

1. Trachyandesite. Greenish-greyish coloured (the more altered types are yellow coloured, while the more fresh types are greenish coloured), fine-grained, strongly altered rocks with many calcite balls and veins. Some visible minerals of the rocks already have altered. These rocks form dykes and small stock (laccolith) like subvolcanic body in the quarries of Kismórágy No. 5. Dykes run from here, as a centre to every directions. The microscope shows a microholocrystalline, porphyritic texture with trachytic base. Their thin sections immediatelly indicate that the. primary mineral composition of the rocks already have altered. I can found pseudomorphose after pyroxene or amphibole, unrecognizable feldspar phenocrysts (these were probably originally plagioclase minerals), apatite and oupaque minerals in the sericitized, calcitized, clayey and chlorotized groundmass. The needle shaped feldspars in the groundmass settled down radially, but slight fluidal arrangement is characteristic in the dyke rocks. On the basis of petrographically, microscopically, distribution of major and mainly immobile trace elements composition they are trachyandesites (Table 1., 2., 3.).

1 H-6701 Szeged, P. O. Box 651, Hungary

37

Page 38: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

2. Trachyte. Reddish-brownish coloured, 0.5-30 m thick, fine-grained rocks form only dykes in territory of the Mórágy Hill and Ófalu Complex. Orientation of the dykes is changeble. In the dyke rocks sometimes appear some little bit granite grains. Brecciated rocks from trachyte and granite material are also found. The microscope shows a microholocrystalline, porpyritic, trachytic texture. The rare phenocrysts are sanidines. The groundmass is made up of crystalline sanidines, albites of fluidal arrengement and some' types I can found andesine minerals by microscope analysis. On the basis of quantity and quality of sanidines, quartz, limonites and andesines I can recognize minor differences among them. Based upon the microscopic, mycroprobe analysis, major and trace elements composition they are trachyte rocks (Table 1., 2., 3.).

T A B L E 1

XRF analysis (Switzerland)

SAMPLE II/M2 T

II/KM3 T

II/Bal 2 T

I/KM 18 Ta

I/KM 19 Ta

I/KM20 Ta

lI/KM10a Ta

SiCb 66.42 65.65 63.48 52.3 50.37 48.72 54.35

T i0 2 0.2 0.16 0.2 1.28 1.16 1.4 1.25

AI2O3 16.24 17.39 17.56 17.31 15.49 15.74 16.62

FeOt 4.27 3.5 4.02 7.35 7.1 7.67 9.07

MnO 0.08 0.08 0.04 0.07 0.16 0.19 0.05 MgO 0.2 0.15 0.3 1.12 1.84 0.91 1.82

CaO 0.31 0.17 0.6 5.43 7.04 8.62 2.61

N a 2 0 5.57 5.44 5.28 1.78 1.86 2.31 0.77

K 2 0 5.41 6.62 7.23 6.1 5.67 3.99 8.53

P2O5 0.01 0.01 0.02 0.45 0.4 0.52 0.44 TOTAL 98.71 99.17 98.73 93.13 91.09 90.07 95.51

LOl 1.44 1.31 1.59 7.38 9.13 0.06 4.57

Cr 1 0 1 6 8 1 1 1

Ni 12 0 15 3 1 4 3 V 1 0 5 3 1 12 1

Cu 9 0 12 3 5 5 1

Pb 6 0 24 1 1 1 1

Zn 141 0 178 147 120 1 12 159 K 44910 54955 60018 50638 47068 33122 70810 Rb 150 / 180 217 221 173 135 226 Ba 87 0 51 • ,249 352 276 228 Sr 32 0 20 67 129 103 40 Ga 36 0 36 • 24 18 22 25 Nb 167 0 204 110 93 93 100

Zr 915 0 1308 472 495 360 431

Ti 1199 959 1199 7674 6954 8393 7494

Y 91 0 79 43 40 41 38

Th 22 56 35 11.5 10.5 9.3 11.3

R1 1070.3 802.8 553 1209.7 1163.1 1265 1096

R2 361.2 366.5 422.8 975.7 1148 1275.5 695.2

S.I 17.60 10.79 3.32 8.67 2.88 2.75 11.49

DENSITY 2.37 2.36 2.38 2.52 2.54 2.57 2.51

Page 39: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 4

1CP-AES analysis (MÀFl)

SAMPLE Il/Ml T

II/KM5 T

III/Ar2 • T

III/T8 T

I/KM14 Ta

I/K.M16 Ta

1/KM18 . Ta

1I/KM8 Ta

II/KM9 Ta

IIAXMlOb Ta

S i 0 2 65.42 62.92 64.38 63.52 52 53.07 50.23 "53.76 52.43 50.3

TiOi 0.19 0.161 0.124 0.135 0.725 0.805 1.21 1 : 1.024 1.212 '

AI2O3 15.65 16.96 16.74 17.16 15.22 15.44 .16.96 16.52 16.85 15.87

Fe 2 0 3 4.18 4.94 4.68. 4.14 .5.93 6.45 ; 5 7.08 4.28 2.96

FeO 0.24 0.2 ' 0.02 0.02 2 1.84 1.84. 1.68 2 . .7.45 MnO. ' 0.121 •0.088 . 0.087 0.015 0,171 0.228 0.065 0.05 0.049 0.085

MgO 0.37 0.61 0.45 0.3 . 1.77 1.77 1.43 1.58 1.74 2.51

CaO 1.03' 1.05 0.67 1.04 5.67 4.14 6.42 2.45 5.61 3.96

N a 2 0 4.64 5.03 5.04 5.65 1.16 1.4 1.91 1.22 1.67 1.24 .

K 2 0 5.89 5.2 5.54 5.71 7.26 6.98 5.61 6.82 8.21 7.27

P2O5 0.1 0.1 0.1 0.1 0.18 0.17 0.28 0.24 0.24. 0.33

TOTAL 97.41 96.76 97.36 97.38 91.49 91.65 90.45 91.69 93.67 92.89

H 2 0 T.61 2.42 1.9 1.64 4.96 5.15 5.7 6.05 4.45 4.33

C 0 2 0.12 0.06 0.02 0.06 3.13 2.06 3.24 0.95 2.31 ,2.55

LOI 1.73 • 2.48 1.92 1.7 8.09 7.21 8.94 7 6.76 6.88

Ni 2 4.5 2 2 2 ' 2 2 2 2 2

Co 2 3 2 2 ' 1 1 12 13 12 . 11 17

Cu 2.88 6 7 14 5 4 5 5 4 7

Pb 38.5. 78 83 •100 . 27 30 29 1 38 34 31

Zn 155 154 259 210 130 135 152 160 122 186

K 48895 43167 45989 47400 60267 57943 46570 56615 68154 60350

Ba 150 100 130 60 330 330 380 300 230 200 .

Sr 40 '80 50 40 60 60 80 50 100 70

Ti 1139 965 743 809 4346 4826 7254 5995 6139 7266

RI 1217.3 1056.6 1083.2 783.1 1132.9 1175 1149.5 1305.8 792.9 899.5 .

R2 434.8 475 422 • 462.2 992.8 833 1089.7 663.98 1016.6 859.2

S.l. 23.74 19.33 21.13 12.12 5.0 5.69 4.34 18.82 - 3 . 1 2 4.51

DENSITY 2.38 2.40 2.38 2.38 2.51 2.51 2.52 2.50 , 2.49 2.56

39

Page 40: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 4

INAA analysis (BME)

SAMPLE II/M2 T

1I/K.M3 T

II/Bal2 T

1/KM18 Ta

I/KM 19 Ta

I/KM20 Ta

II/KM 10 Ta

II/MI T

II/KM5 T

III/Ar2 T

Cr 1 0 0 0 0 0 0 8 7 10 Co 1 1.5 1.2 5.9 15 9 1 0 3 0 Sc 1 0.17 0.98 4 3.5 4.3 3.6 1 0 0 Zn 120 120 150 130 115 135 135 140 142 270 Mo 0 0 0 0 0 0 0 0 7.5 16 As 5.6 39 6.7 5.1 13.7 6.1 17.6 5.2 25.1 44.2

Se 17 32 20 11 9.5 10.6 9.5 20 31 40 Sb 0 0.88 1.1 0.48 0.68 0.59 0.95 0 1.2 1.04

Rb 123 180 200 170 135 110 180 170 190 305 Cs 50 6.6 1.7 3.9 1.95 3.5 4.8 0.62 6.1 2.2

Ba 87 0 51 360 450 320 250 0 0 210 Ta 8.4 14.8 10 5.5 4.7 4.8 4.9 9.6 15.6 19.3 Hf 20.7 35 27 11.1 11.9 8.9 10.4 24.5 34.3 35.8 Zr 1000 1400 1350 650 650 400 610 1050 1400 1300 Th 22 56 35 11.5 10.5 9.3 11.3 24.8 57.2 62 U 1.7 8.5 11 4.6 4.7 3.1 5.5 0 8.7 12.1

La 140 220 163 71 67 66 71 145 223 210 Ce 260 390 290 137 130 120 140 280 410 380 Nd 110 140 110 70 60 45 46 100 135 110 Sm 13.1 25.9 18.3 11.1 11.3 10.9 11.2 20.6 25.2 21.2 Eu 2.1 0.73 0.78 3.24 3.48 3.21 3.2 2.31 0.71 0.67 Tb 2.5 3.1 2.8 1.2 1.4 1.3 1.4 2.6 2.7 2.6 Tm 4.7 7.5 5.1 3.6 3.2 3.1 3.3 5.3 7.7 8.2 Yb 6.05 7.35 5.4 2.52 2.59 2.41 2.43 6.5 7.47 6.86 Lu 0.83 0.92 0.81 0.36 0.33 0.34 0.32 0.86 0.95 0.86

R1 1070.3 802.8 553 1209.7 1163.1 1265 1096 1217.3 1056.6 1083.2 R2 361.2 366.5 422.8 975.7 1148 1275.5 695.2 434.8 475 422

40

Page 41: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

SAMPLE III/Ar3 T

III/T8 T

I/KM 14 Ta

1/KM16 Ta

II/KM8 Ta

1I/KM9 Ta

ll/KM10b Ta

Cr 11 12 9 6 8 10 6

. Co 0 1 8 8 5 5 11

Sc 0 0 . 2 2 3 3 4

Zn 369 205 116 120 145 125 178

Mo 27 26 12.3 8.3 8.2 8.2 16.2

As 19 15.7 4.96 5.61 38.6 23.7 6.93

Se 57 41 9.9 11 10.9 14.4 9.6

Sb 1.26 1.2 0.28 0.26 0.47 0.45 0.26

Rb 240 250 170 165 200 198 162

Cs 1.8 0.8 6.3 7.4 7.8 5.9 3.7

Ba 430 0 370 380 360 330 220

Ta 28.1 19.9 4.97 5.2 5.44 5.61 4.91

Hf 49.5 40.5 10.3 "10.5 11.2 12 10

Zr 2000 1700 610 550 700 780 650

Th 96 65 12.7 12.3 12.1 12.5 10.2

U 26.3 20.5 4.5 4.1 5.5 5.1 4.2

La 272 220 49.5 8.2 69.5 69.9 47.7

Ce 480 420 145 139 138 142 142

Nd 135 130 51 55 54 58 56

Sm 25.5 24.2 7.13 7.2 10.7 11.8 7.68

Eu 0.62 0.86 3.28 3.13 3.24 3.12 2.45

Tb 3.3 3.05 1.05 1.17 1.3 1.5 1.34

Tm 12 9 2.8 2.9 3.3 3.8 3.1

Yb 8.76 7.86 2.15 2.25 2.88 2.81 2.21

Lu 1.09 1.02 0.34 0.35 0.38 0.39 0.31

R1 0 783.1 1132.9 1175 1305.8 792.9 899.5

R2 0 462.2 992.8 833 663.98 1016.6 859.2

LEGENDS

LOCALITY OF SAMPLES: MÓRÁGY, Trachyte: II/MI, II/M2; K1SMÓRÁGY QUARRY No. 3., Trachyte: II/KM3 I/KM5; K1SMÓRÁGY QUARRY No. 5., Trachyandesite: I/KM18, I /KMI9, I/KM20; K1SMÓRÁGY QUARRY No. 6., Trachyandesite: I/KM14, I/KM16, II/KM8, II/KM9, ll/KMIOa-b; BÁTAAPÁTI, KÖVESPATAK-V ALLEY, Trachyte: II/Bal2; ARANYOS-VALLEY, Trachyte: III/Ar2, III/Ar 3; T1LLFARM-VALLEY, Trachyte: IIIAT8

T = Trachyte Ta = Trachyandesite R1 = 4Si- l l (Na+K)-2(Fe+Ti) R2 = 6Ca+2Mg+Al (De La Roche et al. 1980) S.I. = 100 (S i - (AI+Fe/+Mg+3Ca+l INa+l lK+Mn-Fe3

+-Ti-4P)/2 (Fitton 1991) MÁFI - HUNGARIAN GEOLOGICAL INSTITUTE, BUDAPEST BME - TECHNICAL UNIVERSITY, BUDAPEST

41

Page 42: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

PETROGENESIS

The investigated rocks occur in the granite wallrock in the Mórágy Hill and in the clay-and mica shist at valleys of Ófalu. Therefore, some geologist thought that these rocks were the petrogenetic products of the granite magmatism and named them as "bostonites". Based upon the following evidences these rocks (trachyandesite and trachyte) of the Mórágy Hill (and Ófalu Complex) are the products of the Early Cretaceous alkaline magmatism:

1. The K/Ar data of the two different types of rocks show the Cretaceous agé (Árva-Sós 1979, Szabados 1996).

2. The trace elements distribution of the rock series of one magmatic event is similar to each other. Therefore, we can decide whether rocks of the Mórágy Hill, what kind of magmatic events could connect.

Distribution of trace elements of the trachyandesites are the same in every occurences of Kismórágy (Table 1., 2., 3.). Distribution of trace elements of trachytes of the Mórágy Hill and Ofalu are similar to each other, but we can found some differences in the LIL elements. The LREE of trachytes of Kismórágy and Ófalu are little more than the samples of Mórágy and Bátaapáti (Table 1., 2., 3.). The average trace element pattern of trachyandesites of Kismórágy is very similar to the trace element patterns of trachyandesite and phonotephrite of the Mecsek Mts. (Fig. 1.). Secondary effects caused the differents of some LIL element (K, Br, Ba). The trace element patterns of trachytes of the Mórágy Hill and Ófalu Complex are partly similar to the trace element patterns of the phonolites of the Mecsek Mts. (Fig. 2.). But the trace element distribution of phonolite rock of borehole Báta No. 3 (482 m), Eastern side of the Mórágy Hill, is very similar to the trace element patterns of trachytes of the Mórágy Hill and Ófalu Complex.

3. Several analysis have shown that during the magmatic differentiation the coherent rates of two residual trace elements do not change significantly except when metasomatical alterations or alterations caused by volatiles play a significant role. Within one cogenetical series of rocks the following trace element rates are generally constant: Zr/Nb, Zr/Hf, Hf/Th, La/Nb etc. The applied trace element rates show that the granitic rocks (granite and rhyolite rocks) are not part of cogenetical series of the Early Cretaceous alkaline volcanic rocks of the Mecsek Mts. However, sample points of trachyandesites and trachytes of the Mórágy Hill and Ófalu Complex belong to the Early Cretaceous oogenetic series of alkaline volcanic rocks of the Mecsek Mts., this giving further support their cogenetical relationship (Fig. 3.).

4. The Th-Hf/3-Ta diagram (WOOD et al. 1979, WOOD 1980) shows the magma-tectonical location of the investigated trachyandesite and trachyte rocks of the Mórágy Hill and Ófalu Complex, the samples of the Early .Cretaceous cogenetical rock series of the Mecsek Mts. and the samples of the granite and rhyolite rocks of the Mórágy Hill and Mecsek Mts. (Fig. 4.). Clearly visible that the samples of trachyandesites of Kismórágy together the samples of the Early Cretaceous cogenetical rock series of the Mecsek Mts. fall into the same area within the field of the basaltes and their differentiated rocks of the continental place (CAB). The samples of Th rich trachytes of the Mórágy Hill and Ófalu Complex with some samples of Th rich phonolites (Báta No. 3) fall out from this area (CAB) close to Th. 5. The Early Cretaceous cogenetical rock series of the Mecsek Mts. are generated mainly by fractional crystallization (BlLIK 1 9 8 3 , DOBOSI 1 9 8 5 , HARANGI 1 9 9 3 ) . The fundamental principles of the fractional crystallization are found in the trachyandesite and trachyte rocks of the Mórágy Hill and Ófalu Complex.

42

Page 43: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

«52/6 X9CV3 »SUM Tia

Fig. 1. Trace element distribution of phonotephrite (92/6-Hidasi-valley), traehyandesite (90/3-Balazs Hill) of Mecsek Mts. and traehyandesite of Kismoragy (SUM Tra-average trace element distribution), normalized to the

average chondrite

•v«1 * 53/482 »11*«? N OIWT8N

Fig. 2. Trace element distribution of phonolite (vii/31-Mázai-valley), phonolite (b3/482-Báta borehole No. 3. 482 m) of Mecsek Mts. and trachyte (1/M2-Mórágy, IIIAr8-Tillfarm) of Mórágy Hill and Ófalu Complex,

normalized to the average chondrite.

43

Page 44: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

.001 1 1 • • ' 10

Th (ppmj

Fig. J. The plots o fTh-Hf /Th show the oogenetic rock series of the Early Cretaceous alkaline rocks of Mecsek Mts., the trachyandesite-trachyte rocks of Mórágy Hill and Ófalu Complex.

Legend: Circle-Filled-basalte; Circle-Open-basanite; Box-Open-phonotephrite-phonolite; Triangle-Filled Up-trachyandesite of Kismórágy; Triangle-Filled Down-trachyte of Mórágy and Ófalu; x-basalte LOI>4%; Asterix-

tephriphonolite-phonolite LOI>4%; X-Rhyolite; +-Resistite; Diamond-Open-Granite; Diamond-Fil led-Microgranite

Circles of dotted line shows the places of the trachyandesites and trachytes of Mórágy Hill and Ófalu Complex

Hff j

Fig. 4. The plots of Th-Hf/3-Ta (WOOD 1980) show the Early Cretaceous cogenetic rock series, the trachyandesite-trachyte rocks of Mórágy Hill and Ófalu Complex, the rhyolites of Mecsek Mts. and the granite

rocks of Mórágy Hill. Legends are in the Fig. 3.

44

Page 45: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

THE FRACTIONAL CRYSTALLIZATION MODELL OF COGENETIC ROCK SERIES OF THE MECSEK MTS. AND THE MÓRÁGY HILL

According to the new research the alkaline cogenetic rock series can be devided as two comagmatic rock series ( H A R A N G I 1993):

1. ankaramite-alkaline-basalte-... 2. Na-basanite-phonotephrite-tephriphonolite-phonolite The composition of initial liquid still have disputed. I investigated the distribution of major and. trace element of trachyandesites of

Kismórágy and trachytes of Mórágy and Ófalu which .together closely connect with Early Cretaceous cogenetical rock series of the Mecsek Mts. The T A S ( L E M A J T R E 1 9 8 9 ) , the R 1 - R 2 ( D E L A R O C H E 1 9 8 0 ) and the S . I . diagram ( F L T T O N 1 9 9 1 in H A R A N G I 1 9 9 3 ) shows the major element distribution of these rock series (Fig. 5., 6., 7.). Clearly visible that the volcanic rock series separate two different series at the intermediate types of rocks:

1. saturated series (trachyandesite-trachyte...) 2. undersaturated series (phonotephrite-tephriphonolite-phonolite). The Si content is increasing in the saturated series. The question is the following:

occure high Si content rock type (rhyolite) in the Early Cretaceous magmatism, or not? The major element distribution of these rocks may have been influenced by primary

and secondary factors (autohydratation, hydroterms). Therefore their evaluate are difficult. On the basis of principle of fractional crystallization modell applied for the Early Cretaceous cogenetical rock series of the Mecsek Mts. ( B I L I K 1 9 8 3 , D O B O S I 1 9 8 5 ,

HARANGI 1993) and for the trachyandesites of Kismórágy and trachytes of Mórágy-Ófalu. I tryed to deduce the process of the fractional crystallization based upon the Reyleigh Eguation (VlLLEMANT et al. 1 9 8 1 , HARANGI 1 9 9 0 ) . I applied the Hf as the element of the differentiation (Cs. S Z A B A D O S 1 9 9 6 , in Ph. D . dissertation). The primary melt was probably a basalte-basanite melt. The continous crystallization process change at the intermediate types ( H f = 6 . 9 - 1 4 . 8 5 ) . The Si02 content is increasing (quartz crystalling in the trachyte), FeO,, Ti02 , CaO and the transitional metals content are strongly decreasing (during the crystallization of the clynopyroxene and Fe-Ti-oxide), while the A1203 content become. The CaO, Sr, Ba, Eu content are decreasing rapidly, while the Na 20, K 20, Rb are increasing. These elements are indicating the crystallization of the K-feldspars. Result of hydrotermal processes and later solutions the K 20, and Rb content were increasing while Na20 was decreasing gradual in the K-rich trachyandesitic rocks of the Mecsek Mts. and the Mórágy Hill too. Apatite appear in the intermediate rocks (P205, Nd, Sm, Eu, Tb) still, but it isn't in the trachyte rocks. The high REE content in the trachyte rock are caused by accessory minerals (e. g. zircon). The clinopyroxene, Fe-Ti-oxide, sometimes amphibole (Sás-valley) are remaining longer in the melt of the undersatured series (Ti02 , FeO„ ALO3, CaO, transitional metals, MREE, HREE, Ta). Apatite is remaining ruling minerals in the phonotephrite type (P205, MREE). The plagioclase minerals are crystallizing in the saturated series earlyer than in the undersatured series. It is marked by the lower Sr, Ba), CaO content. The constant Hf/Zr and Hf/Th rates show that rocks of the Mecsek Mts. and investigated rocks of the Mórágy Hill are part of the one cogenetical series.

I think we have not enough information from the Early Cretaceous magmatism, therefore, my modell is a hypothesis only.

45"

Page 46: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. 5. The major element distribution of Early Cretaceous rock series of Mecsek Mts. and the trachyandesite-trachyte rocks of Mórágy Hill and Ófalu Complex in the TAS diagram (LE MAITRE 1989). Ar row of dotted line

shows the differentiation processes. Legends are in the Fig. 3.

Fig. 6. The major element distribution of Early Cretaceous rock series of Mecsek Mts and the trachyandesite-trachyte rocks of Mórágy Hill and Ófalu Complex in the R1-R2 diagram (DE LA ROCHE et al. 1980). Arrow of

dotted line shows the differentiation processes. Legends are in the Fig. 3.

46

Page 47: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. 7. The major element distribution of Early Cretaceous rock series of Mecsek Mts and the trachyandesite-tracliyte rocks of Mórágy Hill and Ófalu Complex in the S.I. diagram (FITTON 1991). Arrow of dotted line

shows the differentiation process. Legends are in the Fig. 3.

GENESIS OF TRACHYTE ROCKS

The reference literature shows several reason for the development of Q normative trachyte:

1. Partial melting of the crust origin rock during the subduction or collosion. Early Cretaceous magmatism of the Mecsek Mts it is impossible.

2. Special primer trachyte magmatism (LONGONOT, MACDONALD 1987). Early Cretaceous magmatism of the Mecsek Mts. it is impossible.

3. Bimodal volcanic activity (basalte-trachyte). It is characteristic in the rift of East African Rift System ( B A K E R et al. 1977, B A K E R 1987, P R I C E et al. 1985). Early Cretaceous magmatism of the Mecsek Mts. it isn't characteristic.

4. Crystal-liquid fractionation of slightly undersaturated rock series. It is a main and important process at the Early Cretaceous rock series of the Mecsek Mts. ( B I L I K 1 9 8 3 ,

D O B O S I 1 9 8 5 , H A R A N G I 1 9 9 3 ) .

5. Assimilal and fractional crystallization modell (AFC) ( D E P A O L O 1981). It is possible at the last differentiated product (trachyte-phonolite) of the Early Cretaceous rock series of the Mecsek Mts. The slightly contamination are marked by the rel. high Si02 , Th, Rb, Zr, Ce content and high negativ anomaly of Sr and Eu. Granitic grains and xenolits, trachytic, granitic breccia in the trachyte rocks are also may refer to the contamination. The AFC modell calculation is shown by Table 4. The more differentiated results of trachyte of Tillfarm are shown a slightly (r=0.2) granitic assimilation. The 87Sr/86Sr isotopic rates of tehse trachyte rocks (SviNGOR, K O V A C H 1978) show an upper-crustal assimilation too: 0.72885±0.0043 (Mórágy); 0.7485±0.002 (Ófalu).

47

Page 48: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

T A B L E 4 F: Môrâgy, Il/Ml. r: 0.1

P. c . F: 40 F: 35 F: 30 F: 25 F: 20 F: 15

La 41 106.1 121.4 141.6 169.8 211.8 281.2 Ce 82 218.9 251.4 294.8 355.6 446.6 598.3 Nd 45 82.3 89.7 99 111.3 128.2 153.8

Sm 8.86 17.35 19.07 21.25 24.12 28.14 34.27 Eu 2.99 2.22 2.13 2.03 1.92 1.79 1.63 Tb 1.02 2.11 2.33 2.63 3.02 3.58 4.45 Yb 1.93 5.2 5.97 7.0 8.44 10.6 14.18 Lu 0.27 0.69 0.79 0.92 1.1 1.36 1.8

TiO? 4.08 0.41 0.29 s 0.2 0.13 0.08 0.05 Ta 3.3 7.55 8.46 9.64 11.22 13.5 17.08 Th 4.3 17.52 20.46 24.3 29.55 37.2 49.48

F: Tillfarm, I1I/T8 r: 0.2

P. C. F: 40 F: 35 F: 30 F: 25 F: 20 F: 15

La 41 114 131.1 153.8 185.3 232.3 309.8 Ce 82 222.4 254.6 297.2 356.1 443 585.2 Nd 45 79.3 85.8 93.9 104.3 118.4 139.2

Sm 8.86 16.22 17.58 19.27 21.43 24.35 28.59 Eu 2.99 1.11 0.97 0.83 0.69 0.56 0.43 Tb 1.02 1.88 2.04 2.24 2.51 2.87 3.4 Yb 1.93 4.71 5.3 6.07 7.09 8.56 10.86 Lu 0.27 0.62 0.69 0.78 0.91 1.08 1.35

T i0 2 4.08 0.38 0.28 0.2 0.13 0.09 0.06 Ta 3.3 9.89 11.42 13.45 16.27 20.45 27.34 Th 4.3 27.32 32.4 39.02 48.04 61.12 82.03

LEGENDS

Primary Sample: basalte Contaminant: microgranite 92/3 (Mârévâri-valley); 136 (Kismôrâgy)

P. C. (primary composition) Composition: La 40.8 Ce 85.9 Nd 25.2 Sm 8.8 Eu 0.5 Tb 0.7 Yb 2.5 Lu 0.33 T i0 2 0.39 Ta 5.5 Th 52.4

F: hybrid (contaminated) composition r = rate of assimilation/frakcionation

Bulk distribution coefficients: I I / M l - D ^ O . 0 3 , DCc=0.002, DNd=0.349, DS m=0.3l2, DE u=l.21, D ^ O . 2 3 7 , Dv b=0.009, D u = 0 . 0 5 5 ,

DT i 0 2=3.2, DTa=0.2, DTh=0.13

III /T8-DU=0.03, DCc=0.06, DNd=0.39, DSm=0.42, DEu=1.72, D ^ O J ? . DYb=0.19, DLu=0.24, DT i 0 2=2.95, DTa=0.04, D ^ O . U

48

Page 49: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

SUMMARING

A .lot of unknown processes could modify further the composition of the primary melt: magma mixing; differentiation is caused by different density; differentiation of different deep (secondary magma chamber); contamination of granitic material. The Early Cretaceous trachytic rocks were generated by combined processes. Main process was the crystal-liquid fractionation and detained differentiation, but probably the low grade assimilation was also occun

REFERENCES

ALLÈGRE C . J . , TREUIL M . , MINSTER J. F. , M I N S T E R B . , ALBARÉDE F. ( 1 9 7 7 ) : S y s t e m a t i c u s e o f t r a c e e l e m e n t s in igneous processes. Part I: Fractional crystallization process in volcanic suites. Contrib. Miner. Petrol. 6 0 , 5 7 - 7 5 .

ALLÈGRE C. J., MINSTER J. F. (1978): Quantitative models of trace element behaviour in magmatic processes. Earth Plenet. Sci. Lett. 38, 1-25.

ÁRVA-SÓS E. (1979): K-Ar módszeres kormeghatározások a Mecsek hegységből. Egyetemi doktori értekezés, manuscript, Debrecen.

ÁRVA-SÓS E . , BALOGH K . , RAVASZ-BARANYAI L. , RAVASZ CS. ( 1 9 8 7 ) : M e z o z ó o s m a g m á s k ö z e t e k K / A r k o r a Magyarország egyes területein. MÁFI Évi Jel. az 1985. Évről, 295-307 .

ÁRVA-SÓS E.., RAVASZ-BARANYAI L. (1992): A Mecsek és Villányi hegység között feltárt kréta telérkőzetek K/Ar kora. MÁFI Évi Jel. az 1990. Évről, 229-240.

BAKER B . H . , GOLES G . G . , LEEMAN W . P., LINDSTROM M . M . ( 1 9 7 7 ) : G e o c h e m i s t r y a n d p e d o g e n e s i s o f a basalt-benmoreit-trachyte suite from the Southern part of the Gregory Rift, Kenya, Contrib. Mineral. Petrol., 64, 303-332.

BAKER B. H. (1987): Outline of the petrology of the Kenya Rift alkaline province. Alkaline igneous rocks, e d i t e d b y FITTON J. G . , UPTON B . G . J . T 2 9 3 - 3 1 3 .

BILIK I. (1979): A Mecsek hegység alsó kréta tengeralatti vulkáni képződményei. Egyetemi doktori értekezés, manuscript. Budapest.

BILIK I. (1983): Lower Cretaceous submarine (rift) volcanism in South Transdanubia (South Hungary). In: BlSZTRlCSÁNYl E., SZEIDOVITZ GY. (eds): Proc. 171'1 Ass. Europ. Seism. Congr., 569-576.

DE LA ROCHE H . , LETERRIER P . , GRANDCLAUDE P. , MARCHAL M . ( 1 9 8 0 ) : A c l a s s i f i c a t i o n o f v o l c a n i c a n d plutonic rocks using R1-R2 diagram and major element analyses. Its relationships with current nomenclature. Chem. Geol. 29, 183-210.

DEPAOLO D. J. (1981): Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett., 53, 189-202.

DOBOSI G. (1985): A mecseki alkáli bazaltok piroxén fenokristályainak geokémiai vizsgálata. Földt. Közi. 115, 79-90 .

GAST, P. W. (1968): Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geocliim. Cosmochim. Acta 32, 1057-1086.

HARANGI Sz. (1990): A kelet-mecseki alsókréta vulkáni közetek geokémiai jellegei (Sokváltozós matematikai módszerek alkalmazása magmás geokémiai vizsgálatokban). Egyetemi doktori értekezés, manuscript. Budapest.

LEMAITRE E. W. (1989): Classification of igneous rocks and glossary of terms. Backwell Sci. Pub., London. MACDONALD R. (1987): Quaternary peralkaline silicic rocks and caldera volcanoes of Kenya in "Alkaline

igneous rocks", edited by FITTON J. G., UPTON B. G. J., 313-335. MAURITZ B., CSAJÁGHY G. (1952): Alkáli telérkőzetek Mórágy környékéről. Földt. Közi. 82, 137-142. PEARCE J. A., NORRY N. J. (1979): Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks.

Contrib. Miner. Petrol. 69, 33^17. PRICE R . C . , JOHNSON R. W . , GRAY C . M . , FREY F. A. ( 1 9 8 5 ) : G e o c h e m i s t r y o f p h o n o l i t e s a n d t r a c h y t e s f r o m

the summit region of Mt. Kenya. Contrib. Miner. Petrol. 89, 394^109. SZABADOS CS. (1995): Petrographical study of subvolcanic rocks surrounding of Mórágy and Ófalu (SE-

Transdanube, Hungary). Acta Miner. Petrog. Szeged, XXXVI., 129-142. SZABADOS Cs. (1996): Bostonit-e a mórágyi bostonit. Földtani Közlöny, in press.

49

Page 50: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

SZABADOS Cs. (1996): Petrological characteristics of the so-called "bostonite" rocks of Mórágy Hill, Mecsek Mts., S-Hungary. WORKSHOP "MAGMATIC EVENTS IN RIFTED BASINS" under the aegis of IGCP Project Nr. 369., ELTE Budapest. In abstract.

SZABADOS Cs. (1996): A Mórágyi rög bostonitnak nevezett kőzeteinek petrográfiai és petrológiai jellemzése. Ph. D. értekezés, manuscript. Szeged.

SVINCOR É., KOVÁCH Á. (1978): A Mecsek-hegységi bosztonit kora Rb/Sr kormeghatározások alapján. Földt. Közi. 108, 94-96.

SZEDERKÉNYI T., FAZEKAS V., MAJOROS GY. (1981): Late paleozoic subsequent volcanism of Hungary. In: Karamata S„ and Sassi F. P.: IGCP No. 5 Newsletter Vol. 3, 61-69.

VILLEMANT B „ JAFFERZIC H . , JORON J. L . , TREUIL M . ( 1 9 8 1 ) : D i s t r i b u t i o n c o e f f i c i e n t s o f m a j o r a n d t r a c e elements: fractional crystallization in the alkali basalt series o fChaine des Puys (Massif Central, France). Geochim. Cosmochim. Acta 45, 1997-2016.

WILSON M. (1989): Igneous Petrogenesis. Unwin Hyman, London. WINCHESTER J. A., FLOYD P. A. (1976): Geochemical discrimination of different magma series and their

differentiation products using immobile elements. Chem. Geol. 20, 325-343. WOOD D. A., JORON J. L., TREUIL M. (1979): A re-appraisal of the use of trace elements to classify and

discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett. 45, 326-336.

WOOD D. A. (1980): The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic

• province. Earth Planet. Sci. Lett. 50, 11-30.

Manuscript received 2 September, 1996

50

Page 51: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

• Acta Mineralogica-Petrographica, Szeged, XXXVIII, 51-64, 1997

RETROGRADED ECLOGITE FROM THE KŐRÖS COMPLEX (EASTERN HUNGARY):

RECORDS OF A TWO-PHASE METAMORPHIC EVOLUTION IN THE TISIA COMPOSITE TERRANE

T . M . T Ó T H '

Institut of Mineralogy, Geochemistry and Petrology Attila József University, Szeged, Hungary

A B S T R A C T

A characteristic feature of the NE part of the Tisia is the occurence of high pressure relics in the Variscan metabasic rocks. A new eclogite sample, brought to the surface by the Szarvas-16 borehole contains garnet, clinozoisite. kyanite, rutile and phengite as HP relict grains in a symplectitic material. As the most significant secondary phase, amphibole occurs. Chemical composition and zoning tendencies of these minerals as well as the PT path modelled by different prograde and retrograde parageneses result in a two stage metamorphic evolution. In good agreement with earlier data, the B-type eclogite sample broke down under greenschist facies condition and recrystallized in the amphibolite facies afterwards.

I N T R O D U C T I O N

Current models on the Pre-Alpine evolution of the Tisia microplate show that it should have been a part of the southern margin of Europe during the Variscan and early Mesozoic and broke off the continent due to late Jurassic (Bathonian) movements. Not only the Post-Variscan sediments show close relationship, but there are also similarities between the Carboniferous anatectic granite of the Mecsek Mountains and that of the Moldanubian part of the Bohemian Massif ( B U D A , 1985) suggesting the possibly common metamorphic evolution of the two regions during the Variscan orogeny. No satisfactory data exist, however, on petrological similarities between other parts of the crystalline basement of the Tisia and the Bohemian Massif. When distinguishing parts of the Bohemian Massif usually the geochemical characteristics of the metabasic rocks as well as the metamorphic evolution of the high pressure samples are studied (e.g. PIN, 1990), because both features show significant differences from place to place. In order to clarify the Variscan paleotectonic setting of the Tisia an analogous approach should be followed.

Crystalline basement of the Tisia may be characterized lithologically by barrovian type (MP-MT) metamorphic rocks developed during the Variscan orogeny. Some textural relics in metabasic rocks from the south-western ( R A V A S Z - B A R A N Y A I , 1969) as well as from the north-eastern part (M TOTH, 1994a, 1995, 1996) of the unit, however, have been interpreted as high pressure rocks. These relict samples had possibly formed prior to the thermal peak.

1 E3 H-6701 Szeged, P.O. Box 651, Hungary, e-mail: [email protected]

51

Page 52: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Physical conditions characteristic of the evolution of the first eclogite sample are not known, while samples from the north-eastern part (Kőrös Complex) all indicate low to medium temperature. This paper presents a probable metamorphic evolution of a new eclogite sample from the same region.

GEOLOGICAL SETTING

The present make-up of the basement of the Pannonian Basin is a result of horizontal microplate movements due to the Alpine tectogenesis. According to recent reconstruction studies ( H A A S et al., 1995 and referencies therein) diverse fragments of the basement were situated in different parts of the northwestern Tethys realm during the Paleozoic and Mesozoic time. The big blocks got side by side during the Paleogene-Miocene period and at present are separated by the Mid-Hungarian lineament and other strike slip faults. Tisia (also called Tisza, South Pannonian) Unit is located south from this line and in addition to Hungary it may also be traced in Romania, Yugoslavia, Croatia and Slovenia.

Anatectic I • • " " » « w i r e L ' J Miomafite I- B a r r o v i a n 1 . 1 , Triassic L J L J L J ERAN'TE L j , v u » m a m c metamorphites I I I i sediments

/ Szarvas-16

I M ' C o d r u nappe system

A

Cretaceous sediments

Unknown basement

10km

Fig. /. Current geological map of the pretertiaiy basement of the Körös Complex and the position of the Szarvas-16 borehole.

The rather complicated building of the crystalline basement of the Tisia is a result of subsequent tectonic events from the almost totally unknown Pre-Variscan history up to the extension of the Pannonian Basin which took place in the middle Miocene. Present studies

52

Page 53: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

( S Z E D E R K É N Y I , 1 9 9 6 , K O V Á C S et al., 1 9 9 6 ) exhibit the microplate as a "composite terrane" of diversely developed blocks and fragments. Based on these current distributions the area studied (Kőrös Complex, KC fig. 1.) belongs to the "Mecsek-North Plane subterrane" of the so-called "Para-Autochton" terrane. The name shows that this part of the basement did not possibly take part in the Alpean nappe tectonics.

At present KC forms a basement high (strictly speaking a set of smaller highs) developed probably during the Miocene extension of the Pannonian Basin. This tectonic evolution may be explained by the metamorhic core complex theory ( T A R I et al., 1 9 9 2 )

described first in the western USA ( L I S T E R and D A V I S , 1 9 8 9 ) and worldwide later. The intensive extension and the rapid uplift of parts of the basement may so be responsible for the occurence of high grade rocks (gneiss, amphibolite) as well as granite and migmatite in the axis of these highs. Although, a lot of data speak for the existence of core complexes in this region, no satisfactory petrological evidence confirms this idea yet.

Geochemical studies on the metabasic rocks suggest a one-time (Pre-Variscan) back-arc basin basalt origin of the protolith (M. T Ó T H , 1994/a), while rocks of sedimentary origin show a chemical composition similar to greywacke ( S Z E D E R K É N Y I , 1984). The most characteristic metamorphic event was a barrovian type MP-MT one (5.5-6 kbar, 550-600 ° C , S Z E D E R K É N Y I , 1984, S Z E D E R K É N Y I et al., 1991, M. T Ó T H , 1994/b ). Its age was previously considered to be Precambrian, while more recent geochronological data (K/Ar on amphibole and biotite) suggest an age of about 330-350 Ma ( S Z E D E R K É N Y I , 1996 and referencies therein). Traces of a high pressure event prior to the barrovian one as well as retrograted eclogite samples are reported by M. T Ó T H (1995, 1996). No granulite facies relics have been reported.

The eclogite sample reported in this paper was found in the southern slope of the complex (Szarvas-16 borehole) about 2000 m below the surface. From the same well no more metamorphic cores are known. Boreholes which penetrated to the basement close to it exposed common mica schist as well as amphibolite but no more high pressure samples were found.

ANALITICAL METHODS

Major and trace element composition of the sample studied was measured at the XRF laboratory of Johannes Gutenberg University in Mainz (Germany) on a Philips PW1453 XRF machine by using Sc-Mo tube. In addition to the major elements the following set of traces were also determined: V, Cr, Co, Ni, Zn, Cu, Ga, Rb, Sr, Zr, Y, Nb, Ba, Th, U, Pb. Microprobe analysis of minerals was performed on the Cameca SX-50 (accelerating voltage: 15 kV, sample current: 20 nA) electron microprobe at the University of Berne (Switzerland) by using natural standards ( D I A M O N D et al., 1994).

PETROGRAPHY, GEOCHEMISTRY

The sample studied consists of high pressure relict minerals and others formed possibly due to the breakdown of the HP paragenesis. The original constituents are garnet, clinopyroxene, kyanite, clipozoisite, rutile and phengite. Although, the sample has significantly transformed to sympjectite due to overprint by succeeding events, the original texture is still able to be oserved (Plate 1/1). The most common relict phase is garnet which'

53

Page 54: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

gives about 30 v% of the whole rock. Usually inclusion free, but small rutile and kyanite inclusions occur. Garnet grains are usually enclosed by a radial corona of plagioclase and tiny amphibole. Clinopyroxene is almost entirely replaced by symplectitic intergrowth of amphibole, chlorite and plagioclase, only a very few grains could survive the breakdown of the original HP assemblage. Kyanite and phengite are surrounded by fine grained margarite (Plate 1/2), while rutile is partially replaced by titanite. Clinozoisite is almost completely replaced by minerals not able to be identified under the microscope (Plate 1/3).

The most characteristic secondaiy phase is amphibole that occurs in two different textural positions. It either growths independently in the symplectitic matrix (Plate 1/4), or forms poikiloblastic intergrowth with the garnet. Also in this latter case, however, garnet is surrounded by the fine grained plagioclase corona first. No optical zoning has been observed. The sample contains no primary plagioclase. Feldspar occurs only as a corona-forming mineral around garnet and as a newly forming phase together with the matrix amphibole. llmenite does not occur even as a secondary Ti-phase.

100

10

1

.1 C s R b B a T h U K N b L a Ce Sr NdHf Zr SmEu Ti Gd Dy Y Er Yb Lu

Fig. 2. N-MORB normalized spidergram for the eclogite sample. Shaded area is characteristic tor the Körös Complex amphibolite.

Geochemically the eclogite sample is subalkaline basalt based on the discriminating method of W I N C H E S T E R and F L O Y D ( 1 9 7 7 ) with as low as 0 . 1 5 N b / Y ratio. Similarly to the KC amphibolite samples also the eclogite is tholeiitic rather than calc-alkaline in composition (Fe0'0I/Mg0-Si02, MIYASHIRO, 1 9 7 4 ; Cr-V, MlYASHIRO and S H I D O , 1 9 7 5 , not presented). It

54

Page 55: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

also exhibits a considerable LIL element enrichment as plotted on the N-MORB normalized spidergram (fig. 2.) and falls roughly into the typical range defined by the KC amphibolite. The graph, however, also shows that the sample owns a significant depletition on Nb, Zr and Y.

M I N E R A L C H E M I S T R Y

Primary phases Garnet composition has been calculated by the MINFILE software ( A F I F I and E S S E N E ,

1988) assuming full octahedral site occupancy. The grains measured have a rather uniform composition (Table 1.) (Alni35^oPrp33.4oGrS|5.2oAdr0.5Sps^2), without any significant chemical zoning. Calculated garnet end-members are plotted in fig. 3. No clinopyroxene of the original HP composition has remained. Minute pyroxene inclusions in the recrystallyzing amphibole grains are diopside in composition ( M O R I M O T O et al., 1988) with as much as 25-30 % hedenbergite in them. Only a very little amount of jadeite has been calculated (Di70-75Hdi5. 3oJdo_3) (Table 1.).

(Alm+Sps)70

Retrograded eclogite Symplectite

Fig. 3. Garnet shows a uniform composition on the Ca-Mg-(Fe+Mn) diagram. Typical garnet composition of ihe Kôrosladâny eclogite (symplectite) is also shown.

Kyanite commonly occurs as a matrix grain, but also forms minute inclusions in garnet. It is rather homogenous in composition, analysis reveals only small amount of Fe as an impurity. Phengite, the dominant high pressure white mica phase is magnesian (Mg/Fe~l,.5),

55

Page 56: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

low in Ti and Na as well as in Si (6.5-6.7 p.f.u. for 22 oxygens) (Table 1.). Rutile is near pure Ti02.

Secondary phases Amphibole is actinolitic hornblende after LEAKE's system ( L E A K E 1978; L E A K E et al.,

1997). It shows only a slight but characteristic zoning. From the core towards the rim the continuous increase of Al1 and (Na+K)A while decrease of Si, A1V1 and NaM4 are the most significant changes (fig. 4/a„ b.; table 1.). Sphene is low in Al, so can be regarded as pure CaTiSiOj (RIBBE, 1980).

Fig. 4/a. Selected rim-to-rim sections of a secondary amphibole grain (Al'v , Alv l ; each lag equals to 10 (im). The amphibole composition has been calculated based on the assumption XCa=15.

56

Page 57: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. 4/b. Selected rim-to-rim sections of a secondary amphibole grain (NaA, NaM4; each lag equals to 10 nm). The amphibole composition has been calculated based on the assumption XCa=l 5.

PT CONDITIONS '

In the absence of any stable HP paragenesis the peak conditions of the eclogite facies metamorphism may only roughly be estimated. Because no original pyroxene composition is available, the most commonly used garnet-pyroxene Fe-Mg exchange reaction' ( E L L I S and G R E E N , 1 9 7 9 ; K R O G H , 1 9 8 8 ) can not be applied. So, the core compositions of the garnet and phengite will be utilized. Medium pyrope content of the garnet is characteristic for B type eclogites ( C O L E M A N et al., 1 9 6 5 ) . Assuming temperature not higher than 6 5 0 ° C is consistent with this datum. In this case the Si-content of phengite suggests 10-12 kbar as a minimum

57

Page 58: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

pressure ( M A S S O N E and S C H R E Y E R , 1 9 8 7 ) . Assuming this pressure interval when applying different garnet-phengite thermometers ( G R E E N and H E L L M A N , 1 9 8 2 ; K R O G H and R A H E I M ,

1 9 7 8 ) for the core parageneses, a 6 0 0 - 6 5 0 ° C temperature interval can be calculated systematically. For both higher and lower pressures the temperature data scatter significantly. Although, both the estimated P and T intervals are rather wide ( 1 0 - 1 2 kbars; 6 0 0 - 6 5 0 ° C ) ,

they are consistent with each other and so can be accepted. Characterization of the breakdown path of the eclogite by using different retrograde

parageneses commonly occuring in the sample seems valid. To do this the following two cases are examined: [ 1 ] garnet+ruti le+kyan ite+sphene+plagioclase+quartz, [2] kyanite+clinozoisite+margarite+quartz. The paragenesis [1] may often be identified in thin section. Garnet usually contains rutile and rarely also kyanite inclusions. Matrix rutile grains are always rimmed by sphene while garnet has a plagioclase rim around it. Possible reactions in this paragenesis may be described in the Si02 - A1203 - FeO - Ti02 - CaO system, and the following linearly independent reactions exist: (1) grossularite+2 kyanite+quartz=3 anorthite, (2) anorthite+rutile=sphene+kyanite, (3) grossularite+3 rutile+quartz=3 sphene+kyanite, (4) grossularite+2 rutile+quartz=2 sphene+anorthite.

The other paragenesis needs the Si02 - A1203 - CaO - H 20 system and there is only one possible reaction: (5) 5 kyanite+2 clinozoisite+3 H20=4 margarite+3 quartz.

All listed minerals are suitable for thermobarometric calculation and most of them need no special activity models. Rutile, kyanite, margarite and quartz are assumed to be ideal just as sphene. In this latter case the low Al-content of the mineral allows leaving solution model calculations out. Activities of garnet end member components were calculated using the model of G A N G U L Y and S A X E N A ( 1 9 8 4 ) , while in the case of plagioclase the model of F U H R M A N and L I N D S L E Y ( 1 9 8 8 ) was applied. Thermodynamic calculations were performed with a TWQ software using the J U N 9 2 . G S C internally consistent thermodynamic database of B E R M A N ( 1 9 8 8 ) .

Phases specified as paragenesis [1] are all in equilibrium with each other, where reactions (l)-(4) intersect on the PT space. This point represents one step of the breakdown history. The intersection of the four reactions has been calculated in the case of five inclusion-bearing garnet grains. Composition of only garnet and plagioclase has been measured, all the other minerals were assumed to be ideal. To get the position on the P-T space where the system is in equilibrium the program INTERSX contained .in TWQ ( B E R M A N , 1 9 9 1 ) were used. P-T results proved very similar in each case, T is 5 0 0 - 5 2 0 °C, while P is in the range of 8 . 0 - 8 . 9

kbar (fig. 5.). Application of the paragenesis [2] and namely the reaction (5) for estimating the

breakdown conditions is rather uncertain because of the significant role of H20. Depending on whether the activity of H 2 0 is high or low, the equilibrium may vaiy in a wide range. Theoretically, an eclogitic remnant may be preserved in a relatively dry environment, thus a low H 20 content may be postulated. Equilibrium in the case of two possible activities (0.3, 0.5) of H 2 0 were calculated by TWQ ( B E R M A N , 1991) using the database of B E R M A N

(1988). Results are plotted on Jig. 5. On this graph one can see that the retrograde path of the eclogite goes likely down to the greenschist fades. Although, the physical conditions of this

58

Page 59: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

low temperature phase cannot be modelled exactly, the lowest temperature is definitely below the stability field of the amphibolite fades overprint.

P (kbar)

400 500 600

Fig. 5. Estimated PT evolution of the Szarvas eclogite sample. Broken line reminds of the evolution of the retrograded eclogite from Korosladany-5 borehole (M TOTH, 1995).

Even garnet grains which are overgrown by the secondary amphibole have the plagioclase corona around, indicating that the breakdown of the HP rock preceded the appearance of the. amphibole;. The nature of the chemical zoning of the secondary amphibole grains is similar in both textural positions discussed above. All the characteristic changes, the increase of AIIV and (Na+K)A suggest that amphibole grew due to increasing temperature ( B A R D , 1970; S P E A R , 1981). These data suggest that the breakdown of the HP rock was followed by an amphibolite facies overprint.

59

Page 60: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

CONCLUSIONS

Similarly to the other metabasic rocks of the KC, also the eclogite sample studied is tholeiitic basalt. The characteristic light element enrichment (fig. 2.) relative to N-MORB suggests evolution on destructive plate margin. In contrast, however, to the other samples the retrograded eclogite exhibits a depletition in Nb, Zr and Y. Based on this composition this rock may be considered to be island arc basalt rather than back-arc basin tholeiite, which has been documented for the majority of other amphibolites from the region. There is, however, no tectonic reason to suppose that the eclogite represents a different igneous series.

The estimated HP conditions and the further metamorphic evolution of the eclogite sample are in good agreement with the development of other high pressure relics from the KC (M. TÓTH, 1995, 1996) and especially with the other eclogite sample (fig. 5). All these rocks evolved on low to medium temperature, no HT samples have been detected. The peak conditions were followed by retrograde evolution down to the greenschist facies and a progressive amphibolite facies overprint afterwards. The identical two-stage evolution can be seen also in the case of the current eclogite sample. Diminishing of both P and T after the eclogite facies peak are indicated by the estimated pyhysical conditions of the two retrograde parageneses [1] and [2], respectively (fig. 5.). This retrograde evolution was followed by the progressive barrovian type overprint exhibited by the chemical zoning of the secondary amphibole grains. Their rim composition is comparable to the amphiboles common in the KC amphibolites. Based on the detailed examination of several HP relics, this two-stage metamorphic evolution seems characteristic in the KC.

Occurence of a HP relict ( R A V A S Z - B A R A N Y A I , 1 9 6 9 ) and several ultramafic bodies ( S Z E D E R K É N Y I , 1 9 7 4 ; G H O N E I M a n d S Z E D E R K É N Y I , 1 9 7 9 ; B A L L A , 1 9 8 3 ) i n t h e

Transdanubian part of the Tisia as well as the eclogite samples in the KC gave wáy to the assumption that the two regions may geologically belong together ( S Z E D E R K É N Y I , 1 9 9 6 ) . A

narrow zone is assumed and interpreted as a remnant of a Pre-Variscan suture. There are, however, significant diferences between the metamorphism of the two eclogite types. The Görcsöny eclogite sample is interpreted as a high temperature eclogite, it contains orthopyroxene as a retrograde phase. In this case amphibole also appears as a retrograde mineral in contrast to all the HP samples from the KC. The metamorphic evolution of the HP rocks in the two regions is fundamentally different, so they probably formed in different tectonic situations. Additionally, although, in the Transdanubian part occurence of ultramafic bodies is rather common, in the KC no one has been found so far. Consequently, the Pre-Variscan connection of the two eclogite-bearing parts of the Tisia composite terrane seems questionable and needs further investigations.

ACKNOWLEDGEMENTS

Researches of the author at the University of Mainz and University of Berne were financially supported by the Soros and Széchenyi Foundations as well as by the Hungarian Ministry of Culture (Eötvös Scholarship). R. Oberhänsli is thanked for making the geochemical measurements possible. The electron microprobe at the university of Berne was supported by the Schweizerische Nationalfonds (No. 21-26579.89). This research work was financially supported also by the OTKA foundation (No.: F/017366).

60

Page 61: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

REFERENCES

AFIFI, A. M.; ESSENE, E. J. (1988): MINFILE: A microcomputer program for storage and manipulation of chemical data on minerals. American Mineralgist, 73, 446-448

BALLA, Z. (1983): A Dél-dunántúli ultrabázitok lemeztektonikai értelmezése (Tectonic interpretation of South-Transdanubian ultramafics). (In Hungarian) Földtani Közlöny, 113, 39-56

BARD, J. P. (1970): Compositions of hornblendes during the Hercynian progressive metamorphism of the Aracene metamorphic belt (SW Spain). Contrib Mineral Petrol, 28, 117-134

BERMAN, R. G. (1988): Internally-consistent thermodynamic datafor stoichiometric minerals in the system NajO-KíO-CaO-MgO-FeO-FejOMbOí-SiOí-TiOz-HíO-CO,. J. Petrol., 29, 445-522

BERMAN, R. G. (1991): Thermobarometry using multi-equilibrium calculations: a new technique with petrological applications. Can. Mineral., 29, 833-856

BUDA, GY. (1981): Genesis of the Hungarian granitoid rocks. ActaGeol. Acad. Sci. Hung., 24/2-4, 309-318 BUDA, GY. (1985): Variszkuszi korú kolliziós granitoidok képződése Magyarország, Ny-Kárpátok és a Központi

Cseh-masszívum granitoidjainak példáin. (Genesis of collision type Variscan granitoides in Hungary, Western-Carpatians and in the Bohemian Massif.) Ph.D. thesis, ELTE Budapest, in Hungarian

COLEMAN, R. G.; LEE, D. E.; BEATTY, L. B.; BRANNOCK, W. W. (1965):Eclogites and eclogites: their differences and similarities. Geological Society of America Bulletin, 76,483-508

DIAMOND, L. W . ; SCHMATZ, D. ; WÜRSTEN, F. ( 1994 ) : „ S t a n d a r d l ibrary" : A re la t iona l d a t a b a s e f o r t h e m a n a g e m e n t of electron microprobe standards. Computers and Geosciences, 20, 585-595

ELLIS, D. J.; GREEN, D. H. (1979): An experimental study of the effect of Ca upon gamet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., 71, 13-22

FUHRMAN, M. L.; LINDSLEY, D. H. (1988): Temary-feldspar modeling and thermometry. American Mineralogist, 7 3 , 2 0 1 - 2 1 5 -

GANGULY, J.; SAXENA, S. K. (1984): Mixing properties of alumosilicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry. American Mineralogy, 69, 88-97

GHONEIM, M. F.; SZEDERKÉNYI, T. (1979): Petrological rewiev of the Ófalu serpentinite, Mecsek Mountains, Hungary. Acta Miner., Petr., Szeged, 24/1, 5-18

GREEN, T. H.; HELLMANN, P. L. (1982): Fe-Mg partitioning between coexisting garnet and' phengite at high pressure, and comments on a garnet-phengite geothermometer. Litlios, 15, 253-266

HAAS, J . ; K O V Á C S , S . ; KRYSTYN, L.; LEIN, R . ( 1 9 9 5 ) : S i g n i f i c a n c e o f L a t e P e r m i a n - T r i a s s i c f a c i e s z o n e s in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics, 242, 19-40

KOVÁCS, S. ; SZEDERKÉNYI, T ; ÁRKAI, P.; BUDA, GY.; LELKES-FELVÁRI, GY. ; NAGYMAROSY, A . ( 1 9 9 6 ) : Explanation to the terrane map of Hungary. Report of the 1GCP project. No. 276. Athen, in press

KROGH, E. J. (1988): The gamet-clinopyroxene Fe-Mg geothermometer - reinterpretation of existing experimental data. Contrib Mineral Petrol, 99,44-48

KROGH, E. J.; RAHEIM, A. (1978): Temperature and pressure dependence of Fe-Mg partitioning between.garnet and phengite, with particular reference to eclogites. Contrib. Mineral. Petrol. 66, 75-80

LEAKE, B. E. (1978): Nomenclature of amphiboles. American Mineralogist, 63, 1023-1052 LEAKE, B . E. ; WOOLEY, A. R . ; ARPS, C . E. S. ; BIRCH, W . D.; GILBERT, M . C , ; GRICE, J. D. ; 'HAWTHORNE, F. C ;

KATO, A . ; KISCH, H. J. ; KRIVOVICHEV, V. G. ; LINTHOUT, K.; LAIRD, J.; MANDARINO, J. ( 1 9 9 7 ) : Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazin, 61, 295-321

LISTER, G. S.; DAVIS, G. A. (1989): The origin of metamorphic core complexesand detachment faults formed during Tertiarycontinental extension in the northern Colorado River region, U.S.A. J. Struct. Geol., l l , -65-94M TÓTH, T. (1994/a): A Tiszai egység amfibolitjainak premetamoif fejlődéstörténete és metamorfózisa Szeghalom környékén. (Premetamorphic origin and metamorphic evolution of amphibolites of the Tisia in the vicinity of Szeghalom.) Ph.D. thesis, JATE, Szeged, in Hungarian

M TÓTH, T. (1994/b): The geochemical character of amphibolites from Tisza Unit on the basis of incompatible trace elements. Acta Miner., Petr., Szeged, XXXV, 27-38

M TÓTH, T. (1995): Retrograded eclogite in the crystalline basement of Tisza Unit, Hungary. Acta Miner., Petr., Szeged, XXXVI, 117-129 ~

M TÓTH, T. (1996): Magas nyomású metamorfózis nyomai a Tiszai Egység amfibolitjain (Traces of high pressure metamorphism on the metabasic rocks from the Tisia, Eastern Hungary). Földtani Közlöny, 126/1-2, 37-52

MASSONE, H. J.; SCHREYER, W. (1987): Phengite geobarometry based on "limiting assemblage with K-feldspar, phlogopite and quartz. Contributions to Mineralogy and Petrology, 96, 212-224

MLYASHIRO, A. (1974.): Volcanic rock series in island arcs and active continental margins. American J.oumal of Science, 274, 321-355.

61

Page 62: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

MIYASHIRO, A.; SHIDO, F. (1975): Tholeiitic and calc-alcalic series in relation to the behaviors of titanium, vanadium, chromium and nickel. American Journal of Science, 275, 265-277

MORIMOTO, N . ; FABRIES, J. ; FERGUSON, K. ; GINZBURG, I. V . ; R o s s , M . ; SEIFERT, F. A . ; ZUSSMAN, J . ; AOKI, K. ; GOTTARDI, G . ( 1 9 8 8 ) : N o m e n c l a t u r e o f py roxenes . A m e r i c a n M i n e r a l o g i s t , 7 3 , 1 1 2 3 - 1 1 3 3

PIN, C. (1990): Variscan oceans: Ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysiscs, 177,215-227

RAVASZ-BARANYAI, L. (1969): Eclogite from the Mecsek mountains, Hungary. Acta Geol. Ac. Sci. Hung., 13, 315-3 2 2

RIBBE, P. H. (1980): Orthosilicates. (Reiews in Mineraology vol. 5) . Mineralogical Society of America, pp 450 SPEAR, F. S. (1981): An experimental study of hornblende stability and compositional variability in amphibolite.

American Journal of Science, 281, 697-734 SZEDERKÉNYI, T. (1974): Paleozoic magmatism and tectogenesis in Southeast Transdanubia. Acta Geol. Ac. Sci.

Hung., 18, 305-313 SZEDERKÉNYI, T. (1984): Az Alföld kristályos aljzata és földtani kapcsolatai. (The crystalline basement of the Great

Hungarian Plane and its geological connections.) Academic doctor theses, Hungarian Academy of Sciences, Budapest

SZEDERKÉNYI, T. (1996): Metamorphic formations and their correlation in the Hungarian part of the Tisia megaunit (Tisia megaunit terrane). Acta Miner., Petr., Szeged, XXXVII, 143-160

SZEDERKÉNYI, T . ; ÁRKAI, P.; LELKES-FELVÁRI, GY. (1991) : C r y s t a l l i n e g r o u n d f l o o r o f t h e G r a t H u n g a r i a n P la in and South Transdanubia, Hungary. Serbian Academy of Sciences and Arts, Academic Conferences, 62, 261 -273

TARJ, G.; HORVÁTH, F.; RUMPLER, J. (1992): Styles of extension in the Pannonian Basin. Tectonophysics, 208, 203-219

WINCHESTER, J. A.; FLOYD, P. A. (1977): Geochemical discrimination of diferent magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343

TABLE 1.

Representative analysis of the primary and secondary phases of the eclogite sample

garnet clinopyroxene phengite amphibole core amphibole rim margarite

Si0 2 39.01 52.16 49.51 49.70 46.70 28.09

Ti0 2 . 0.13 0.22 0.00 0.25 0.25 0.00

AI2O3 23.42 1.16 28.25 5.31 8.51 50.82

FeO 18.78 8.41 2.13 13.58 14.04 0.56

MnO 0.66 0.50 0.00 0.26 0.24 0.00

MgO 9.50 12.79 3.05 13.88 12.71 0.55

CaO 8.52 24.69 0.06 10.90 10.31 12.57

Na 2 0 0.00 0.26 ' 0.05 0.47 0.87 0.48

K 2 0 0.00 0.00 10.35 0.14 0.22 0.13

Total 100.20 100.18 93.39 94.49 • 93.85 93.20

62

Page 63: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Plate 1,1. Very fine grained symplectitic texture of the Szarvas-16 eclogite with erroded garnet grains.

Plate 1/2. Primary kyanite is enclosed by margarite. Also see the fine grained pseudomorphs after pyroxene.

Page 64: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

lJlate 1/3. The cluster of elongated clinozoisile grains is replaced by undefmable set of secondary minerals

l'lulc 1.4 Secondary amphibole intergrows with the eclogite garnet. Note that the garnet is surrounded by a fine grained

plagioclase-amphibole corona.

64

Page 65: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

AclaMineralogica-Petrographica, Szeged, XXXVIII,65-72, 1997

VARIETIES OF SULPHUR IN LOW-RANK HUNGARIAN COALS

L. PÁPAY1

"Department of Mineralogy, Geochemistry and Petrography, Attila József University

A B S T R A C T

In this paper altogether 17 brown coal and lignite samples have been studied from different parts of Hungary. Both low-rank coals were deposited under freshwater conditions. Most of the samples are characterised by relatively low amounts of total sulphur content.

The total sulphur content in Oligocene brown coals from Vertessomlo is the least average value (0.8%) among Hungarian brown coals. The sequence of distribution of sulphur among the different bond forms in them is the same as in other, samples of different Transdanubian brown coal mines: organic sulphur > pyritic sulphur > sulphate sulphur.

The lignite samples from BUkkabrany are characterised by relatively low amount (average: 1.3%) of total sulphur content. The moisture in lignite samples is fairly abundant, averagely 40.5%. The comparison of the Pliocene lignite of BUkkabrany with other Hungarian brown coals, according to their average total sulphur content on dry, ash-free basis (2.9%) indicated that they belong to the coal moderately rich in sulphur. In lignites at BUkkabrany organic sulphur and sulphate content dominate usually, and pyrite is minor. The relatively high sulphate concentration of lignites indicate that these samples are weathered or oxidized.

I N T R O D U C T I O N

The sulphur in coal is commonly classified into inorganic and organic sulphur. The inorganic sulphur occurs mostly as iron disulphides, FeS2, with a small amount occurring as sulphates, mainly in the form of iron and calcium sulphates, barium sulphates are rarely observed in coal. The presence of iron sulphates is generally an indication of coal weathering.

The organic sulphur compounds present in coal have been categorized according to their sulphur functional groups: thiol or mercaptan (R-SH), sulphide or thio-ether (R-S-R'), disulphide (R-S-S-R'), and aromatic systems containing the thiophene ring, y-thiopyrone systems, where R and R' designate alkyl or aryl groups ( G I V E N and W Y S S , 1961). Thiol and disulphide are likely secondary products because they are thermally rather unstable and would not survive the coaliftcation process (TSAI, 1982).

Pyrite is a common and widespread authigenic mineral in sedimentary rocks. Most insight on pyrite formation were derived from laboratory studies (BERNER, 1 9 6 4 , 1 9 6 9 ; S W E E N E Y

a n d K A P L A N , 1 9 7 3 ; R I C K A R D , 1 9 7 5 ; M U R O W C H I C K a n d B A R N E S , 1 9 8 6 ; D R O B N E R e t a l . ,

1 9 9 0 ; L U T H E R , 1 9 9 1 ; and others) or studies on brackish or marine environments ( H O W A R T H ,

1 9 7 9 ; BERNER, 1 9 8 4 ; C A N F I E L D , 1 9 8 9 , P E R R Y et al., 1 9 9 3 ; and others). Based on field observations and experimental studies, it is generally accepted that the iron disulphides form either (1) via replacement of FeS precursor or (2) via FeS2 nucleation. In many cases the first product is iron monosulphide phase and subsequent reaction of this phase with elemental

1 H-6701 Szeged, P.O. Box 651, Hungary

65

Page 66: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

sulphur or sulphur equivalent (depend on pH polysulphides, thiosulphate S C H O O N E N and B A R N E S , 1 9 9 1 ) will produce finally pyrite. But in various sediments, especially in salt marshes ( H O W A R T H , 1 9 7 9 ; L O R D and C H U R C H , 1 9 8 3 ; G I B L I N and H O W A R T H , 1 9 8 4 ; K O S T K A

and L U T H E R , 1 9 9 5 ) and in freshwater lakes ( D A V I S O N et al., 1 9 8 5 ) in peat ( A L T S C H U L E R et al., 1 9 8 3 ) in shale ( C A R S T E N S , 1 9 8 5 ) pyrite precipitates directly without any monosulphide intermediates. In the same sediment-porewater. systems, many components; (e.g.- elemental sulphur, iron monosulphides, pyrite, dissolved polysulphides, ferrous ion, hydrogen sulphide) can coexist, thereby obscuring the mechanism(s) by which pyrite is produced ( L O R D and C H U R C H , 1 9 8 3 ) . Studies on distribution of sulphur in freshwater sediments revealed that organic sulphur forms are dominant ( N R I A G U and S O O N , 1 9 8 5 ) , in some, freshwater lakes, however, inorganic S forms predominate ( W H I T E et al., 1 9 8 9 ) and in lakes subjected to significant anthropogenic atmospheric S inputs ( C A R I G N A N and T E S S I E R , 1 9 8 8 ) . The formation mechanism of pyrite in freshwater systems is thought to be similar to that in marine sediments ( S C H O O N E N and B A R N E S , 1 9 9 1 ) . -

Recent studies of S transformations in anoxic sediments have shown that the thiosulphate and sulphite are mainly the products of sulphide oxidation, and not sulphate reduction ( F O S S I N G a n d J O R G E N S E N , 1 9 9 0 ; E L S G A A R D a n d J O R G E N S E N , 1 9 9 2 ; T H A M D R U P e t a l . , 1 9 9 4 ) .

In addition, the hydrogen sulphide (and/or polysulphides) as well as elemental sulphur are important intermediates for pyrite and organic sulphur. Numerous investigators have reported the early diagenetic sulphur enrichments of macromolecular sedimentary organic matter ( C A S A G R A N D E e t a l . , 1 9 7 9 ; C A S A G R A N D E a n d N G 1 9 7 9 ; F R A N C O I S 1 9 8 7 ; S I N N I N G H E

D A M S T É et al., 1 9 8 9 ; T U T T L E and G O L D H A B E R 1 9 9 3 ; and others). The purpose of the present paper is to determine the distribution of sulphur among the

different bond forms in low-rank Hungarian coals deposited under freshwater conditions. The primary problem in utilization of coal is the necessity to minimize environmental pollution, therefore it is important to know the distribution of sulphur in this avaible energy source.

G E O L O G I C A L S E T T I N G

In Hungary the brown coal and lignite seams generally occur in the marginal areas of the deep basins and in intramontane lagoons. From Oligocene to Lower Miocene series for the Transdanubian Central Mountains and their NW foreland, the formation of continental-epicontinental terrigenous beds are characteristic ( K . O R P Á S , 1 9 8 1 ) . At the beginning of Oligocene in the area of Vértessomló there was denudation -this erosional vacuity represents a short time interval- thereafter continental freshwater sediments deposited, in that sequence from 0 . 2 to 2 . 4 m thick brown coal bed can be found ( G E R B E R , 1 9 8 7 ; G I D A I , 1 9 8 6 ) , see Fig. I.

In the Upper Pannonian (Pliocene) beds there are considerable lignite seams at the southern foreland of the Cserhát-Mátra and Biikk Mountains. This lignite region is the largest continuous coal airea in Hungaiy (Fig. J.). The Mátra-Bükkalja sequence in the exposed Upper Pannonian (Pliocene) deposits are composed in 50 to 80 per cent fine to medium grain sands, less silt, clay and 2 to 1 5 m thick lignite seams consisting of several beds ( R A D Ó C Z et al., 1 9 8 7 ) . The structure of the Pannonian lignite-bearing series is layered (so-called "layer cáke structure"). The Bükkábrány lignite sequence is composed of varying thick lignite, argillaceous lignite and clay benches [ C S I L L I N G , 1 9 6 5 ] .

66

Page 67: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

0

I

g 0

c

e

n

e

M = 1 : 2 0 0

Pleistocene 7.6

I I

T~~T

-I . I

1

Loess, sandy clay

Sandy clay,sand, sandstone

day , with brown coal beds

K a r l , calcareous mar l

Nummulites l imestone

Fig. I. Location map of the studied area and geological sections to them: A) detail of the geological section at Vertessomlo (alter GERBER, 1987);

B) ideal geological section at Biikkabrany (after CSILLING, 1965) Legend: 1 = Pebble, 2 = Sand, 3 = Clayey sand, 4 = Sandy clay, 5 = Clay,

6 = Lignite, 7 = Rhyolite tuff, 8 = Tuffaceous clay.

67

Page 68: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Faunal and paleogeographic evidence indicate, that in the early Late Miocene the Pannonian Lake/Sea -an inland sea- was finally disconnected from its neighbouring basins and gradually evolved into a large brackish to freshwater lake [ J Á M B O R 1980, 1987; K Á Z M É R

1990; M Ü L L E R and M A G Y A R 1992]. The salinity of the Pannonian Lake might have been 14-\6%o when Pannonian sediments started to deposit ( B A R T H A , 1971). In his study, K O R I M

(1966) deals in details with the connate waters of the Hungarian Neogene. He found that the Lower Pannonian connate waters immediately above the marl are oligohaline (the total solids content does not attain 10.000 mg/1), the upper horizon in the Lower Pannonian and the Upper Pannonian (Pontian) waters are fresh waters (max. salinity 700 mg/I).

SAMPLES AND ANALYTICAL METHODS

Altogether 17 brown coal and lignite samples have been examined from Vértessomló and Bükkábrány. We had collected and put the samples into double plastic bags; within a few days crushed to = 200fim size in a ball agate mill, then their moisture arid ash ̂ contents were determined immediately. ; • •

The total carbon content was measured at 1000 °C under intense oxygen flow by combusting in a Carmhograph-8 (Wösthoff) equipment. ? "' : .

The carbon dioxide content of samples was determined by gasvolumetric method. The determination of the total sulphur content was carried out with Eschka procedure.

The total sulphur content was converted into BaS04 and weighed gravimetrically.. The sulphur content of disulphide in coal samples was reduced by'nascent hydrogen to

hydrogen sulphide in the presence of Cr(II)-ions. The hydrogen sulphide originated from reduction was buddled through a cadmium acetate solution and the sulphur content of disulphide was determined by iodometry. :

The sulphate sulphur was determined by extraction of the powéred coal samples with hydrochloric acid followed by precipitation with barium chloride and weighing as barium sulphate.

In eveiy case the organic sulphur was determined by the difference between the total sulphur and inorganic sulphur.

RESULTS AND DISCUSSION

The data of Hungarian brown coal and lignite (from the 1st bed) samples studied are summarized in Table 1.' "r • :

The total sulphur content in the samples fiom Vértessomló is the least average value ( 0 . 8 % ) among Hungarian brown coals that have been examined previously ( P Á P A Y 1 9 9 3 ,

1 9 9 6 ) . In these coals organic sulphur dominates, pyrite is in small quantity and sulphate content is negligible (sulphate S approx. zero). The sequence of the distribution of sulphur among the different bond forms in Oligocene brown coal is the same as in other samples of different Transdanubian brown coal mines: organic sulphur > pyritic sulphur > sulphate sulphur. Though, sulphur dioxide emission is minimum during burning of brown coal at Vértessomló, it is regrettable that total quantity relatively small.

68

Page 69: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Most of the lignite samples are characterised by relatively low amount (average: 1.3%) of total sulphur content. This value is similar to results (mean: 1.7%) of the prospecting boreholes at Bukkabrany. However, F E J E R et al. ( 1 9 8 9 ) in their review published only total sulphur data. It must be noted that the moisture in lignite samples is fairly abundant, averagely 40.5%. The comparison of the Pliocene lignite of Bukkabrany with other Hungarian brown coals, according to their average total sulphur content on dry, ash-free basis ( 2 . 9 % ) indicated that they belong to the coal moderately rich in sulphur. In lignites at Bukkabrany organic sulphur and sulphate content dominate usually, and pyrite is minor. The relatively high sulphate concentration of lignites indicate that these samples are weathered or oxidized. The samples were collected from open-pit mine. A part of the pyrite transformed and might transform into iron sulphate. The lignites at Bukkabrany are utilized in the power station near the mine.

TABLE 1. Distribution of sulphur in brown coal at Vertessomlo (01) and lignite samples at Bukkabrany (Bkk) in addition to

data of the moisture, ash, total, inorganic, organic carbon content

Symbol Wa

% Ad

% C, %

Ccarb % Corg % S,a %

s a

% s a Osz %

s a

''org % (diff.)

stdar

% c daf 3p %

c daf ¿SZ % q daf ¿org

% (diff.)

Ol/I 9.7 13.7 59.4 0.1 59.3 0.8 0.1 o.o' 0.7 1.0 0.1 0.0 0.9

01/2 9.5 26.7 47.9 0.1 47.8 0.9 0.1 0.0' 0.7 1.6 0.8 0.0 0.9

OI/3 9.5 11.4 58.3 0.1 58.2 1.3 0.6 o.o' 0.7 1.6 0.7 0.0 0.9

01/4 9.6 32.3 43.2 0.1 43.1 0.3 <0.1 0.0" 0.2 0.5 0.2 0.0 0.3

OI/5 11.1 6.4 60.9 0.2 60.7 0.8 0.2 o.o' 0.6 1.0 0.3 0.0 0.7

Bkk/1 36.5 9.3 27.9 <0.1 -27.8 2.0 0.6 1.0 0.4 3.7 1.1 1.9 0.7

Bkk/2 37.9 8.2 28.9 <0.1 -28.8 1.2 0.3 0.3 0.6 2.2 0.6 0.6 1.0

Bkk/3 30.9 15.0 29.1 <0.1 -29.0 1.3 0.2 0.7 0.4 2.4 0.4 1.3 0.7

Bkk/4 50.3 5.9 31.4 <0.1 -31.3 0.8 0.2 0.2 0.4 1.8 0.5 0.5 0.8

Bkk/5 49.8 5.3 30.8 0.1 30.7 1.2 0.2 0.7 0.3 2.7 0.4 1.6 0.7

Bkk/6 46.6 17.2 23.9 <0.1 -23.8 1.7 1.0 0.3 0.4 4.7 2.8 0.8 1.1

Bkk/7 39.8 17.4 23.1 <0.1 -23.0 1.9 0.2 0.6 1.1 4.5 0.5 1.4 2.6

Bkk/8 41.5 10.4 36.8 <0.1 -36.7 0.7 0.1 <0.1 -0 .5 1.4 0.2 -0 .2 -1 .0

Bkk/9 32.4 16.1 27.8 0.1 27.7 2.3 0.5 0.6 1.2 4.5 1.0 1.2 2.3

Bkk/10 36.7 24.8 30.5 <0.1 -30.5 1.1 0.2 0.3 0.6 2.9 0.5 0.8 1.6

Bkk/11 39.8 12.6 40.6 >0.1 40.5 1.3 0.2 0.7 0.4 2.7 0.4 1.5 0.8

Bkk/12 43.8 11.6 24.6 0.1 24.5 0.6 <0.1 <0.1 -0 .4 1.3 -0 .2 -0 .2 -0 .9

Wa: analitical moisture vvt%; Ad: ash wt %; CU CCARB CO :̂ total, carbonate (inorganic), organic carbon content wt%; Sia, Sp

a, Ssza, Son;2-' total, pyritic (+ sulphide), sulphate, organic (by dilTerence) sulphur content in raw sample; Sidaf, Sp

daf, SszdaCSorS

dar: total, pyritic (+ sulphide), sulphate, organic (by difference) sulphur content; dry, ash-free basis

data to be found under measuring range; <0.05%

69

Page 70: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

As described above, the Oligocene brown coal in the vicinity of Vertessomlo and Pliocene lignite of Biikkabrany were deposited as freshwater peats. In general, the common characteristics of freshwater coals are low ash and low total sulphur content. Organic sulphur is a major component of the low-sulphur coals. In freshwater systems, organic S compounds are the most important, because the low concentrations of sulphate, which characterize most freshwater systems limited bacterially-catalyzed reduction of sulphate. Organic sulphur is the dominant sulphur form in freshwater peats (eg. C A S A G R A N D E et al., 1 9 7 7 , 1 9 8 0 ) and sediments ( N R I A G U and S O O N , 1 9 8 5 ; M A R N E T T E et al., 1 9 9 3 ) and in some cases organic S

species accounted for 9 0 - 9 9 % of total dissolved sulphur in the porewaters ( S T E I M A N N and S H O T Y K , 1 9 9 7 ) .

In low salinity waters, as in freshwater systems, the potential pyrite formation is prevented by both the low availability of sulphate and reducible iron (BERNER et al, 1979). That is the reason why pyrite is not determinant in freshwater coals. Furthermore, in lignites according to weathering or oxidation the pyrite may transform into iron sulphate especially in the period following the opening of mine.

ACKNOWLEDGEMENTS

This work was made possible by the (No. T 023050) Grant of the Hungarian Science Foundation (OTKA).

REFERENCES

ALTSCHULER Z. S. , SCHNEPFE M . M . , SILBER C . C . a n d SIMON F. O . ( 1 9 8 3 ) : S u l f u r d i a g e n e s i s in E v e r g l a d e s p e a t and origin of pyrite in coal. - Science 221,221-227.

BARTHA F. (1971): A magyarországi pannon biosztratigráfiai vizsgálata. (Biostratigraphic examination of Pannonian sediments in Hungary) In: (GÓCZÁN F., BENKÖ J. (eds.) A magyarországi pannonkori képződmények kutatásai. (Researches of Pannonian formations in Hungary) (in Hungarian). - Akadémiai Kiadó, Budapest, 9-173.

BERNER R. A. (1964): Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. - J. Geology, 72, 293-306.

BERNER R. A. (1969): The synthesis of framboidal pyrite. - Econ. Geol., 64, 383-384. BERNER R. A. (1981): Authigenic mineral formation resulting from organic matter decomposition in modern

sediments. - Fortschr. Miner. 59, 117-135. BERNER R. A. (1984): Sedimentary pyrite formation: An update. - Geochim. Cosmochim. Acta, 48, 605-615. BERNER R. A., BALDWIN T., HOLDREN Jr. G. R. (1979): Authigenic iron sulfides as paleosalinity indicators. - J.

Sediment. Petrol. 49, 1345-1350. CANFIELD D. E. (1989): Reactive iron in marine sediments. - Geochim. Cosmochim. Acta, 53, 619-632. CARIGNKN R. and TESSIER A. (1988): The co-diagenesis of sulfur and iron in acid lake sediments of southwestern

Quebec. - Geochim. Cosmochim. Acta, 52, 1 179-1 188. CARSTENS H. (1985): Displacive growth of authigenic pyrite. - J. Sediment. Petrol. 56, 252-257. CASAGRANDE D. J., GRONLI K. and SUTTON N. (1980): The distribution of sulphur and organic matter in various

fractions of peat: origins of sulfur in coal. - Geochim. Cosmochim. Acta, 44, 25-32. CASAGRANDE D. J. , IDOWU G. , FRIEDMAN A . , RICKERT P. , SIEFERT K. a n d SCHLENZ D. ( 1 9 7 9 ) : H J S i n c o r p o r a t i o n

in coal precursors: origins of organic sulphur in coal. - Nature 282, 599-600. CASAGRANDE D. J. and NG L. (1979): Incorporation of elemental sulphur in coal as organic sulphur. - Nature 282,

598-599. CASAGRANDE D. J . , SIEFERT K. , BERSCHINSKI C . a n d SUTTON N . , ( 1 9 7 7 ) : S u l f u r in p e a t - f o r m i n g s y s t e m s o f t h e

Okefenokee Swamp and Florida Everglades: origins of sulfur in coal. - Geochim. et Cosmochim. Acta 41, 1 6 1 - 1 6 7 .

CsiLLtNG L. (1965): A biikkábrányi-emödi pannóniai barnakőszén teriilet (Pannonian brown coal area in the vicinity of Bükkábrány-Emöd) (in Hungarian). - Földt. Kut. VIII/2, 8-15.

70

Page 71: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

DAVISON W., LISHMAN J. P. and HILTON J. (1985): Formation of pyrite in freshwater sediments: Implications for C/S ratios. - Geochim. Cosmochim. Acta, 49, 1615-1620.

DROBNER E . , HUBER H , WACHTERSHAUSER G . , ROSE D . a n d STETTER K. O . ( 1 9 9 0 ) : P y r i t e f o r m a t i o n w i t h hydrogen evolution under anaerobic conditions. - Nature 346, 742-744.

ELSGAARD, L. and JORGENSEN, B. B. (1992): Anoxic transformations of radiolabeled hydrogen sulfide in marine and freshwater systems. - Geochim. Cosmochim. Acta, 56, 2425-2435.

FEJÉR L., OSWALD Gy., SZÉLES L. (1989) : A magyarországi kőszenek kéntartalom-felmérésének módszere és eredménye (The method and results of the sulphur content survey of the Hungarian coals) (in Hungarian). -Központi Földtani Hivatal kiadványa, Budapest.

FOSSING H. and JORGENSEN B. B. (1990): Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark. - Geochim. Cosmochim. Acta, 54, 2731-2742.

FRANCOIS, R. (1987): A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. - Geochim. Cosmochim. Acta, 51, 17-27.

GERBER P. (1987): Vértessomló környékének földtana a barnakőszén-kutatások tükrében (Geology of the vicinity of Vértessomló in the light of brown coal exploration) (in Hungarian with German, English, Russian abstract). -Földt. Kutatás, XXX/4, 45-53.

GIDAI L. (1986): A Vértessomló-Majkpuszta-Oroszlány környéki oligocén barnakőszén-telepek kutatásának lehetőségei (Possibilities of Oligocene brown coal exploration in the vicinity of Vértessomló-Majkpuszta-Oroszlány) (in Hungarian). - BKL Bányászat, 119/2, 90-98.

GIBLIN A. E. and HOWARTH R. W. (1984): Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. - Limnol. Ocanorg. 29, 47-63.

GIVEN P. H. and WYSS W. F. (1961): The chemistry of sulfur in coal. - British Coal Utilization Research Association Monthly Bulletin, 25, 165-179.

HOWARTH R. W. (1979): Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. -Science 203, 49-51.

JÁMBOR Á. (1980): A Dunántúli-középhegység pannóniai képződményei (Pannonian in the Transdanubian Central Mountains) (in Hungarian and in English). - Ann. Inst. Geol. Publ. Hung. Budapest, LXII, 1 -259.

JÁMBOR Á. (1987: A magyarországi kunsági emeletbeli képződmények földtani jellemzése (Geologishe Characterisierung der Ablagerungen der Kunság-Stufe in Ungarn) (in Hungarian with German abstract). -Ann. Inst. Geol. Publ. Hung. Budapest, LXIX, 1-452.

KÁZMÉRM. (1990): Birth, life and death of the Pannonian Lake. - Paleogeogr. Paleoclim. Paleoecol., 79, 171-188. KORIM K. (1966): The connate waters of the Hungarian Neogene. - Acta Geol. Hung., 10, 407-426. KORPÁS L. (1981): A Dunántúli-középhegység oligocén-alsó-miocén képződményei (Oligocene-Lower Miocene

formations of the Transdanubian Central Mountains in Hungary) (in Hungarian and in English). - Ann. Inst. Geol. Publ. Hung. Budapest, LIV, 1-140.

KOSTKA J. E. and LUTHER G. W. (1995): Seasonal cycling of Fe in saltmarsh sediments. - Biogeochem. 29, 159-181.

LORD C. J. Ill and CHURCH T. M. (1983): The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization. - Geochim. Cosmochim. Acta, 47, 1381-1391.

LUTHER III G. W. (1991): Pyrite synthesis via polysulfide compounds. - Geochim. Cosmochim. Acta, 55, 2839-2 8 4 9 .

MARNETTE E. C . L , VAN BREEMEN N . , HORDUK K. A . a n d CAPPENBERG T . E. ( 1 9 9 3 ) : P y r i t e f o r m a t i o n in t w o freshwater systems in the Netherlands. - Geochim. Cosmochim. Acta, 57, 4165-4177.

MUROWCHICK J. B. and BARNES H. L. (1986): Marcasite precipitation from hydrothermal solutions. - Geochim. Cosmochim. Acta, 50, 2615-2629.

MÜLLER, P., I. MAGYAR (1992): Continuous record of the evolution of lacustrine cardiid bivalves in the Late Miocene Pannonian Lake. - Acta Paleont. Polonica, 36, 4, 353-372.

NRIAGU J. O. and SOON Y. K. (1985): Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. - Geochim. Cosmochim. Acta, 49, 823-834.

PÁPAY L. (1993): Distribution of sulphur in Transdanubian (Hungary) and Middle European brown coals. - Acta Geol. Hung., 36/2, 241-249.

PÁPAY L. (1996): The distribution of sulphur in Upper Cretaceous brown coals from Ajka (Central Transdanubia, Hungary). - Acta Miner. Petr., Szeged, X X X V I I , 89-98.

PERRY K. A. and PEDERSEN T. F. (1993): Sulphur speciation and pyrite formation in meromictic ex-f]ords. -Geochim. Cosmochim. Acta, 57, 4405-4418.

RADÓCZ Gy., BOHN-HAVAS M. and SZOKOLAI Gy. (1987): Neogene brown coal deposits in Hungary. Proceedings of the Vlllth RCMNS Congress. - Ann. Inst. Geol. Publ. Hung. Budapest, LXX, 601-608.

RlCKARD D. T. (1975): Kinetics and mechanisms of pyrite formation at low temperature. - Amer. J. Sci. 275, 636-652.

71

Page 72: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

SINNRNGHE DAMSTE J. S . , EGLINTON T . I., DE LEEUW J. W . a n d SCHENCK P. A . ( 1 9 8 9 ) : O r g a n i c s u l p h u r in macromolecular sedimentary organic matter: I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. - Geochim. Cosmochim. Acta, 53, 873-889.

SCHOONEN M. A. A. and BARNES H. L. (1991): Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. - Geochim. Cosmochim. Acta, 55, 1505-1514.

STEIMANN P. and SHOTYK W. (1997): Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland. - Geochim. Cosmochim. Acta, 61, 1143-1163.

SWEENEY R. E. and KAPLAN I. R. (1973): Pyrite framboid formation: laboratory synthesis and marine sediments. -Econ. Geol., 68,618-634.

THAMDRUP B. , FINSTER K. , FOSSING H. , WGRGLER H. J., a n d JORGENSEN B . B. ( 1 9 9 4 ) : T h i o s u l f a t e a n d s u l f i t e distribution in porewater of marine sediments related to manganese, iron, and sulfur geochemistry. -Geochim. Cosmochim. Acta, 58, 67-73.

TSAI S. C. (1982): Fundamentals of coal beneficiation and utilization. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 222-274.

TUTTLE M. L. and GOLDHABER M. B. (1993): Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA: Implications for interpreting depositional and diagenetic process in saline alkaline lakes. - Geochim. Cosmochim. Acta, 57, 3023-3039.

WHITE J. R . , GUBALA C . P., FRY B. , OWEN J. a n d MITCHELL M . J. ( 1 9 8 9 ) : S e d i m e n t b i o g e o c h e m i s t r y o f i ron a n d sulfur in an acidic lake. - Geochim. Cosmochim. Acta, 53,2547-2559.

Manuscript received 10 August, 1997

72

Page 73: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Mineralogica-Petrographica, Szeged, XXXVI11,73-94, 1997

GEOCHEMISTRY AND DOLOMITIZATION OF PLEISTOCENE CORAL REEFS, IN THE GULF OF AQABA REGION, SOUTH SINAI, EGYPT

I B T E H A L F A T H Y 1 , E D E H E R T E L E N D I 2 a n d J Á N O S H A A S 3

'Suez Canal University, Dept. of Geology inst i tute of Nuclear Research of the Hungarian Academy of Sciences

'H A S Geological Research Group, Eötvös L. University

ABSTRACT

Pleistocene coral reef terraces are exposed in two levels at the southeastern part of Sinai Peninsula along the Gulf of Aqaba coast. Mineralogically, the reef formations are made up by aragonite, low and high Mg-calcite and protodolomite. Evaporites and iron oxides/hydroxides were also identified.

Pétrographie characteristics of the two reef sequences revealed that the reefal carbonates were affected by early, near-surface dolomitization and pervasive dolomitization. In the former case, aragonites and Mg-calcites were replaced respectively by dolomites. Pervasive dolostones were formed by mimetical replacement of aragonitic and high Mg-calcitic allochems. Reefal limestones and dolostones were analyzed for Ca, Mg, Sr, Mn, Fe and Na. Concentrations of these major and trace elements are consistent with progressive diagenesis of the reef terraces under evaporated marine water, brine and freshwater conditions. Oxygen and carbon isotope values range between -9.60 to +3.39 %o PDB Ô018 and -4.35 to +3.17 %o PDB 5C13 respectively suggest dolomitization by marine water

modified by evaporation. The depleted isotope values related to freshwater diagenesis.

INTRODUCTION

The coastline of the Gulf of Aqaba along the southern Sinai Peninsula (Fig. 1) is fringed by a narrow belt of modern coral reefs. Two well preserved uplifted fossil reef terraces (Fig. 2) stretch along the coast in a belt extending up to 3 0 m above mean sea level ( F A T H Y and H A A S , 1994). These terraces are made up by reefal carbonates of Pleistocene age.

Previous studies on the South Sinai terraces recognized the significance of dolomitization of the reefal carbonates, but did not discuss the process in detail. S T R A S S E R et al. (1992) suggested that pervasive dolomitization took place in a seawater-dominated mixing zone.

Aim of the present paper is to display the major mineralogical and geochemical characteristics of these dolomitized reefal carbonates and discuss the process of dolomitization.

Petrographic characteristics and geochemistry of the studied sequences indicate that the reefal carbonates were affected by early, near-surface dolomitization (Fig. 3) and pervasive dolomization (Fig. 4). Dolomites in the former case were similar to calcian dolomites of Abu Dhabi sabkhas, because they replaced aragonite and associated with evaporites as postulated b y I L L I N G e t a l . ( 1 9 6 5 ) , B U T L E R ( 1 9 6 9 ) , M C K E N Z I E ( 1 9 8 1 ) , P A T T E R S O N a n d K I N S M A N

' Ismailia, Egypt 2 H-4026 Debrecen, Bem tér 18/C, Hungary 3 H-1088 Budapest, Múzeum krt. 4/A, Hungary

73

Page 74: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

(1982) and G U N A T I L A K A et al. ( 1 9 8 4 ) , whereas pervasive dolostones were formed by mimetical replacement of aragonitic and high Mg-calcitic allochems. Petrographically similar dolostones are widespread in the Cenozoic. Features of these dolomites were reported from Jamaica ( L A N D 1973a), Egypt ( L A N D et al. 1975, C O N I G L I O et al. 1 9 8 8 and Q I N G S U N , 1 9 9 2 ) ,

San Salvador ( S U P K O , 1 9 7 7 ) , Bonaire ( S I B L E Y , 1 9 8 0 ) and underneath the Bahamian platform ( K A L D I a n d G I D M A N , 1 9 8 2 ; D A W A N S a n d S W A R T , 1 9 8 8 ; V A H R E N K A M P a n d S W A R T , 1 9 9 4 ) .

Dolomites in these Cenozoic sequences were generally assumed to be mixing-zone origin, although the validity of such an interpretation has been questioned ( M A C H E L and M O U N T J O Y 1 9 8 6 a n d 1 9 9 0 ) .

METHODS

For petrographic investigations thin sections stained by FeigP solution and standard Alizarine Red-S were used. Bulk powdered rock-samples were used for mineralogical analysis.

X-ray analyses were carried out for most of the samples, using X-ray diffractometer Philips PW 1710 goniometer, applying Cu-filtered Cuk a radiation, With setting at 30 mA and 40 kV. The speed of the chart was 2° min"1. This method allowed to determine various diagenetic phases and choose samples for geochemical analysis. Fourty-eight analyses for major and trace elements were made by JY-70 ICP-Oes spectrometer. The carbonate fraction of the bulk-rock samples taken from the Pleistocene coral reef terraces and modern reefal sediments was extracted by IN HCL, following the procedure worked out by R O B I N S O N (1980). The solutions were analysed for major elements (Ca, Mg) and trace elements (Sr, Na, Fe and Mn). Magnesium and strontium content of 3 unaltered Pleistocene corals (Porites sp) were determined by electron microprobe.

Oxygen and carbon stable isotope analyses were carried out in the Laboratory of Environmental Studies, Debrecen, Hungary. The stable isotope ratios for the carbonates are given in parts per mil (%o) deviations from the PDB isotopic standard.

TECTONIC AND STRATIGRAPHIC SETTING

The southern tip of the Sinai Peninsula is located at the triple junction between the African plate, the Arabian plate and the Sinai subplate (Fig. /). Rifting of the Red Sea system began in the Late Oligocene, reactivating Late Precambrean zones of structural weakness ( M A K R I S and R I H M , 1991). The Gulf of Suez began forming by extension and basin subsidence in the Early Miocene. By the Middle Miocene, the extension in the Gulf of Suez slowed down. Geological history of the Gulf of Aqaba initiated in the Late Miocene, when a left-lateral transform zone, came into being along which the Dead Sea and the Gulf of Aqaba were formed as pull-apart basins ( L Y B E R J S 1988). Intense uplift of the graben shoulders and block-fauling started in the Middle to Late Miocene and have been continous until today. The developing rift filled up by Miocene to Early Pliocene sediments (syn-rift). Accumulation of sediments was controlled mainly by rift-faulting. The overlying Quaternary sequences (post-rift) consist of biogenic carbonates and continental, alluvial sediments.

74

Page 75: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

FACIES, DEPOSITIONAL ENVIRONMENTS AND MINERALOGY

As inferred from microfacies study of the Pleistocene coral reef terraces of the Gulf of Aqaba (Fig. 5), the deposition of the reef successions (cycles) was generally started by formation of intertidal calcareous sandstones. Terrigenous components of these sandstones originated from the eroded basement rocks. Carbonate grains are of biogenic origin. This mixed sedimentation was followed by the proliferation of calcareous algae (coralline algal grainstone facies) and then accumulation of reef-derived skeletal grains (bioclastic packstones facies) representing back-reef inner shelf zone. Reefs started to grow as fringing reefs, composing of coral/red algal boundstones, with subordinate bryozoans in the outer reef crest zone. The reef slope is indicated by the occurrence of branching corals. The back reef (inner shelf) peloidal packstone facies occuring at the top of the studied sections, indicates the termination of the growth of the buildups and progradation of the backreef zone.

Various carbonate minerals: aragonite, low and high Mg-calcite and dolomite were found in the studied samples taken from the emerged Pleistocene coral reef terraces. Mineralogical composition of the carbonates (Fig. 6a, b) seems to be controlled mainly by the grade of their diagenetic alteration. For example in the calcareous sandstone and bioclastic packstone facies (partially dolomitized), sediments contain 8 to 35% aragonite and 12 to 80% calcite. High Mg-calcite containing 8-20 mole% MgC0 3 may also occur in a quantity from 26 to 66%. Amount of stoichiometric dolomite is minor (about 3-6%) or it is absent, however, protodolomite may be abundant (4-97%). In the coralline algal grainstone facies (pervasively dolomitized), amount of protodolomite is as high as 80% and amount of calcite is 0-7%. The coral-algal boundstone facies is rich in calcite (max. 86%). In the biomicrosparitic limestone facies of the older reef sequence protodolomite is present, however, only in subordinate quantity (1%) and the sediments are characterized by low Mg-calcite (about 95%). This may indicate fresh water influence during the diagenesis, just like in the pelletal packstone facies, in which quantity of low Mg-calcite may reach 97%.

In most of the Pleistocene reefal facies, contribution of land-derived material is significant (3-30%), showing a gradually increasing trend towards the near-shore facies. Evaporites were also identified (1-25%). They were represented by magnesite (6%), anhydrite (1-4%), celestite (1-2%) and halite (2-24%). The highest amount of evaporite was recorded in the partially dolomitized facies.

The recent reefal sediments of the Gulf of Aqaba coast are an admixture of terrigenous siliciclasts (8-81%) and bioclasts. Their carbonate content is between 30 and 75%, showing a trend of gradual increase, seaward. Aragonite is the most common carbonate mineral, however, high Mg-calcite is also common. Thus, mineralogical composition of the studied modem carbonates are controlled by quality and quantity of the rock-forming bioclasts and amount of the terrigenous material.

GEOCHEMISTRY

Major and trace elements

Results of the geochemical analyses of the recent reefal sediments and the studied Pleistocene reef facies are listed in the Table 1.

75

Page 76: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Calcium and Magnesium There is a positive relation between these two major chemical components in the Gulf of

Aqaba's modern reefal sediments, which can be explained by their original ratio in the skeletons of marine organisms, because both Ca and Mg are mostly derived either from modern or fossil biogenic sources.

Considerable variation in the magnesium content was detected in the originally aragonitic coral skeletons and bulk-rock samples from the emerged Pleistocene terraces (Fig. 7). These values reflect mainly the state of diagenetic alteration. The slightly increased Mg content in the low-Mg calcite rich facies are in consistence with their meteoric diagenesis, because Mg2+

ions incorporate more easily into calcite than aragonite. For example, coral-algal bound facies contains 1.53% MgO in average, whereas pelletal packstone facies and biomicrosparitic limestone facies contain 1,21% and 0.70% MgO in average, respectively.

Naturally, there is a positive correlation between percentage of dolomite and Mg content. The completely dolomitized samples contain 15.84% MgO in average and 34.05% CaO, whereas in the partially dolomitized facies of the originally aragonite-rich rock-types, amount of MgO is lower, about 4.64%, whereas amount of CaO is 47.29%, in average. It can be assumed that the higher degree of dolomitization in the coralline algal grainstone facies is related to the enrichment of the encrusting coralline algae, since Mg2+ ions, releasing by breakdown of the high-Mg calcite may provide a significant source of magnesium to the dolomitizing fluids.

Sodium The average value of the sodium content in the Gulf of Aqaba's modern reefal sediments

is 3,400 ppm. This value is consistent with the values determined by LAND and HOOP (1973) in the recent carbonate.

Sodium in the emerged Pleistocene limestones ranges from 297 to 6,500 ppm. It shows the following trends: (1) Na values are generally high in the partially dolomitized samples (calcareous sandstone and bioclastic packstone facies) comparing to the completely dolomitized samples (coralline algal grainstone facies). The partially dolomitized samples are Na-rich comparing to the low Mg-calcite-rich facies (biomicrosparitic limestone, coral-algal boundstone and pelletal packstone facies) affected by freshwater diagenesis. (2) In the older terraces the higher Na values are unusual; due to downward infiltration of hypersaline brine from the tidal flat of the younger reefs to the older ones.

On the Na-Ca scatter diagram symbols, representing the measured samples of the distinguished facies, form definite clusters (Fig. 8) and suggest general trends. They are as follows: (1) The partially dolomitized facies, in which occurence of evaporites is common shows wide-range of Na values and negative correlation with the calcium content. (2) The completely dolomitized facies is characterized by relatively low Ca and Na content. (3) In the low-Mg calcite-rich facies Na values are lower, in consistence with their meteoric diagenesis.

These relationships indicate that the bulk sodium content in the various facies is related to their diagenetic history. It was certainly influenced by precipitation of NaCl cement, derived from evaporation of marine water. This process may have also related to the formation of the dolomitizing fluids. That is, why in the partially dolomitized samples, Na concentrations are high, whereas the completely dolomitized samples and those which were affected by meteoric diagenesis can be characterized by low Na content.

76

Page 77: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Strontium High concentration of strontium in the Gulf of Aqaba's modern reefal sediments is mostly

related to the significant amount of coral fragments of high Sr content in these sediments. Sr content in the emerged coral terraces correlates fairly well with their diagenetic

alteration:low Mg-calcite-rich facies are Sr-poor. These low concentrations are consistent with aragonite dissolution by meteoric freshwater. Strontium concentration in the completely dolomitized samples, however, is even significantly lower than that in the low-Mg calcite-rich samples, indicating further removing of strontium ;n the course of dolomitization. Anomalously high strontium values were recorded in the least altered, only partially dolomitized facies. Strontium content of coral skeletons and recent reefal carbonates is higher, thant that of bulk-rock samples of the emerged coral terraces, as a result of progressive diagenesis of the fossil reefs.

Significant differences in the Sr content of the different facies suggest, that Sr content in Pleistocene coral reef terraces was influenced in addition to their diagenetic history, also by Sr content of the precursor carbonates (memory effect). Original aragonitic grains are still preserved in the partially dolomitized samples, that is why their Sr content is very high, as a rule. Data also show negative correlation between the dolomite content and Sr concentration. Sr2+ removed from the sediments, when aragonite and/or high Mg calcite was replaced by dolomite. Low Sr values in the completely dolomitized grainstone facies indicate that in the course of dolomitization alteration of the sediments resulted in decrease in the mean Sr concentration.

The scatter diagram shows positive correlation between the Na+ and S r + contents in the bulk samples (Fig. 9).

Iron and manganese The Fe and Mn contents are relatively low and they show positive correlation with one

another in the Gulf of Aqaba's recent reefal sediments. • The concentration values of the emerged Pleistocene coral reefs fall into two groups: (1)

the completely dolomitized and partially dolomitized samples are relatively poor in Fe and Mn. This suggests an oxidizing dolomitization environment (surface dolomitizaton) where the pore-waters are Mn-Fe-depleted and Fe and Mn are locked up in oxide/hydroxide compounds.

(2) The low-Mg calcite-rich samples, which were affected by freshwater diagenesis are relatively richer in Fe, than the two dolomitized facies (Fig. 10). These higher values may be regarded as indicator of reducing meteoric diagnetic environments. Under phreatic conditions, meteoric waters are relatively rich in Mn and Fe, as a rule.

Oxygen and carbon isotopes

Results of oxygen and carbon isotope analyses of carbonates from the Pleistocene coral reef terraces are sjiven in the Table 1.

The mean 5' O value of the 8 whole-rock samples, representing the partially dolomitized facies is -1.09%o (range: -0.36 to -3.40%o PDB). These values suggest that marine water modified by evaporation, in the peritidal zone was the dolomitizing fluid. This fluid may have been driven through the platform by storm-recharge refluxing and/or evaporative pumping, just likb in the hydrological system of the sabkhas. This isotopically heavy water of high 8 I S 0 values may have mixed with the local groundwater. MCKENZIE (1981) reported that 5 1 8 0

77

Page 78: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

values sabkha-derived waters from Abu Dhabi range from 2.68 to 5.58%o SMOW at 20-36°C temperature of the water (temperature of modern sabkha - B U T L E R , 1969 and M C K E N Z I E et al., 1980). The mean 8I3C value is +1.64%o. This value indicates that the supratidal/intertidal dolomites were formed in or just below the zone of bacterial sulphate reduction:

Mean 8 l sO value of the 4 whole-rock samples from the completely dolomitized facies is + 1.82%o (range: +0.45 to +3.40%o 5 l sO PDB), heavier than that of the peritidal partially dolomitized samples. This enrichment of l 8 0 is consistent with dolomitization from brines. The mean 8 b C value is +2.92%o, suggesting dolomitization in the zone.of methanogenesis.

In the upper part of the uplifted older reef terrace, 6 I 8 0 values of the samples affected by freshwater diagenesis are recorded between -5.57 to -9.60%o PDB and -5.57%o PDB in one sample from the younger reef. The light oxygen and carbon isotope values indicate influence of meteoric water during the diagenesis (Fig. 11).

PROCESS OF DOLOMITIZATION - A DISCUSSION

The emerged Pleistocene coral reef terraces in the South Sinai are made up by two major depositional units. Each of them consists of various depositional facies, formed in the marginal reef zones and back-reef inner shelf during the interglacial sea-level highstands. Dolomites occur in both depositional units. Two types of dolomitization could be distinguished. Partial dolomitization, which affected the calcarous sandstone and bioclastic packstone facies, and total dolomitizaton occurs in the coralline algal grainstone facies. In the former case, sediments were dolomitized in the inter/supradital zone. The association of dolomites and evaporites indicates early dolomitization, under subaerial to shallow subsurface conditions. Sabkha-related origin of these dolomites is indicated not only by presence of evaporites, but also by their non-stoichiometric (calcian) composition (Ca.62 Mgi38 C03), geochemical features and isotopic values. High Na+ content of the studied bulk samples ( 8 9 0 to 6 , 5 0 0 ppm - similar to those values which were detected by L A N D and H O O P S ( 1 9 7 3 ) in modern dolomites) indicates that these early diagenetic dolomites were formed in an environment of increased salinity. They contain, generally, more than 2 , 0 0 0

ppm Na+, (in most ancient dolomites Na+ concentration is lower than 1,000 ppm). The Sr content seems to depend mainly on aragonite content of the precursor sediments. The strontium concentrations in our samples (ranges from 1 1 5 0 to over 5 , 0 0 0 ppm) similar to those of recent intertidal sabkha dolomites in Abu Dhabi ( F R I S I A , 1 9 9 4 ) . 5 L G O values (mean value is - 1 . 3 0 % O ) are consistent with dolomitization by marine water modified by evaporation, and mixed with local groundwater.

In the completely dolomitized facies (coralline algal grainstone facies), fabric of the originally Mg-calcite and calcite components preserved and mimetically replaced by dolomites, whereas the originally aragonitic components were leached, resulting in moldic or vuggy porosity. These dolomites are also Ca-rich (Ca.59 Mg.4, CO3). The average Sr and Na concentrations (514 ppm and 1,313 ppm, respectively) are lower than those in above-mentioned partially dolomitized rock-types. Na content of our samples seems to be within the range expected for dolomites, precipitated from moderately evaporated sea water, as described by S A S S and B E I N ( 1 9 8 8 ) , whereas, Sr concentration of the studied samples (ranging between 300 to 730 ppm) reflects the Sr content of the replaced (precursor) minerals. Their high 5 I 8 0 values are consistent with dolomitization by hypersaline solution.

Principal controlling factors of geochemical characteristics of the investigated dolomites are the following:

78

Page 79: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Geochemistry and mineralogy of the precursor carbonates:

Since partial dolomitization took place in supratidal and intertidal environments, dolomites were mostly formed by replacement of aragonite according to equations (1) given by Patterson and Kinsman (1982):

2CaC0 3 + Mg2+ + CaMg(C03)2 + Ca2+ (1) aragonite brine dolomite brine

Mg2+ ions are supplied by the dolomitizing fluid. During this process, dissolution of aragonite to form dolomite would release Ca2+ ions, which combine with sulfate in the porewaters to form gypsum. As a consequence, S0 4 and Ca contents decrease. Due to continous evaporation of seawater, Mg/Ca and Na/Ca ratio rise in parallel with rise of salinity. Consequently, activity of solution decreases and the proportion of less strongly hydrated Mg2+ ions increases.

The Sr content of the precipitated dolomite governed by the stoichiometry of the reactions involved assuming that the dolomite, once formed, does'nt reequilibre with respect to Sr (SASS and K A T Z , 1982 and M A C H E L , 1988). Dolomitization proceeds by the stoichiometric reaction according to equation (1), in which Ca releases to the pore fluid and it is taken up by gypsum precipitation. Hence, mSr/"'Ca ratio increases in the solution. If aragonite having higher '"Sr^Ca ratio, is affected by dolomitization, Sr-rich dolomite is to be foimed, since the '"SrrCa ratio of aragonite is similar to the " S r / D a ratio of dolomitizing fluid. This is also true for the Na, which have a dissociation coefficient smaller than one (KNA in dolomite is 2x10-5). With increasing mNa/nCa ratio in the solution, sodium content increases in the precipitated dolomites either as NaCl inclusions or substitued cations.

Based on considerations discussed above, it is very probable that in the studied dolomitized rocks Sr and Na concentrations depend upon the original concentrations of these elements in the aragonitic precursor carbonates.

The completely dolomitized grainstone facies composed predominantly of coralline algae-rich carbonates (originally high-Mg calcite). They may have been diagenetically stabilized before dolomitization, without an intervening phase of dissolution and reprecipitation. In this process, nearly all the Mg2+ released by breakdown of the high-Mg calcite providing significant contribution of Mg to the dolomitizing solution. The sediments were interacted either with the downward moving warm, highly alkaline, Mg2+ rich, hypersaline water, which mixed with normal seawater or meteoric water in the pores. It is important to keep in mind that, meteoric diagenesis decreases the Mg and Sr content and increases the Mn and Fe content of the rocks. After meteoric diagenesis, these sediments should have been interacted with slightly modified seawater.

(2-X)CaC03 + Mg2+ + XC032" + CaMg(C03)2 + (l-x)Ca2+ (2-A)

CaC03 + Mg2+ + C032" + CaMg(C03)2 (2-B)

A c c o r d i n g to MORROW (1982) , the pa ramete r ( X ) d e p e n d s on the densi ty o f the ca rbona t e be ing do lomi t i zed ; X = 0 . 1 1 for a ragoni te and X = 0 . 2 5 for low M g calci te .

Dolomitization is taken place by. the reaction, according to equations 2-A or,2-B, wherein both Mg2+ and C03

2" ions are supplied by the dolomitizing fluids.

79

Page 80: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Reactions expressed by equations 2-A or 2-B do not add Ca to the same extent as reaction of the equation (1), therefore, most of the Ca2+ ions of the precursor carbonate are going to be incorporated into the dolomites. Hence, mSr/""Ca ratio of the fluid remains higher, than that of the calcite, which has lower ""SrATa ratio. Depending of the amount of Ca, released during replacement of calcite, the "'Sr/"'Ca ratio of the fluid decreases due to trace-element partitioning, where KSr for dolomite less than 1 (assuming that replacement of calcite by dolomite takes place molecule by molecule, or nearly so). Correspondingly, low-Sr dolomite forms. This is also applicable to the Na concentration, in accordance with the dissociation coefficient of Sr and Na, both less than one.

Both manganese and iron content of the partially and completely dolomitized samples are generally low (8-70 ppm and 160-1,600 ppm, respectively) and similarly low in the recent reefal carbonate sediments (3-30 ppm Mn and 90-510 ppm Fe). According to M I L L I M A N

(1974) in the modern marine carbonate sediments, the Fe content varies from ten to several thousand ppm and the Mn content up to 100 ppm.

Kinetics

Aridity of the Gulf of Aqaba region should have been favourable for evaporation of seawater on the tidal flat with concomitant precipitation of evaporites (mainly gypsum and anhydrite). Thus fluids of high Mg/Ca ratio were formed, which may have served as dolomitizing fluids. In addition, with increasing salinity and consequently, decreasing activity of water, the proportion of less strongly hydrated Mg~+ ions should have increased, resulting in an increased rate of dolomitization.

The presence of sulfate anions (S(V~) in the water is one of the most important kinetic factors controlling the dolomite precipitation in many hydraulic settings. B A K E R and K A S T N E R (1981) concluded that, in organic-rich sequences and supratidal sabkhas, formation of dolomites were induced by sulfate reduction. S I B L E Y et al. (1994) pointed out the role of sulfates to inhibit the dolomitization by slowing the rate of calcite dissolution and forming a CaS0 4 layer on the surfaces of the calcites. Anyway, sulfate reduction favours to the dolomitization. An effective mechanism for lowering the sulfate content in the pore-fluid is microbial reduction of sulfates or the precipitation of CaS04 minerals. Hence the alkalinty increases in the pore-waters. Combination of these two factors i.e sulphate reduction and increased alkalinity may create particularly favourable conditions for the dolomitization. • The most important kinetic factors should have been present during dolomitization of the

Pleistocene carbonates in the Gulf of Aqaba region: elevated temperature, alkaline fluids with high Mg/Ca ratio and sulfate reduction.

Dolomitizing fluids and rock properties

Common presence of calcian dolomites in our samples may be a result of high Mg/Ca ratio of the dolomitizing fluids and rapid flow of these fluids through the sediments, due to their high permeability. Possible sources of magnesium are as follows. (1) Mg-calcite constituents of the marine sediments. Mg2+ ions can be released by breakdown of the high-Mg calcite (e.g. coral linacean algae, may provide a significant contribution of magnesium to the dolomitizing fluids) (2) evaporated seawater. Evaporation leads to significant increase of the Mg concentration. Therefore, relatively small volume of evaporated water is needed. Growth of dolomite crystals or generation of dolomite by replacement can only proceed

80

Page 81: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

when there is an adequate supply of Mg" ions. However, equilibrium conditions and stability of the solids depend upon the Mg/Ca ratio of the solution.

Downward reflux of large volume of dense and warm, highly alkaline Mg2+-rich hypersaline seawater through the carbonate sediments requires high porosity and permeability. Mimetically replaced dolomites occur mainly in sediment types, of high initial permeability, such as the coralline algal grainstone facies. Therefore, it is plausible that high permeability may have allowed greater rate of fluid flow and as a consequence faster and more intense dolomitization. This process produces extremely small crystals, that is why fragments of coralline algae, echinoids and some foraminifera are mimetically replaced by small dolomite crystals. In contrast, the partially dolomitized sediments belong to the bioclastic packstone facies. In this case, the low initial permeability restricted the flow of dolomitizing solution through the sediments, therefore, the rate of dolomitization decreased and consequently, euhedral dolomite crystals tended to produce.

CONCLUSIONS

Mineralogical examination of the two studied Pleistocene reef sequences on the southeastern coast of the Sinai Peninsula, Egypt has revealed that carbonates are represented by aragonites, low and high Mg-calcites and protodolomites. The vicinity of the continental background area strongly influenced the pétrographie composition of the reef terraces and this setting can explain the high percentage of the terrigenous minerals (quartz and feldspar) forming 5-30% (weight percent) of the bulk samples.

Two distinctive types of dolomitization have been identified in the reef terraces: partial and total dolomitization. In the former case, the dolomites replaced aragonites and Mg-calcites. In the intertidal/supratidal depositional facies occurrence of calcian dolomites together with evaporites indicates early dolomitization. Oxygen isotope values in these dolomites suggest dolomitizing fluids of marine origin, but modified by evaporation. Pervasive dolostones were formed by mimetical replacement of aragonitic and high Mg-calcitic allochems. Their high 8 I S 0 vales are consistent with dolomitization by hypersaline fluids.

Modern reefal sediments and rocks of reef terraces were analyzed for Ca, Mg, Sr, Mn, Fe and Na. Concentrations of these major and trace elements are consistent with progressive diagenesis of the reef terraces under evaporated marine water, brine and freshwater conditions. Magnesium concentration reflects the original composition of the precursor biogenic carbonate sediments, and the grade of dolomitization. Strontium is a precursor-derived element and consistent with the aragonite transformation, whereas Na concentration shows correlation with amount of NaCl cement, derived from evaporating marine water. The Fe and Mn concentraton indicate dolomitization in oxidizing environment and precipitation of freshwater calcites under reducing conditions. In general, partially dolomitized carbonates show elevated Na and Sr concentrations, whereas Mg is relatively depleted. In the pervasive dolostones Na and Sr concentrations are relatively low. The low Mg-calcite-rich rock-types have elevated Fe and Mn values whereas Na and Sr concentrations are low showing influence of freshwater diagenesis.

81

Page 82: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

ACKNOWLEDGMENTS

This study is a part of a larger phD study of the first author which was supported by the Hungarian Geological Institute. The authors are grateful to Dr. R Ó B E R T H O R V Á T H and Dr. É V A B E R T A L A N for making geochemical and trace element analyses, to Dr. M Á R I A F Ö L D V Á R I

for the X-ray diffraction analyses and to Dr. K A M I L L A G A Á L from Eötvös Loránd University for making SEM and microprobe analyses.

REFERENCES

BAKER, P. A. and KASTNER, M. (1981): Constrains on the formation of sedimentary dolomite. Science, 213, 214-216.

BUTLER, G. P. (1969): Modem evaporite deposition and geochemistry of coexisting sabkha brines, the sabkha, Trucial coast, Arabian Gulf. J. Sed. Petrol., 39, 70-89.

CONIGLIO, M., JAMES, N. P. and AISSAOUI, D. M. (1988): Dolomitization of Miocene carbonates, Gulf of Suez, Egypt. J. Sed. Petrol., 58, 100-119.

DAWANS, J. M. and SWART, P. K. (1988): Textural and geochemical alternations in late Cenozoic Bahamian dolomites. Sedimentology, 35, 385-403.

FATHY, E. and HAAS, J. (1994): Physiography and Quaternary sedimentation of the coastal zone in the South Sinai, Egypt. Acta Geologica Hungarica, 37,311-325.

FR1S1A, S. (1994): Mechanisms of complete dolomitizaiton in a carbonate shelf: comparison between the Norian Dolomia Principale (Italy) and the Holocene of Abu Dhabi Sabkha. Spec. Pubis. Int. Ass. Sediment., 21, 55-74.

GUNATILAKA, A . , SALEH, A. , AL-TEMEEMI, A . a n d NASSER, N . ( 1 9 8 4 ) : O c c u r r e n c e o f s u b t i d a l d o l o m i t e in a hypersaline lagoon, Kuwait. Nature, 311, 450-452.

HARDIE, L. A. (1987): Dolomitization: a critical view of some current views. J. Sed. Petrol,, 57, 166-183. ILLING, L. v., WELLS, A. J. and TAYLOR, J. C. M. (1965): Penecontemporaneous dolomite in the Persian Gulf. In: R.

C. MURRAY and L. C. PRAY (eds.): Dolomitization and Limestone Diagenesis. Spec. Publ. Soc. Econ. Paleont. Miner., 13, 89-111.

KALDI, J. and GIDMAN, J. (1982): Early diagenetic dolomite cements: examples from the Permian lower magnesian limestone of England and the Pleistocene carbonates of the Bahamas. J. Sed. Petrol.. 52, 1073-1085.

LAND, L. S. (1973a): Contemporaneous dolomitization of middle Pleistocene reefs by meteoric water, north Jamaica. Bull. Mar. Sci., 23 • 4-92.

LAND, L. S. (1980): The isotopic and trace element geochemistry of dolomite: the state of the art. In: D. H. ZENGER, J. B. DUNHAM and R. L. ETHINGTON (eds.): Concepts and Models of Dolomitization. Spec. Publ. Soc. Econ. Paleont. Miner. 28, 87-110.

LAND, L. S. and FIOOPS, G. K. (1973): Sodium in carbonate sediments and rocks: A possible index to the salinity of diagenetic solutions. J. Sed. Petrol., 43, 614-617.

LAND, L. S., SALEM, M. R. I., and MORROW, D. W. (1975): Paleohydrology of ancient dolomites: geochemical evidence. Bull. Am. Ass. Petrol. Geol., 59, 1602-1625.

LYBERIS, N. (1988): Tectonic evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics, 153, 209-220. MACHEL, H. G. and MOUNTJOY, E. (1986): Chemistry and environments of dolomitization-a reappraisal. Earth Sci.

Rev., 23, 175-222. MACHEL, H. G. and MOUNJOY, E. (1990): Coastal mixing zone dolomite, forward modeling, and massive

dolomitization of platform-margin carbonates-Discussion. J. Sed. Petrol., 60, 1008-1012. MAKRIS, J. and RIHM, R. (1991): Shear-controlled evolution of the Red Sea: pull apart model. Tectonophysics, 198,

4 4 1 - 4 6 6 . MCKENZIE, J. A., FIsu, K. J. and SCHNEIDER, J. F. (1980): Movement of subsurface waters under the sabkha, Abu

Dhabi, UAE, and it's relation to evaporative dolomite genesis. In D. H. ZENGER, J. B. DUNHAM and R. L. ETHINGTON (eds.): Concepts and Models of Dolomitization. spec. Publ. Soc. Econ. Paleont. Miner., 28, 11-30.

MCKENZIE, J. A. (1981): Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAR: a stable isotope study. J. Geol., 89, 185-198.

tMlLLlMAN, J. D. (1974): Marine Carbonates: New York, Springer-Verlag, 375p. MORROW, D. W. (1982a): Diagenesis I. Dolomite-Part I: The geochemistry of dolomitization and dolomite

precipitation. Geoscience Canada, 9, 5-13.

82

Page 83: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

PATTERSON, R. J. and KINSMAN, D. J. J. (1982): Formation of diagenetic dolomite in coastal sabkhas along the Arabian (Persian) Gulf. Bull. Am. Ass. Petrol. Geol, 66,28-43.

QING SUN, S. (1992): Skeletal aragonite dissolution from hypersaline seawater: a hypothesis. Sed. Geol., 77, 249-2 5 7 .

ROBINSON, P. (1980): Determination of calcium, magnesium, manganese, strontium, sodium and iron in the carbonate fraction of limestones and dolomite. Chem. Geol., 28, 135-146.

SASS, E. and BEIN, A. (1988): Dolomites and salinity: a comparative geochemical study. In: V. Shukla and P. A. Baker (eds.): Sedimentology and Geochemistry of Dolostones. Spec. Pubis. Soc. Econ. Paleont. Miner., 43, 223-233.

SASS, E. a n d KATZ, A . ( 1 9 8 2 ) : T h e o r i g i n o f p l a t f o r m d o l o m i t e s : n e w e v i d e n c e . A m . J . Sc i . , 2 8 2 , 1 1 8 4 - 1 2 1 3 . SIBLEY, D. F, (1980): Climatic control of dolomitization, Seroe Domi formation (Pliocene), Bonaire, N. A., In: D. H.

Zenger, J. B. Dunham and R. L. Ethington (eds.): Concepts and Models of Dolomitization. Spec. Publ. Soc. Econ. Paleont. Miner. 28, 247-258.

SIBLEY, D. F , STEPHAN, N . H . a n d BORKOWSKI, M . L. ( 1 9 9 4 ) : D o l o m i t i z a t i o n k i n e t i c s in h y d r o t h e r m a l b o m b s a n d natural settings. J. Sed. Petrol, A64, 630-637.

STRASSER, A , STROHMENGER, C . DAVAND, E. , a n d BACH, A . ( 1 9 9 2 ) : S e q u e n t i a l e v o l u t i o n a n d d i a g e n e s i s o f Pleistocene coral reefs (South Sinai, Egypt). Sed. Geol, 78, 59-79.

SUPKO, P. R. (1977): Subsurface dolomites, San Salvador, Bahamas. J. Sed. Petrol, 47, 1063-1077. VAHRENKAMP, V. C. and SWART, P. K. (1994): Late Cenozoic dolomites of the Bahamas: metastable analogues for

the genesis of ancient platform dolomites. Spec. Pubis. Int. Ass. Sediment, 21, 133-153.

Manuscript received 13 September, 1996

83

Page 84: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 2.

Mineralogical, geochemical and stable isotopic data of the studied reefal facies, recent sediments and unaltered aragonitic coral samples

A

Mineralogy %

C Pd

CaO% MgO% Na ppm Mn ppm Fe ppm Sr ppm S l s O

(PDB)

8 I 3C

(PDB Calcareous sandstone

87 6 3 44.6 0.33 6500 15 1050 8300 19 67 3 45.7 1.29 6100 8 175 3500 19 _ 8 38.8* 2.61 2810 10 640 2590

45.0 0.88 4500 14 708 3595 43.0 1.46 2210 10 620 3800

Bioclastic packstone 8 79 6 51.7# 2.08 1490 42 250 1140 -3.33 +0.25

21 59 13 48.5# 3.23 4250 40 160 2460 -2.10 + 1.34 _ _ 97 34.2# 17.50 5610 30 210 450 + 1.52 + 1.67 35 _ 6 50.7* 3.41 3430 60 350 3770 -1.44 + 1.78 43 19 23 43.4 7.57 3800 17 570 2120 -0.36 +3.13

75 10 50.4 2.09 2440 33 960 1510 : - 34 31 47.9* 4.00 1900 18 480 3290

' 62 29 4 47.8 3.78 890 30 1110 ' 2450 -1.08 + 1.53 24 _ 7 42.2* 4.47 1405 45 1600 1310 _ 90 5 51.2 0.96 1220 50 1260 2580 35 - 6 52.2 2.03 3340 10 230 3450 -0.48 +2.36

Coraline a gal grainstone _ 7 36 28.6# 13.90 5920 40 320 340 +2.69 +3.17

_ 80 28.5# 14.40 3250 40 580 520 +3.39 +2.76 39.7 11.70 730 70 310 500 +0.45 +2.88

8 72 32.6 15.20 297 64 1260 390 _ 3 86 40.9 12.17 530 20 680 670 + 1.03 +2.87 _ 4 91 31.3 16.90 359 62 1080 640 — 39 40 35.6 17.13 660 40 250 730

36.6 16.99 695 28 630 313 _ _ 69 32.4 18.85 600 52 1004 460 _ 8 82 35.6 17.88 710 43 500 510

32.8 19.21 700 50 1300 580

Coral-algal boundstone _ 86 _ 47.4 1.43 414 56 890 640

45.1 1.40 862 50 1250 700 93 _ 48.3 2.62 724 61 1580 1200 -5.57 -2.17

_ . 88 _ 46.9 1.82 658 55 1240 810 47.0 ' 1.45 409 50 910 730 44.5 0.92 610 38 811 657 42.6 1.12 480 42 980 1100

Bioclastic pelletal packstone 97 - 54.9 1.02 297 47 940 480

_ 92 - 50.5 1.42 319 116 1230 690 _ ' 95 _ 50.7 1.12 438 48 • 590 350

51.9 1.20 312 68 1040 520 54.7 1.30 7000 55 1000 390

84

Page 85: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. I. Location map of the studied area and geological sections to them: A) detail of the geological section at Vertessomlo (alter GERBER, 1987);

B) ideal geological section at Biikkabrany (after CSILLING, 1965) Legend: I = Pebble, 2 = Sand, 3 = Clayey sand, 4 = Sandy clay, 5 = Clay,

6 = Lignite, 7 = Rhyolite tuff, 8 = Tuffaceous clay.

85

Page 86: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 1 continuation

A

Mineralogy % C Pd

CaO% MgO% Na ppm Mn ppm Fe ppm Sr ppm s"o

(PDB)

5 C I

(PDB

Biomicrosparatic limestone -3.21 _ 95 1 51.5# 0.95 2590 80 1930 720 -6.50 -3.21

_ 89 1 56.4# 0.36 970 10 130 500 -9.60 -4.35 _ 92 54.4# 0.54 950 60 460 1110 -5.57 -2.17

54.1# 0.64 1409 50 840 770 54.8# 0.82 1650 22 378 1050

Reefal sediments 82 _ _ 17.4* 3.60 3450 7 210 6100 72 8 23.4* 5.48 3783 3 30 9500 90 4 25.3 6 0 3 2567 23 420 10000

20.4 4 76 3800 30 510 10300

Unaltered atagonitic coral samples _ 0.08 - - - 8110 _ 0.11 - - - 7610 - 0.03 - - - 8700

# older reef samples A: aragonite Pd: protodolomite * contain high Mg calcite C: calcite

Fig. 1. Sinai Peninsula between Gulf of Aqaba and Gulf of Suez (Landsat image)

85

Page 87: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. 2. Sketch of the raised Pleistocene reef terraces, the fossil reef Mat and the modern reef between Ras Muhammed and Wadi Kid.

Fig 3. Dolomite rhombs (D) developed as dolosparite fringing cement around molds and skeletal grains. The marine aragonite cement (A) is made up by fibrous crystals nucleated on grains. Older reef. SEM.200X.

86

Page 88: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. 4. Small equant rhombic dolomite crystalls till a moldic pore. Dolomite crystals are, 10-80 nm in size. Older reef. SEM.

Reef back reef

Bioclastic-pelletal packstone facies

pTI Coralline algal grainstone facies

PD Bioclastic packstone facies

Coral-algal boundstone facies

pjT| Coral

Fig. 5. Diagram showing position of various microfacies types of the Pleistocene coral reef terraces

87

Page 89: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

2«-©0*J« C«lc itr Calculai Ulctt (-»t.il

ééi ?,J0 .Ziff f«ft Nul« Idtfl / i ' «fftfcfj

IrtlIHilt ?4>oo?rc CHOU en« CtHultl talctt »-•»« .» C«10

D

Fig. 6a. X-ray powder diffraction analysis of partially and pervasively dolomitized samples

Page 90: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

C o r a l - a l g a l bounds tone f a d e s B i o c l a s t i c p e l l e t a i packs tone f a c i e s

s s s s 2 ; s 6 = JMsuaiui «Aiiciat*

B i o m i c r o s p a r i t i c l i m e s t o n e f a c i e s

s ;

OAiiriaa

Page 91: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Sr ppm 10509

/ ' .') ! D i I i i i

! / ! i ! i i i i B /

. y • / * x I i 1

\ 1 * « I , \

"T , , L_ C o " 0 ° 0 I

Kg % 28

x Calcareous sands tone f a c i e i P a r t i a l l y d o l o n i t i z e d

• B l o c l a s t l c p icks ton» f a c i e i

a C o r a l l i n e a l g a l g r a i n s t o n e f a c i e i _ Pervas ive ly d o l o m i t i z c d

* C o r a l - a l g a l boundston« f a c i a s

O B l o n l c r o s p a r i t i c l imes tone f a d e s ^ Lov-Kg c a l c i t e - r i c h

$ B i o c l a s t i c p e l l e t a l packs ton* f a d e s

B Reefa l s e d i n e n t s

O Unal te red a r a g o n l t i c c o r a l s

JFjg. 7. Correlation between Sr and Mg concentration.

Q 0

Page 92: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

%

< f \ 0 o . o . - - - ^

' o. J - ' ¡ ~ v 0 " \ • V ^ / " s / 1 - » W / \ /

I* * I * R -

" X

I y

0 ;

R I "

v\ / s j

/

Na ppm 6500

Fig. S. Correlation between Ca and Na concenration. Legend is same that of Fig. 7.

Page 93: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Na P P m

6 5 0 8 -

/ / 1

/ 1

/

hj-I I' I 0%. -MC"

\

V /

1 /

f o

Sr p pm

. 1 8 5 0 0

Fig. 9. Correlation between Na and Sr concentration. Legend is same that of Fig. 7.

92

Page 94: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fe p pm

1 9 5 0 - s k n / N

58

• p / /

I"* ^ / 1 iO ' # a

«i , / B / n \

•/ / I

• ' x ' 0 / „ / _ l _ i i . i "/ • • J i i i i I i i i i 1

Jig % 20

Fig. in. Correlation between Fe and Mg concenration. Legend is same that of Fig. 7.

93

Page 95: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

P e r v a s i v e l y

d o l o m i t i z e d s a m p l e s

Fig. II. Isotope values of samples in older and younger reef sequence.'

94

Page 96: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

A da Mineraíogica-Petrograplűca, Szeged, XXXV1II.95-J09, 1997

STABLE ISOTOPIC COMPOSITION OF THE KOMLÓ CALCAREOUS MARL FORMATION („SPOTTED MARL" S. STR.), MECSEK

MOUNTAINS, S HUNGARY

B É L A R A U C S I K 1

Department of Mineralogy, Geochemistry and Petrology, Attila József University

A B S T R A C T

In the Mecsek Mountains (Tisza Unit, S Transdanubian, Hungary) an Aalenian-Bajocian rhythmic limestone-marlstone alternation crops out. Precise petrological analysis has not been accomplished on this formation and the origin of this characteristic bedding phenomenon has not been explained. Stable isotope values of carbonate samples show higher 8 ' 8 0 and 8L 'C values in limestone beds relative to marlstone beds. A correlation exists between the carbonate content and the stable isotope values. On the basis of this isotope data and other observations on the collected samples can be devised a depositional model of Komló Formation. The data suggest that production and/or dilution cycles may have formed the limestone-marlstone alternation; diagenetic overprint was only of minor significance.

INTRODUCTION

In the eastern part of Mecsek Mountains outcrops of Mesozonic sedimentary and volcanic formations of Tisza Unit can be studied over a relatively large area. A characteristic sedimentaiy unit is a limestone-marlstone series, the Komló Calcareous Marl Formation. This formation is pat of the so-called „spotted marl" series, that overlies a siliciclastic coal-bearing unit (Fig. /). the precise depositional age of the Komló Calcareous Marl is uncertain, although a rough range in Aalenian-Bajocian interval has been long ago given ( V A D Á S Z ,

1 9 3 5 , F O R G Ó et al., 1 9 6 6 ) . The most conspicuous character of this formation is its rhythmic limestone-marlstone alternation ( F O R G Ó et al., 1 9 6 6 ) . The origin of this bedding has not yet been studied in detail.

In this study carbon and oxygen isotopes are applied to elucidate the origin of the characteristic bedding. For ice-free periods during the Phanerozoic, 51 80 variations have been interpreted in terms of in salinity changes ( P R A T T , 1 9 8 4 ) or changes in surface water temperatures ( D E B O E R , 1 9 8 2 ) , while 5 b C variations are thought to reflect organic productivity and water stratification ( A R T H U R et al., 1 9 8 4 ) .

' H-6701 Szeged, P.O. Box 651, Hungary

95

Page 97: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Tithonian o n frfefrfr ^miffon^ foypttigi

Tithonian Várkon* n > n • • n n

Kimmen dgian Limestone N Kisüjbánya Limestone

c Formation D > D FormationD •

Oxford ian • • D Q , Q - Q D _ D 0 • • Fonyészó Limestone Formation

Callovian Dorogó Calcareous Marl Formation • • • • • • • • • • • Callovian

Bdhonian a • .. . d p • • • . o • • Obanya Limestone Formation

Bajocian o o o o o o o o o o o

Aalenian o Komló o / Calcareous Marl Formation > \ Toarcian

U U U U U O U W V J U U

Toarcian Q Q ÓjiányaAjjurD^teFormgtio^ Q Q

Pliensbachian o Mecseknádasd ^ 1. { Sandstone Formation O O o o o o n ^ n o •

Sinetnurian o Hosszúheteny (calcareous Marl formation

Sinetnurian Vasas Marl Formation

Hettangian + + - F + + + -1- + - F ^ F "

Mecsek Coal Formation + + + + + + + + + + +

L e g e n d l. Kecskehit Limestone Formation \ y shelf facies limestones

2. Pusztakisfalu Limestone Formation '

EOF Coal-bearing siliciclastic unit

Spotted marl s.i.

| d n j Pelagic limestones

Fig. 1. Stratigraphie units of Mecsek Mountains

GEOLOGICAL SETTING

Two sections north of Piispokszentlaszlo were studied in detail (Figs. 2, 3a, 3b). These sections consist an alternation of carbonate-rich and carbonate-poor layers (couplets) with centimeter-decimeter scale bed thickness. Petrographically, the carbonate-rich beds are argillaceous limestones, calcareous marls and marls, the carbonate-poor layers are marls, argillaceous marls. All of these have some silt grains, this silt content is mainly abundant in the carbonate-poor semicouplets. The beds are grey and greenish grey (on weathered surface

96

Page 98: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

some yellowish shade) with abundant darker grey spots. The carbonate-poor beds are slightly darker than the limestones because of their higher clay content. Sharp and continuous bedding contact can also be observed. The carbonate-poor beds with highest clay content are thin bedded, nevertheless all of the carbonate-rich semicouplets are massives. All of beds are macroburrowed. Microburrowing or lamination are absent. Rock Eval pyrolysis did not detect significant organic matter (TOC values between 0 . 0 4 and 0 . 1 7 % , H E T É N Y I , pers. comm.). These facts refer to oxic conditions during deposition of Komló Formation. Locally, sharp bedding contacts may be developed by turbidity current activity. Sedimentary structures, however, indicative of redeposition (including existence of fine-grained turbidities or contourites), e.g., cross lamination, normal or inverse graded bedding, fine lamination, lenticular bedding, fine, obscure silt lenses, tool marks on underlying bedding planes, complete or incomplete Bouma-sequence were not observed.

In thin section the limestones classify as bioclastic wackestones or packstones. The most abundant biogenes are radiolarians and siliceous sponges (commonly recrystallized), and filaments. A small amount of unrounded terrigenous quartz silt grain are present as well. Intensive bioturbation is conspicuous in all samples. Planktonic foraminifera are present in some thin sections. These forams can not be used for precise biostratigraphic dating, but they suggest normal marine salinity (RESCH, pers. comm.).

Fig. 2. Location map of the investigated profiles Legend: I. Section PiispOkszentlaszIo II. 2. Section Kecskegyiir, road cut

97

Page 99: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

m

+ 34c. + 34b.

+ HH 34a.

M

26b.

24b.

+ rZ~Z~~ 48a.

+ I 43a.

L e g e n d : s e e F i g . 3 b .

Fig. 3a.: Lithologie column of section Puspokszentlâszlô 11.

98

Page 100: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. 3b.: Lithologie column of section Kecskegyiir, road cut

99

Page 101: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

A few marlstone samples show fitted fabric structures. This fact and the partially dissolution of some of biogenic constituents indicate carbonate dissolution and reprecipitation during burial diagenesis. In outcrops weavy bedding surfaces are widespread; nevertheless carbonate concretions did not form, i.e. carbonate redistribution in the sense of H A L L A M (1964) probably was not significant enough to cause a limestone-marl alternation.

In essence, this profile represents a basinal facies, dominated by hemipelagic processes. Sedimentation was pesumably continuous. Consequently, this succession is a good candidate for detailed analysis to examine the origin of rhythmic bedding.

METHODS

Bulk samples were milled in an agate mortar and the powder was analyzed by Attila Demeny at the Geochemical Research Laboratory of the Hungarian Academy, Budapest. Carbon dioxide was produced following M C C R E A (1950). The , 3 C / ' 2 C and , 8 0 / l 6 0 ratios were determined using a Finnigan MAT delta S mass spectrometer. The isotope ratios are quoted in per mil relative to the PDB (Pee Dee Belemnite) and the V-SMOW (Vienna Standard Mean Ocean Water).

The reproducability of duplicate analyses is better than ± 0.1 %o. The standard Harding Iceland Spar were also analysed, which yielded the following values: S I 3 C = -4.88 ± 0.03 %o; 61 80 = 11.85 ± 0.07 %o; n = 4 (accepted values: 5 I 3 C = -4.80 %o; 5 , s O = 11.78 %o, L A N D I S ,

1983). PBD values were converted to V-SMOW values using the equations: 818Osampie/SMOW = 1.03091 x8l8Osampie/PBD +30.91 ( C O P L E N , 1988).

RESULTS

The results of stable isotope measurements are shown in the Table 1. In a given couplet 8 l sO, and S13C values of the marlstones are always lighter than those of limestones. The 8L 'C and 51 80 values show a weak positive correlation (Fig. 4). A strong correlation exists between the percentage of calcite and the isotope ratios (Figs. 5, 6). In order to examine the potential effect of the noncarbonate fraction on the stable isotope values two samples with different carbonate content and different isotope excursion were treated with 10 % hydrochloric acid. The data show that the noncarbonat matrix has no effect on the stable isotopic composition of the bulk sample. The observed correlations belong to the samples, can be established ( D E M E N Y , pers. comm.).

DISCUSSION

Changes ratio in deep-water production during glacial-interglacial transitions and related changes in carbonate dissolution probably can not be called upon to explain the cyclicity in Jurassic strata deposited during a period of globally warm climate. ARTHUR et al. (1984, 1986) proposed that periodic changes in insolation, evaporation, wind stress, and/or rainfall (these factors may be affected the climate under greenhouse conditions) in a wide variety of environments caused changes in input of terrigenous detritus, water mass stratification,

100

Page 102: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

o

o o o O r

o o o

-5

+

4. +

00 o

-3

8 " O

++

- 2 -1

Legend: - f - Carbonate-rich samples

O Carbonate-poor samples

Fig. 4. : Carbon isotope ratios in function of oxygene isotope ratios

CO

0 s

O

<o

0

• - CL • •

• •

i

i

i

• r

i • i

(ED

20 4 0 6 0

c a l c i t e ( % )

• -a e

J

80

Fig. 5.: Carbon isotope ratios in function of calcite content

101

Page 103: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

0 20

C a l c i t e ( % )

4 0 6 0 80

Fig. 6.: Oxygene isotope ratios in function of calcite content

surface productivity, deep-water oxygen content, and rates of carbonate dissolution. So pelagic-hemipelagic limestone-marl alternations can generated under greenhouse conditions. Some of the above described factors can be detected by stable isotopic data.

Carbon isotope signal The carbon isotopic composition of calcareous fossils reflects the composition of the

dissolved carbon of the water from which the organisms precipitated their shells. Several authors attempted to explain the excursions of 5 | J C values: Ocean surface water is enriched in l3C relative to deep water ( B E R G E R and V I N C E N T ,

1 9 8 6 ) . T H U N E L L et al. ( 1 9 9 1 ) proposed a model to explain the origin of Early Pliocene limestone-marl couplets in Calabria, Italy, which invoices l jC enrichment of carbonate-secreting zooplankton as a result of an increase in surface waters phytoplankton productivity. This enrichment varies as a function of time, and this difference may become quite small in older sediments. Perhaps, this latter effect is due to diagenetic alteration, at least in part ( K I L L I N G E Y , 1 9 8 3 ) . Carbon isotope compositions of bulk rocks probably do not change a great deal during diagenesis because the volume of carbon within the pore-water reservoir is small and because the isotope fractionation between calcium carbonate and dissolved bicarbonate is small at low temperatures ( E M R I C H et al., 1 9 7 0 ) .

BARTOLINl et al. (1996) observed positive 5 I3C anomalies in Early Bajocian and Callovian-Oxfordian carbonates in Central Italy that may record changes in global climate toward warmer, more humid periods characterised by increased nutrient mobilisation and increased carbon burial. High biosiliceous productivity and preservation appear to coincide with the observed anomalies, when the production of platform carbonates was subdued and ceased in many areas, with a drastic reduction of periplatform ooze inpot in many Tethyan basins. According to BARTOLINl et al. (1996) hydrothermal events related to rifting an/or

1 0 2

Page 104: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

accelerated oceanic spreading may be the endogenic driving force that created a perturbation of the exogenic system!

B E A U C H A M P et al. (1987) proposed a basinal stagnation and thermohaline-stratification ocean model to explain the high 5I3C values for the evaporitic Permian Svedrup Basin, Canada. The model suggests that increased storage of ljC-depleted sedimentary organic matter in the basin and high evaporation rates cause L'C enrichment of the remaining seawater. Mil et al. (1997), however, pointed out that the relatively constant 5 I 8 0 values across the 8 I3C maximum suggest that the basinal-stagnation and thermohaline-stratification ocean model can not explain the 51JC maximum in the isochron West Spitsbergen isotope stratigraphy. These globally recognized 5I3C shifts can be explained by changes in the size of the organic carbon reservoir ( K U M P , 1991).

As pointed out above, diagenesis may alter the carbon isotopic composition. The light carbon isotope values, in particulary those of calcite' in marlstones may be due to decomosition of organic matter.

According to a model proposed by R A I S W E L L ( 1 9 8 7 ) during sulfate reduction, bacterial decomposition of organic matter leads to precipitation of ljC-depleted calcite (up to -35 %o). RlCKEN and E D E R ( 1 9 9 1 ) , however, emphasize that with increasing overburden, the sediments pass into the methane production zone, where isotopically light bicarbonate is removed by bacterial methane production. The remaining bicarbonate in the pore water and the precipitated cabonate therefore continuously shift from light 5 I3C values to heavier ones.

In model proposed by J E N K Y N S and C L A Y T O N (1986), the lower 8 1 3 C of the cement is compatible with the introduction of carbon dioxide derived from bacterial oxidation of organic matter. Low 5BC values in carbonates associated with organic carbon contents support this model.

These observations are consistent with the isotopic record of Komlo Formation inasmuch as the lowest 5'JC values are found in marlstones, which were probably deposited during periods of lower organic productivity.

Oxygen isotopic signal The 5 l sO value of bulk carbonates is determined by the 51 80 value of unaltered biogenic

constituents (and primary micritic matrix) and the 5 I 8 0 value of the overgrowth cement on the biogenic particles. The latter will have a S l 8 0 value controlled by the temperature and the 6 I 8 0 value of the interstitial water. Thus, at greater burial depths, where cements are generally more abundant and most of the planktonic constituents have been dissolved, the 5 l sO value of bulk samples reflects more closely the geologic conditions during burial diagenesis rather than the paleotemperature of the initial ocean water ( C O O K and E G B E R T ,

1 9 8 3 ) . M A T T E R ( 1 9 7 4 ) , M A T T E R et al. ( 1 9 7 5 ) , and S C H O L L E ( 1 9 7 7 ) pointed out that as pelagic carbonates become more deeply buried, their porosity decreases and their 5 I 8 0 values become increasingly more negative. Highly negative oxygen isotope values are formed in carbonates deposited in fresh water environments or in carbonates precipitated at high temperatures. The oxygen isotopic composition of marls and limestone layers may be homogenized by diagenetic processes ( E I N S E L E and RlCKEN, 1 9 9 1 ) . During diagenesis, oxygen isotope ratios are likely to be far more readily altered than carbon isotope ratios. The ratio of oxygen in pore water to oxygen in the rock in initially extremely porous carbonate oozes is high, the inverse is true with respect to carbon. In addition, there is a large temperature fractionation of oxygen isotopes which can play an important role during burial diagenetic cementation. Such effects have been noted in many pelagic sequences ( S C H O L L E ,

1 9 7 7 ) .

103

Page 105: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Oxygen isotope ratios of pelagic carbonate-marl rhythms often show low values in the carbonate-poor intervals. Several well studied examples can be found in the literature of Cretaceous, and other ice-free periods of the Earth's history ( W E I S S E R T et al., 1 9 7 9 , D E

B O E R , 1 9 8 3 , K A U F F M A N , 1 9 8 8 ) . Two mechanisms should be considered to explain the relatively low oxygen isotopic values of the carbonate in the marly beds:

1. Fluctuations of the surface water temperature: carbonates of carbonate-poor beds would have precipitated from relatively warm surface waters.

2 . Fluctuations of the surface water salinity, proposed first by P R A T T ( 1 9 8 4 ) ; the salinity would have been relatively low at the times of formation of the marly semicouplets.

The first process, fluctuations of surface water temperature, fits in a model with variations of circulation and upwelling related to shifts of climatic zones due to orbital influences on the climate. Temperature differences of oceanic surface waters are not only due to changes in atmospheric temperature and insolation but also due to changes of ocean currents, upwelling, and the supply of waters derived from higher and hence cooler latitudes ( D E B O E R , 1991).

The second process, fluctuations of surface water salinity, was an more important process in the Jurassic ocean, while the reduced circulation of the ocean might well have led to a greater influence of evaporation/precipitation, resulting in a variable salinity ( D E B O E R ,

1991). K A U F M A N N (1988) suggested that to enhanced fresh water input could have caused slower circulation and lower organic production in the surface waters. B A R R O N (1986) stated that surface runoff patterns may have influenced stratification in marginal seas and could have had a global effect.

Processes such as dissolution and reprecipitation of carbonate are unlikely to cause the rhythmic layering in the sequence because of the stable oxygen isotope ratios of carbonate. These show lower values in the marly intervals whereas in the case of diagenetic redistribution of carbonate they would have shown lower values in the more cemented limestone beds. The difference between the oxygen isotope values measured in limestone and in marlstone in an given couplet are quite large. Diagenetic redistribution of carbonate would have lowered the mean S l 8 0 values of carbonate-rich beds and thus have diminished the original differences. The differences of the oxygen isotope values between the limestone and marl beds in a given couplet suggest a primary origin of the carbonate-marl rhythm. Thin section observations, however, show evidence of some dissolution and reprecipitation of calcite. Some foraminifera are partially dissolved, chambers of radiolarians and siliceous sponges are filled by calcite. Although burial diagenesis may have shifted the 5 i 8 0 signature of the limestones more negative values, I believe that the negative changes in amplitude of the 61 80 signal from bed to bed represent closely the original 5 I 8 0 pattern in the surface waters. According to A R T H U R and D E A N (1991), 5 I 8 0 values -2.5 to -3.5 %0 are reasonable isotopic compositions for diagenetic unaltered marine carbonates formed in a warm, ice-free ocean. As show the Table 1. some marlstone samples have lower 51 80 values than -3.5 %o. In case of these samples diagenetic modification of the original carbonate content can be not excluded. As stated above, the stable oxygen isotope values are higher in limestone beds than in over- and underlying marly intervals. This points to differences of temperature during time of formation, with the limestone beds having formed during periods of „cooler" and/or „more saline" surface waters ( D E B O E R , W O N D E R S , 1984).

104

Page 106: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 2. Stable isotope ratios and calcite ontents of measured samples

sample 5 | : , C (PDB) (%o)

5 I 8 0 (PDB) (%o)

8 1 S 0 (SMOW) (%o)

calcite (%)

PS 2-24 B 2.1 -2.0 28.9 . 100

PS 2-26 B 1.0 -5.1 25.7 25

PS 2-34 A 1.9 -2.6 28.3 75

PS 2-34 B 2.0 -2.2 28.6 88

PS 2-34 C 1.6 -4.4 26.3 52

PS 2-37 B 1.2 -4.6 26.1 40

PS 2-38 B 2.1 -2.1 28.8 ' 92

PS 2-42 A 1.6 -3.0 27.8 76

PS 2-42 B : . 2.0 -2.3 28.6 92

PS 2-43 A 0.4 -4.6 26.2 24

PS 2-47 0.2 -4.6 26.1 . 23

PS 2-48 A 1.1 -4.8 26.0 . 18

KG-1 A 1.7 -1.4 '29.4 82

KG-31 1.5 -0.5 30.4 • 90

KG-32 0.8 -2.5 28.3 • 30

KG-48 1.6 -0.5 30.4 91

KG-52 1.3 -2.3 28.5 63

KG-53 1.0 -4.1 26.7 31

KG-54 B 1.5 -1.5 29.4 ' 6 5

KG-54 C 1.3 -3.2 27.7 64

KG-56 1.4 -3.1 27.7 60

KG-57 0.7 -4.3 26.5 29

KG-58 A 1.1 -3.1 27.8 60

KG-58 B 0.6 -2.8 28.0 48

KG-59 0.6 -2.7 28.1 40

105

Page 107: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 2. Compilation of stable isotopic data

Sample localities of isotopic data 8"C%o PDB values 8"0%o PDB values References

DSDP Site 238, Indian Ocean, Upper Miocene

+ 2 . 0 - - 0 . 5 no data Foraminifera tests Vincent, Berger (1985)

DSDP Site 216, Indian Ocean, Miocene

+ 3 . 0 - - 0 . 5 + 3 . 5 - - 0 . 5 Foraminifera tests Vincent, Berger (1985)

Moria, Apennines, Upper Albian no data - 2 . 6 - - 3 . 7 Pelagic limestones and marls de Boer (1991)

Hartland Shale Mbr., Rock Canyon, Colorado, Cenomanian

+ 1.0 - - 1 . 0 - 8 . 0 - - 9 . 0 Brackish shales, marls Eicher and Diner (1989)

Bridge Creek Mbr., Pueblo, Colorado, Turanian

no data - 3 . 5 - - 8 . 0 Pelagic limestone Eicher and Diner (1989)

Bridge Creek Mbr., Pueblo, Colorado, Turonian

no data - 6 . 0 - -8.0 Pelagic limestone Eicher and Diner (1989)

Niobrara Fra , Berthoud State #3 core, Denver Basin, Up. Cret. +2.0 - +1.0 - 6 . 0 - - 1 0 . 0

Pelagic limestones, marls, black shales Arthur, Dean (1991)

DSDP Site 387, Atlantic Ocean, Neocomian + 1.5 - +1.0 - 2 . 0 - - 5 . 0

Pelagic limestones, marls, black shales Arthur, Dean (1991)

Breggia Gorge, Switzerland, Upper Liassic

+ 3 . 0 - + 1 . 0 - I . 0 - - 3 . 0 Pelagic limestones, marls Jenkyns, Clayton (1986)

Val Cepelline, Lombardian Basin, Italy, Upper Liassic

+ 3 . 0 - + 2 . 0 - 1 . 0 - - 3 . 0 Pelagic limestones, marls Jenkyns, Clayton (1986)

Valdorbia, Umbrian Basin, Italy, Toarcian

+ 5 . 0 - + 2 . 0 0 - -2.5 Pelagic limestones, marls Jenkyns, Clayton (1986)

Bányahegy, Gerecse, Hungary, Upper Liassic

+ 4 . 0 - + 2 . 0 - I . 0 - - 3 . 0 Pelagic limestones, marls Jenkyns, Clayton (1986)

Val Varea, Lombardian Basin, Italy, Upper Liassic

-1.0 -2.0 Mn-rich carbonates Jenkyns, Clayton (1986)

Trubi Marls, Calabria, Italy, Early Pliocene -0.3 - -2.0 + 0 . 2 - - 1 . 0

Planctonic foraminifera tests in marls Thunel le ta l . (1991)

Trubi Marls, Calabria, Italy, Early Pliocene 0 —1.5 + 0 . 5 - - 1 . 0

Planctonic foraminifera tests in limestones Thunell et al. (1991)

106

Page 108: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Deposilional model Summarizing the suggestions of data with a simple model can be explained the rhythmic

layering of Komló Formation: In the Jurassic ocean, thermohaline circulation was probably driven mostly by differences

in salinity rather than by differences in temperature as it is the case in the modern ocean ( B R A S S et a]., 1 9 8 2 ) . Bottom water was dense because it was more saline than the surface water, but it was less cold as in the present oceans. Dissolved bicarbonate in this bottom water was enriched in , 8 0 as a result of higher salinity. When vertical mixing in this ocean were slow, i. e. during deposition of marlstone beds of Komló Formation, the deeper, more saline water with its higher S l 8 0 value remained relatively separated from less saline surface water characterized by a lower 8 , sO value. During periods of increased circulation; deeper waters mixed with surface water causing a rise in 8' O of the upper waters. These upwelling bottom waters brought nutrients that fostered production of calcareous plankton in the photic zone. Deposition of the limestone beds probably occured during this period. The higher 8 I 8 0 values of limestones support this interpretation. Due to enhanced productivity more organic matter is deposited resulting in higher 8 b C values in limestones compared to marly intervals. The abundance of biogenic silica in the limestone beds is also consistent with this model of enhanced bioproductivity ( H E R B E R T et al., 1 9 8 6 ) .

Under oxic conditions the organic matter is being oxidized in the water column, on the sea floor or in the sediments near the sediment-water interface, but in the limestones its original higher quantity can be traced by the 8I3C signal.

Proposing a dilution model to explain the marl-limestone rhythmicity, in which the „brackish" (or more diluted) surface seawater layer is inferred to have been in place during marlstone deposition, this 8 I 8 0 pattern would support it. The comparatively low 8 I 8 0 values in Komló Calcareous Marl marlstones, however, do not need to represent brackish water. Even the lowest of these values is heavier than the values from brackish Hartland Shale from the Western Interior Seaway, Cenomanian, USA (Table 2), and the Komló Formation contains a planktonic fauna indicating normal marine salinities (RESCH, pers. comm.).

Applying this simple model to the Komló Formation suggests that the rhythmic bedding is due to variations in bioproductivity (more calcareous plankton at the times of enhanced circulation, more upwelling, relatively „drier" and „cooler" periods resulting in limestone formation). This' process could be superimposed variations in continental runoff (more terrigenous mud and silt carried from the continent at times of more humid and wet conditions resulting in marlstone deposition). The original isotope record was overprinted to some degree by diagenesis i. e., the isotope values of all marlstone and limestone beds may be shifted toward more negative values but burial diagenesis seems to have not been significant.

Of course, merely on the basis of stable isotopic data can not model any depositional system. The main problem is that precise dating of examined sequence have not been solved because of scarcity of index fossils. Thus, the sedimentation rate of the formation can not be stated. In order to establish a more accurate model, one has to examine tha clay mineral assemblage, the trace element record, the microfacies characteristic and the fossil assemblage.

107

Page 109: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

C O N C L U S I O N S

The stable isotope values of limestone-marlstone couplets in the Komló Calcareous Marl Formation show consistently higher S l 8 0 and 513C values in limestones relative to marlstones. A significant correlation exists between the percentage of calcite and the isotopic composition. According to suggestions of data production and/or dilution cycle may be existed as depositional background of the origin of limestone-marlstone alternation. A depositional model is proposed for the rhythmic marl-limestone succession of the Komló Formation, whereby this bedding is the result of regular changes in ocean bioproduction and concomitant salinity changes. Postdepositonal alteration was minor and resulted in a general decrease in 8 l sO and 513C values in both marls and limestones. In order to establish of the importance of the individual processes (whether the production or the dilution cycle was more important), additional sedimentological, geochemical and paleontological work is n e e d e d .

A C K N O W L E D G M E N T S

The author thanks A T T I L A D E M É N Y for performing the measurements, T I B O R

S Z E D E R K É N Y I and G Y Ö R G Y P A N T O for making the measurements possible. Special thanks to W E R N E R R E S C H , C H R I S T O P H S P Ö T L , J Á N O S H A A S and M I K L Ó S K Á Z M É R for their valuable discussion and significant help.

R E F E R E N C E S

ARTHUR, M. A w . W R CI991): A holistic geochemical approach to cyclomania: Examples from Cretaceous pelagic limestone >e»j.-cnces. In: Einsele, G., Ricken, W., Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 126-166. Springer Verlag, Berlin, Heidelberg, New York.

ARTHUR, M . A. , DEAN, W . E. , BOTTJER, D . J. , SCHOLLE, P. A . ( 1 9 8 4 ) : R h y t h m i c b e d d i n g in m e s o z o i c - c e n o z o i c pelagic carbonate sequences: the primary and diagenetic origin of Milankovitch-like cycles. In: BERGER, A., IMBRIE, J . , HAYS, J . , KUKLA, G . , SALTZMAN, B . (eds . ) : MILANKOVITCH a n d CLIMATE. P a r t 1. 1 9 1 - 2 2 2 . Reidel Publishing Comp.

ARTHUR, M . A. , BOTTJER, D . J . , DEAN, W . E. , FISCHER, A. G . , HATTIN, D . E. , KAUFFMAN, E. G. , PRATT, L . M . , SCHOLLE, P. A:=ROCC Group (1986): Rhythmic bedding in Upper Cretaceous pelagic carbonate sequences: Varying sedimentary response to climatic forcing. Geology 14., 153-156.

BARRON, E. J. (1986): Physical oceanography: a status report. In: Hsu, K. J. (ed ): Mesozoic and Cenozoic oceans. Am. Geophys. Union Geodyn. Ser. 15, 1-9.

BARTOLINI, A., BAUMGARTNER, P. O., HUNZIKER, J. (1996): Middle and Late Jurassic carbon stable-isotope stratiraphy and radiolarite sedimentation of the Umbria-Marche Basin (Central Italy). Eclogae geol. Helv. 89/2., 811-844.

BERGER, W. H., VINCENT, E. (1986): Deep-sea carbonates: Reading the carbon isotope signal. Geol. Rdsch. 75/1.. 2 4 9 - 2 6 9 .

BRASS, G. W., SOUTHAM, J. R., PETERSON, W. H. (1982): Warm saline bottom waters in the ancient ocean. Nature 296., 620-623.

COOK, H. E., EGBERT, R., M. (1983): Diagenesis of deep-sea carbonates. In: Larsen, G., Chilingar, G. V. (eds.): Diagenesis in Sediments and Sedimentary Rocks. 2. Dev. in Sedimentology 25B, 213-288.

COPLEN, T. B. (1988): Normalization of oxygen and hydrogen isotope data. Chem. Geol. (Isot. Geosci. Sect.) 72, 293-297.

DE BOER, P. L. (1982): Cyclicity and storage of organic matter in Cretaceous pelagic sediments. In: Einsele, G., Seilacher, A. (eds ): Cyclic and event stratification, 456-475. Springer Verlag, Berlin, Heidelberg, New York.

108

Page 110: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

DE BOER, P. L. (1983): Aspects of Middle Cretaceous pelagic sedimentation in S Europe. Geol. Ultraicctina 3 1 , 112.

DE BOER, P. L. (1991): Pelagic black shale-carbonate rhythms: Orbital forcing and oceanographic response. In: Einsele, G , Ricken, W , Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 63-78. Springer Verlag, Berlin, Heidelberg, New York.

DE BOER, P. L , WONDERS, A. A. H. (1984): Astronomically induced rthythmic bedding in Cretaceous pelagic s e d i m e n t s n e a r M o r i a (I taly) . In: BERGER, A , IMBRIE, J , HAYS, J , KUKLA, G , SALTZMAN, B . (eds . ) : MILANKOVITCH a n d CLIMATE. Par t 1. 1 7 7 - 1 9 0 . R e i d e l P u b l i s h i n g C o m p .

EINSELE, G , RICKEN, W. (1991): Limestone-Marl Alternation - an Overview. In: Einsele, G , Ricken, W , Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 23-47. Springer Verlag, Berlin, Heidelberg, New York.

EMRICH, K , EHHALT, D . H , VOGEL, J. C . ( 1 9 7 0 ) : C a r b o n i s o t o p e f r a c t i o n a t i o n d u r i n g t h e p r e c i p i t a t i o n o f c a l c i u m carbonate. Earth and Plan. Sci. Lett. 8 , 363-371.

FORGÓ, L.; MOLDVAY, L , STEFANOVITS, P , WEIN, GY. ( 1 9 6 6 ) : E x p l a n a t i o n o f t h e g e o l o g i c a l m a p se r i e s o f Hungary. 1:200000 series. L-34-XIlI-Pécs. (in Hungarian)

HALLAM, A. (1964): Origin of the limestone-shale rhythm in the Blue Lias of England: a composite theory. Jour. G e o l . 7 2 , 1 5 7 - 1 6 9 .

HERBERT, T. D , STALLARD, R. F , FISCHER, A. G. (1986): Anoxic events, productivity rhythms and the orbital signature in a mid-Cretaceous deep-sea sequence from central Italy. Paleoceonagraphy 1 , 495-506.

JENKYNS, H. C , CLAYTON, C. J. (1986): Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 3 3 , 87-106.

KAUFFMAN, E. G. (1988): Concepts and methods of high-resolution event stratigraphy. Ann. Rev. Earth Planet. Sci. 16 ,605 -654 .

K.ILL1NGEY, J. S. (1983): Effects of diagenetic recrystallization on l 8 0 / " ' 0 values of deep-sea sediments. Nature, 3 0 1 , 594-597.

KUMP, L. R. (1991): Interpreting carbon-isotope excursions: Strangelove oceans. Geology, 19, 299-302. LANDIS, G. P. (1983): Harding Iceland Spar: A new 5 I 8 0 - 8'"'C carbonate standard for hydrothermal minerals.

Chem. Geol. (Isot. Geosci. Sect.) 1 , 91-94. MATTER, A. (1974): Burial diagenesis of pelitic and carbonate deep-sea sediments from the Arabian Sea. In: SUPKO,

P. R , WESER, O. E. (eds.): Init. Repts. of the DSDP 2 3 , 421-443. U.S. Gov. Print. O f f , Washington. MATTER, A , DOUGLAS, R. G., PERCH-NIELSON, K. (1975): Fossil preservation, biochemistry and diagenesis of

pelagic carbonates from Shatsky Rise, NW Pacific. In: GARDNER, J , V. (ed ): Init. Repts. of the DSDP 3 2 , 891-907. U.S. Gov. Print. O f f , Washington.

McCREA, J. M. (1950): On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Pliys. 18, 849-857.

Mil, H , GROSSMAN, E. L , YANCEY, T. E. (1997): Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen - Global change or diagenetic artifact? Geology, 25 /3 , 227-230.

PRATT, L. M. (1984): Influence of paleoenvironmental factors on preservation of organic matter in Middle Cretaceous Greenhorn Formation, Pueblo, Colorado. AAPG Bull. 6 8 , 1146-1159.

RAISWELL, R. (1987): Non-steady state microbiological diagenesis and the origin of concretions and nodular limestones. In: MARSHALL, J. D. (ed.): Diagenesis in sedimentary sequences. Geol. Soc. London Spec. Publ , 3 6 , 41-54, Blackwell, Oxford.

RLCKEN, W , EDER, W. (1991): Diagenetic modification of calcareous beds - an overview. In: Einsele, G , Ricken, W , Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 430-449. Springer Verlag, Berlin, Heidelberg, New York.

SCHOLLE, P. A. (1977): Chalk diagenesis and its relation to petroleum exploration: oil from chalks, a modern m i r a c l e ? A A P G Bul l . 6 1 , 9 8 2 - 1 0 0 9 .

THUNELL, R , RIO, D , SPROVIERI, R , RAFFI, I. (1991): Limestone marl couplets: Origin of the Early Pliocene Trubi Marls in Calabria, Southern Italy. J. Sed. Petrol. 61/7 , 1109-1122.

VADÁSZ, E. (1935): The Mecsek Mountains. 1-180. (in Hungarian) VINCENT, E , BERGER, W. H. (1985): Carbon dioxide and polar cooling in the Miocene: the Monterey Hypothesis.

In: SUNDQULST, E. T , BROECKER, W. S. (eds.): The carbon cycle and atmospheric CO2; Natural variations Archean to Present. Am. Geophys. Union, Geophys. Monograph 3 2 , 455-468.

WEISSERT, FI, MCKENZIE, J , HOCHULI, P. (1979): Cyclic anoxic events in the early Cretaceous Tethys Ocean. G e o l o g y 7 , 1 4 7 - 1 5 1 .

Manuscript received 12 August, 1997

109

Page 111: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr
Page 112: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Minerulogica-Petrograpliica, Szeged, XXXVIII,111-117, 1997

PRELIMINARY REPORT OF KAPOSFÜRED: A NEW IRON METEORITE FROM HUNGARY

I . K U B O V I C S ' , Sz. BÉRCzi1,2, Z . D I T R Ó I - P U S K Á S ' , K . G Á L - S O L Y M O S ' , B . N A G Y 3 ,

A . S Z A B Ó 4

1 Eötvös University, Dept. Petrology and Geochemistry " Eötvös University, Department of General Technology

3 Hungarian Academy of Science, Xth Class1 Office 4 GRANMA

ABSTRACT

An iron meteorite fell at 3 hr a.m. 7th May, 1995 in Kaposfúred, Somogy County, Hungary (Geographical coordinates are: 17°46' E longitude and 46°25' N latitude). The meteorite arrived from NE direction with high inclination path and excavated a crater with 1 meter 10 cm deep in the garden of Mnr. M. TÖRÖK. The mass of the meteorite is 2.2 kg. EMPA studies showed that the new iron meteorite may belong to the Si-bearing group of irons (and mesosiderites), a rare group with 5 members in meteorite collections.

THE HISTORY OF THE FALL OF THE KAPOSFÜRED METEORITE

On the evening of 6th May, 1995 Mnr. M A R C E L L T Ö R Ö K , priest of the Kaposszerdahely Roman Catholic Parochy, decided he will get up as early in the morning as lightening allows to scythe the fresh grass in his garden. Next dawn awaking to the lightening of the window he opened his door and suddenly observed an impact of a bright object in front of him 7-8 meters in his garden. He felt the hot air of the incoming object and observed that it had a lightning tail, but right now he closed the door. Because of the Bosnian war at that time, his first idea was that a projectile landed in his garden. According to his watch-it was 3 o'clock a.m. so he returned to his bed and waited for lightening the sky. After about two hours when the spring sky lighted out he went out to see the object. He found that the impacted body has thrown out the ground toward west, in the direction of the Kaposvár-Fonyód railway. The diameter of the crater was about 1.5 meter and depth 1 meter and 10 centimeter. The crater was elongated toward western direction, and this fact was in accord of the arrival path of East-North-East of the falling body. He also observed that the projectile cut down the peak new branching of the pine and melted the aluminum wire hanged there for drying dress. Then Mnr. T Ö R Ö K tried to take out the piece of object from the bottom of the crater, and it glued to his dig. Taking out and placing them into a pail of water the two-fist-sized metallic body quickly boiled up and-vaporized the water. This was

' H-I088 Budapest, Múzeum krt. 4/a., Hungary - H-1088 Budapest, Rákóczi út 5., Hungary

H-1055 Budapest, Nádor u. 7., Hungary 4 H-2330 Dunaharaszti, Kossuth u. 90/a., Hungary

11,1

Page 113: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

the sequence of events Mnr. TÖRÖK could remember, when the authors (A. Sz., I. K., Sz. B.) visited him to hear the details of the story about the new meteorite fall in Hungary.

Before the meteorite fall Mnr. TÖRÖK decided to build a church on his farm-site and asked one of us (A. Sz.) to make the plans and ordered the work. During the preparations of the building the story of the meteorite fall turned out and A. SZABÓ brought the iron meteorite specimen to the Eötvös University, Department of Petrology and Geochemistry. Preliminary investigations (K. G-S.) with the electron microprobe of the department revealed remarkable Si content of the metal.

Attending the 22nd NIPR Symposium on Antarctic Meteorites one of us (Sz. B.) had the occasion to hear the presentation of invited lecturer T. M C C O Y (National Museum of Natural History, Smithsonian Institution, Washington D.C., U.S.A.), who spoke about their new melting experiments on Indarch EH4 chondrite ( M C C O Y et al. 1997a). In his lecture T. M C C O Y has shown their (Washington Group) and those of W E I S B E R G et al. (1997, New York Group) measurements on the EH4 chondrite melt phases: especially focusing on their results between 1100-1450 degrees centigrade. In this temperature range they found that the metallic phase contained 6-8 weight percent Si in the a highly reducing conditions of E-chondrites. He also mentioned the four remarkable high Si-bearing iron meteorites: Tucson, Horse Creek, Nedagolla and Mount Egerton. This sequence of events led authors to the conclusion that Kaposfiired is a new Si-bearing iron, the 5lh in this group present in meteorite collections.

The high Si content of some iron meteorites is connected to the reduced overall charater of them. (Even cast iron production in technologies with carbon reduction results in 2.5 weight percent Si content of the metal.) Among meteorites there are five different groups with reduced characteristics: the enstatite chondrites, the aubrites, the high-Si-bearing irons, some mesosiderites and the CR chondrites. To place Kaposfiired among them we sketch the mineralogical composition of these meteorite types.

THE E-METEORITE CLAN: E-CHONDRITES, E-ACHONDRITES (AUBRITES) AND OTHER RELATED REDUCED METEORITES

If the main characteristics of meteorites are connected in some special character, but the chemical and mineralogical compositions of them are rather distinct, we group meteorites to clans, (from Scottish clan: large family). The following meteorites have this main characteristic: they are all reduced, their FeO content is low therefore their silicates are mainly enstatite (and sometimes contain forsterite), and they have higher carbon content than that of ordinary chondrite groups. The clan of E-meteorites embraces E-chondrites, E-achondrites (aubrites), some mesosiderites with great enstatite (and sometimes forsterite) content, and Si-bearing iron meteorites, plus the CR carbonaceous chondrite group. Especially the Si-bearing group contains 4 meteorites: Nedagolla (India), (as till Kaposfiired the only fall), Tucson (Arizona, U.S.A.), Horse Creek (Colorado, U.S.A.), and Mount Egerton (W. Australia). Moreover two Antarctic meteorites were found to belong to the high Si-bearing group, too: LEW 88631 and LEW 86539 ( M C C O Y ,

1997). The connection of clan members is evolutionary ( B É R C Z I , H O L B A and L U K Á C S ,

1995): they represent layers from the highly reduced and thermally evolved E-asteroids ( Z E L L N E R et al. 1977).

112

Page 114: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

E-chondrites Mineral components of E-chondrites are similar to those of other chondrites, but they

are present in them with different ratios. They consist of chondrules, lithic and mineral fragments, refractory-rich inclusions, sulfide and metal: all of them embedded in a relatively small amount (10 %) of opaque (carbonaceous) matrix. The FeNi metal is present at ca. 20 wt % (ca. 11 vol. %), as an average concentration, but its range varies between 15 to 30 % for EH and EL groups ( S E A R S et al. 1982). Sulfide is present at ca 15 wt %. Another characteristic difference is between EH and EL chondrites that the size of the chondrules are larger in EL chondrites: there they may even larger than 2 mm but in EH chondrites chondrules are small, in the k.100 mikrometer range. The pyroxenes are low-Ca orthopyroxenes of enstatite with the range ofEngs.99 and Woi_2 content. If olivine exists, it can reach the 5 wt %, but mainly in 3 petrologic class chondrites. (Olivines have the range of Fojoo-95 content). The most characteristic E-chondrite (and also E-achondrite) mineral is oldhamite - CaS. Ca-phosphate, pentlandite, daubreelite, schreibersite and perryite are also present (i.e. L O D D E R S , 1996). The metal grains of E-chondrites contain reduced Si in amount óf 1.5-2.5 wt % for EH3 types, 2.0-3.5 wt % for EH4-5 and EH6 types and 0.1-0.9 wt % for EL3, 0.5-0.7 wt % for an EL4 ( R U B I N , 1997), 2.1 wt % for an EL5 ( S E A R S et al. 1984) and 1.1 -2.1 wt % for EL6 types. ( R I N G W O O D , 1961, W A S S O N and W A I , 1970, N E W S O M and D R A K E , 1979, W E E K S and S E A R S , 1985, W E I S B E R G et al. 1997).

There are groups in the E-meteorite clan, which contain metal or metal grains with more or less Si content. These unique meteorites are: 1. a chondrite - ALH 8 5 0 8 5 - with ca. 40 wt % metal FeNi content, but only ca. 1 wt % sulfide content and 3 metal Fe-Ni grains with higher Si content of 3 . 3 , 4 . 8 and 7 . 5 wt %, - ALH 8 5 0 8 5 resembles in general to CR chondrites ( W E I S B E R G et al. 1 9 8 8 ) . 2 . the Bencubbin mesosiderite: it has also some metal grains with higher Si content with 2 . 3 wt % Si in the Fe-Ni. ( N E W S O M and D R A K E ,

1 9 7 9 , W E I S B E R G et al. 1 9 9 7 . ) . 3 . Cumberland Falls has E-chondrite like inclusions with lower Si content, - maximum 0 . 2 5 wt % - , in metal grains ( N E A L and L I P S C H U T Z , 1 9 8 1 ) .

4. It was also shown, that CR chondrites may contain iron grains with 0.25 % Si content, especially it was found in a metal grain of Murchison ( G R O S S M A N et al. 1 9 7 9 ) .

E-achondrites with Si-bearing iron These achondrites are similar to other achondrites in their enstatite mineral

component, but they are anomalous in respect of the iron content in them. Because of the amount of iron some of them was classified earlier as anomalous mesosiderites, too. The high Si-bearing iron emerges the following achondrites: Horse Creek, Mt. Egerton, Bencubbin, Norton County, Aubres, Pesyanoe, Shallowater, Cumberland Falls (WAI and W A S S O N , 1 9 6 9 , W A S S O N and W A I , 1 9 7 0 , N E W S O M and D R A K E , 1 9 7 9 ) . These members of the E-meteorite clan represent the links from E-chondrites to E-achondrites and Si-bearing irons, but final conclusion about these connections can asserted from melting experiments.

E-CHONDRITE MELTING EXPERIMENTS: E-METEORITE CLAN CONNECTIONS

Till E-chondrite melting experiments only the reduced character was the genetic link for the members of the E-meteorite clan. The most controversial question was the survival of oldhamite, a high melting point sulfide from E-chondrite melting to aubrites.

113

Page 115: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

( D I C K I N S O N et al. 1992, 1996, L O D D E R S , 1996, F O G E L et al. 1996, M C C O Y et al. 1997a, b).

First melting experiments on the EH4 chondrite Indarch ( D I C K I N S O N et al. 1992) revealed that in the highly reduced conditions of melting of enstatite chondrites, between 1100-1425 Celsius centigrade even Si became reduced and dissolved in the metal phase. The early experimental melting works (i.e. F O G E L et al. 1996, M C C O Y et al. 1997a, b) mainly focussed on the solubility of CaS and other sulfides in the partial melts with aubritic composition.The measurements showed the parallel existing phases and revealed that between 1100-1425 degrees first metallic, sulfide (for an interval two sulfides) and silicate phases coexisted, but at 1400 Celsius centigrade only two phases remained: silicate melt which took up all the sulphur, and metal phase which solved large amount of silicon. ( F O G E L et al. 1996, M C C O Y et al. 1997a, b.) The fact that Si-bearing iron metal was produced during E-chondritic melting, arranged different E-meteorite clan members as products of thermal history intermediate between E-chondritic and separated aubrite, stony-iron and iron meteorites (by Si-bearing metal and by other melt phases). Here we list (Table 1.) all the E-meteorite clan members related to the Kaposfűred iron meteorite (by their reduced state and high Si content in their metal phase). Most of the data are from BM(NH) Catalogue, G R A H A M et al. 1985., and some from W A I et W A S S O N , 1969. (The Ni-Si dependence in metals for E-chondrites are from K.E1L, 1968, S E A R S et al. 1984, W E E K S e t S E A R S , 1 9 8 5 , N A G A H A R A , 1 9 9 1 , W E I S B E R G e t a l . 1 9 9 7 a n d M C C O Y e t a l .

1997a, b.)

TABLE 1 List of related Si-bearing irons and other meteoriles in the E-meteorite clan: E &Cr chondrites,

mesosiderites and aubrites

Meteorite name Find or fall: year Meteorite type Main mineral phases

Si content of metal phase

Notes

Irons T u c s o n Found 1850,

Arizona, U.S.A. iron, ataxite, ring-shaped

metal phase, (9.5 % Ni)

0.80 % 688 & 287 kg Wai. Wasson

N e d a g o l l a Fell 1870 Jan 23. 7 p.m. India

iron, anomalous metal phase 0 . 1 4 % ca. 4 kg Wai, Wasson

L E W 8 6 5 3 9 Found 1986, Antarctica

iron, without silicate inclus.

McCoy, 1997

L E W 8 8 6 3 1 Found 1988, Antarctica

iron, without silicate inclus.

McCoy, 1997

K a p o s f i i r e d Fell 1995 May 7. 3 a.m. Hungary

iron, ataxite metal phase cca. 0.20 % ca. 2.2 kg

Aubrites with iron C u m b e r l a n d Falls

Fell 1919 April 9, 12 h. Kentucky, U.S.A.

aubrite with e-chondritic inclusions

Kakangari-like inclus, forsteritic, 19 wt % total Fe

max. 0.25 % in kamacite grains

ca. 13 kg Neal and Lipschutz, 1981

Sha l lowate r Found 1936, July, Texas, U.S.A.

aubrite with EH chondritic type inclusions

enstatite, small chondrules, 25-75 micron, diam.

0.9-1.1 wt % ca. 2.1 kg Keil et al. 1989

H o r s e C r e e k Found 1937, Colorado, U.S.A.

metal rich aubrite metal embedded in large enstatite

2.5 % 570 g Wai, Wasson

M o u n t E g e r t o n Found 1941, W. Australia

metal rich aubrite enstatite, FeNi, schreiber. troilite

2.1 % 1.7 kg Wai. Wasson

114

Page 116: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Meteorite name Find or fall: year Meteorite type Main mineral phases

Si content of metal phase

Notes

N o r t o n C o u n t y

Fell 1948 Febr. 18, 16.h.56.m. Kansas, U.S.A.

aubrite with some nickel-iron inclusions

enstatite, olivine (9%), 1 .6% total iron

0.7 % ca. 1000 kg, Keil and Fredriksson

A u b r e s Fell 1836 Sept. 14. 15.h. France

aubrite enstatite 0.68 % 0.8 kg, Wasson, Wai, 1970

P e s y a n o e Fell 1933 Oct. 2. 6. a.m.

aubrite enstatite 0.58 % ca. 3.4 kg, Wasson, Wai,

Peculiar high-Fe meteorites K e n d a l l C o u n t y Found 1887,

Texas, U.S.A. anomalous iron +silicate aggreg.

kamacit, silicate and graphite

metal may have been reduced

ca. 21 kg

B e n c u b b i n Found 1930 July 30, W. Australia

mesosid.metal-silicate breccia, CR chon. related

ca. 60 wt % metal phase, 40 wt % silicate

3 clasts with Si content of 2.3 wt %

54 kg, Nevvsom, Drake, 1979, Weis-berg et.al. 1997

A L H 8 5 0 8 5 Found 1985, Antarctica

related to the CR & EH3 types, unique new type

more than 40 wt % metal phase, 1 wt % sulfide,

3 high Si-bear, grains with 3.3, 4.8 & 7.5 wt %

Weisberg et al. 1997

Enstatite (H) chondrites

Ringwood, 1961, Keil, 1968, Weeks

and Sears, 1985, Weisberg, 1997 '

E H 3 c h o n d r i t e s enstatite chondrites, very poor in matrix material (10 %)

enstatite, sulfide, kamacite, taenite, schreibersite, Lodders, 1996.

1.5-3.5 wt % Si content in metallic grains, av.: 2.5 w t %

i.e. Quingzlien, KotaKota, Parsa, Y-691, PCA-91383, Y-74320,

E H 4 - 5 c h o n d r i t e s

enstatite chondrites

like as in EH3, Weisberg et al.

2.8-3.8 wt % Si content(av.3.2)

i.e. Indarch,

E H 6 - 7 c h o n d r i t e s

E-chondrites in composition, but without chondr. texture

like as in EH3, i.e. Lin, Kimura, 1997, Kimura et al, 1993.

ca. 2.0-4.0 wt % Si content in metallic grains

QUE 94204, Y-82189.Y-8404, 8414, Y 86004, Happy Canyon

Enstatite (L) chondrites E L 3 c h o n d r i t e s larger chondrulcs

than in EH chondrites

like in EH chondrites, but different ratio

ca. 0.2-0.8 wt % Si content in metallic grains

i.e. ALH 85119, MAC 88180, PCA 91020,

E L 4 c h o n d r i t e s plus sinoite, Rubin, 1997

jetween 0.5-0.7 wt %

QUE 94368

E L 5 c h o n d r i t e s large chondrules 0.98-1.6 mm diam.

enstatite, troilite, <amacite, plagioclase

2.1 wt %, Sears et al. 1984,

Reckling Peak A80259

E L 6 c h o n d r i t e s jlus sinoite, more Mi in phosphide

1.3 w t % i.e. Atlanta, Hvittis. Pillistfer

PRELIMINARY COMPOSITIONAL ANALYSES

Atom-absorption Preliminary atom-absorption analysis revealed the following composition of the"

meteorite: Fe - 86.84 wt %, Ni - 7.94 wt %, Co - 3800 ppm, Cr - 260 ppm, Si - 2000 ppm. These preliminary data needs further confirmation, mainly about the Si-content of the meteorite.

115

Page 117: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

S U M M A R Y

This preliminary report intended to show the place of the new Hungarian iron meteorite Kaposftired among the related E-meteorite clan members. Detailed compositional measurements will place the new meteorite among the iron meteorite classes, too ( S C O T T and W A S S O N , 1973.). Our thermal evolution studies on the E-type parent body may give a more detailed arrangement of E-meteorite clan members ( L U K Á C S

and B É R C Z L , 1996, 1997).

A C K N O W L E D G E M E N T S

Authors express grateful thanks to Mnr. TÖRÖK M. for loaning the Kaposftired meteorite from his collection, to Dr. MCCOY for personal communications on the 22nd

Symposium on Antarctic Meteorites, Tokyo, 1997 about high Si-bearing iron meteorites, and to Dr. B A R T H A A. for the quick preliminary chemical compositional analyses.

R E F E R E N C E S

BÉRCZI Sz., HOLBA Á., LUKÁCS B. (1995): Evolution of chondritic parent bodies I.: Correlation among ferrous components. Acta Mineralógica et Petrographica, Szeged, XXXVI, 143-152.

CASANOVA, I., et al (1993): LPSC XXIV. p. 310. Houston DICKINSON, T.L., LOFGREN, G.E. (1992): LPSC XXIII. p. 307-308. Houston DICKINSON, T.L., et al (1992): LPSC XXIII. p. 309-310. Houston DICKINSON, T.L., MCCOY, T.J. (1996): Experimental REE partitioning in oldhamite: implications for the

• igneous origin of aubritic oldhamite. LPSC XXVII. p. 309-310. Houston FOGEL, R.A. (1996): A new aubrite basalt vitrophyre from the LEW 87007 aubrite. LPSC XXVII. p. 369.

Houston FOGEL, R A., WEISBERG, M.K., PRINZ, M. (1996): The solubility of CaS in abrite silicate melts. LPSC XXVII.

p. 371-372. Houston GRAHAM, A . L . , BEWAN, A . W . , HUTCHISON, R . ( 1 9 8 5 ) : C a t a l o g u e o f M e t e o r i t e s . B M ( N H ) , L o n d o n GROSSMAN, L., OLSEN, E., LATTIMER, J.M. (1979): Silicon in Carbonaceous Chondrite Metal: Relic of High-

Temperature Condensation. Science, 206, p. 449-451. KEIL, K . , NTAFLOS, TH. , TAYLOR, G . J . , BREARLEY, A. J , , NEWSOM, H . E . , ROMIG, J r . , A . D . ( 1 9 8 9 ) : T h e

Shallowater aubrite: Evidence for origin by planetesimal impacts. Geochimica et Cosmochimica Acta, 5 3 . p. 3 2 9 1 .

KEIL, K. (1968): Mineralogical and chemical relationships among enstatite chondrites. J. Geophys. Res. 73. p. 6945.

KIMURA K. , LIN Y. , IKEDA Y. , EL GORESY, A. , YANAI K. , KOJIMA H . ( 1 9 9 3 ) : M i n e r a l o g y o f A n t a r c t i c a u b r i t e s , Yamato-793592 and Allan Hills-78113: Comparison with non-Antarctic aubrites and E-chondrites. Proc. NIPR Symp. Antarct. Meteorites, 6, 186-203. Tokyo

KONG P., EBIHARA M . ( 1 9 9 6 ) : U n i q u e f e a t u r e s o f an a n o m a l o u s e n s t a t i t e c h o n d r i t e L E W 8 7 2 2 3 . 21 S ' S y m p . Antarctic Meteorites, NIPR, Tokyo, 81-83.

LIN Y., KLMURA K., (1997): Thermal histories and parent body(ies) of EH chondrites: Evidences from new highly equilibrated EHs (Y793225, 82189, 8404, and 86004). LPSC XXVIII. p. 817-818. Houston

LODDERS, K. (1996): Oldhamite in enstatite achondrites. Proc. NIPR Symp. Antarct. Meteorites, 9, p. 127. Tokyo

LUKÁCS B., BÉRCZI Sz. (1996): Competition of C and H 2 0 for Fe in E, H, and C chondrites. Antarctic Meteorites XXI. p. 90. Tokyo

LUKÁCS B., BÉRCZI Sz. (1997): Statistical analysis of the NIPR (Japan) Antarctic chondrites; Paths of thermal evolution of parent bodies. LPSC XXVIII. p. 853-854. Houston

MASON, B. (1966): The enstatite chondrites. Geochimica et Cosmochimica Acta, 30. p. 23-39. MCCOY, T.J. (1997): personal communication, 22nd NIPR Symposium Ant. Meteorites, Tokyo

116

Page 118: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

MCCOY, T.J., DICKINSON, T.L., LOFGREN, G.E. (1997a): Partial melting of Indarch (EH4) f rom 1100-1425 C: New insights into igneous processes in enstatite meteorites. LPSC XXVIII. p. 903-904. Houston

MCCOY, T.J., DICKINSON, T.L., LOFGREN, G.E.(1997b): Experimental and petrologic studies bearing on the origin of aubrites. Antarctic Meteorites XXII. p. 103. Tokyo

NAGAHARA H. (1991): Petrology of Yamato-75261 meteorite: an enstatite (EH) chondrite breccia. Proc. NIPR Symp. Antarct. Meteorites, 4, p. 144-162. Tokyo

NEAL, C.W., LIPSCHUTZ, M.E. (1981): Cumberland Falls chondritic inclusions: Mineralogy/petrology of A forsterite chondrite suit. Geochimica et Cosmochimica Acta, 45. p. 2091.

NEWSOM, H E., DRAKE, M.J. (1979): The origin of metal clasts in the Bencubbin meteoritic breccia. Geochimica et Cosmochimica Acta, 43. p. 689-707.

RINGWOOD, A.E. (1961): Silicon in the metal phase of enstatite chondrites and some geochemical implications. Geochimica et Cosmochimica Acta, 25. p. 1-13.

RUBIN, A . E . ( 1 9 9 7 ) ; F o r m a t i o n o f s i n o i t e in E L c h o n d r i t e s b y i m p a c t m e l t i n g . L P S C X X V I I I . p. 1 2 0 1 - 1 2 0 2 . Houston

SCHNEIDER, D . M . , TAUNTON, A. , BENŐIT, P H . , SEARS, D . W . G . ( 1 9 9 7 ) : A c o m p a r i s o n o f t h e c o m p o s i t i o n s o f chondrules in EH and EL chondrites and discussion of some implications. LPSC XXVIII. p. 1257-1258. Houston

SCOTT, E.R.D., WASSON, J.T. (1973): Classification and Properties of Iron Meteorites. Rev. Geophys. Space P h y s . 13. N o . 4 . 5 2 7 - 5 4 6 .

SEARS, D . W . G . , KALLEMEYN, G . W . , WASSON, J .T . ( 1 9 8 2 ) : T h e c o m p o s i t i o n a l c l a s s i f i c a t i o n o f c h o n d r i t e s : И The enstatite chondrite groups. Geochimica et Cosmochimica Acta, 46. p. 597.

SEARS, D . W . G . , WEEKS, K .S . , RUBIN, A . E . ( 1 9 8 4 ) : F i r s t k n o w n E L 5 c h o n d r i t e - e v i d e n c e f o r d u a l g e n e t i c sequence for enstatite chondrites. Nature, 308. p. 257-259.

WAI C.M., WASSON, J.T. (1969): Silicon concentrations in the metal of iron meteorites. Geochim. Cosmochim. Acta, 33. p. 1465.

WAI C.M., WASSON, J.T. (1970): Silicon in the Nedagolla ataxite and the relationship between Si and Cr in reduced iron meteorites. Geochimica et Cosmochimica Acta, 34. p. 408-410.

WASSON, J.T., WAI C M. (1970): Composition of the metal, schreibersite and perryite of enstatite achondrites and the origin of enstatite chondrites and achondrites. Geochimica et Cosmochimica Acta, 34. p. 169-184.

WEEKS, K.S., SEARS, D.W.G. (1985): Chemical and physical studies of type 3 chondrites - V: The enstatite chondrites. Geochimica et Cosmochimica Acta, 49. p. 1525-1536.

WEISBERG, M.K., PRINZ, M., NEHRU, C.E. (1988): Petrology of ALH85085: a chondrite with unique characteristics. Earth Planet. Sci. Letters. 91. 19-32.

WEISBERG, M . K . , PRINZ, M . , NEHRU, C . E . ( 1 9 9 0 ) : T h e B e n c u b b i n c h o n d r i t e b r e c c i a a n d i ts r e l a t i o n s h i p t o C R c h o n d r i t e s a n d t h e A L H 8 5 0 8 5 c h o n d r i t e . M e t e o r i t i c s , 2 5 . p. 2 6 9 - 2 7 9 .

WEISBERG, M . K . , PRINZ, M . , CLAYTON, R . N . , MAYEDA Т . К . , GRADY, M . M . , PILLINGER, C . T . ( 1 9 9 5 ) : T h e C R chondrite clan. Proc. NIPR Symp. Antarct. Meteorites, 8, p. 11-32. Tokyo

WEISBERG, M.K., PRINZ, M., NEHRU, C.E. (1997): QUE 94204: an EH-chondritic melt rock. LPSC XXVIII. p. 1525-1526. Houston

YANAI K., KOJIMA H. (1991): Yamato-74063: chondritic meteorite classified between E and H chondrite groups. Proc. NIPR Symp. Antarct. Meteorites, 4, p. 118-130. Tokyo

ZELLNER, В . , LEAKE, M . , MORRISON, D. , WILLIAMS, J . G . ( 1 9 7 7 ) : T h e E a s t e r o i d s a n d t h e o r i g i n o f t h e e n s t a t i t e achondrites. Geochimica et Cosmochimica Acta, 41 .1759-1767.

Manuscript received 10 August, 1997

117

Page 119: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Mineralogica-Petrographica, Szeged, XXXVIII,119-121, 1997

SHORT COMMUNICATION

NATIVE COPPER OCCURENCE IN THE KOZÀR-QUARRY OF W.-MECSEK MOUNTAINS, HUNGARY

V . J Ä G E R ' , T . S Z E D E R K É N Y I 2

Department of Mineralogy, Geochemistry and Petrology, Attila Jözsef University

Long ago known carbonatic copper mineralization is found in the Middle Anisian limestone of W-Mecsek Mountains in Kozár-quarry, near Pécs ( M E Z Ő S I 1948, T O K O D Y

1952, K R I V Á N - S Z N A G Y I K 1959, e.t.c.). 3-8 m-thick limestone breccia cemented by calcite, in several places contains negligible amount, sometimes euhedral, usually anhedral azurite and malachite minerals.

Due to a detailed (1:10.000 scale) geological mapping of the area carried out by Mecsek Ore Mining Co. in 1966 ( V Á R S Z E G I ) , numerous 6-7 cm large faultless quartz prisms were recognized in the caverns of this breccia. Similar quartz mineralization without copper enrichment can be found not so far from the Kozár-quarry at Árpádtető enclosed into Upper Anisian limestone and dolomite breccia represented by pseudo-hexagonal columns and „skeleton crystalls" showing frequently a dauphine-type twinning ( S Z A N Y I 1991).

Anhedral Kozár malachites show here and there arborescent or kidny-shaped appearances. Together with these types irregular malachites several same-shaped and sized (2-3 cm largest size) native copper knots covered by malachite coat are also found (see the photo).

In the lack of systematic field- and laboratory treatments the genetics of these native copper knots is not perfectly clear. Presence of azurites and related malachites in the breccia of Kozár-quarry indicates an oxidation process when the products of a preceeding hydrothermal event (chalcopyrite, tetraedrite, enargite, T O K O D Y 1952) alter into oxide and hydroxide mineral assemblage. Existence of large quartz crystals in the breccia proves a real hydrothermal process which certainly could produce the mentioned source minerals of copper carbonates. On the other hand, presence of native metals in an oxidation zone shows a not perfecty complete oxidizing event when results of a previous reduction were able to retain themselves, partly.

1 H-7625 Pécs, Hunyadi út 26. 2 H-6701 Szeged, P.O. Box 651

119

Page 120: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Existence of a metal phasis in this mineral assemblage is a new recognition undoubtedly and at the same time it postulates a more complicated genetic sequence than that of above-mentioned one. At the level of our present knowledge a probable development succession of Kozâr-quarry azurites, malachites as well as native copper knots is as follows:

A C K N O W L E D G E M E N T

Many thanks to Dr. M. K A S S A I for his valuable advices.

120

Page 121: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

REFERENCES

KR1VÁN, P , SZNAGYIK, L. (1959): A kozári karbonátos ércnyomok eredete (Origin of Carbonatic Ore-traces in the Kozár-quarry). Manuscript, in Hungarian. ELTE Geological Department, Budapest.

MEZŐSI, J. (1948): Jelentés a pécsi kozári kőfejtőben talált rézásvány nyomokról (Report of Copper-mineral Traces of Kozár-quarry near Pécs). Manuscript, in Hungarian. JATE Mineralogical Department, Szeged.

SZANYL, J. (1991): Az árpádtetői kvarckristályok morfológiai és genetikai vizsgálata (Morphological and Genetic Investigation of Árpádtető Quartz Crystals). Diss, in Hungarian. JATE Mineralogical Department, Szeged.

TOKODY, L. (1952): A kozári azurit-előfordulás a Mecsek hegységben (Azurite Occurence at Kozár in the Mecsek Mountains). Földt.Közl.LXXXll. 263-269. In Hungarian with German summary.

Manuscript received 16 August, 1997

121

Page 122: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Ada Mmeralogica-Petrographica, Szeged, XXXVIII, 123-130, 1997

COMPOSITION OF PYROXENES IN HORNBLENDITES FROM THE NORTHERN PART OF THE DITRO SYENITE MASSIF

E . P Á L M O L N Á R 1

Department of Mineralogy, Geochemistry and Petrology, Attila József University

ABSTRACT

Pyroxene is an essential mineral of olivine-pyroxene hornblendites and plagioclase-pyroxene hornblendites cropping out in the northern part of the Ditro syenite massif. On the basis of microprobe analyses and the IMA classification (Morimoto, 1988; Rock, 1990), Ferroan Diopsides arc the most important pyroxenes of the ultrabasic rocks. As alteration products, subsilicic aluminian sodian [Magnesium-rich] Augites and/or subcalcic magnesium-rich Augites can be found in a subordinate amount. Subsilicic aluminian Aluminian Aegirine-Augite can also appear in the marginal parts of the single Ferroan Diopside grains.

INTRODUCTION

The syenite massif of Ditro is situated in the S-SW part of the Gyergyo Alps belonging to the Eastern Carpathians. Diameters of its surface are 19 and 14 km in NW and SE directions, respectively; its are is 225 km" including the bordering zones as well.

Several researchers have dealt with mineralogy of the syenite massif, however, there have been only few data on pyroxenes. Streckeisen ( 1 9 5 4 ) published chemical composition of only one pyroxene sample coming from pegmatite nepheline syenites. Several studies ( J A N O V I C I and I O N E S C U , 1 9 6 9 , 1 9 7 0 ; Anastasiu and Constantinescu, 1 9 7 4 ,

1981) have dealt with more comprehensive mineralogical research but pyroxenes have not been concerned. One of the most comprehensive mineralogical-petrological report on the syenite massif of Ditro ( J A K A B et al., 1 9 8 7 ) discussed pyroxenes only on a general level. These mineralogical studies based on mainly microscopic analyses, and served petrographic work. Since petrography of the syenite massif is very complex, there will be sense of single mineralogical studies if petrographic environment is determined in a correct way. Purpose of this paper to determine composition of pyroxenes of ultrabasic rocks (hornblendites) cropping out on the northern part of the Ditro Syenite Massif by microprobe analyses.

PETROGRAPHIC AND OPTICAL FEATURES

Pyroxenes can be found in two groups of hornblendites cropping out in the northern part of the Ditro Syenite Massif, north of the Orotva Brook ( P Á L M O L N Á R , 1992). These are: olivine-pyroxene hornblendites and plagioclase-pyroxene hornblendites. Their modal

1 H-6701 Szeged, P.O. Box 651, Hungary

123

Page 123: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

quantity ranges fro 10 to 38 % in these rocks. Dominantly, they appear as equigranular, columnar, short prisms, and many cases as inclusions of hornblende or biotite. In thin section, it is colourless, sometime pale green, slightly pleochroic. a=light green - pale bluish green, pale green, P=yellowish green, pale brown, reddish, y=grayish green, dark green. Optical character is positive. Twins are common. They are generally accompanied by calcite and granular epidote.

MICROPROBE ANALYSES

Microprobe analysis of minerals was performed on the Cameca SX-50 (accelerating voltage: 15kV, sample current: 20 nA) electron microprobe at the University of Berne (Switzerland) by using natural standards.

Concept of the measurements was not only to determine composition of pyroxenes in a single point but to trace the compositional variety by measuring along a selected line in every 50-100 |im. The approximately equivalent values, which represented the same mineral species, were averaged, and the mean values were used in the calculations. Two typical cases were selected amongst the several hundreds measurements. In one case, the pyroxene grain appeared as an inclusion (generally in amphibole) (figure 1), in the second, it could be found as an independent mineral constituent (figure 2). These two representative cases were characteristic for both olivine-piroxene and plagioclase-pyroxenes hornblendites.

hig I. I'lagioclase-pyroxene hornblendile 1. ferroan pargasite, 2. ferroan diopside, 3. magnesium-rich augite crown

measuring line (x23, crossed polars)

124

Page 124: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Fig. 2. Olivine-pyroxene liornblendite 1. ferroan diopside (magnesium-rich augite, aluminian aegirine-augite)

measuring line (x23, crossed polars)

Determination of the theoretical end-member components calculated from the chemical compositions and order of cations for crystallographic positions was performed by the I M A recommendations ( M O R I M O T O , 1988; ROCK, 1990). The M I N P E T 2.0 mineralogical-petrological program (R ICHARD, 1988-1995) and the M I N P R O G chemical program (HARANGI , 1993) was used in the calculations. Calculating method suggested by D R O O P (1987) was followed for estimating the values of Fe +.

Chemical composition and classification of pyroxene appearing as an inclusion of amphibole is shown by table I and figure 3, respectively. Figure 4 shows compositional variety of a pyroxene grain along a line. Chemical composition and nomenclature of independent pyroxene crystals can be seen in table 2 and figure 5, respectively. Figure 6 represents its compositional variety along a line.

The dominant component is the diopside (Ferroan Diopside) in both cases. In a subordinate amount, Augite (subcalcic magnesium-rich Augite, subsilicic aluminian sodian magnesium-rich Augite) and aegirine-augite (subsilicic aluminian Aluminian Aegirine-Augite) also occurs. Augite surrounds diopside like a crown in both cases (figures 1 and 2), however, aegirine-augite is characteristic for the marginal parts of the independent pyroxene grains, only (figure 6). It can be seen in figures 4 and 6 that augite also appears in the core of the pyroxene but along the cracks, only. Therefore, proportion of iron and alumina continuously increases from the diopside to the aegirine-augite, and sodium appears in the independent pyroxene grains. Proportion of magnesium can be regarded to be constant in the diopside-augite system.

125

Page 125: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

2,00

O 1,00

0,50

0,00

•Quad\>

I i i i . I . .

\ Ci-Na \ -

\ Na \ 1

Wo

0,00 0,50 1,00 1,50 2,00

J En Fs

Fig. 3. Ca-Mg-Fe (Quad) clinopyroxenes occurring as inclusions in amphiboles of olivinc-pyroxene and plagioclase-pyroxene hornblendites (MORIMOTO, 1988)

Fig. 4. Compositional variety of a pyroxene grain in amphibole along a measuring line I. ferroan diopside, 2. subcalcic magnesium-rich augite

C O N C L U S I O N S

Pyroxenes of the studied ultrabasic rocks (olivine-pyroxene hornblendites, plagioclase-pyroxene hornblendites) are uniformly ferroan diopsides, which turns into magnesium-rich augites and aluminian aegirine-augites toward the margin of the grains.

Composition of clinopyroxenes is a sensitive indicator for the nature of the magma and the history of the crystallization.' The above presented detailed microprobe analyses serve as a preliminary study for the pedogenesis of ultrabasic rocks of the Ditro Syenite Massif.

ACKNOWLEDGEMENT

The author wishes to thank Dr. T I V A D A R M. T O T H for his altruistic help in the microprobe analyses.

126

Page 126: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

J

Wo WEF

Fig. 5. Ca-Mg-Fe (Quad) and Ca-Na pyroxenes occurring as independent grains in olivine-pyroxene and plagioclase-pyroxene hornblendites (MOR1MOTO, 1988)

Fig. 6. Compositional variety of an independent pyroxene grains along the measuring line 1. ferroan diopside, 2. subsilicic aluminian sodian magnesium-rich augite, 3. subsilicic aluminian Aluminian

aegirine-augite

127

Page 127: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 2. Representative chemical composition ofpyroxenes occurring as inclusions of amphibole Sample AGKT 6547 -plagioclase-pyroxene hornblendite, Orotva, Pietraria de Sus Brook

S a m p l e A G K T 6 5 4 7 : 4 1 m e a s u r i n g p o i n t s b y 5 0 | i m

a v e r a g e o f t h e p o i n t s 2 - 2 0 , 2 2 - 2 6 a n d 2 9 - 3 6 a v e r a g e o f t h e p o i n t s 1 , 2 1 , 2 7 , 2 8 a n d 3 7 - 4 1

Si0 2 53.07 51.85 T i0 2 1.00 0.61 AI263 2.58 4.93 F e b 7.11 • 13.40 MnO 0.29 0.52 MgO 14.50 14.36 CaO 22.84 12.48 N a 2 0 0.56 ' 0.76 K 2 0 - 0.31 SUM 101.95 99.22 C a t i o n s T site Si4+ 1.9261 1.9360 A1IV 0.0739 0.0640 Fe'1+ - -

TOTAL 2.000 2.000 M l site AIVI 0.0364 0,1529 Fe3+ 0.0213 -

Ti4+ 0.0273 0.0171 Cr3+

Zr4+ -

Ni2+ -

S* 0.7843 • 0.7991 S* 0.1307 0.0309 Mn2+ - -

TOTAL 1.000 1.000 M2 site Mg2+ - -

Fe 0.0638 0.3875 Mn2+ 0.0089 0.0164 Ca2+ 0.8881 0.4992 Na2+ 0.0393 0.0697 TOTAL 1.000 0.973 I OX 6.000 6.000 E n d - m e m b e r s ZrAe - -

Ae 2.130 -

Jd 1.800 7.165 Nept . • - -

Kosm -

Ka 0.890 1.686 CaTi 5.460 3.516 CaCr - -

CaTs 1.840 8.553 Ess - -

Jo - -

Di 74.810 39.248 Hd 6.700 -

En ~~ - -

Fs 6.370 3.176 Fs-En - 36.657

IMA name: Ferroan DIOPSIDE I M A n a m e : [subcalcic magnesium-rich] AUGITE

128

Page 128: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 2.

Representative chemical composition of the independent pyroxene grains Sample AGKT6706 - olivine-pyroxene hornblendite, Orotva Brook, gallery VI.

S a m p l e A G K T 6 5 4 7 : 4 0 m e a s u r i n g p o i n t s b y 1 0 0 ( i m

a v e r a g e o f t h e p o i n t s 2 - 7 , 9 , a v e r a g e o f t h e p o i n t s 1 9 , 2 2 a v e r a g e o f t h e p o i n t s 1 , 8 ,

1 2 - 1 8 , 2 0 , 2 1 , 2 3 - 3 1 , 3 3 - 3 5 , 3 7 , a n d 3 2 1 0 , 1 1 , 3 6 a n d 3 8

3 9 a n d 4 0

S i O 52.34 45.35 40.48 TiCb 1.12 2.48 3.06 AI163 2.99 11.25 12.58 FeO 6.85 11.13 16.74 MnO 0.25 0.20 0.43 MgO 13.97 13.41 9.78 CaO 23.63 14.11 11.22 NaiO 0.70 1.85 2.72 K76 0.03 0.08 1.47 SUM 101.88 99.86 98.48 C a t i o n s T s i t e Si4+ 1.9004 1.6682 1.5317 AIIV 0.0996 0.3318 0.4683 FeJ+ - - -

TOTAL 2.000 2.000 2.000 Ml site A1VI 0.0282 0.1560 0.0927 Fe3+ 0.0600 0.1736 0.4710 Ti4+ 0.0305 0.0686 0.0870 CrJ+ - - -

Zr4+ - - -

Ni2+ - - -

Mg2+

Fe 0.7560 0.6018 0.3493 Mg2+

Fe 0.1253 - -

Mn2+ - - -

TOTAL 1.000 1.000 1.000 M2 site Mg2+ - 0.1334 0.2023 Fe 0.0227 0.1688 0.587 Mn2+ 0.0077 0.0062 0.0137 Ca2+ 0.9192 0.5560 0.4548 Na2+ 0.0505 0.1356 0.2704 TOTAL 1.000 1.000 1.000 I OX 6.000 6.000 5.999 E n d - m e m b e r s ZrAe - - -

Ae 5.050 13.560 27.043 Jd - - -

Nept - - -

Kosm - - -

Ka 0.770 0.620 1.370 CaTi 6.100 13.720 17.402 CaCr - - -

CaTs 2.820 15.600 9.271 Ess 0.950 3.800 18.812 Jo - - -

Di 71.780 22.480 -

Hd 10.270 - -

En - 13.340 20.232 Fs 2.260 - -

Fs-En - 16.880 4.620 IMA name: Ferroan DIOPS1DE IMA name: subsilieie

aluminian sodian [Magnesium-richl AUGITE

IMA name: subsilieie aluminian Aluminian AEGIR1NE-AUGITE

129

Page 129: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

REFERENCES

ANASTASIU, N., CONSTANTINESCU, E. (1977): Feldspa|ii potasici din Masivul alcalin de la Ditràu. (Potash Felldspars of the Ditrâu Alkaline Massif). Dâri de Seamâ ale Çedintelor Inst. Geol. Geofiz, LXIV, 13-36, Bucureçti.

ANASTASIU, N , CONSTANTINESCU, E. (1981): Feldspajii plagioclazi din Masivul alcalin de la Ditrâu. (Plagioclase feldspars from the Alkaline Massif of Ditrau). Stud. Cere. Geol. Geofiz. Geogr. Ser. Geol., 26/1, 83-95, Bucureçti.

DROOP, G. T. R. (1987): A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Min. Mag., 51, 431 -435.

HARANGI, Sz. (1993): MINPROG: A program-package for manipulation and interpretation of mineral chemical data. User Manual. ELTE Kőzettan-Geokémiai Tanszék, Budapest, 31 pp.

JAKAB, GY., GARBAÇEVSCHI, N . , BALLA, Z , ZAKARIÁS, L , PÉTER, J . , STRUNGARU, T . , HEREDEA, N . , SILEANU, T. , ARONESCU, M . , POSTOLACHE, C . , MOCANU, V , TEULEA, G . , HANNICH, D. , TIEPAC, I. ( 1 9 8 7 ) : S i n t e z a datelor objinute prin prospecjiuni geologice complexe, lucràri miniere çi foraje, executate pentru minereuri de metale rare çi disperse, feroase çi neferoase în masivul de roci alcaline de la Ditrâu, jud. Harghita. (Synthesis of informations from complex geological mapping, concerning especially the rare elements, ferrous and non ferrous minerals in the alkaline massif of Ditró, Hargita county). Doc. Dept. of 1PEG "Harghita", Miercurea-Ciuc, Manuscript.

IANOVICI, V , IONESCU, J. (1969): Contribu(ii la mineralogía masivului alcalin de la Ditrâu, I. Amfibolii. (Contribution á la minéralogie du Massif Alcalin de Ditrau). Stud. Cere. Geol. Geofiz. Geogr. Ser. Geol., 14/2,353-361.

IANOVICI, V , IONESCU, J. (1970): Contribuai la mineralogía masivului alcalin de la Ditràu, III. Reexaminarea titanitului. (Contribution á la minéralogie du Massif Alcalin de Ditrau). Stud. Cere. Geol. Geofiz. Geogr. Ser. Geol, 15/1, 53-62.

MORIMOTO, N. (1988): Nomenclature of Pyroxenes. Miner, and Petr, 39, 55-76. PÁL MOLNÁR, E. (1992): Petrographical characteristics of Ditró (Orotva) hornblendites, Eastern Carpathians,

Transylvania (Romania): a preliminary description. Acta Min. Petr, Szeged, 33, 67-80. RICHARD, L. R. (1988-1995): Minpet Version 2.0: Mineralogical and Petrological Data Processing System. ROCK, N. M. S. (1990): The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature

scheme: computerization and its consequences. Miner, and Petr , 43, 99-119. STRECKEISEN, A. (1954): Das Nephelinsyenit-Massiv von Ditro (Siebenbtirgen), II. Teil. Schweiz. Min. Petr. Mit t ,

34,336-409.

Manuscript received 15 September, 1997

130

Page 130: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Mineralogica-Petrographica, Szeged, XXXVIII,131-149, 1997

DETERMINATION OF THE RARE EARTH ELEMENTS OF ROCK SAMPLES BY ICP-MS USING DIFFERENT SAMPLE

DECOMPOSITION METHODS

A . B A R T H A ' , E . B E R T A L A N '

Hungarian Geological Survey-Geological Institute of Hungary

A B S T R A C T

Rare earth elements were determined in 12 international standard reference rock samples using inductively coupled plasma mass spectrometry technique. Aim of this work was to find a relatively simple but reliable decomposition method for the purposes of REE determination. Sample solutions were produced by different sample decomposition methods: 1. closed vessel decomposition in a microwave digestion oven by different acid mixtures; 2. decomposition by LiBOj fusion in platinum crucibles. Effect of dilution was investigated. Final sample concentration of 0.2 gL' ' was found to be optimal. Indium was used as internal standard.

HCI-HNO3-H2F2 digestion followed by an evaporation step was not efficient enough to obtain a total recovery. In the case of digestion with acid mixtures there could occur some recovery problems for the heavy REEs, mainly with the mixture of HCI-HN03-H2F2 which is less aggressive than the H1PO4-HNO3-H2F2 mixture, used alternatively. Fusion with UBO2 is a very simple process used extensively in our laboratory and gave good recovery data.

I N T R O D U C T I O N

Determination of rare earth element (REE) concentrations and plotting of the REE patterns are very useful tools at understanding geochemical and petrogenetic processes. REE contents of the rocks deliver important information about the geological environment of the earth when they were formed.

There are several instrumental techniques suitable for REE determination like neutron activation analysis (NAA), X-ray fluorescent spectrometiy (XRF), inductively coupled plasma atomic emission spectrometry (ICP-AES) and, more recently, inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS has very advantageous detection limits for the REEs which are considerably better than the other methods mentioned above.

Decomposition of the rock samples is a key question in the ICP-MS technique when the sample introduction happens by conventional solution nebulisation. Samples can contain acid-resistant mineral phases which can remain as an insoluble residue even after a strong mixed-acid attack. Decomposition by fusion is mostly successful but this method will significantly increase the total dissolved solids (TDS) content of the solution. ICP-MS technique can generally tolerate a TDS content of about 1 gL"1. So, the increased TDS level should be taken into consideration (i.e. samples must be diluted).

1 H-l 143 Budapest, Stefania ut 14, Hungary

131

Page 131: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

In an early paper, D A T E and H U T C H I S O N ( 1 9 8 7 ) dissolved the samples by a mixture of HN0 3 , HCIO4 and HF in open PTFE vessels. Insoluble residue was filtered, silica was removed by expelling as SiF4, residue was dissolved and solutions were combined.

H L R A T A et al. ( 1 9 8 8 ) used a rather simple mixed acid decomposition procedure in PTFE beakers. For the purposes of comparison, they treated further an aliquot of the sample by removing of major elements on'a cation-exchange resin column. Results were compared with thermal ionisation mass spectrometry isotope dilution (TIMS-ID) analysis results. They found that separation of REEs from matrix elements is essential to accurate determination. Their results obtained from the original solution (without separation of matrix), however, showed a reasonable agreement between the ICP-MS and TIMS-ID results, too. (Deviation was less than 10 %.) Regarding this fact, separation step may be omitted in some cases.

J E N N E R et al. ( 1 9 9 0 ) describe a very simple HF-HNO3 dissolution in screw-top PTFE bombs for sample preparation. Matrix correction was made by use of standard addition. They reported good or excellent accuracy and precision for most of the elements studied.

J A R V I S (1990) evaluated two sample preparation techniques for determination of some geologically incompatible elements including REEs. She found good agreement between acid digestion and fusion results in a range of silicate and carbonate matrices. In some cases she obtained inaccurate data for some elements, probably due to dissolution problems with resistant mineral phases.

Similarly, S H O L K O V I T Z (1990) made a comparison of sediment dissolution methods by HF-containing acid mixture and lithium metaborate fusion. His study showed that using HF dissolution some insoluble residues can remain which can host heavy REEs. Main component of these residues is the heavy mineral zircon. Fusion data yielded real total REE concentrations.

R I V O L D I N I and F A D D A (1994) used potassium-based fluxes (K 2 C0 3 .and K 2 B 4 0 7 ) for dissolution of the samples. Potassium and boron were removed from the solution, to keep the level of total dissolved solids content sufficiently low. This procedure was carried out by precipitation of K as KC104 and by expelling of B as BF3.

U C H I N O . et al. ( 1 9 9 5 ) dissolved the rock samples by mineral acids in 5 subsequent steps. They carried out open vessel digestion using HNO s , HCIO4 and finally HF. Final solution was made; up by HNO3. Samples studied in this paper were rather special because of their extremely high iron contents.

In a recent work, P E R K I N S and P E A R C E (1996) report some aspects of the determination of REEs by laser ablation ICP-MS in fused glass samples. Finally they returned to the sample introduction by solution nebulisation to overcome the problems of sample inhomogeneity and standardisation. They used lithium borate flux (commonly used for XRF analysis) and dissolved the fused glasses. They are satisfied with the results obtained.

Summarizing all these experiences, it seemed to be worth to perform a systematic comparison of different decomposition methods.

E X P E R I M E N T A L

Instrumentation Microwave assisted decompositions were carried out by a microwave digestion system

made by MILESTONE, type: MEGA MLS 1200 with an MDR-100/6/100/110 rotor (high

132

Page 132: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

pressure system, allowing maximum 110 bar internal pressure). Samples were transferred into TFM digestion vessels provided with a protection shield made of HTC. Acids were added, bombs were closed and placed into the rotor body. FAM-40 Acid Scrubber module was used for evaporation of samples if applied. Details of decomposition programs are listed in Table 1.

The ICP-MS instrument used was a VG PlasmaQuad II STE (FISONS Instruments). Instrumental operating conditions are listed in Table 2. Samples were introduced using a V-groove type nebulizer. Instrument was optimised for the 115 In signal. No any mathematical correction was used to eliminate isobaric spectral interferences (interference by BaO+ on Eu and LREE oxides on HREEs). The ions chosen for the determinations are listed in Table 3.

Samples Two sets of international standard reference materials were used. One of them was a

set of Chinese made rock samples. These samples were attested for more than 60 elements including REEs, of course. Others were selected standard reference rock samples made for the former COMECON, in the former GDR (German Democratic Republic). These samples were attested very well for the main components but for some trace elements only. Attestation for REEs was carried out mainly on the basis of NAA analyses. SRMs used are listed in Table 4.

Chemicals and Reagents High purity distilled, deionised water was used throughout the work (Purite HP Still

Plus reverse osmosis system). Acids used for decomposition were at least analytical-reagent grade products. Hydrochloric acid 36% and nitric acid 70% were BDH products, 'SpectrosoL' quality. Hydrofluoric acid 40% was from BDH, 'AristaR' grade (analytical-reagent grade by Carlo Erba was not pure enough). Ortho-phosphoric acid 85% was from MERCK, 'Suprapur' grade. Boric acid was analytical-reagent grade and used in saturated solution.

Lithium metaborate fluxing agent was from BDH, 'SpectrosoL' grade. Stock solution for calibration standards was a mixed solution containing La, each REE

plus Y and Th (10 mgL"' each) and was from SPEX Industries (SPEX-I ICP-MS Calibration Standard solution). Analytical standard solutions were made up by dilution of this stock solution. Final acid concentration was 1% of nitric acid.

Stock solution for indium internal standard was a monoelement solution (1 gL"1) and was from BDH, 'SpectrosoL' grade. This solution was diluted to give a concentration of 1 mgL"1. The latter solution was added to the sample solutions to give a final concentration of 10 ugL"'.

Sample Preparation Procedures Samples were finely powdered and homogenised in ball mills (average grain size was

below 60 urn). Amongst the aims of this work was to find a decomposition procedure which is suitable

for determination of REEs but simple and rapid for routine work. For this reason we tried out several procedures including dissolution procedures with different acid mixtures and a fusion. Decomposition procedures with acid mixtures were carried out in microwave decomposition unit.

133

Page 133: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Decomposition with acid mixtures is generally preferred for the purposes of ICP-MS analysis in order to keep the total dissolved solid level sufficiently low. (TDS should remain below 1 gL"'.) Decomposition procedures in this study were aimed to obtain total dissolution of samples. For this reason, use of hydrofluoric acid was unavoidable to destroy silica lattice structure. To bind the excess amount of fluoride we generally add boric acid to the solution. TDS level, however, will increase because of this fact. In order to keep TDS level low, we made a trial to remove the excess fluoride by evaporation (Method 1.1., see below). We tried out decompositions with mixed acids and addition of boric acid, too. This procedure was carried out in two steps: acidic decomposition first, boric acid addition afterwards. Because of this fact, procedure is rather time-consuming (Method 1.2., see below). For that reason we tried to apply a decomposition procedure in one step only. In this method boric acid was added already into the acid mixture. In this case phosphoric acid as a more effective agent was used instead of hydrochloric acid (Method 1.3., see below).

1. Microwave assisted decomposition procedures using different acid mixtures 1.1. Decomposition in two steps including an evaporation step 0.2 g of samples were weighed into TFM digestion vessels. Samples were digested by

a mixture of concentrated HC1, HN0 3 and H2F2 (1 mL of each acid was used). Vessels were closed and digestion program (program 1.1., see Table ) was started. After finishing program, vessels were cooled down, opened and placed into the evaporation tray. (Lids were handled carefully, rinsing solution droplets into the vessel body to avoid any loss.) Evaporation stage was started. After finishing, evaporation residues were dissolved in 5 mL of 2N nitric acid and made up to 50 mL with deionised water. Before analysis these solutions were diluted by a factor of 20, so the final sample concentration was 0.2 gL"'. Final solutions contained 10 |igL"' In as internal standard.

1.2. Decomposition in two steps including a step with addition of boric acid 0.25 g of samples were weighed into TFM digestion vessels. Samples were digested by

a mixture of concentrated HC1, HN0 3 and H2F2 (1 mL of each acid was used). Vessels were closed and digestion program (program 1.2., see Table ) was started. After finishing program, vessels were cooled down, opened and 10 mL of saturated boric acid solution was added. Vessels were closed again and second stage of temperature program was started; After finishing, vessels were cooled down and opened. Solutions were transferred into volumetric flasks containing 5 mL of 2N nitric acid and made up to 50 mL with deionised water. These solutions were diluted 25-fold before analysis, so the final sample concentration was 0.2 gL"1. Final solutions contained 10 ugL"' In as internal standard.

1.3. Decomposition in one step 0.25 g of samples were weighed into TFM digestion vessels. Samples were digested by

a mixture of 1 mL of cc. H3P04, 1 mL of cc. HN03 and 1.5 mL of cc. H2F2. Also 0.4 g of crystalline boric acid was added in this step. Vessels were closed and digestion program was run (program 1.3., see Table ). After finishing digestion, vessels were cooled down and opened. Solutions were transferred into volumetric flasks containing 5 mL of 2N nitric acid and made up to 50 mL with deionised water. These solutions were diluted 25-fold before analysis, so the final sample concentration was 0.2 gL"'. Final solutions contained 10 ugL"' In as internal standard.

134

Page 134: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

2. Fusion with LiB0 2

0.5 g of samples were weighed into platinum crucibles. 1.16 g of lithium metaborate was added and mixed thoroughly. Crucibles were covered with platinum lids and were placed into electric furnace. Temperature was gradually increased up to 1060 °C. Reaching final temperature, samples were fused for 30 minutes. Crucibles were allowed to cool and then transferred into 100 mL glass beakers, covered with sufficient amount (about 50 mL) of deionised water and 10 mL of 1:1 HC1. Fusion melt was dissolved on a magnetic stirrer plate. After complete dissolution solution was transferred into volumetric flask and made up to 250 mL. Before analysis, this solution was diluted tenfold, so the final sample concentration was 0.2 gL~'. (Total dissolved solid content remained below IgL"'.) Final solution contained 10 ugL"1 In as internal standard.

RESULTS

Method 1.1. (decomposition in two steps including an evaporation step) seems to have the advantages as follows: keeps the total dissolved solids level sufficiently low and this is a method which does not introduce boron (neither as boric acid nor as lithium metaborate) into the analysis system. This fact is very important in the practice because boron has got a strong memory" effect in the ICP-MS technique. Washing-out from the system takes extremely long, even some days. Unfortunately, this method did not prove suitable for our purposes. Evaporation step could not be controlled, the efficiency is different from sample to sample. Recovery was found very poor, less than 1% for analyte elements because of the low solubility of the REE fluorides.

Use of reagents containing boron was unavoidable, consequently. We tried out three decomposition methods using boron-containing reagents. Decomposition methods by acid mixtures were carried out in microwave oven. The differences between the two methods are as follows: Method 1.2. is carried out in two steps (addition of boric acid takes place in a second step). Method 1.3. consists of one step only, so the capacity of the method is twice better. Moreover, this method applies phosphoric acid which allows to use higher decomposition temperature because of the higher boiling point of the phosphoric acid. So, in some cases this method can be considered as more effective one.

For most samples these methods gave similar recoveries, close to 100 %. In the case of the SRM Clay shale TB-2, Method 1.2. (decomposition with HC1-HN03-H2F2 mixture) gave poorer recoveries for the heavy REEs while recoveries for the light REEs were reasonably good. This fact can be clearly explained by the presence of small amount of refractory mineral phases. The HREEs are enriched in these phases. Method 1.2. is not effective enough to destroy these refractory minerals.

Method 2. (fusion with LiB02) gave good recoveries, too. This method is rapid, simple and very well-known for our laboratory staff because we use that regularly for determination of main components of rock samples. The only disadvantage is the relatively high blank value of the fusion agent for La and Ce. The blank level is some ppm calculated for the original solid sample. Despite of this drawback, in the future we will apply mostly this fusion procedure for REE determination.

Detection limits (10a values) listed in Table are obtained with the LiB0 2 fusion method, calculated for the solid sample. The ICP-MS instrument is sensitive enough to determine isotopes even with an isotope abundance of about 10 % only (Nd, Sm, Yb).

135

Page 135: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Sample concentration was generally 2-5 gL"1 using decomposition methods listed above. This concentration is necessary for the determination of a number of trace elements by ICP-AES technique. For the ICP-MS measurements, however, a significant dilution is necessary. Using V-groove nebuliser, a dilution factor of 10 was found to be optimal for the LiB02 fusion, while for the closed vessel decompositions with acid mixtures a dilution factor of 25 was found to be suitable. This generally means a final sample concentration of 0.2 gL"1 and a further amount of 0.5 gL"1 of the decomposition reagents. The total dissolved solids (TDS) content is about 0.7 gL"1, consequently. Using a Meinhardt nebuliser, especially on a long workday, it is practical to decrease the sample concentration by a further factor of 2. So, the total dissolved solids contents will decrease below 0.4 gL"1.

One of the main problems is the choice of isotopes used for determinations. In the case of monoisotopic elements there is no possibility of choice. In the case of elements having several isotopes it is important to be careful to use an isotope without isobaric overlap. For example, Nd is determined on the isotope 143 because isotopes 142 and 144 are interfered by the l42Ce and l44Sm isotopes. Measurement on an isotope with an isotope abundance of about 10 % means that the analytical sensitivity of the element in question will be only the 10 % of the sensitivity of a monoisotopic element.

Interference of the BaO on the isotopes of Eu is an existing problem. This interference is not significant but in the case of higher Ba concentrations (over some thousands ppm Ba) must be corrected for.

Interferences by the light REE oxides on the heavy REEs must be corrected for only in the case of extremely high HREE concentrations. Regarding the data obtained by H I R A T A

et al. or R I V O L D I N I and F A D D A , percentages of metal oxide to parent ion are generally below 1%, so correction for isobaric interference from oxide ions may be omitted. Unnecessary application of correction can increase the level of uncertainties.

For the calibration diluted, aqueous calibration solutions were used. 10 |igL"' In was used as internal standard. Use of internal standard is necessary because the occurrence significant instrumental drift is very well-known in the ICP-MS technique. Indium is very suitable internal standard in the mass range of 139-175 amu. Serious drift problems usually occur at the low (below 70 amu) and the high (above 200 amu) mass numbers.

Our experiences from element to element were as follows. Lanthanum: There is no any serious problem except for the high blank value using decomposition

by fusion with LiBOj. Cerium: The situation is very similar to the lanthanum.. Praseodymium: Chinese SRMs are very reliable for all certified elements while the former COMECON

SRMs are not accurate enough. This is the case for the SRM Clay shale TB-2. Certified concentration value is not correct.

Neodymium: Isotope 143 was used. There is no problem with the sensitivity although the isotope

abundance of this isotope is 12.2% only. Samarium: No problem.

136

Page 136: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Gadolinium: There are several problems. In the case of SRMs Granite GM, Basalt BM and Clay

shale TB-2 certified concentration values seem to be incorrect. Interference by praseodymium does not seem to be significant.

Europium: Measured concentration values are in pretty good agreement with the certified values.

Well-known interference by the BaO+ polyatomic ion was not significant. (Maximum barium concentration in the samples remained below 2000 ppm.)

Terbium: Problems with the certified concentration value in the SRM Clay shale TB-2 can be

seen again. Interference by neodymium is negligible. Going in the direction of the heavier REEs, beginning from the terbium, in the SRM Clay shale TB-2 the measured concentration values in the solutions decomposed by acid mixtures (Method 1.2. and 1.3.) and LiB0 2 fusion are different for the heavy REEs. This phenomenon will be discussed further on.

Dysprosium: Certified concentration values in the SRMs Clay shale TB-2 and Granite GM seem to

be incorrect. In the Clay shale TB-2 measured concentrations are different in the case of acidic and fusion decomposition.

Holmium: Certified concentration values in the SRMs Clay shale TB-2 and Granite GM seem to

be incorrect. Deviation of the measured concentration values is higher (absolute concentration values are rather low). In the SRM Clay shale TB-2 the measured concentrations are different in the case of acidic and fusion decomposition.

Erbium: In the SRM Clay shale TB-2 the measured concentrations are different in the case of

acidic and fusion decomposition. Thulium: In the SRM Clay shale TB-2 the measured concentrations are different in the case of

acidic and fusion decomposition. Problems with the certified concentration values. Ytterbium and lutetium: In the SRM Clay shale TB-2 the measured concentrations are different in the case of

acidic and fusion decomposition. So, a difference could be seen very well from the analytical results of the SRM Clay

shale TB-2 between the two kinds of closed vessel acidic decompositions. Decomposition by HC1-HN03-H2F2 mixture was proven significantly less efficient than the decomposition with H 3P0 4-HN0 3-H 2F 2 mixture. The latter one can provide higher decomposition temperature. So, its efficiency is comparable with the fusion method. This fact might be explained by the presence of refractory mineral phases in the Clay shale. Heavy REEs are probably enriched in these phases. Decomposition method should be efficient enough to destroy these phases, too.

CONCLUSIONS

Although the decomposition techniques were not specially developed for ICP-MS analysis (they , are commonly used in the laboratory for the determination of major and trace elements of rocks), most of them produced acceptable results for the rare earth elements comparing with the certified values of SRMs. Method 1.1 (decomposition in two

137

Page 137: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

steps including an evaporation step) was the only method producing unacceptable results. 0.2 gL"1 sample concentration proved to be optimal for the analysis.

Chinese standard reference rock samples are very reliable for the REE concentration values but some of the former COMECON standards are not. For.example at the clay shale TB-2 the praseodymium, gadolinium, terbium, holmium and thulium or at the basalt BM and. granite GM standards the gadolinium, dysprosium and holmium contents.do not show good agreement with the reference values. In some cases perhaps the number of analyses (done for the purposes of certification) was not sufficient to provide proper precision.

No mathematical correction was used to eliminate the BaO polyatomic ion interference or the light REE oxides polyatomic ion interference on the heavy. REEs. In the case of extreme high barium or light REE concentrations the correction is necessary.

There is a huge difference between the recovery values of the light and heavy REEs in clay shale TB-2 comparing the last three decomposition methods (methods 1.2., 1.3. and 2.). The LREEs gave the same results in the case of all the three decompositions, the HREEs showed much less decomposition efficiency by the HCI-HNO3-H2F2 method (method 1.2.)than the more aggressive H3PO4-HNO3-H2F2 method (method 1.3.) or the alkaline fusion (method 2.). The reason of this difference is, the HREEs accumulate in the refractory minerals of the clay shale TB-2. '

In the case of the refractory minerals forming elements the microwave decompositions are not efficient enough, for total decomposition of those elements the alkaline fusion is necessary..

R E F E R E N C E S

DATE, A R. and HUTCHISON, D. (1987): Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma Source Mass Spectrometry J. Anal. At. Spectrom., 2, 269-276

HlRATA, T. , SHIMIZU, H. , AKAGI, T . , SAWATARI, H . a n d MASUDA, A . ( 1 9 8 8 ) : P r e c i s e D e t e r m i n a t i o n o f R a r e Earth Elements in Geological Standard Rocks by Inductively Coupled Plasma Source Mass Spectrometry Anal. Sci., 4, 637-643

JARVIS, K. E. (1990): A critical evaluation of two sample preparation techniques for low-level determination of some geologically incompatible elements by inductively coupled plasma-mass spectrometry Cliem. G e o l . , 8 3 , 8 9 - 1 0 3

JENNER, G. A., Longerich, H. P., Jackson, S. E. and Fiyer, B. J. (1990): ICP-MS - A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples Chem. Geol., 83, 133-148

PERKINS, W. T. and PEARCE, N. J. G. (1996): Problems and Progress in the Determination of Trace and Ultra Trace Elements by ICP-MS and the Application to Petrogenetic Studies of Igneous Rocks V. M. Goldschmidt Conference, Heidelberg, 1996 J. of Conf. Abstr., 1, 459

RlVOLDINl, A. and FADDA, S. (1994): Inductively Coupled'Plasma Mass Spectrometric Determination of Low-level Rare Earth Elements in Rocks Using Potassium-based Fluxes for Sample Decomposition J. Anal.

- At. Spectrom., 9, 519-524 . SHOLKOV[TZ,'E. R. (1990): Rare-earth elements in marine sediments and geochemical standards Chem. Geol.,

' 88,'333-347 ' UCHINO, T., EBIHARA, M. and FURUTA, N. (1995): Determination of Rare Earth Elements in Precambrian

Sediments at Isua by Inductively Coupled Plasma Mass Spectrometry J. Anal. At. Spectrom., 10, 25-30

Manuscript received 2 October, /997

138

Page 138: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Sample preparation details

Microwave decompositions - MILESTONE MEGA MLS 1200 Program 1.1.

Time(min) Power (W) 5 250 5 400 10 500 5 250 2 ventillation

cool down and put into evaporation module 10 700 3 ventillation

Time (min) Power (W) 8 250 6 400 6 500 5 250 2 ventillation

cool down and add 10 ml saturated boric acid 5 250 5 400 2 ventillation

Program 1.3. Time (min) Power (W)

8 250 5 400 15 600 2 ventillation

Page 139: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

T A B L E 2 . ICP-MS operating parameters:

VG E l e m e n t a l P l a s m a Q u a d II S T E al l a r g o n 1350 W ' ' <5 W

14.0 l / m i n ' 1.4 1 /min 0 . 9 5 6 | / m i n G i l s o n M i n i p u l s 3 a b o u t 0 . 9 m l / m i n V - g r o o v e

d o u b l e - p a s s , w a t e r - c o o l e d ( 1 0 ° C ) N i , 1 m m o r i f i c e . N i , VG d e s i g n s c a n d u a l 20

3 2 0 p s / c h a n n e l 60 s 11 I . 6 -1 8 0 . 4 a m u 1 1 7 . 4 - 1 3 3 . 6 a m u

1 I 5 l n ( 1 0 p g / l )

T A B L E 3 . Isotopes chosen for analysis

Element Isotope Isotope abundance %

Crustal abundance ppm

Detection limit-10s ppm

La 139 99.9 18 0.5 Ce 140 88.5 46 0.5 Pr 141 100 6 0.1

Nd 143 12.2 24 0.1 ' Sm 147 15 7 0.1 Eu 151 47.8 1 0.1 Gd 157 15.7 6 0.1 Tb 159 100 0.9 0.1 Dy 163 24.9 5 0.1 Ho 165 100 1 0.1 Er 166 33.6 3 0.1

Tm 169 100 0.2 0.1 Yb 171 14.3 0.8 0.1 Lu 175 97.5 0.8 0.1

140

I n s t r u m e n t P l a s m a F o r w a r d p o w e r R e f l e c t e d p o w e r C o o l a n t g a s f low-A u x i l i a r y g a s f l o w N e b u l i s e r g a s f l o w -P e r i s t a l t i c p u m p U p t a k e r a t e N e b u l i s e r S p r a y c h a m b e r S a m p l i n g c o n e t y p e S k i m m e r

A c q u i s i t i o n m o d e D e t e c t o r m o d e C h a n n e l s / a m u D w e l l t i m e A c q u i s i t i o n t i m e S c a n n e d r e g i o n S k i p p e d r e g i o n I n t e r n a l s t a n d a r d

Page 140: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

International Standard Reference Rock Samples used in this study

Chinese Rock Standards*:

GBW 7109 Ijolite-Syenite GBW 7110 Trachite Andesite GBW 7111 Granodiorite GBW 7112 Gabbro GBW 7113 Rhyolite GBW 7114 Dolomite

•Source: Institute of Geophysical and Geochemical Exploration, Langfang, P. R. of China

Former COMECON Rock Standards*:

Basalt BM Granite GM Clay shale TB-2 Greisen GnA Limestone KH Serpentinite SW

•Source: (former) Zentrales Geologisches Institut, Berlin, (former) GDR

Page 141: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

La by ICP-MS

160.00 t -

140.00

o D e c o m p o s i t i o n w i t h L i B 0 2

A D e c o m p o s i t i o n w i t h H C I

x D e c o m p o s i t i o n w i t h P h o s p h o r i c a c i d

ft

i

1 1 1 1 i i

0.00 20.00 40 .00 60.00 80.00 100 .00 120.00 140.00 160.00

C e r t i f i e d va lue p p m

o Decompos i t ion w i t h

L i B 0 2

A Decompos i t ion w i t h H C I

P r by I C P - M S

x Decompos i t ion wi th P h o s p h o r i c ac id

Clay shale TB-2

o.oo -1-8-0.00 5.00 10.00 15.00

C e r t i f i e d va lue p p m

20.00 25.00

Page 142: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

300.00

La by ICP-MS o D e c o m p o s i t i o n w i t h

L i B 0 2 A D e c o m p o s i t i o n w i t h

H C 1 x D e c o m p o s i t i o n w i t h

P h o s p h o r i c a c i d

250.00

1 200.00 a

1 150.00

| 100.00

50.00

0.00 '4®-

0.00 — I 1 1 —

50.00 100.00 150.00

C e r t i f i e d v a l u e p p m

250.

14.00

12.00

o Decomposition with L i B 0 2

A D e c o m p o s i t i o n w i t h H C 1

x Decomposition with phosphoric acid

S m by I C P - M S

10.00 S a. a. 0> a 8.00 > •8 Urn 9 <n s

£.00

4.00

t 4

2.00

0.00 0.00 2.00 4.00 6.00 8.00

C e r t i f i e d v a l u e p p m

10.00 12.00

Page 143: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

La by ICP-MS

o D e c o m p o s i t i o n w i t h L i B 0 2

A D e c o m p o s i t i o n w i t h H C 1

x D e c o m p o s i t i o n w i t h P h o s p h o r i c a c i d

&

0.00 10.00 20.00 30.00 .40.00 50.00

C e r t i f i e d v a l u e p p m

60.00 70.00

E u b y I C P - M S

3.00 o D e c o m p o s i t i o n w i t h

3.00 L i B 0 2

2.50

A D e c o m p o s i t i o n w i t h H C 1

A

2.00

x D e c o m p o s i t i o n w i t h p h o s p h o r i c ac id

A A

X X

2.00 ° o

2 x

1.50

O A

X

1.00

6

O

0.50 4

0

0.00 ! h - 1 — -

0.00 0.50 1.00 1.50 2.00 I 2.50

Certified value ppm

Page 144: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

La by ICP-MS

10.00

a S .00

' 6.00

». 9 M S 4.00 S

2.00

0.00

o Decompos i t i on w i t h L i B 0 2

A Decompos i t ion w i t h H C I

x Decompos i t ion w i t h p h o s p h o r i c ac id

*

g » Basalt BM

Granite GN

Clay shale: A

-h

T 1-2

0.00 1.00 2.00 3.00 4.00 S.00 6.00 7.00 8.00 9.00 10.00

C e r t i f i e d v a l u e p p m

10.00

8.00

6.00

4.00

2.00

o Decompos i t i on wi th L i B 0 2

A Decompos i t i on w i t h H C I

x Decompos i t i on w i t h p h o s p h o r i c ac id

Dy by I C P - M S

Clay shale TB-2

Y

S Granite GN

Clay shale TB-2

- t -

0.00 1.00 2.00 3.00 4.00 5.00 6.00

C e r t i f i e d va lue p p m

7.00 8.00 9.00

Page 145: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Ho by ICP-MS

1.80

1.60

1.40

1.20

1.00

0.80

0.60 -

0.40

0.20 -

0.00

A D e c o m p o s i t i o n w i t h L i B 0 2

o D e c o m p o s i t i o n w i t h H C 1

x D e c o m p o s i t i o n w i t h p h o s p h o r i c a c id

0.00

x °o

Clay shale TB-2

Clay shale TB-2

0.50 1.00

C e r t i f i e d v a l u e p p m

1.50 2.00

o Decompos i t ion w i t h L i B 0 2

A Decompos i t ion w i t h

E r b y I C P - M S

5.00

| 4.00 a

Clay shale TB-2

Clay shale TB-2

0.00 1.00 1.50 2.00 2.50 3.00

C e r t i f i e d va lue p p m

3.50 4.00 4.50

.146

Page 146: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Ho by ICP-MS

o D e c o m p o s i t i o n m w i t h L i B 0 2

A D e c o m p o s i t i o n w i t h HC1

x Decompos i t i on w i t h p h o s p h o r i c ac id

o Granite ¿ N

x Clay shale Tt-2

Basalt BM

C l a j shale T 1-2

0.00 0.20 0.60 0.80 1.00 1.20

C e r t i f i e d v a l u e p p m

1.40 1.60

1.50

0.50

o Decompos i t i on w i t h L i B 0 2

A D e c o m p o s i t i o n w i t h HC1

x D e c o m p o s i t i o n w i t h p h o s p h o r i c a c id

o Decompos i t i on w i t h L i B 0 2

A D e c o m p o s i t i o n w i t h HC1

x D e c o m p o s i t i o n w i t h p h o s p h o r i c a c id

X A

O

- -

A

X o O 8

* A Clay Shale TB-2

° 2 x »

$ A Clay shale TB-2

0

X ; 1 — • 1

0.00 1.00 2.00 3.00

C e r t i f i e d va lue

5.00

.147

Page 147: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

La by ICP-MS

0.80

0.70

0.60

a a O«.50 v

"M *0.40

0.20

0.10

o Decompos i t i on w i t h L i B 0 2

• Decompos i t i on wi th H C 1

x D e c o m p o s i t i o n w i t h p h o s p h o r i c ac id

Clay shale TB-2

Clay shale TB-2

0.00 0.10 0.20 0.30 0.40 0.S0 0.60

C e r t i f i e d va lue p p m

0.70 0.80

0.80 1—1

0.70

0.60

g 0.50

3 0.40 >

1 0.30 a tft 3

S 0-20

0.10

0.00

o Decompos i t ion w i t h L i B 0 2

A Decompos i t ion w i t h H C 1

x Decompos i t ion w i t h p h o s p h o r i c ac id

Lu by I C P - M S

0.10

Clay shale TB-2 x A ° o o A2 5

Clay shale TB-2

0.20 0.30 0.40 0.50 0.60 0. '0

C e r t i f i e d v a l u e

Page 148: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Recover i e s of l ight r a r e e a r t e l emen t s of c lay sha le T B - 2

• Decompos i t ion wi th p h o s p h o r i c acid

H D e c o m p w i t h HC1

20.00 40.00 60.00 80.00

p p m values

100.00 120.00

Recover ies of h e a v y r a r e . e a r t h e lements of clay sha le TB-2

• Decompos i t ion w i t h p h o s p h o r i c ac id

EH Decompos i t ion w i t h HC1

2.00 3.00 . 4.00

p p m v a l u e s

5.00 6.00 7.00

149

Page 149: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr
Page 150: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Mineratogica-Petrographica, Szeged, XXXVIIIJ51-163, 1997

HIGH-PRESSURE METAMORPHISM AND P-T PATH OF THE METABASIC ROCKS IN THE BOREHOLE KOMJÁTI-11, BÓDVA

VALLEY AREA, NE HUNGARY

P . H O R V Á T H 1

Department of Petrology and Geochemistry, Eötvös University, Budapest and Laboratory for Geochemical Research, Hungarian Academy of Sciences

A B S T R A C T

The Alpine, polyphase, regional metamorphic evolution was revealed by mineral paragenetic, mineral chemical and chlorite crystallinity studies carried out on a representative profile of the incomplete, dismembered ophiolite complex of the Bódva Valley area (Aggtelek-Rudabánya Mts., NE Hungary). This complex belongs to the South Gemer nappe system and represents a strongly tectonized part of the Mesozoic Vardar-Meliata oceanic branch of the Neotethys. On the basis of the first description of Na-amphiboles (ferro-glaucophane and riebeckite) and the discrimination of magmatic and metamorphic Ca-amphiboles, the P-T-relative time path of the metabasic rocks was reconstructed as follows. The most probably Middle Jurassic, subduction-related epidote-blueschist fades event (ca. 7 kbar, 300-350°C) was followed by a (probably Middle Cretaceous) greenschist facies regional metamorphism (ca. 4-5 kbar, 300°C). In contrast with the earlier studies (RÉTI, 1985) no signs of an ocean-floor hydrothermal event could be proved. Thus, the present study provides the first evidence of subduction-related high-pressure assemblages in the ophiolitic rocks from the Hungarian part of Meliaticum.

INTRODUCTION, GEOLOGICAL SETTING

Metamorphic features of ophiolites provide an effective tool for reconstructing the tectonic conditions of closure of paleo-oceanic branches. The aim of the present paper is to characterize the metamorphic evolution path of the Bódva Valley ophiolites on the basis of the metamorphic petrological results obtained from a representative section of these rocks cored by the borehole Komjáti-11. This borehole is located at the northern foot of the Rudabánya Mountains, NE Hungary (Fig. 2).

The dismembered, incomplete ophiolite complex of the Bódva Valley area is related to the Meliaticum, which represents the remnants of the Vardar (s.l.)-Meliata ocean of Triassic-Jurassic age in the Neotethyan realm (Fig. /). The oceanic slivers of Meliaticum represent slices and small (from dm to 100 m in scale) fragments embedded in the ductile Upper Permian Perkupa Evaporite Formation found in the basal part of the non-metamorphic Silicicum, which forms the uppermost nappe in the area studied. The Silicicum is underlain by the intermediate-high pressure/low temperature metamorphic Tornaicum (ÁRKAI and KOVÁCS, 1986; KOVÁCS et al., in press). These nappes built up the South Gemer nappe system of the Gemer-Bükk units of the Pelsonia composite terrane

1 H-l 112 Budapest, Budaörsi út 45., Hungary E-mail: phorvath @sparc.core.hu

151

Page 151: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

15°E 20°E 25°E

• 50° N

45° N

Figure I Tectonic scetch map of the Pannonian basin and the position of the examined area.

Figure 2 Simplified geological map of the examined area (enlarged from Fig. I). Legend: 1: Silicicum, 2: Tornaicum, 3: Tertiary' and Quaternary, 4: nappe boundary, 5: transform faults, 6: state

boundary. Black point shows the position of borehole Komjäti-11.

152

Page 152: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 2. Representative major and trace element analyses for the studied rock types of Komjâti-11. Major element

analyses are from RÉTI (1985).

Sample 203m 232m 247m

Si0 2 46,20 41,30 41,20 Ti02 2,51 3,84 3,93

AI2O3 14,50 10,60 11,10 Fe203 9,41 9,24 9,57 FeO 3,93 6,69 6,71 MnO 0,20 . 0,37 0,33 MgO 5,52 4,62 6,03 CaO 10,20 12,40 11,90 Na20 3,37 3,27' 2,77 K 2 0 0,23 0,48 0,40 P2O5 0,21 3,54 2,44 H 2 0 + 2,81 1,93 2,47 H 2 0' 0,27 0,19 0,33 c o 2 1,39 0,72 0,45

Total 100,75 99,19 99,63

Ti (ppm) 20700 24770 24170 V 356 292 263 Ni 126 11 20

Sm 9,1 13,9 15,9 Ce 46,2 77,2 84,6 Lu 0,69 1 1,16 U - - -

Th - 0,89 1,09 Cr 158 - -

Yb 4,9 7,71 8,06 Hf 6,48 8,9 9,6 La 18,65 32,6 33,8 Nd 25,5 42,9 48,2 Cs 1,75. - -

Tb 1,89 2,67 2,44 Sc 32,5 44,5 28,3 Ta 0,87 1,41 1,53 Co 35 22 36,7 Eu - 4,66 4 ,8 Y 98 150 106 Zr 288 395 302 Nb 8 13 10

153

Page 153: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Representative analyses of amphiboles and their structural formulae. IMA names are after LEAKE, 1978. TABLE 2

Na-amphibole Ca-amphibole magmatic metamorphic

S i0 2 5 4 , 2 4 5 3 , 8 1 5 3 , 5 8 5 3 , 3 7 4 3 , 6 5 ' 4 2 , 9 1 4 4 , 4 9 4 3 , 5 9 5 6 , 7 1 4 9 , 6 2 5 4 , 6 2 5 4 , 8 7 Ti0 2 - - - - 4 , 1 3 4 , 3 6 3 , 6 4 4 , 2 3 . _ - _ Al203 4 , 4 8 4 , 1 4 1 , 1 3 1 , 1 3 9 , 3 4 1 0 , 1 2 8 , 6 0 9 , 7 1 1 , 4 3 6 , 4 7 1 , 2 4 1 , 7 8 FeO 2 3 , 4 2 2 3 , 6 5 2 7 , 9 0 2 7 , 5 9 1 4 , 8 4 1 4 , 0 1 1 5 , 0 6 1 3 , 9 4 1 0 , 3 0 1 1 , 4 1 1 3 , 6 2 1 5 , 9 2 MnO 1 , 1 3 0 , 8 3 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 - _ _ _ MgO 7 , 3 4 7 , 4 0 . 6 , 0 8 6 , 3 2 1 1 , 9 4 1 2 , 0 1 1 1 , 9 7 1 1 , 9 6 1 7 , 5 8 1 6 , 8 7 1 4 , 8 4 1 3 , 6 6 CaO 0 , 9 9 2 , 6 8 2 , 4 6 2 , 4 1 1 1 , 1 4 1 1 , 0 6 1 1 , 1 7 1 1 , 0 8 1 2 , 9 9 1 0 , 0 8 1 1 , 5 4 9 , 9 3 Na 20 5 , 4 6 5 , 1 8 5 , 3 4 5 , 0 8 3 , 0 6 3 , 2 2 2 , 7 9 3 , 4 4 2 , 3 4 1 , 6 9 2 , 3 0 K 2 0 - - - - 0 , 4 7 0 , 4 5 0 , 4 2 0 , 6 2 _ _ _ Total 9 5 , 9 3 9 6 , 8 6 9 7 , 6 2 9 6 , 7 3 9 8 , 5 7 • 9 8 , 1 4 9 8 , 1 4 9 8 , 5 7 9 9 , 0 1 9 6 , 7 9 9 7 , 5 5 9 8 , 4 6

number of the cations on the basis of 23 (O) Si 8 , 0 0 1 7 , 8 8 1 7 , 9 3 7 7 , 9 7 9 6 , 4 5 1 6 , 3 5 9 6 , 5 8 8 6 , 4 6 2 7 , 9 0 9 7 , 0 1 7 7 , 9 2 5 7 , 8 6 9 Al'v T - 0 , 1 1 9 0 , 0 6 3 0 , 0 2 1 1 , 5 4 9 1 , 6 4 1 1 , 4 1 2 1 , 5 3 8 0 , 0 9 1 0 , 9 8 3 0 , 0 7 5 0 , 1 3 1 Sum T 8 , 0 0 1 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 8 , 0 0 0 AI"' 0 , 7 7 8 0 , 5 9 6 0 , 1 3 5 0 , 1 7 8 0 , 0 7 6 0 , 1 2 5 0 , 0 8 7 0 , 1 5 7 0 , 1 4 4 0 , 0 9 4 0 , 1 3 7 0 , 1 7 0 Fe3+ • 1

0 , 7 8 2 0 , 9 9 4 1 , 4 6 2 1 , 3 1 6 0 , 0 6 1 0 , 0 2 2 0 , 0 8 9 0 , 0 0 0 0 , 0 6 5 1 , 1 9 3 _ 0 , 2 6 9 Fe2+, 1 , 8 2 6 1 , 7 9 5 1 , 9 9 5 2 , 0 9 8 1 , 7 7 3 1 , 7 1 4 1 , 7 7 5 1 , 7 2 8 1 , 1 3 6 0 , 1 5 6 • 1 , 6 5 3 1 . 6 4 0 Ti c - - - - 0 , 4 5 9 0 , 4 8 6 0 , 4 0 5 0 , 4 7 2 . _ _ _ • Mg 1 , 6 1 4 1 , 6 1 6 1 , 3 4 3 1 , 4 0 9 2 , 6 3 1 2 , 6 5 3 2 , 6 4 2 2 , 6 4 3 3 , 6 5 5 3 , 5 5 6 3 , 2 1 0 2 , 9 2 1 Mn - - 0 , 0 6 6 - - - . . . . Sum C 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 5 , 0 0 0 F e " , 0 , 2 8 1 0 , 1 0 8 - 0 , 0 3 6 - - _ Mn - - 0 , 0 7 6 0 , 1 0 5 - - . _ _ Ca B 0 , 1 5 6 0 , 4 2 1 0 , 3 9 0 0 , 3 8 6 1 , 7 6 4 1 , 7 5 6 1 , 7 7 2 1 , 7 6 0 1 , 9 4 1 1 , 5 2 7 1 , 7 9 4 1 , 5 2 6 Na 1 , 5 6 2 1 , 4 7 1 1 , 5 3 4 1 , 4 7 3 0 , 2 3 6 0 , 2 4 4 0 , 2 2 8 0 , 2 4 0 - 0 , 4 7 3 0 , 2 0 6 0 , 4 7 4 Sum B 1 , 9 9 9 2 , 0 0 0 2 , 0 0 0 2 , 0 0 0 2 , 0 0 0 2 , 0 0 0 2 , 0 0 0 2 , 0 0 0 1 , 9 4 1 2 , 0 0 0 2 , 0 0 0 2 , 0 0 0 Na - - - - 0 , 6 4 1 0 , 6 8 1 0 , 5 7 3 0 , 7 4 9 0 , 1 6 9 0 , 2 7 0 0 , 1 6 5 K A - - - - 0 , 0 8 9 0 , 0 8 5 0 , 0 7 9 0 , 1 1 7 - _ Sum A - - - - 0 , 7 2 9 0 , 7 6 6 0 , 6 5 2 0 , 8 6 6 - 0 , 1 6 9 0 , 2 7 0 0 , 1 6 5 Total 1 5 , 0 0 0 1 5 , 0 0 0 1 5 , 0 0 0 1 5 , 0 0 0 1 5 , 7 2 9 1 5 , 7 6 6 1 5 , 6 5 2 1 5 , 8 6 6 1 4 , 9 4 1 1 5 , 1 6 9 1 5 , 2 7 0 1 5 , 1 6 5 IMA name crossite riebeckite ferroan pargasitic hornblende hornblende actinolite

Page 154: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

( K O V Á C S et al., in p r e s s ) , also known as the North Pannonian-Western Carpathian composite terrane (BALLA, 1982; C S O N T O S et al. 1992). On the basis of biostratigraphic data ( D O S Z T Á L Y and J Ó Z S A , 1992) and K-Ar dates (233 Ma on amphiboles, Á R V A - S Ó S et al., 1987) the age of the ophiolite complex is Middle Triassic. Under a ca. 150 m thick Tertiary and Quaternary cover the borehole Komjáti-11 crosscutted an approxiametely 200 m thick metamafic complex. The contact between this complex and the underlying Upper Permian Perkupa Evaporite is tectonic. The metamafic complex is cut by several, thin (ca. 30-50 cm thick) albitite veins and a 50 cm thick metabasalt vein. The complex is built up predominantly by metagabbro and its fine-grained variant (meta-microgabbro), described earlier by R É T I (1985) as albite-gabbros and -dolerites. Major and new trace element analyses of representative samples listed in Table 1 and Fig. 3 confirm the earlier statement of H A R A N G I et al. (1996) on the MORB character of the ophiolite complex in question (for details see H O R V Á T H , 1997).

N 0 * 2

Figure 3 Zr-Nb-Y discrimination diagram for the studied rocks (after MESCHEDE, 1986). Diamonds represent the albitites, circles the metagabbros, and squares for the meta-microgabbros.

155

Page 155: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

PETROGRAPHY

Thin section studies reveal that despite the metamorphic effects the rocks preserved their original magmatic texture. The prevailing mineral assemblages of the metabasic rocks consist of Na-amphiboie, actinolite, hornblende, epidote, albite, chlorite and Fe-Ti-oxides. Na-amphibole shows blue-violet pleochroism, usually rims the hornblende and occurs also as fissure fillings. Actinolite is abundant and rims both the hornblende and the Na-amphibole and contains them as relics as well. Epidote is also abundant and shows euhedral and subhedral forms. Albite commonly displays subhedral forms and is twinned occasionally. Chlorite is found in the matrix and forms pseudomorphs after clinopyroxene. In the albitite veins white mica and only in one case, chloritoid were also found.

MM MM 1 111 I 1 1 .1 I ! . 1 l| a °n B

MIINMIUMIIM^MM

• 0 0

0.0 0.2 0.4 0.6 0.8 1.0

N a + K i n A s i t e A l + H in C s i te +Na

8 i i i i | M 11 | 11 i i 11 i i i | i i f i 11 i i i | '

CD •

n r • c

°o ffi

6 I 0.0 0.2 0.4 0.6 0.7

Al+U in C s i te

Figure 4 The subdivision of Ca-amphiboles. Circles represent the magmatic, and squares the metamorphic Ca-amphiboles.

156

Page 156: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

MINERAL CHEMISTRY

Mineral analyses were performed at the Department of Petrology and Geochemistry of the Eötvös University, Budapest, using an AMRAY 1830 I/T6 scanning electron microscope, under operating conditions of 15 kV accelarating voltage and 1-2 nA specimen current. Analyses of amphiboles and their structural formulae are listed in Table 2. The calculations of cation numbers follow the scheme of R O B I N S O N et al. (1982). The Na-amphiboles are ferro-glaucophanes [or crossites, using the nomenclature of L E A K E

(1978)] and riebeckites (see L E A K E et al., 1997). The Ca-amphiboles vary widely in their chemical compositions, forming two groups: a magmatic and a metamorphic one (Fig. 4). The subdivision of Ca-amphiboles is based on the fact that magmatic Ca-amphiboles are enriched in Ti, Al and Na, and depleted in Si as compared to metamorphic amphiboles ( M É V E L , 1988; S A D E K G H A B R I A L et al., 1996). Table 3 shows the differences in concentrations of various elements between magmatic and metamorphic Ca-amphiboles in the studied rocks. The magmatic amphiboles are pargasites and magnesio-hastingsites ( L E A K E et al., 1997) or ferroan pargasitic hornblendes using the nomenclature of L E A K E

(1978), while the metamorphic Ca-amphiboles fall into the actinolite and hornblende fields ( L E A K E , 1978 and L E A K E et al., 1997).

TABLE 3 Differences in concentrations of various elements between the magmatic and the metamorphic Ca-amphiboles

in the studied rocks. Legend: mag.: magmatic, met.: metamorphic).

Si Alvl Ti mag met mag met mag met

Mean 6,430 7,590 0,115 0,111 0,406 0,028 St, Dev. 0,091 0,384 0,044 0,063 0,114 0,069 Num. of cases 12 21 12 21 12 21

Representative analyses of epidote, albite and chloritoid are given in Table 4. The Ps component of epidote varies between 20-30%, which is characteristic of metabasic rocks from other occurences described by E V A N S (1990) and B A L T A T Z I S (1996), who have found no significant difference in compositions of epidotes from blueschist and from greenschist facies rocks. Albites are always pure Abioo- Chloritoid was found in association with Mg-bearing calcite. They may represent eventual alteration products of pumpellyite.

THERMOBAROMETRY AND P-T PATH OF THE METABASIC ROCKS

In the studied rocks a stable mineral assemblage of Na-amphibole + epidote + albite has been recognized. For neither jadeitic pyroxene nor lawsonite have been found in these rocks, this assemblage is indicative of the albite-bearing region of the epidote-blueschist facies. Figure 5 shows the mineral reaction boundaries defining the stability field of the epidote-blueschist facies (EVANS, 1990, chemical composition N.6) and the P-T path of the studied rocks. In the investigated complex the epidote-blueschist facies assemblage was transformed into a greenschist facies assemblage, which is represented by the

157

Page 157: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TABLE 2 Representative analyses of epidote, albite and chloritoid.

epidote plagioclase chloritoid

Si0 2 37,77 37,56 38,03 37,38 37,47 68,98 68,52 68,83 69,16 27,78 27,56 27,32

AI2O3 20,68 24,04 24,07 21,01 21,11 19,55 19,58 19,10 19,66 21,70 21,53 21,43

FeO - - - - - - - - - 34,19 34,04 34,13

Fe203 15,15 10,86 11,35 15,14 14,76 - - - - - - -

MgO - - - - - - - - - 8,08 8,16 7,98 CaO 23,59 24,29 23,68 23,91 23,69 - - - - - - 0,44 Na20 . - - - - - 11,95 11,78 11,83 12,08 - - -

Total 97,19 96,75 97,13 97,44 97,03 100,48 99,88 99,76 100,90 91,75 91,29 91,30

number of the cations on the basis of 25 (O) number of the cations on the basis of 8 (O) n. of cat on the basis of 12 (O)

Si 6,112 6,023 6,063 6,044 6,071 2,997 2,994 3,011 2,994 1,981 1,978 1,966 AI 3,941 4,540 4,519 4,001 4,028 1,000 1,008 0,984 1,002 1,823 1,819 1,816 Fe2+

- - - - . 1 - - - - 2,040 2,042 2,053

Fe3+ 1,843 1,309 1,360 1,840 1,798 - - - - - - -

Mg - - - - - - - - - 0,859 0,872 -

Ca 4,090 4,173 4,045 4,142 4,112 - - - - - - 0,034 Na - - - - - 1,007 0,998 1,003 1,014 - - -

Total 15,986 16,022 15,987 16,027 16,009 5,004 5,000 4,998 5,010 6,703 6,712 6,724

Ps (%) 30 20 20 30 30 Ab (%) 100 100 100 100 -

Page 158: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

3 0 0 A 0 0 5 0 0 600

Temperature [°C]

Figure S P-T stability field for epidote-bluesehists (EVANS, 1990, chemical composition N.6.) and P-T path for the studied rocks. Legend: EBS: epidote-bluesehists, LBS: lavvsonite-blueschists, AEA: albite-epidote-

amphibolite faciès, A: amphibolite faciès, E: eclogite faciès, G: greenschist facies, PA: pumpellyite-actinolite facies. Mineral abbrevations are from KRETZ (1983).

159

Page 159: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Figure 6 Relationship between the pressure value of metamorphism and the NalVU content of Ca-amphiboles (after BROWN, 1977). Circle represents the average NalVL content of the Na-amphiboles and

square the average N a M j content of the metamorphic Ca-amphiboles.

160

Page 160: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

association of actinolite + chlorite + epidote + albite. The pressure values of the epidote-blueschist facies and the greenschist facies metamorphic events were calculated using the geobarometer of B R O W N (1977), which is based on the NaM4 content of the Ca-amphiboles in a limiting mineral assemblage (Fig. 6). This value is ca. 7 kbar for the former, and ca. 4 - 5 kbar for the latter event. Using the reaction isograde scheme of E V A N S

(1990) the temperature of the epidote-blueschist facies metamorphism might be between 300 and 350°C (Fig. 5). On the basis of chlorite crystallinity (ChC) and chlorite-AlIV

thefmometric data (Table 5, for details see H O R V A T H , 1997) the temperature of the greenschist facies overprint may be put around 300°C.

TABLE 5 Average chlorite crystallinity (ChC) and chlorite-Allv thermometry data for the studied metabasic rocks of

borehole Komjati-11.

ChC (001) ChC (002) Allv Temperature (°C) 27min 1/27min 2°/min 1/27m in Cathelineau (1988)

0,309 0,2705 0,279 0,2385 1,088 285-290

DISCUSSION AND CONCLUSIONS

The metamorphic evolution path of a Triassic, dismembered, incomplete ophiolite complex of the Aggtelek-Rudabanya Mountains cored by the borehole Komjati-11 was determined using metamorphic petrological (mineral paragenetic), mineral chemical (electron microprobe) and X-ray diffractometric (chlorite crystallinity) results. In the last. phase of magmatic crystallization amphiboles formed instead of magmatic pyroxenes. The magmatic amphiboles are pargasites and magnesio-hastingsites according to the new nomenclature of L E A K E et al. (1997) or ferroan pargasitic hornblendes, using the nomenclature of L E A K E (1978). In contrast to the earlier statements of R E T I (1985) no signs of an eventual ocean floor hydrothermal event could be evidenced in the sample series investigated. The observable first metamorphic event proved to be a subduction-related one, as evidenced by the Na-amphibole, epidote and albite assemblage. To our knowledge our results constitute the first demonstration of Na-amphiboles indicative of high-pressure metamorphism in the Hungarian part of the South Gemer nappe system. Metabasic rocks containing blue amphiboles have already been known for some time from the Slovakian part of Meliaticum, namely in the SE part of Slovakia ( K A M E N 1 C K Y , 1957, R E L C H W A L D E R , 1973 and F A R Y A D , 1995). The age of the subduction-related metamorphism is Middle Jurassic (150-165 Ma, K-Ar and 40Ar-39Ar ages on phengite from the Slovakian part of Meliaticum, see M A L U S K I et al., 1993, F A R Y A D and H E N J E S -

K U N S T , 1995). The same HP/LT metamorphic event was reported from the Slovakian part of Meliaticum by F A R Y A D (1995) and from the Fruska Gora in the Inner Dinarides ( M L L O V A N O V L C et al., 1995), but the age of the metamorphism in the latter case is Lower Cretaceous (123 Ma, K-Ar age on crossite, MlLOVANOVlC et al., 1995). The HP/LT assemblage of the metabasic rocks from the borehole Komjati-11 was overprinted by a greenschist facies event, characterized by the assemblage of actinolite + chlorite + epidote + albite. On the basis of the presumed analogies with the metamorphic evolution of the

161

Page 161: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Biikkium (see Á R K A I et al., 1995), the age of this event is most probably Middle Cretaceous (Austrian phase).

ACKNOWLEDGEMENTS

The author is indebted to Mr. S. J Ó Z S A (Department of Petrology and Geochemistry, Eötvös University, Budapest) and Dr. P. Á R K A I (Laboratory for Geochemical Research, Hungarian Academy of Sciences, Budapest) for supervising his M. Sc. thesis work and the present paper, and to Dr. S. K O V Á C S (Academic Research Group, Department of Geology, Eötvös University, Budapest) for his valueable advices. Thanks are due to Dr. K. GÁL-S O L Y M O S (Department of Petrology and Geochemistry, Eötvös University, Budapest) for the electron microprobe analyses, to M. B A L L A and Zs. M O L N Á R (Institute of Nuclear Technology, Technical University, Budapest) for trace element and REE analyses, and to Mrs. O. K O M O R Ó C Z Y and Cs. M. S Á N D O R for preparing the X-ray diffractograms. The field work and the sampling were supported by a grant No. T 019431 given by the Hungarian Scientific Research Fund (OTKA), Budapest to S. K O V Á C S . The chlorite crystallinity study was supported by a grant No. T 022773 given by the Hungarian Scientific Research Fund (OTKA), Budapest to P. Á R K A I .

REFERENCES

ÁRKAI P., BALOGH K. and DUNKL I. (1995): Timing of low-temperature metamorphism and cooling of the Paleozoic and Mesozoic formations of the Biikkium, innermost Western Carpathians, Hungary. Geol. Rundsch. 84, pp. 334-344.

ÁRKAI, P. and KOVÁCS, S. (1986): Diagenesis and regional metamorphism on the Mesozoic of the Aggtelek-Rudabánya Mountains (Northeast Hungary). Acta Geol. Hung., 29 , pp. 349-373.

ÁRVA-SÓS, E . , BALOGH K. , RAVASZ-BARANYAI, L. a n d RAVASZ C s . ( 1 9 8 7 ) : K - A r d a t e s o f M e s o z o i c i g n e o u s rocks in some areas of Hungary, (in Hungarian with English summary). M. All. Földt. Int. Évi Jel. 1985, pp. 295-307.

BALLA, Z. (1982): Development of the Pannonian basin basement through the Cretaceous-Cenozoic collision: a new synthesis. Tectonophysics, 88, pp. 61-102.

BALTATZIS, E. (1996): Blueschist-to-greenschist transition and the P-T path of prasinites from the Lavrion area, Greece. Miner. Magazine, 60, pp. 551-561.

BROWN, E.H. (1977): The crossite content of Ca-amphibole as a guide to pressure of metamorphism. J. Petrol. 18, pp. 53-72.

CATHELINEAU, M. (1988): Cation site occupancy in chlorites and ¡Mites as a function of temperature. Clay Miner., 23, pp. 471-485.

CSONTOS, L. , NAGYMAROSY, A . , HORVÁTH, F. a n d KOVAC, M . ( 1 9 9 2 ) : T e r t i a r y e v o l u t i o n o f t h e I n t r a -Carpathian area: a model. Tectonophysics, 208, pp. 221-241.

DOSZTÁLY, L. and JÓZSA, S. (1992): Geochronological evaluation of Mesozoic formations of Darnó Hill at Recsk on the basis of radiolarias and K-Ar data. Acta Geol. Hung., 35, pp. 371-394.

EVANS, B.W. (1990): Phase relations of epidote-blueschists. Lithos, 25, pp. 3-23. FARYAD, S.W. (1995): Phase petrology and P-T conditions of basic blueschists from the Meliata unit, West

Carpathians, Slovakia. J. Met. Geol., 13, pp. 701-714. FARYAD, S.W. and HENJES-KUNST, F. (1995): Metamorphism of the Meliata high-pressure rocks (West

Carpathians, Slovakia). Terra Abstracts, Terra Nova, 7, pp. 319. HARANGI SZ. , SZABÓ CS. , JÓZSA S . , SZOLDÁN ZS. , ÁRVA-SÓS E . , BALLA M . a n d KUBOVICS I., ( 1 9 9 6 ) :

Mesozoic igneous suites in Hungary: Implications for genesis and tectonic setting in the northwestern part of Tethys. International Geology Rewiew, 38, p. 336-360.

HORVÁTH, P. (1997): The metamorphic evolution of the Bódva valley ophiolites. M. Sc. Thesis, ELTE, Budapest, pp. 90 (in Flungarian with English summary).

162

Page 162: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

KAMENICKY, J. (1957): Triassic serpentinites, diabases and glaucophanic rocks from Spissko-Gemerske Rudohoríe. Geologicke práce, Zoäit, 45, pp. 1-57.

KOVÁCS, S , SZEDERKÉNYI, T . , ÁRKAI, P , BUDA, G Y , LELKES-FELVÁRI, G Y . a n d NAGYMAROSY, A . : Explanation to the terrane map of Hungary. Spec. Publ. of the Geol. Soc. Greece, (in press).

KRETZ, R. (1983): Symbols for rock-forming minerals. Amer. Mineralogist, 68, pp. 277-279. LEAKE, B E. (1978): Nomenclature of amphiboles. Amer. Mineralogist, 63, p. 1023-1052. LEAKE, B . E , WOOLLEY, A . R , ARPS, C . E . S . , BIRCH, W . D , GILBERT, M . C , GRICE, J . D , HAWTHORNE, F . C ,

KATO, A , KISCH, H . J , KRIVOVICHEV, V . G , LINTHOUT, K , LAIRD, J , MANDARINO, J , MARESCH, W . V , NICKEL, E . H . , ROCKS, N . M . S , SCHUMACHER, J . C , SMITH, D . C , STEPHENSON, N . C . N , UNGARETTI, L , WHITAKER, E.J.W. and Youzi, G. (1997): Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New-Minerals and Mineral Names, Miner. Magazine, 61, pp. 295-321.

MALUSKI, H , RAJLICH, P. and MATTE, PH. (1993): 40Ar-'9Ar dating of the Inner Carpathian Variscan Basement and Alpine mylonitic overprinting. Tectonophysics, 223, pp. 313-337.

MESCHEDE, M. (1986): A method of discriminating between different types of mid-ocean ridge basalt and continental tholeiites with the Nb-Zr-Y diagram. Cliem. Geol , 56, pp. 207-218.

MILOVANOVIC, D , MARCHJG, V, and KARAMATA, S. (1995): Petrology of the crossite schist from Fruska Gora Mts. (Yugoslavia), relic of a subducted slab of the Tethyan oceanic crust. J. Geodynamics, 20, pp. 289-3 0 4 .

MÉVEL, C. (1988): Metamorphism in oceanic layer 3, Gorringe Bank, Eastern Atlantic. Contrib. Miner. Petrol, 1 0 0 , p p . 4 9 6 - 5 0 9 .

REICHWALDER, P. (1973): Geologische Verhältnisse des Jüngeren Paeläozoikums im Süd Teil des Zips-Gemerer Erzgebirges. Zápádné Karpaty, 18, pp. 99-139.

RÉTI, ZS. (1985):Triassic ophiolite fragments in an evaporitic melange, Northern Hungary. Ofioliti, 10, pp.'411-422.

ROBINSON, P , SPEAR, F . S , SCHUMACHER, J . C , LAIRD, .1, KLEIN, C , EVANS, B . W , a n d DOOLAN, B . L . ( 1 9 8 2 ) : Phase relations of metamorphic amphiboles: natural occurrence and theory. In: Amphiboles: Petrology and Experimental Phase relations, Rewiews in Mineralogy, 9B, (Veblen, D.R. & Ribbe, P H. eds.), pp. 1-227. Mineralogical Society of America.

SADEK GHABRJAL, D , ÁRKAI P. and NAGY G. (1996): Alpine polyphase metamorphism of the ophiolitic Szarvaskő complex, Bükk Mountains, Hungary. Acta Miner. Petrog, Szeged, 35, pp. 99-128.

Manuscript received 15 October, 1997

163

Page 163: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr
Page 164: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Acta Mineralogica-Petrographica, Szeged, XXXVIII,165-173,"l997

DOMOKOS TELEKI, DER ERSTE PRÄSIDENT DER SOCIETÄT FÜR DIE GESAMTE MINERALOGIE ZU JENA (1773-1798)

I . V I C Z I Á N 1 , A . D E É N A G Y 2

Ungarische Geologische Anstalt Teleki-Bolyai-Bibliothek

A B S T R A C T

D o m o k o s T e l e k i , first p r e s i d e n t o f t h e M i n e r a l o g i c a l S o c i e t y o f J e n a ( 1 7 7 3 - 1 7 9 8 )

Count DOMOKOS TELEKI was born 1773 in Sáromberke, Transylvania and died 1798 in Marosvá ;árhcly in age of 25 years. His father was SÁMUEL TELEKI, later Chancellor of Transylvania in Vienna, famous philologist and founder of a Library. He studied in the Vienna University and later became justice of the Royai Court in Marosvásárhely.

He was well educated in mineralogy and developed a remarkable mineralogical collection which is today preserved in the TELEKI Library, Marosvásárhely (Tárgu Mure?, Romania). He travelled much in Hungary, Croatia, Bohemia and Germany. On his tour to Germany, he visited professor LENZ in Jena in autumn 1795.

In 1797 a Mineralogical Society was founded in Jena and DOMOKOS TELEKI was elected for first president. He could fulfil his office for only less than one year because he died prematurely in 1798. He donated minerals and books the Society, proposed new members and reported on new discoveries. His memory was preserved by the father and by the Society.

ZUSAMMENFASSUNG

Graf D O M O K O S T E L E K I wurde 1 7 7 3 in Sáromberke, Siebenbürgen geboren und starb 1 7 9 8 im Alter von 2 5 Jahren in Marosvásárhely. Sein Vater war S Á M U E L T E L E K I , späterer Hofkanzler von Siebenbürgen, berühmter Philologe und Begründer einer Bibliothek. Er studierte in Wien und war später bei der königlichen Gerichtstafel in Marosvásárhely tätig.

Er hatte gute Kenntnisse in der Mineralogie und besaß eine bedeutende Mineraliensammlung, die sich heute noch in der TELEKI-Bibliothek in Marosvásárhely (Tärgu Mure§, Rumänien) befindet. Er führte mehrere Reisen in verschiedene Gebiete von Ungarn, Kroatien, Böhmen und Deutschland durch. Er besuchte Professor LENZ in Jena im Herbst 1795.

Die im Dezember 1797 begründete Societät für die gesamte Mineralogie zu Jena wählte .ihn zum Präsidenten. Wegen des frühen Todes konnte er sein Amt nur weniger als 1 Jahr lang ausüben. Er schenkte Mineralien und Bücher, empfahl neue Mitglieder und berichtete über neue Entdeckungen. Sein Andenken wurde von der Societät und von dem Vater noch lange gepflegt.

1 H-1428 Budapest, Stefánia út 14., Hungary 2 Ro-4300 Tárgu Mure§, Str. Bolyai 17, Romania

165

Page 165: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

E I N L E I T U N G

D O M O K O S T E L E K I - oder nach der deutschen Schreibart D O M I N I K T E L E K I - bezeichnete sich selbst in seinen Reisebeschreibungen als einen "ungarischen adeligen jungen Mann aus Siebenbürgen". Außer diesem Buch, welches er noch zu Lebzeiten veröffentlichte ( T E L E K I 1796) und das später weitere Ausgaben hatte (1805/1993), können wir nur wenige Arbeiten finden, die seinen Lebenslauf und sein Werk beschreiben. Seine erste Biographie ist bereits im 1. Band der Annalen der Mineralogischen Societät erschienen ( S C H W A B E

1802). Verschiedene Aspekte seiner Präsidentschaft waren das Thema der Arbeiten von KONCZ(1891) , B E N E D E K (1942), CsiKY (1981, 1991) und S A L O M O N (1990). Von Zeit zu Zeit entdeckte man wieder einige Teile der Reisebeschreibungen ( S Z E R E M L E I 1942, K O R D O S 1975). In der neueren Zeit beschäftigte sich D. NAGY (1994) am ausführlichsten mit den handschriftlichen Dokumenten, die in der TELEKI-Bibliothek aufbewahrt sind. Je mehr wir seine Persönlichkeit und Lebensgeschichte aus diesen Arbeiten kennenlernen, sehen wir, daß seine Selbstdarstellung in jeder Hinsicht sehr zutreffend war.

LEBENSLAUF

Er wurde am 5. September 1773 in Sáromberke, in der Mitte des Siebenbürgischen Beckens, am Fluß Maros, unweit von der Stadt Marosvásárhely (heute: Tärgu Mure§) geboren. Siebenbürgen war damals Bestandteil der Länder der ungarischen Krone, wurde aber von den Habsburgern von dem übrigen Ungarn getrennt regiert. Die Staatsform war zunächst Fürstentum (1690-1768), später wurde sie von M A R I A T H E R E S I A in dem Rang eines Großfürstentums erhoben (1768) und blieb so bis zur Union mit Ungarn 1848.

Die Familie T E L E K I war eine alte ungarische adelige Familie, die ihren Rang und Reichtum vorwiegend dem bedeutenden Mitglied der Familie M I H Á L Y T E L E K I (1634-1690) verdankt ( T O N K 1994). Er war Kanzler von Siebenbürgen, als die Habsburger ihre Herrschaft auf Siebenbürgen ausgedehnt haben. Für seine Verdienste im Interesse des kaiserlichen Hauses erhielt er den Rang eines Grafen (1685), später wurden seine Söhne "Grafen des Heiligen Römischen Reiches" ("Sancti Romani Imperii Comes"), oder kurz: Reichsgrafen (1697).

Während des 18. Jahrhunderts entsprangen der Familie noch weitere bedeutende Persönlichkeiten, darunter der Vater von D O M O K O S , S Á M U E L T E L E K I (1739-1822). Er war ein hochstehender Beamter in der staatlichen Verwaltung, lange Zeit Kanzler von Siebenbürgen am Hof in Wien (1791-1822). Er ist auch als Philologe und Begründer der heute noch existierenden TELEKI-Bibliothek in. Marosvásárhely (1802) bekannt (DEÉ NAGY 1997).

Die Mutter war ebenfalls Gräfin, Z S U Z S A N N A B E T H L E N von I K T Á R (1754-1797). Aus ihrer Korrespondenz mit ihrem Mann kann man entnehmen, daß das Ehepaar eine musterhaft harmonische Beziehung hatte. Mit ihren Kindern waren sie sehr unglücklich. Sie hatten insgesamt 9 Kinder, davon starben 6 frühzeitig. D O M O K O S war das dritte Kind, und selbst er starb in seiner Jugend, im Alter von 25 Jahren. In dieser Beziehung kommt er für uns schon für immer als ein "junger Mann" vor, der aber in dieser kurzen Zeit ein wertvolles Leben geführt hat.

Beide Eltern und damit auch D O M O K O S gehörten der protestantischen Religion an (helvetisches Bekenntnis). Trotz der starken pro-katholischen Politik der Habsburger

166

Page 166: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

bestimmte diese Richtung die Kultur von Siebenbürgen durch ihre Tradition, Schulen und die ihr angehörenden gebildeten Menschen noch immer sehr stark.

D O M O K O S erhielt eine gute Ausbildung unter der Leitung von einigen ausgezeichneten Erzieher, wie z. B . M A R T I N L I E B T A G und M I H Á L Y B E N K E . Die Sprachen Deutsch, Französisch und Latein lernte er schon ganz früh. In der Bibliothek sind die schönen Übungshefte des kleinen Jungen erhalten geblieben, in welche er die Schulaufgaben in französischer und deutscher Sprache geschrieben hat.

Er besuchte die öffentliche Grundschule des Reformierten Kollegiums in Marosvásárhely (1781-83), später blieb er wegen der Gefahr einer Epidemie zu Hause und erhielt Privatunterricht in Sáromberke (1783-85). Danach folgte er den wechselnden Dienststellen des Vaters, er ging mit ihm zunächst nach Várad (1785-87) und dann nach Wien (1787).

Auch die Konfirmation erhielt er 1788 in Wien in der reformierten Kirche der großen katholischen Stadt. Er war anscheinend auf eine natürliche und selbstverständliche Weise gläubig. Trotz seines naturwissenschaftlichen Interesses war bei ihm von den antireligiösen Zügen der Aufklärung noch nichts zu spüren. Man findet in seinem Nachlaß handschriftliche Aufzeichnungen über religiöse Themen, z. B. über den richtigen Religionsunterricht. Er schrieb moralische Regeln für die Jugend. Auf seinem Gut in Sáromberke leitete er eine bedeutende Schulreform ein (1794).

Er fing seine Studien in 1789 an der Universität Wien an und schloß sie mit 20 Jahren 1793 ab. Er studierte sehr verschiedene Gegenstände, wie Geschichte, Philosophie, Recht, Ästhetik, Philologie, Mathematik, Physik (bei Prof. A M B S C H E L L ) und Naturgeschichte (bei Prof. J O S E P H M A Y E R ) . Während der Studien blieb die gute Beziehung mit dem ebenfalls meist in Wien weilenden Vater erhalten. So schrieb S Á M U E L T E L E K I der Mutter in 1791 nach Hause: "DOMOKOS kommt manchmal in mein Zimmer" ... um sich bei mir auszuruhen oder einfach ein Buch zu lesen.

Noch während des Studiums wurde er in die adelige Garde an dem königlichen Hof aufgenommen (1792-93). Er leistete z. B. Dienst in der Ehrengarde bei der Beerdigung des verstorbenen Kaisers L E O P O L D I I in 1792.

Es war auch der Wunsch des Vaters, daß er nach dem Abschluß der Studien in den öffentlichen Dienst tritt. Er wollte aber nicht länger in Wien bleiben und entschied sich in sein Heimatland zurückzukehren. Wie er seinem Vater schrieb: (außerhalb Siebenbürgen) "... müßte ich eben das vermissen, war das Fundament meines Lebens ist". Er führte weitere Rechtsstudien und Praktika in Pest und Várad (1793-95). Später würde er zum kaiserlichen und königlichen Kammerherrn (1796) und Assessor der königlichen siebenbürgischen Gerichtstafel in Marosvásárhely (1797) ernannt.

Zu der eigentlichen erdwissenschaftlichen und mineralogischen Ausbildung trugen besonders jene Studienreisen bei, die er während dieser Zeit, nach dem Abschluß der Universität in Wien, nach Oberungarn (die heutige Slowakei), ins östliche Siebenbürgen, in die große Tiefebene, sowie nach Kroatien und Triest unternahm (1793-95). Neben den geographischen und bergbaukundlichen Studien zeichnete er auch viele historische, wirtschaftliche und verfassungsrechtliche Angaben auf. Die letzte größere Reise führte im Herbst 1795 noch weiter über die Grenzen des Heimatlandes, nach Karlsbad, Sachsen und Prag. Auf dieser Reise besuchte er den damals schon berühmten Mineralogen Professor L E N Z in Jena. Dieses Treffen war entscheidend für die weiteren Beziehungen mit der später 1797 von L E N Z begründeten Mineralogischen Societät.

Trotz der erfolgreichen Studien, interessanten Reisen und der vielen Auszeichnungen brachten ihm diese Jahre auch viele Schwierigkeiten. Seine Gesundheit war immer

167

Page 167: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

schwach, die genaue Art der Krankheit ist heute schon schwer zu beurteilen. Man hoffte, daß er durch die Reisen, die immer in Begleitung eines jungen Arztes verliefen, gestärkt wird, aber selbst eine Kur in Karlsbad und später in Borszék in den Ostkarpathen brachten nicht die gewünschte Besserung. Auch die Heiratspläne scheiterten zunächst: zwei Mädchen (beide mit dem Namen A N N A ) , die er heiraten wollte, gaben ihm einen Korb. Im Oktober 1797 starb die Mutter, mit der er eine sehr enge Beziehung hatte. Die Bestattung verlief in Marosvásárhely und Sáromberke mit großer Pracht, der in Wien weilende Vater war aber nicht anwesend.

Den Winter 1797/98 verbrachte D O M O K O S wieder in Wien. Hier erfuhr er die Wahl zum Präsidenten der Jenaer Mineralogischen Gesellschaft und hat bereits die ersten Maßnahmen in seinem neuen Amt getroffen. Das Jahr 1798 brachte ihm auch in anderen Bereichen Erfolge. Im März kehrte er wieder nach Sáromberke und Marosvásárhely zurück. Er übernahm die Leitung eines Teiles des väterlichen Grundbesitzes. Er schloß sich immer stärker einer anderen wissenschaftlichen Gesellschaft in Marosvásárhely an, deren Ziel die Pflege der ungarischen Sprache in Siebenbürgen war. Der neue Frühling gab ihm auch die Hoffnung auf ein glückliches Familienleben: immer häufiger besuchte er in einem Nachbarort eine weite Verwandte, die ebenfalls ANNA hieß, die damals noch 15 Jahre alte A N N A T E L E K I . "Ich fuhr oft nach Sárpatak, und nicht ohne Grund..." - schrieb er in sein Tagebuch. Noch im Sommer, am 19. Juli 1798 wurde die Verlobung in Sárpatak gehalten.

Diese schöne Periode des Aufschwungs und der Hoffnung wurde durch seinen Tod am 16. September 1798 in Marosvásárhely jäh beendet. Nach einer ebenfalls feierlichen Zeremonie und einer Gedenkpredigt des befreundeten Pfarrers J Á N O S A N T A L wurde er in der Familienkrypta in Sáromberke neben den 5 Geschwistern und der Mutter begraben. Wie es in der lateinischen Inschrift auf dem Grabstein steht, er starb - "IN MEDIO AD REIPUBLICAE SPEM CURRJCULO" - "inmitten eines, für die Gemeinschaft hoffnungsvollen Lebenslaufs".

DIE STUDIENREISEN

Nach kurzer Schilderung des allgemeinen Lebenslaufs von D O M O K O S T E L E K I wollen wir uns noch mit drei Fragen etwas näher beschäftigen. Davon ist die erste Frage die Bedeutung der Studienreisen der Periode 1793-95 in seiner geowissenschaftlichen und mineralogischen Ausbildung.

Während der Reisen hatte er die Möglichkeit, verschiedene damals schon existierende mineralogische Sammlungen zu besuchen. In dem Reformierten Kollegium von Sárospatak gab es schon eine bedeutende Sammlung des Physik-Professors D Á V I D S Z A B Ó

von B A R C Z A F A L V A , in dem Kupferbergwerk von Szomolnok (Schmölnitz) die Sammlung von einem bestimmten "Konzil D." und in Pécs eine noch kleine Sammlung in der katholischen bischöflichen Residenz. Mit großer Begeisterung beschreibt er,,die damalige Hauptstadt des ungarischen Bergbauwesens, Selmec (Schemnitz), wo der Sitz des "Kammergrafen", die zentrale Bergbauadministration und die im Jahre 1735 begründete, berühmte Bergschule, die zu der Zeit des Besuchs (seit 1763) schon Bergakademie war. In Deutschland konnte er selbstverständlich noch weitere bedeutende Sammlungen (Jena, Dresden usw.) besichtigen. .

Sein Buch beschreibt viele damals schon bekannte Mineralien-Fundstellen, wie - Achat, Chalcedon, Opal, "ochre" in dem Eperjes-Tokaj-Gebirge,

168

Page 168: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

- Kupfer-, Eisen-, Gold-, Antimon-Vererzung, Zinnober, "Marmor" in dem Zips-Gömörer Erzgebirge,

- Tropfstein- und Eishöhlen in dem Karstgebiet von Szilice-Aggtelek, - Gold- und Silbererze, Thermalquellen mit Travertin in den Kremnitzer und

Schemnitzer Gebirgen. In dem ost-siebenbürgischen Hargita-Bodoker Gebirgszug führte die Exkursion zu den

berühmten Stätten der postvulkanischer Tätigkeit mit Solfataren und Schwefel-Ausscheidungen. In dem Banat (Dognácska, Oravica usw.) war er in den Bergwerken mit Kupfer-, Eisen- und Zinnerzen.

Besonders interessant ist die Beschreibung des Hafens von Triest, wo der gesamte überseeische Erzhandel der Monarchie (vor allem Eisenerz, Kohle, Salz und Quecksilber für Goldgewinnung nach dem Born-Verfahren) vor sich ging. Hier beschrieb er auch die Salzgewinnung aus dem Meerwasser.

Der junge Mann wurde wegen seiner gesellschaftlichen Stellung überall auf hoher Ebene, von fuhrenden Beamten, Bergbauräten, Direktoren, Bischöfen usw. empfangen. Er erhielt ausfuhrliche und zuverlässige Auskünfte, die er fleißig aufgezeichnet hat. Die Notizen wurden in Wien, 1796, in ungarischer Sprache herausgegeben. Das Buch wurde der gelehrten Gesellschaft in Marosvásárhely gewidmet. Später, 1805 in Pest erschien auch die deutsche Übersetzung des Buches mit kleineren Überarbeitungen.

DIE MINERALIENSAMMLUNG

Der junge D O M O K O S soll gründliche Studien in der Mineralogie geführt haben. Man kann beweisen, daß das Buch von KÖLESÉRI, S.: Auraria Romano-Dacica (2. Auflage, 1780) schon 1 7 8 2 im Besitz des damals noch 8 Jahre alten D O M O K O S war. Zu seiner persönlichen Bibliothek gehörten die ersten ungarischen Mineralogie-Bücher von BENKŐ (1786) und ZAY (1791). In der Bibliothek des Vaters waren die ersten mineralogischen Beschreibungen von Siebenbürgen, wie BORN (1722), FlCHTEL (1780 und 1791) und die systematischen Werke von CRONSTEDT (1790), LINNÉ (1777), LENZ usw. vorhanden.

Ein weiteres Zeichen des mineralogischen Interesses ist seine Mineraliensammlung. In den Reisebeschreibungen werden nur zwei Fälle erwähnt, wo er Proben gesammelt hat, Achat und Chalcedon am Ősz-hegy bei Tállya und Opal bei Cservenica - Veresvágás, beide sind heute noch wichtige Lokalitäten. Man kann aber annehmen, daß er auch in anderen Bergwerken gesammelt hat und vielleicht vieles auch gekauft hat.

In seinem handschriftlichen Nachlaß sind Dokumente erhalten, die auf eine eigene mineralogische Sammlung hinweisen. Es gibt ein eigenhändig geschriebenes "Verzeichnis meiner Mineraliensammlung", in ungarischer Sprache, welches er in Wien, nach 1791 und vor 1797 geschrieben haben soll. In diesem Verzeichnis werden die Minerale nach den Systemen von BENKŐ und ZA Y geordnet, Beschreibung, Fundort, Standortnummer werden bei jedem Mineral angegeben. Eine andere Liste mit dem Titel "Erden und Steine", in deutscher und ungarischer Sprache zählt 1997 Stücke.

Im Jahre 1 7 9 7 war Wien von dem erfolgreichen norditalienischen Feldzug N A P O L E O N S

gefährdet. Um eine eventuelle Vernichtung oder Beschlagnahme zu vermeiden, überführte der Vater seine wertvollen Bücher und damit zusammen auch die Mineraliensammlung des D O M O K O S von Wien über Pest und Debrecen nach Marosvásárhely (Briefwechsel der Eltern in April-Mai 1 7 9 7 ) . Hier kam alles sicher an und wurde in dem neu aufgebauten Bibliotheksgebäude untergebracht.

169

Page 169: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

DOMOKOS hat bereits 1798 drei Stücke Amazonit, Opal und Marmor der gelehrten Gesellschaft in Marosvásárhely geschenkt.

Nach dem Tode D O M O K O S übernahm der Vater die Sorge um den Nachlaß des Sohnes und darunter um die Mineralien. In der TELEKL-Bibliothek zeigen interessante Dokumente die weitere Geschichte der Sammlung:

Man findet die Rechnung des Tischlers über die Herstellung der 10 Schaukästen (im Jahre 1800). Die Sammlung ist noch immer in denselben Schaukästen an derselben Stelle in der Galerie des großen Bibliothekssaals untergebracht. Die Mineraliensammlung wird immer ausdrücklich zusammen mit den Büchern erwähnt, so z. B. in den Regeln der Bibliothek (1798) und in den Testamenten des Vaters S Á M U E L T E L E K I (1800 und 1811). Die ersten Bibliothekare, P Á L O C S O V S Z K I (1792) und J Á N O S SZÁSZ (1810) führten mineralogische Studien in Jena durch.

Weitere handschriftliche Listen zeigen die Erweiterung und Umordnung bis Mitte des 1 9 . Jahrhunderts ( S Z A K Á L L , P A P P 1 9 9 4 ) .

Heute ist die Sammlung noch immer in einem ungestörten aber vernachlässigten Zustand. Eine Revision und zugleich eine historische Auswertung wären sehr erforderlich.

DIE BEZIEHUNGEN MIT JENA

Die Beziehungen von D O M O K O S T E L E K I mit Jena, die zur Wahl zum Präsidenten der Gesellschaft geführt haben, wurden durch seinen persönlichen Besuch im Jahre 1795 begründet. Die Reise nach Deutschland führte von Wien aus über Karlsbad - Dresden -Leipzig - Jena - Coburg - Bayreuth - Eger - Prag und zurück nach Wien. Er fuhr mit seinem Begleiter am 9. Juli ab und kam am 9. November 1795 wieder zurück. In Jena soll er sich um Ende September, Anfang Oktober 1795, höchstens einige Wochen lang aufgehalten haben.

Jena war schon seit Jahrhunderten ein bevorzugter Studienort der ungarischen Jugend, vorwiegend aus den evangelischen Gebieten des Landes ( M O K O S 1 8 9 0 ) . Ihrer nationalen Herkunft nach waren die Studenten meist Deutsche, Slowaken und Ungarn. In dem 18. Jahrhundert kamen immer mehr Studenten, die sich für das Bergbauwesen und damit auch für die Mineralogie interessierten. Professor L E N Z hatte ein besonders freundschaftliches Verhältnis mit den ungarischen Studenten ( S A L O M O N 1 9 9 0 ) . Damit ist zu erklären, daß die ungarische Beteiligung an der Gründung und der Tätigkeit der Societät recht bedeutend war. Bereits unter den 1 9 Begründern der Societät waren 3 Ungarn: S Á M U E L B R E D E C Z K Y ,

S Á M U E L N A G Y und D Á N I E L M I H A L I K . B R E D E C Z K Y wurde zum "Secretär ungarischer Nation" gewählt. Insgesamt hatte die Societät mehr als 200 ungarische Mitglieder, darunter z. B. die Autoren der beiden ersten ungarischen Mineralogie-Bücher, F E R E N C

B E N K Ö und S Á M U E L Z A Y . Diese Mitgliedschaft und die engen Beziehungen waren für die Entwicklung der mineralogischen Kenntnisse in Ungarn sehr günstig. "Jena hat Ungarn viele brave Gelehrte gegeben" - schrieb später B R E D E C Z K Y an Professor L E N Z .

Die Nachricht von der Wahl zum Präsidenten der Societät erhielt D O M O K O S T E L E K I in Wien. Er war überrascht und wollte den Auftrag nach der ersten Nachricht von Professor L E N Z erst ablehnen. Erst nach dem Empfang eines feierlichen Diploms am 1 2 . Januar 1798 entschloß er sich, das Amt anzunehmen. "Ich weiß nicht einmal, was meine Aufgabe sein wird" - schrieb er darüber in einem Brief seinem Freund, dem Pastor J Á N O S A N T A L

nach Marosvásárhely (veröffentlicht von K O N C Z 1891). In seinem Brief an Professor L E N Z

und an die Mitglieder warnte er vor allzu großen Erwartungen in finanzieller als auch in

170

Page 170: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

wissenschaftlicher Hinsicht. Er schrieb, er sei nicht sehr reich und sie müßten sich dessen bewußt sein, "... daß ich zwar ein großer Verehrer der Gelehrten, selbst aber kein Gelehrter bin." Er wollte aber seinen Aufgaben mit allem Ernst nachgehen. Er wollte seine Meinung in den Angelegenheiten der Societät äußern, bat um das Statut der Societät und um einen monatlichen Bericht über die wichtigsten mineralogischen Entdeckungen. Bald schickte er Mineralien an die Societät, die in Ordnung in Jena angekommen sind, wie es aus einem Brief von L E N Z an G O E T H E hervorgeht ( S A L O M O N 1990). Er hat mehrere ungarische Wissenschaftler und Sammler als korrespondierendes Mitglied und als auswärtiges Ehrenmitglied empfohlen, die meist von der Societät angenommen wurden.

Die jenaische Societät benutzte seine Unterschrift in den amtlichen Schriften während seiner Amtszeit. Ein Beispiel dafiir ist das Diplom für S Á M U E L Z A Y von der Wahl zum korrespondierenden Mitglied. Dieses Diplom wurde am 2. Juni 1798 ausgegeben und wurde neben dem "Director" L E N Z und dem "Secretair" N A G Y an erster Stelle von dem "Präsidenten ", dem "Reichsgraf DOMINIK TELEKI von SIEK" unterzeichnet.

Die Societät pflegte auch nach dem Tode das Andenken seines ersten Präsidenten. Die Biographie von D O M O K O S T E L E K I wurde von J O H A N N F R I E D R I C H H E I N R I C H S C H W A B E

geschrieben und erschien in dem 1. Band der Annalen der Societät (1802), auch als selbständige Ausgabe in Jena und in der deutschsprachiger Ausgabe der Reisebeschreibungen in Pest (1805). L E N Z widmete ihm sein neues Buch (1798). Der Band 1 der Annalen wurde dem Vater S Á M U E L T E L E K I gewidmet und er wurde zum Ehrenmitglied der Societät gewählt (1802). Er hat weitere Mineralien und, auf Wunsch von Professor LENZ, Bildnisse von D O M O K O S und von sich selbst der Societät geschenkt. Die Bildnisse wurden in der mineralogischen Sammlung aufgehängt.

SCHLUßBEMERKUNGEN

Bei der Auswahl D O M O K O S T E L E K I S zum Präsidenten spielte seine aristokratische Herkunft ohne Zweifel eine wesentliche Rolle. Die neu begründete Gesellschaft brauchte einen Reichsgrafen an ihrer Spitze, der die gesellschaftliche Anerkennung garantierte. Er hat aber diese Anerkennung durch seine moralischen Eigenschaften, seine Verpflichtung gegenüber der'Sache der Societät und nicht zuletzt durch seine Fachkenntnisse weitgehend verdient.

Die Betrachtung dieser romantischen Lebensgeschichte aus einer klassischen, höflichen und doch konstruktiven Periode der Geschichte wollen wir mit den Gedanken eines späteren Besuchers in Jena, des Studenten J Á N O S M A G Y A R O S I T Ő K É S beenden. Er berichtet im Jahre 1807, wie stark er berührt war, als er in Begleitung von Professor LENZ in das "Mineralienkabinett" eingetreten ist, und dort die Bildnisse von diesen beiden "glänzenden Persönlichkeiten der Nation", D O M O K O S und S Á M U E L T E L E K I angeschaut hat. Er fühlte Dank einerseits für ihre Leistung im Interesse der Wissenschaft und andererseits für deren Anerkennung von der Jenaer gelehrten Gesellschaft, und wünschte:

"Es sei Dank Dir, meine Nation und denen, die die Wissenschaften so schätzen ".

1 7 1

Page 171: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

LITERATUR

BENEDEK, K. (1942): A jénai Ásványtani Társaság magyar tagjai. Levelek a magyar felújulás szellemi életének történetéhez (Ungarische Mitglieder der Jenaer Mineralogischen Societät. Briefe zur Geschichte des geistlichen Lebens der ungarischen Erneuerung). Minerva Társaság, Budapest, (ungarisch)

CSÍKY, G. (1981): A magyar természetvizsgálók szerepe a jénai "Mineralogische Societät" működésében és ennek hatása a hazai földtudomány kialakulására (Adatok a magyar ásványtan történetéhez). (The role of Hungárián naturalists in the activity of the "Mineralogische Societät" of Jena and its effect on the development of geological sciences in Hungary. Data for history of Hungárián mineralogy). Földt. Közi. (Bull. Hung. Geol. Soc.) 111, 2, 338-349. (ungarisch mit engl. Resümee)

CSÍKY, G. (1991): The role of Hungárián naturalists in the establishment and Operation of the "Mineralogische Societät" in Jena, including its influence on the development of the earth sciences in Hungary. In Vitális, Gy., Kecskeméti, T. (ed.): Museums and collections in the history of mineralogy, geology and paleontology in Hungary 27-36. Hungárián Geological Survey, Hungárián Geological Society, Budapest.

D. NAGY, A. (1994): IQú gróf Teleki Domokos (Der junge Graf Domokos Teleki). Erdélyi Múzeum 56, 1-2, 25-50. Erdélyi Múzeum-Egyesület, Kolozsvár (Siebenbürgischer Musealverein, Cluj-Napoca). (ungarisch)

DEÉ NAGY, A. (1997): A könyvtáralapító Teleki Sámuel (Sámuel Teleki, der Begründer der Bibliothek). Erdélyi Múzeum-Egyesület, Kolozsvár. (Siebenbürgischer Musealverein, Cluj-Napoca). (ungarisch)

KONCZ, J. (1891): Hogy lett ifj. gróf Teleki Domokos a jénai Ásványtani Társulat elnökévé? (Wie wurde der junge Graf Domokos Teleki Präsident der Jenaer Mineralogischen Societät?). Irodalomtörténeti Közlemények 1, 219-221. Budapest, (ungarisch)

KORDOS, L. (1975): Ritka és ismeretlen barlangi leírások a Hermán Ottó Múzeum könyvtárában (Seltene und unbekannte Höhlenbeschreibungen aus der Bibliothek des Hermán Ottó Museums, Miskolc). A Miskolci Hermán Ottó Múzeum Közleményei (Mitteilungen des Hermán Ottó Museums, Miskolc) 14, 117-125. (ungarisch)

LENZ, J. G. (1798): Mineralogisches Taschenbuch für Anfänger und Liebhaber. Erstes Büchlein. Die mineralogisch einfachen Mineralien. In der Henningsschen Buchhandlung, Erfurt.

MOKOS, GY. (1890): Magyarországi tanulók a jénai egyetemen (Studenten aus Ungarn an der Universität Jena). Magyarországi tanulók külföldön I. (szerkeszti Ábel Jenő). (Studenten aus Ungarn im Ausland I, redigiert von Jenő Ábel) MTA (Ungarische Akademie der Wissenschaften), Budapest, (ungarisch)

SALOMON, J. (1990): Die Sozietät für die gesamte Mineralogie zu Jena unter Goethe und Johann Georg Lenz. Mitteldeutsche Forschungen 98. Böhlau Verlag, Köln, Wien.

SCHWABE, J. F. H. (1802): Leben und Charakter des Herrn Reichsgrafen Dominik Teleki von Szék, ersten Präsidenten der Societät für die gesamte Mineralogie zu Jena. Annalen der Sozietät für die gesamte Mineralogie zu Jena Bd. 1, hrsg. von J. G. Lenz und J. F. H. Schwabe, Jena, 345-362.

[SCHWABE, J. F. H.] (1805): Kurze Lebensbeschreibung des Hrn. Reichsgrafen Dominik Teleki von Szék. Aus den Annalen der Societät für die gesamte Mineralogie zu Jena (deren erster Präsident er war) I. Theil, S. 345-362. In Teleki, D. 1805: 9-18.

SZAKÁLL, S., PAPP, G. (1994): Áttekintés a történelmi Magyarország múzeumainak földtudományi gyűjteményeiről (Überischt der geowissenschaftlichen Sammlungen in den Museen des historischen Ungarns). In Kecskeméti T., Papp G. (szerk., Red ): Földünk hazai kincsesházai. Tanulmányok a magyarországi földtudományi gyűjtemények történetéről (Einheimische Schatzkammer unserer Erde. Studien über die Geschichte der geowissenschaftlichen Sammlungen in Ungarn). Studia naturalia 4. 405-408. Magyar Természettudományi Múzeum (Ungarisches Naturwissenschaftliches Museum), Budapest, (ungarisch)

SZEREMLEI, L. (ed.) (1942): Hazai utazók Erdélyben. Csokonai, Kisfaludy S., Teleki Domokos, ... és mások útirajzai. Molter Károly előszavával (Einheimische Reisende in Siebenbürgen. Reiseskizzen von Csokonai, S. Kisfaludy, Domokos Teleki, ... und anderen. Mit einem Vorwort von Károly Molter). Lepage Lajos Könyvkereskedés (Buchhandlung Lepage Lajos), Kolozsvár, (ungarisch)

[TELEKI, D.] (1796): Egynehány hazai utazások' le-írása Tót és Horváth országoknak rövid esmértetésével egygyütt, ki adatott G. T. D. által (Beschreibung einiger einheimischen Reisen mit einer kurzen Darstellung von Slawonien und Kroatien, ausgegeben von G. T. D.). Bécs (Wien), (ungarisch)

TELEKI, D. (1805): Reisen durch Ungern und einige angränzende Länder. Bei Konrad Adolph Hartleben, Pesth. TELEKI, D. (1993): Egynehány hazai utazások leírása (Beschreibung einiger einheimischen Reisen). Régi

Magyar Könyvtár. Források (Altungarische Bibliothek, Quellen) 3. Balassi Kiadó, Budapest, (ungarisch, referiert von 1. Viczián in Földt. Közl. (Mitt. der Ung. Geol. Ges.) 1995, 12S, 3-4, 461-463.)

172

Page 172: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

TONK, S. (1994): A Telekiek Erdély történetében (Die Familie Teleki in der Geschichte von Siebenbürgen). In Sáromberke 1319-1994. 165-177. Sáromberki Református Egyházközség. Református Egyház Misztótfalusi Sajtóközpont, (Kolozsvár). (Reformierte Kirchengemeinde Sáromberke. Misztótfalusi Pressezentrum der Reformierten Kirche, Cluj-Napoca). (ungarisch)

R E M A R K S O F T H E E D I T O R :

This paper was presented at the Jubilee Meeting held on the 200"1 anniversary of the foundation of the Jena Mineralogical Society, 6lh June 1997, in Jena, Germany.

Because the subject is closely related to Germany, this paper has been published exceptionally in German language with an English abstract.

Manuscript received 31 October, 1997

173

Page 173: ACTA MINERALOGICA-PETROGRAPHICAdigit.bibl.u-szeged.hu/00100/00156/00050/mineralogica_038.pdf · crystal. Thi calculatios resulten i and somewha lowet Rr valu ane smalled standarr

Illustrations

Figures should be used only where they are essential to elucidate text. The illustrations should be numbered according to their sequence in the text, and in the text

references should be made to each figure. All illustrations should be given separately, not stuck on sheets and not folded. The number of the

figure and the authors name should be noted on the reverse side of the photographs and on the lower frontside of drawings, indicating at the same time the top of the figure where it necessary.

Captions for all figures should be given typewritten on a separate list at the end of the manuscript. Drawn text in the figures should be kept to a minimum.

Drawings should be made on tracing paper by Indian ink. The thickness of the lines and the size of the lettering should enough to allow a necessary reduction.

Photographs of good contract and intensity on glossy paper are only acceptable. Colour photographs or drawings cannot be accepted.

Use bar scale on all illustrations instead of numerical scales that must be changed if reductions are necessary.

References

All references to publications made in the text should be made by quoting the author's name (without initials) and year of publications in paranthesis.

The list of references at the end of the manuscript should be arranged alphabetically by author's names and chronologically per author.

If the referred publications are written by more than two authors, in the text only the name of the first author should be indicated, the other co-authors are denoted by "et al.", however, in the list of references the names of authors and all co-authors should be mentioned.

In the list of references all references should be written, e. g. Balogh, K., A. Barabás (1972): The Carboniferous and Permian of Hungary. Acta Miner. Petr. Szeged, XX/2, 191-207.

At references to books beside the author's name, year of publicaton, title and the publishing house should also be mentioned.

In the case of references for symposium volumes, special issues or multi-authors books, the following system should be used: Roser, B. P., C. W. Childs, and G. P. Glasby (1980): Manganese in New Zealand. In: I. M. Varentsov and Gy. Grassely (Editors): Geology and Geochemistry of Manganese, Vol. II. Akadémiai Kiadó, Budapest, 199-211.

Manuscripts that are not adequately prepared will be returned to the authors(s).


Recommended