+ All Categories
Home > Documents > ANOOP NAIR and G. S. VISWESWARANsmdpc2sd.gov.in/downloads/Other Materials/class_D_Amplifier.pdf ·...

ANOOP NAIR and G. S. VISWESWARANsmdpc2sd.gov.in/downloads/Other Materials/class_D_Amplifier.pdf ·...

Date post: 30-May-2020
Category:
Upload: others
View: 17 times
Download: 7 times
Share this document with a friend
44
Low Power, Low Noise, Rail to Rail Fully Differential Amplifier for Class D Application ANOOP NAIR and G. S. VISWESWARAN
Transcript

Low Power, Low Noise, Rail to Rail Fully Differential Amplifier for

Class D Application

ANOOP NAIR and

G. S. VISWESWARAN

10/20/11 IEP2011 2

Agenda of Presentation

¡  Motivation ¡  Specification ¡  Preamplifier Design Issues ¡  Architectural Description ¡  Schematic Simulation Results ¡  Layout ¡  Post Layout Simulations ¡  Conclusion

10/20/11 IEP2011 3

Motivation

¡  Audio amplifiers work in audio range and idea is reinforcement of signal

¡  Linear amplifiers have low efficiency and low distortion switching amplifiers have high efficiency and distortion

¡  Even a switching amplifier requires a preamplifier to strengthen weak audio signals

¡  Preamplifier necessarily has to be a linear amplifier with l  Low Noise l  High Gain l  Low Power

10/20/11 IEP2011 4

Specifications

Electrical Parameter Target Specifications

Supply current at 3.6 V ≤ 200 uA

Open loop gain ≥ 110 dB Unity gain bandwidth ≥ 8 MHz

PSRR at 217 Hz ≥ 88 dB Noise ≤ 10 uV

Phase margin for 2 pf load capacitance

≥ 65 deg

Common mode phase margin ≥ 65 deg

Input common-mode range Rail-to-Rail

10/20/11 IEP2011 5

Technology Details

Technology Node 0.5µm

Operating Voltage 3.6/5V Oxide Thickness 12.4nm Gate Oxide Capacitance 2.78e-3 F/m2 Poly resistor value 61.35 ohms / square Poly / Metal Layers 2P 4M Substrate / well formation P-sub, twin-well Poly Pitch 0.4µm

Metal Pitch 0.5 µm for ME1 0.5 µm for ME2 and ME3 0.6 µm for Top Metal

10/20/11 IEP2011 6

Technology Details contd…

Parameter NMOS PMOS

µo, mobility (cm2/(V·s)) 429.3 186.6

Vth threshold voltage (V) 0.765 -0.868

γ, body effect parameter (V1/2)

0.667 0.667

10/20/11 IEP2011 7

Requirement for Preamplifier

¡  Low Power ¡  High Gain ¡  Low Noise ¡  High PSRR and CMRR ¡  Rail to Rail ICMR

10/20/11 IEP2011 8

Requirement for Preamplifier

¡  Low Power l  Low quiescent current l  Distortion must also be

less l  Class AB output stage

used ¡  High Gain ¡  Low Noise ¡  High PSRR and CMRR ¡  Rail to Rail ICMR

10/20/11 IEP2011 9

Requirement for Preamplifier

¡  Low Power ¡  High Gain ¡  Low Noise ¡  High PSRR and

CMRR ¡  Rail to Rail ICMR

l  Fully Differential Stage l  Cancels common mode

noise l  Requires additional

CMFB circuitry l  Increases power

consumption

10/20/11 IEP2011 10

Requirement for Preamplifier

¡  Low Power ¡  High Gain ¡  Low Noise ¡  High PSRR and CMRR ¡  Rail to Rail ICMR

l  Single amplifier not sufficient, extra circuitry to extend ICMR

l  Area overhead l  Power consumption increases l  Constant gain considerations

¡  THD ¡  Amplifier compensation

10/20/11 IEP2011 11

Rail to Rail Structures- I

¡  By varying power supply for a P input amplifier

¡  Supply can be extended to compensate for VGS+ VDS drop

¡  Requires Charge Pump to raise supply

10/20/11 IEP2011 12

Rail to Rail Structures - II

¡  Use of Complementary Input stages ¡  Bias currents to input stages is varied by

sensing change in common mode voltage

Current Spillover control

Constant sum of root of tail currents

10/20/11 IEP2011 13

Constant sum of root of tail current

Power consumption is lesser but gm variation is high, which will result in high distortion

10/20/11 IEP2011 14

Current Spillover Control

Although gm variation is not much, power consumption is too high

10/20/11 IEP2011 15

Rail to Rail Structures - III

¡  Use of Complementary Input stages ¡  Instead of bias currents, current to output stage is

kept constant

10/20/11 IEP2011 16

Rail to Rail Structures – III contd..

¡  I1 and I2 are input currents

¡  Iout = Max (I1, I2)

Reference: C.C. Hung, K. Halonen, V. Porra, and M. Ismail, “Low Voltage CMOS GM-C Filter with Rail to Rail Common Mode Voltage, ” IEEE symposium of Circuits and Systems, vol. 2, pp 921-924, Aug 1996.

10/20/11 IEP2011 17

Architecture

¡  Amplifier divided into five sub-blocks l  Bias Generation l  Input Stage l  Maximum Current Selector Circuit l  Output Stage l  CMFB

10/20/11 IEP2011 18

In_n In_p

Out_1 Out_2

Vcm

vgp21 vgp11

vgn_1

vgn_2

vgp_1

vgp_2

vbias1 vbias2 vncas vpcas vbias3 vbias4 Ibias

vcmfb

Output Stage

CMFB

Max. Current Select

Bias Generation PTAT

P_INPUT N_INPUT

pwrp pwrn csd

10/20/11 IEP2011 19

Schematic Simulation Results

Specifications Vdd = 3.6 V, CL=3pF

3.3V, Slow, 800C 3.6V, Typical, 270C 3.9V, Fast, -400C

PM (deg) 50-65 51-65 47-63

UGB (MHz) 2.05-3.08 2.65-3.9 3.4-5

Gain (dB) 111-112.5 113-115 114-116

Current (µA) 189-236 119-247 215-266

Noise (µV) 9.52 8.19 7.37

PSRR@217Hz 79.7-82 81.9-84.4 84.1-86.3

RZ = 5KΩ CMILLER = 4pF

10/20/11 IEP2011 20

Schematic Simulation Results

Specifications

Vdd = 2.6V , CL=3pF

Slow, 800C Typical, 270C Fast, -400C

PM (deg) 50.5-60 47-58 45-57

UGB (MHz) 2-2.5 2.6-3.2 3.3-4

Gain (dB) 109-110 111.5-113 113-114.5

Current (µA) 172-224 180-228 197-240

Noise (µV) 9.7 8.25 6.82

PSRR@217Hz 80.2-81.1 82.7-84.1 85.1-86

10/20/11 IEP2011 21

Schematic Simulation Results

Specifications Vdd = 5.5V , CL=3pF

Slow, 800C Typical, 270C Fast, -400C

PM (deg) 56-72 55-78 51-73

UGB (MHz) 1.8-2.8 2.2-3.7 2.5-4.9

Gain (dB) 115-117 117-120 119-123

Current (µA) 205-268 223-310 255-368

Noise (µV) 9.25 7.73 6

PSRR@217Hz 77-82 82.8-84.2 86.4-85.2

10/20/11 IEP2011 22

Layout

10/20/11 IEP2011 23

Pin-out

¡  Standard 8- pin SOIC ¡  IN+ IN- - inputs ¡  OUT+ OUT- - outputs ¡  VBG - bandgap

reference voltage ¡  CSD - shut down

10/20/11 IEP2011 24

Post Layout Simulations

Specifications Vdd = 3.6V, Vcm = 2.5V , CL=1pF

Slow, 800C Typical, 270C Fast, -400C

PM (deg) 55.8(65) 47.2(57.9) 69(82)

UGB (MHz) 3.6(3.95) 4.6(5.1) 4(3.5)

Gain (dB) 114(113.7) 114.6(113.8) 116.5(115.5)

Current (µA) 220(242) 240(261) 245(283)

Noise (µV) 12.1(10.4) 10.1(8.99) 8.7(8)

PSRR@217Hz 82.3(82.1) 84.7(84.44) 83.9(83.4)

RZ = 8KΩ CMILLER = 4pF

10/20/11 IEP2011 25

Post Layout Simulations

Specifications Vdd = 2.6V, Vcm = 2.5V , CL=1pF

Slow, 800C Typical, 270C Fast, -400C

PM (deg) 52.6 48.3 45.3

UGB (MHz) 2.74 3.4 4.2

Gain (dB) 112.5 113 113.6

Current (µA) 180 192 200

Noise (µV) 12.4 10.5 8.4

PSRR@217Hz 81.98 83.85 85.75

10/20/11 IEP2011 26

Post Layout Simulations

Specifications Vdd = 5.5V, Vcm = 2.5V , CL=1pF

Slow, 800C Typical, 270C Fast, -400C

PM (deg) 64.3 60.5 56.7

UGB (MHz) 2.8 3.5 4.5

Gain (dB) 121.9 124 127

Current (µA) 256 276 300

Noise (µV) 10.5 9.14 6.8

PSRR@217Hz 82.11 84.12 86.7

10/20/11 IEP2011 27

Gain and Phase plot

10/20/11 IEP2011 28

Gain Vs Common Mode

10/20/11 IEP2011 29

Conclusion

¡  Current Mirrors are noisy structures, NMOS contribute a lot of noise

¡  Noise reduction comes at the cost of power and area

¡  Power and Noise specification were met ¡  UGB and Phase Margin for some cases could

not be achieved

10/20/11 IEP2011 30

References

¡  Willy M.C. Sansen, Analog Design Essentials, Dordrecht, Netherlands; Springer, edition 2006.

¡  J.H. Huijsing, Operational Amplifiers Theory and Design; Kluwer Academic Publishers, 2001.

¡  A.F. Duisters and E.C. Dijkmans, “A -90dB THD Rail to Rail Input Opamp Using New Local Charge Pump in CMOS,” IEEE JSSC, vol. 33, pp 947-955, Jul. 1998.

¡  C.C. Hung, K. Halonen, V. Porra, and M. Ismail, “Low Voltage CMOS GM-C Filter with Rail to Rail Common Mode Voltage, ” IEEE symposium of Circuits and Systems, vol. 2, pp 921-924, Aug 1996.

¡  R. Jacob Baker, CMOS Circuit Design, Layout and Simulation, 2nd ed.; Wiley, 2004. ¡  T. Voo and C. Toumazou, “Tunable Current Mirror for High Frequency Analog

Design”, IEE colloquium on Analog Signal Processing, pp 3/1-3/14, Oct 1994. ¡  G. Ku and H.K. Embabi, “A Systematic Approach in Constructing Fully Differential

Amplifier”, IEEE Trans. On Circuits and Systems-II; Analog and Digital Signal Processing, vol. 47, pp 1343-1347, Nov. 2000.

¡  W.S. Wu, W.J. Helm, J.A. Kuhn and B.E. Byrkett, “Digital Compatible High Performance Operational Amplifier with Rail to Rail Input and Output Range,” IEEE JSSC, vol. 29, pp 63-66, Jan. 1994.

¡  Behzad Razavi, Design of Analog CMOS Integrated Circuits, TMH, edition 2002.

Thank You

10/20/11 IEP2011 32

Bias Generation

10/20/11 IEP2011 33

PTAT

10/20/11 IEP2011 34

PTAT Amplifier

10/20/11 IEP2011 35

Input Stage

10/20/11 IEP2011 36

Maximum Current Selector

I1

I2

Iout

10/20/11 IEP2011 37

Maximum Current Selector

¡  Wide swing current mirror is a two pole system

¡  Addition of resistor introduces a zero

¡  Phase margin can be improved by canceling a pole

Reference: T. Voo and C. Toumazou, “Tunable Current Mirror for High Frequency Analog Design”, IEE colloquium on Analog Signal Processing, pp 3/1-3/14, Oct 1994.

10/20/11 IEP2011 38

Maximum Current Selector

10/20/11 IEP2011 39

Problems with the architecture

¡  Current Mirrors are too noisy ¡  NMOS of current mirrors are major noise

contributor ¡  High resistor is required, consuming large

area ¡  Current flows all the time causing large

power consumption

If the current can be switched off then noise as well as power consumption can be reduced

10/20/11 IEP2011 40

Switched Current Selector Circuit

10/20/11 IEP2011 41

Output Stage

10/20/11 IEP2011 42

CMFB

¡  Resistors used for averaging both output ¡  Resistors cause loading resulting low gain ¡  MOS resistors are used to improve gain

Gain (dB)

ss tt ff Resistor(10KΩ) 92 86.45 83

MOS 113 117 119

10/20/11 IEP2011 43

CMFB

10/20/11 IEP2011 44

Gain Vs Common Mode Voltage


Recommended