+ All Categories
Home > Documents > APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci...

APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci...

Date post: 21-Sep-2019
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
7
1 st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5 th October 2016 245 245 APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) FOR LANDSLIDES RISK MAPPING IN BATU PAHAT Suhaiza 1* S., Masiri 2 K., Ismail 3 S.N.S., Kamsir 4 S.J.M. 1, 3 Department of Civil Engineering Politeknik Merlimau Melaka, Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia. *[email protected] ABSTRACT Landslide or slope failure occur when the particle of soils or rocks are not stable and also because of several factors; water, wind, weather or temperature changes and human activity. Geographical Information System (GIS) is used for capturing, storing, analyzing, managing and presenting data which is spatially referenced (linked to location). There are eight factors can be taken into account to predict landslide condition such as rainfall, drainage, types of soil, slope, groundwater, land use, soil erosion and mineral. This study used several types of maps such as contour, slope, rainfall distribution, type of soil, land use and height map in order to produce a risk map for landslides at Batu Pahat area. By using ArcView Ver 3.2 software, landslide’s risk map was produced to identify the critical area. Keywords: Geographical Information System (GIS), landslides 1.0 INTRODUCTION Landslide is one of the major hazards that cause losses of lives and properties which require com plex analyses involving multitude of factors. Landslide will occurred when the movement of soil from highland to flat area interact with the gravity force. Landslides phenomena involve two major factors which are human activities and natural process (Fatimah Shafinaz, 2005). Nowadays, the landslide rarely occurs, but it can be menace to the community especially to the residents who live down the hill. The characteristics and structure of soil are very important in development proposed area in order to avoid landslides occurrences. The objective of this study is to apply the GIS technique in producing a risk map of landslides area. The efficiency of GIS usage was confirmed by the yield of risk map. GIS has been used in this study to determine the potential of locations landslide in Batu Pahat. The advantages of GIS can be determined by presenting the location effectively, faster and inexpensive (George, N 1996). ArcView software was selected to produce GIS data into the excellent outcome . 2.0 METHODOLOGY 2.1 Data Collection Batu Pahat in Johor (shown in Figure 1) was selected as the location of study because it consists of a combination of various landforms, hydrological and soil characteristics. The total area of study is about 196,041 hectares; the land is mainly generally flat and except at the western and northern part has an undulating terrain such as prominent hills. The spatial data on land use, contour, soil, and type of soil maps were provided by Faculty of Civil and Environmental Engineering (FKAAS) of Universiti Tun Hussien Onn Malaysia (UTHM), rainfall data gathered from Department of Irrigation and Drainage, and the data related to groundwater and soil erosion were gathered from previous researchers.
Transcript
Page 1: APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma,

1st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5th October 2016

245245245

APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) FOR LANDSLIDES RISK MAPPING IN BATU PAHAT

Suhaiza1* S., Masiri2 K., Ismail3 S.N.S., Kamsir4 S.J.M.

1, 3Department of Civil Engineering

Politeknik Merlimau Melaka, Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia.

2,4 Pusat Pengajian Diploma, Universiti Tun Hussein Onn Malaysia,

Batu Pahat, Johor, Malaysia.

*[email protected]

ABSTRACT Landslide or slope failure occur when the particle of soils or rocks are not stable and also because of several factors; water, wind, weather or temperature changes and human activity. Geographical Information System (GIS) is used for capturing, storing, analyzing, managing and presenting data which is spatially referenced (linked to location). There are eight factors can be taken into account to predict landslide condition such as rainfall, drainage, types of soil, slope, groundwater, land use, soil erosion and mineral. This study used several types of maps such as contour, slope, rainfall distribution, type of soil, land use and height map in order to produce a risk map for landslides at Batu Pahat area. By using ArcView Ver 3.2 software, landslide’s risk map was produced to identify the critical area.

Keywords: Geographical Information System (GIS), landslides

1.0 INTRODUCTION Landslide is one of the major hazards that cause losses of lives and properties which require com plex

analyses involving multitude of factors. Landslide will occurred when the movement of soil from highland to flat area interact with the gravity force. Landslides phenomena involve two major factors which are human activities and natural process (Fatimah Shafinaz, 2005).

Nowadays, the landslide rarely occurs, but it can be menace to the community especially to the residents who live down the hill. The characteristics and structure of soil are very important in development proposed area in order to avoid landslides occurrences. The objective of this study is to apply the GIS technique in producing a risk map of landslides area. The efficiency of GIS usage was confirmed by the yield of risk map.

GIS has been used in this study to determine the potential of locations landslide in Batu Pahat. The advantages of GIS can be determined by presenting the location effectively, faster and inexpensive (George, N

1996). ArcView software was selected to produce GIS data into the excellent outcome.

2.0 METHODOLOGY

2.1 Data Collection Batu Pahat in Johor (shown in Figure 1) was selected as the location of study because it consists of

a combination of various landforms, hydrological and soil characteristics. The total area of study is about 196,041 hectares; the land is mainly generally flat and except at the western and northern part has an undulating terrain such as prominent hills.

The spatial data on land use, contour, soil, and type of soil maps were provided by Faculty of Civil and Environmental Engineering (FKAAS) of Universiti Tun Hussien Onn Malaysia (UTHM), rainfall data gathered from Department of Irrigation and Drainage, and the data related to groundwater and soil erosion were gathered from previous researchers.

Page 2: APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma,

1st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5th October 2016

246246246

Figure 1: Study area

2.2 Analytical Methods This study was referred to Fatimah Shafinaz Ahmad (2005) research in producing risk mapping in

Penang. The methodology of research used the combination of USLE method, GIS application and landslide cases in Malaysia. As the result, landslide risk map for Penang show ed the high to low risk area. Bukit Saujana at Paya Terubung has been located as the high risk area and has been proven by the landslide case in 28 November 1998. The study also used eight factors in predicting landslide condition such as rainfall, drainage, types of soil, slope, groundwater, land use, soil erosion and mineral.

USLE Method

ULSE method was introduced by Wischmeier (1978). Research has been done to the Rocky Mountains began in the late 1950s. However, this method has been updated from time to time. USLE method is used to determine the soil erosion that inserted into GIS software to evaluate the potential area of landslide. There are six parameters involved in this equation;

Where;

A = R × K × L × S × C × P (1)

A = total of soil erosion of soil (tonne / ha / year) R = rainfall factor K = erosion factor namely texture, organic matter percentage, structure and impact for crop L = length slope S = gradient slope C = plant factor and management P = soil characteristic namely terrace, contour, etc

2.3 Determination of Weigh tage

A weight represents the relative importance of a parameter. Weightage index overlay method takes into consideration the relative importance of the parameters and the classes belonging to each parameter. There is no standard scale for a simple weightage overlay method, thus criteria for the analysis of each parameter should be defined and should be given priority. This weight is given by spatial data category by its stability which are stable, moderate and not stable as 0, 1 and 2 respectively. The finalized weights for respective thematic layers (shown in Table 1 to Table 8) were inserted into the GIS database accordingly at this stage before proceeding to the task of integration of layers.

Page 3: APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma,

1st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5th October 2016

247247247

Land Use Stability Weight

Forest Area Not Stable

Moderate

0

Agriculture Area 1

Shrub Area Moderate 1

Swamp Area Not Stable 2

Town Area Moderate 1

Commodious Area Not Stable 2

Catchments Area Not Stable 2

Mineral Stability Weight

Granite Stable 0

Alluvium (clay) Moderate 1

Sedimentary Moderate 1

Volcanic Stable

Moderate

Not Stable

0

Conglomerate 1

Alluvium (sand) 2

Value A Stability Weight (tone/ha/year)

0-0.05 Stable

Moderate

Not Stable

0

0.2-3.664 1

4-16 2

Buffering zone Stability Weight

No buffering Stable 0

Buffering zone at 100m Moderate

Not Stable

1

Buffering zone at 50m

2

Slope Steepness Stability Weight

< 12° Stable 0

13° - 35° Moderate 1

> 35° Not Stable 2

Table 1: Weights for Rainfall (Tew, 1999) Table 4: Weights for Land Use (Erny, 2008)

Annual Rainfall Stability Weight

1500-1867 mm Stable 0

1868-2235 mm Moderate 1

2236-2600 mm Not Stable 2

Table 2: Weights for Type of Soil (Tew, 1999)

Types of Soil

Air

Stability Weight

Stable 0

Table 5: Weights for Mineral (Fatimah, 2005) Batu Anam-Durian Stable 0

Batu Anam-Malacca-Tavy Moderate 1

Briah-Organic Clay and Muck Stable 0

Bungor-Munchong Stable 0

Durian-Malacca-Tavy Moderate 1

Gajah Mati-Munchong Malacca

Stable

2

Holyrood-Lunas Moderate 1

Keranji Stable 0

Kulai-Yong Peng Stable 0 Table 6: Weights for Drainage (Fatimah, 2005)

Organic Clay and Muck Stable 0

Peat Stable 0

Prang Stable 0

Renggam-Jerangau Moderate 1

Sedu-Pt. Botak-Linau Moderate 1

Segamat-Katong

Serdang-Bungor-Munchong

Stable

Moderate

0

1

Table 7: Weights for Soil Erosion (Erny, 2008)

Steepland Not Stable 2

Telemong-Akob-Local Alluvium

Moderate

1

Urban Land Moderate 1

Table 3: Weights for Slope (Morgan, 1986)

Table 8: Weights for Groundwater Content (Wong, 2006)

Groundwater Content

(gallon/hr) Stability Weight

191-241 Stable 0

242-292 Moderate 1

293-342 Not Stable 2

Page 4: APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma,

1st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5th October 2016

248248248

e

oil

ion

d t

e

Category High risk Moderate Moderate

High Risk Risk

Low Risk

Max Min Max Min Max Min Max Min Rainfall 2 2 2 1 1 1 1 0

Drainage 2 2 2 1 1 1 1 Types of

Soil 2 2 2 1 1 1 1 0

Slope 2 2 2 1 1 1 0 0 Groundwater 2 2 2 1 1 1 0 0

Land Use 2 2 1 1 1 0 0 0

Erosion 2 1 1 1 1 0 0 0

Mineral 2 1 1 1 0 0 0 0

Total 16 14 13 8 7 4 3 0

3.0 RESULT AND DISCUSSION

All thematic layers with properly assigned weights were combined with ArcView GIS 3.2 software. According Table 9, all base maps were combined in first and second processes to produce the landslide risk map. Data in Table 1 to Table 8 were contributed in the landslide attribute data. The total weightage were classified into four groups i.e. high risk (14-16), moderate high risk (8-13), moderate (4-7) and low risk (0-3) (Table 10).

Table 9: Flow of Integration Process

Name of Map Base map First

Process

Second

Process

Final

Rainfall

Slope

Land Us

Type Of

Soil Eros

Groun water Conten

Mineral

Drainag

Table 10: Total Weightage

From the result, the landslide risk condition was presented by red colour. The dark red colour shows the high risk area, while the lower risk area with a lighter red color. There is no high risks area in Batu Pahat but 33% and 57% of area are located at moderate high risk and moderate risk respectively. Almost of the moderate high risk area was located at the Nothern part of Batu Pahat. It is because topography of Batu Pahat is mainly plane or flat except at the western and northern parts which have an undulating terrain such as prominent hills.

Page 5: APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma,

1st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5th October 2016

249249249

The risk area can be changing into another condition from time to time, i.e low to moderate risk area by another factors such as climate changes, land use of area etc. The monitoring of changes condition is very important for the future scenario.

One of the moderate high risk areas was located at Tanjung Semberong terri tory (Latitude 1o 56’ 29.31” – North, Longitude 103o 09’ 8.4” – East). It has been verified by GPS application where the coordinate of located is similar with the GIS result (Figure 2 to Figure 5).

Figure 2: Landslide Map

Figure 3: Identify landslide location

At Tanjung Semberong

At Tanjung Semberong

10 56’ 29.31” - North

10 56’ 42.9” - North

Figure 4: Moderate high risk location Figure 5: GPS record

4.0 CONCLUSION As conclusion, GIS application was successfully produced the landslides risk map for Batu Pahat area with

10% low risk, 57% moderate risk and 33% moderate high risk. The efficiency of GIS usage was verified by the located moderate high risk (show in Figure 6 and Figure 7).

The final result of this research, can help the engineers, city planners and local authorities to make plans and sound decisions. The use of GIS technology provides an alternative for users to make an analysis and observations of the landslide area in the future.

Page 6: APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma,

1st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5th October 2016

250250250

REFERENCES

ESRI (1996). “Using the Arcview GIS”. New York : Environment System Research Institute Inc.

Erny Faznie (2008). “Aplikasi GIS Dalam Pencarian Kawasan Yang Berpotensi Mengalami Hakisan Tanah

Berbaki Batuan Di Cerun Potongan.” Publisher UTHM, Thesis.

Fatimah Shafinaz Ahmad (2005). “Penggunaan Sistem Maklumat Geografi Untuk Meramal Keruntuhan Cerun Di Pulau Pinang.” Publisher UTM, Thesis.

George, N. (1996). “Object Orientation GIS And Information Technology.” Cambridge, England :

Product Manager Laser – Scan Ltd.

George B. Karte, P.E. (1997). “The GIS Book.” 6th. ED New York : McGraw Hill

Morgan, R. P. C. (1986). “Soil Erosion And Conservation.” Longman Scientific And Technical.

Tew Kia Hui (1999). “Production Of Malaysian Soil Erodibility Nomograph In Related To Soil Erosion Issues.” Research And Concultancy, Selangor, Malaysia.

Wong Wei Chern (2006). “ Aplikasi GIS Dalam Pencarian Kawasan Potensi Wujudnya Air Bumi Di Daerah Batu

Pahat”. Publisher UTHM, Thesis.

Weischmeir, W.H. and Smith, D.D. (1978). “Predicting Rainfall Erosion Losses.” USDA Agr. Res. Serv. Handbook.

Page 7: APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) … PROCEEDING FULL... · Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau Melaka, Malaysia. 2,4 Pusat Pengajian Diploma,

251251251

1st Conference On Engineering, Technology And Education 2016 (CETEd2016), Politeknik Merlimau Melaka 4-5th October 2016

APPENDIX

Figure 6: Hill located at the right side of the road

Figure 7: Hill located at the left side of the road


Recommended