+ All Categories
Home > Documents > Brown Poster

Brown Poster

Date post: 14-Apr-2017
Category:
Upload: stephanie-brown
View: 44 times
Download: 0 times
Share this document with a friend
1
Mathematical descriptions of axially varying penning traps Stephanie Brown AEgIS CERN University of Michigan Research Experience for Undergraduates Department of Physics and Astronomy at The Pennsylvania State University Introduc)on AEgIS is the An)hydrogen Experiment: Gravity, Interferometry, and Spectroscopy. Its major aim is to study the interac)on of an)ma?er with earth’s gravita)onal field. To maximize measurement precision we will cool the an)hydrogen while it is stored in a penning trap. The proper)es of this electromagne)c trap can be characterized mathema)cally. An)ma?er and An)hydrogen Dirac first proposed an)ma?er in 1933; however, since ma?er and an)ma?er annihilate on contact, it has proven difficult to study. Though Dirac predicted a balance between ma?er and an)ma?er, we have found that the ra)o of ma?er to an)ma?er in our universe is weighted towards ma?er. In our search to discover the cause of the ma?er/ an)ma?er imbalance, we have discovered small asymmetries. Our Trap The Penning Trap used in AEgIS is designed to contain C 2 par)cles while they are cooled. Currently, we plan to use two forms of cooling. 1. Doppler cooling: a laser is tuned to excite only molecules moving towards the laser. A photon hits the carbon, transfers its momentum, and causes a fric)onal force. 2. Evapora)ve cooling: a laser excites carbon at the high end of the thermal distribu)on. A second laser ionizes the carbon and it is radiated from the trap because the magnets no longer contain it. Simplifica)ons Fully analy)cal solu)ons to the trap are not available. However, under certain condi)ons assump)ons can be made to make the trap analy)cally tractable. 1. The trap can be modeled by a piecewise con)nuous func)on of high and low field regions 2. The radial dependence of the axial field is negligible Process The plasma can be described by two ‘constants’ of mo)on— constant only in perfect trap geometry. The Hamiltonian (single electron energy func)on) and the canonical angular momentum are both constants. Poisson’s equa)on can now be defined by the density, which is based on Boltzmann’s global thermal equilibrium. Assume that the plasma can be modeled by a piecewise con)nuous func)on. Poisson’s equa)on can then be solved separately for the high and low field regions. We began by assuming the ideals that we intend for the highfield region. Desired density: 10 13 par)cles/m 3 Number of Par)cles: 10 7 The magne)c field: 0.8T Radius: Es)mated by trap geometry Trap length: 10 cm The en)re plasma rotates with a single ‘rigidrotator’ frequency. This connects the condi)ons for the high and low field regions. Using assump)ons from the literature Cita)on to make ini)al guesses for low field values Low radius: Debeye length: An es)mate for the low field density can then be made Poisson’s equa)on can be integrated numerically, using the given condi)ons. The poten)al difference can then be used to define the separatrices of the plasma. Containment and Magne)c Traps AEgIS uses a Penning Trap to contain the C 2 plasma. Lasers can cool C 2 through Doppler cooling and evapora)ve cooling. The C 2 can then be used to cool positrons which will repel from the like charged carbon and so not annihilate. Lasers cannot cool positrons because they do not have electron transi)on states. Magne)c Mirrors Magne)c mirrors: magne)c configura)ons which reflect a charged par)cle through low and high density magne)c regions. The highly inhomogeneous fields are tailored to trap par)cles at very specific veloci)es. They are defined by a characteris)c known as the mirror ra)o which is This causes the par)cles in the plasma to bounce up and down the trap. Except, under certain condi)ons, the par)cles can become trapped in either the high or the low region. The Separatrix A func)on called the separatrix defines the difference between trapped and untrapped par)cles. There are separate separatrices for the high and lowfield regions. Par)cles with high perpendicular veloci)es cannot penetrate into the high field region. Conversely, par)cles with small perpendicular veloci)es cannot escape the high field region. H = p 2 2 m e φ (r , z ) P θ = p θ r ( e c ) A θ (r )r a b Figure 2. The ini)al (a) and refined model (b) used to make an ini)al es)mate of the high field radius. These are scaled for viewing. The z axis in the trap is 100x larger with respect to the radius of the trap V=0 V = V V = V z r B C 2 Plasma Figure 3. Scheme of a simple penning trap: constant magne)c field and electric poten)al. 1 r r r φ r + 2 φ z 2 = 4π en = 4π en 0 exp 1 T [ e φ (r , z ) + m 2 ω ( eB mc ω )] # $ % & ' ( The momenta terms of the Hamiltonian are neglected because they are negligible B h B l λ D B h B l r h Plasma frequency Low field density distribu)on poten)al separatrices constants Ideal condi)ons assump)ons B h B l = 0.8 0.45 The high and low field separatrices are shown for two cases. The shaded regions represent trapped par)cles. In our trap we would like to minimize the number of trapped par)cles. High Field Region Low Field Region a b Figure 6a. Gives the shape of the separatrices for a Penning Trap with an axially varying field. The shaded areas are par)cles trapped by the magne)c field. Figure 6b. Gives the shape of the separatrices for a tradi)onal Penning Trap. The shaded areas are par)cles trapped by the magne)c field. V || V _|_ Figure 1. A preliminary simula)on to test arrangements of permanent magnets for the penning trap. The array is a modified Halbach array of permanent magnets where the ring magnets have magne)za)on in varying direc)ons to strength the field in the trap and negate the field outside. One magnet is placed opposite to the pa?ern to lower the strength of the magne)c field in the low region. Part a shows a two dimensional image of the magnets and Part b shows a one dimensional model. Figure 5. A magne)c bo?le is an arrangement of two magne)c mirrors. This image (Gopolan 1998. Disserta)on UC Berkley.) Shows the mo)on of a par)cle through the magne)c bo?le. Proton electron Hydrogen An)Proton positron An)Hydrogen a b
Transcript
Page 1: Brown Poster

Mathematical descriptions of axially varying penning traps Stephanie Brown AEgIS CERN University of Michigan Research Experience for Undergraduates Department of Physics and Astronomy at The Pennsylvania State University

Introduc)on    AEgIS  is  the  An)hydrogen  Experiment:  Gravity,  Interferometry,  and  Spectroscopy.  Its  major  aim  is  to  study  the  interac)on  of  an)ma?er  with  earth’s  gravita)onal  field.    To  maximize  measurement  precision  we  will  cool  the  an)hydrogen  while  it  is  stored  in  a  penning  trap.    The  proper)es  of  this  electromagne)c  trap  can  be  characterized  mathema)cally.    

An)ma?er  and  An)hydrogen      Dirac  first  proposed  an)ma?er  in  1933;  however,  since  ma?er  and  an)ma?er  annihilate  on  contact,  it  has  proven  difficult  to  study.    Though  Dirac  predicted  a  balance  between  ma?er  and  an)ma?er,  we  have  found  that  the  ra)o  of  ma?er  to  an)ma?er  in  our  universe  is  weighted  towards  ma?er.      In  our  search  to  discover  the  cause  of  the  ma?er/an)ma?er  imbalance,  we  have  discovered  small  asymmetries.                            

Our  Trap      The  Penning  Trap  used  in  AEgIS  is  designed  to  contain  C2-­‐  par)cles  while  they  are  cooled.  Currently,  we  plan  to  use  two  forms  of  cooling.    1.  Doppler  cooling:  a  laser  is  tuned  to  excite  only  molecules  moving  towards  the  laser.  A  photon  hits  the  carbon,  transfers  its  momentum,  and  causes  a  fric)onal  force.    2.  Evapora)ve  cooling:  a  laser  excites  carbon  at  the  high  end  of  the  thermal  distribu)on.    A  second  laser  ionizes  the  carbon  and  it  is  radiated  from  the  trap  because  the  magnets  no  longer  contain  it.  

                       Simplifica)ons      Fully  analy)cal  solu)ons  to  the  trap  are  not  available.    However,  under  certain  condi)ons  assump)ons  can  be  made  to  make  the  trap  analy)cally  tractable.      1.  The  trap  can  be  modeled  by  a  piece-­‐wise  con)nuous  func)on  of  high  and  low  field  

regions  2.  The  radial  dependence  of  the  axial  field  is  negligible            

Process      The  plasma  can  be  described  by  two  ‘constants’  of  mo)on—  constant  only  in  perfect  trap  geometry.    The  Hamiltonian  (single  electron  energy  func)on)  and  the  canonical  angular  momentum  are  both  constants.            Poisson’s  equa)on  can  now  be  defined  by  the  density,  which  is  based  on  Boltzmann’s  global  thermal  equilibrium.        Assume  that  the  plasma  can  be  modeled  by  a  piecewise  con)nuous  func)on.  Poisson’s  equa)on  can  then  be  solved  separately  for  the  high  and  low  field  regions.  We  began  by  assuming  the  ideals  that  we  intend  for  the  high-­‐field  region.      •  Desired  density:  1013  par)cles/m3  •  Number  of  Par)cles:  107  •  The  magne)c  field:  0.8T  •  Radius:  Es)mated  by  trap  geometry  •  Trap  length:  10  cm                            The  en)re  plasma  rotates  with  a  single  ‘rigid-­‐rotator’  frequency.  This  connects  the  condi)ons  for  the  high  and  low  field  regions.  Using  assump)ons  from  the  literature  Cita)on  to  make  ini)al  guesses  for  low  field  values    •  Low  radius:    •  Debeye  length:  •  An  es)mate  for  the  low  field  density  can  then  be  made      Poisson’s  equa)on  can  be  integrated  numerically,  using  the  given  condi)ons.  The  poten)al  difference  can  then  be  used  to  define  the  separatrices  of  the  plasma.  

 

Containment  and  Magne)c  Traps      AEgIS  uses  a  Penning  Trap  to  contain  the  C2-­‐  plasma.    Lasers  can  cool  C2-­‐  through  Doppler  cooling  and  evapora)ve  cooling.    The  C2-­‐  can  then  be  used  to  cool  positrons  which  will  repel  from  the  like  charged  carbon  and  so  not  annihilate.    Lasers  cannot  cool  positrons  because  they  do  not  have  electron  transi)on  states.      

           Magne)c  Mirrors      Magne)c  mirrors:  magne)c  configura)ons  which  reflect  a  charged  par)cle  through  low  and  high  density  magne)c  regions.  The  highly  inhomogeneous  fields  are  tailored  to  trap  par)cles  at  very  specific  veloci)es.    They  are  defined  by  a  characteris)c  known  as  the  mirror  ra)o  which  is    This  causes  the  par)cles  in  the  plasma  to  bounce  up  and  down  the  trap.    Except,  under  certain  condi)ons,  the  par)cles  can  become  trapped  in  either  the  high  or  the  low  region.                        

The  Separatrix      A  func)on  called  the  separatrix  defines  the  difference  between  trapped  and  untrapped  par)cles.    There  are  separate  separatrices  for  the  high-­‐  and  low-­‐field  regions.    Par)cles  with  high  perpendicular  veloci)es  cannot  penetrate  into  the  high  field  region.    Conversely,  par)cles  with  small  perpendicular  veloci)es  cannot  escape  the  high  field  region.      

 

H =p2

2m− eφ(r, z) Pθ = pθr − (

ec)Aθ (r)r

a   b  

Figure  2.    The  ini)al  (a)  and  refined  model  (b)  used  to  make  an  ini)al  es)mate  of  the  high  field  radius.  -­‐These  are  scaled  for  viewing.    The  z  axis  in  the  trap  is  100x  larger  with  respect  to  the  radius  of  the  trap  

V  =  0  V  =  -­‐V   V  =  -­‐V  

z  

r  

B  C2-­‐  Plasma  

Figure  3.  Scheme  of  a  simple  penning  trap:  constant  magne)c  field  and  electric  poten)al.  

1r∂∂rr ∂φ∂r

+∂2φ∂z2

= 4πen = 4πen0 exp −1T[eφ(r, z)+ m

2ω( eBmc

−ω)]#

$%

&

'(

The  momenta  terms  of  the  Hamiltonian  are  neglected  because  they  are  negligible  

BhBlλD

BhBlrh

Plasma  frequency  

Low  field  density  

distribu)on  

poten)al   separatrices  constants  

Ideal  condi)ons  

assump)ons  

BhBl=0.80.45

The  high  and  low  field  separatrices  are  shown  for  two  cases.    The  shaded  regions  represent  trapped  par)cles.    In  our  trap  we  would  like  to  minimize  the  number  of  trapped  par)cles.      

High  Field  Region  

Low  Field    Region  

a   b  

Figure  6a.  Gives  the  shape  of  the  separatrices  for  a  Penning  Trap  with  an  axially  varying  field.    The  shaded  areas  are  par)cles  trapped  by  the  magne)c  field.  

Figure  6b.  Gives  the  shape  of  the  separatrices  for  a  tradi)onal  Penning  Trap.    The  shaded  areas  are  par)cles  trapped  by  the  magne)c  field.      

V||  

V_|_  

Figure  1.  A  preliminary  simula)on  to  test  arrangements  of  permanent  magnets  for  the  penning  trap.    The  array  is  a  modified  Halbach  array  of  permanent  magnets  where  the  ring  magnets  have  magne)za)on  in  varying  direc)ons  to  strength  the  field  in  the  trap  and  negate  the  field  outside.    One  magnet  is  placed  opposite  to  the  pa?ern  to  lower  the  strength  of  the  magne)c  field  in  the  low  region.    Part  a  shows  a  two  dimensional  image  of  the  magnets  and  Part  b  shows  a  one  dimensional  model.  

Figure  5.  A  magne)c  bo?le  is  an  arrangement  of  two  magne)c  mirrors.    This  image  (Gopolan  1998.    Disserta)on  UC  Berkley.)    Shows  the  mo)on  of  a  par)cle  through  the  magne)c  bo?le.      

Proton  

electron  

Hydrogen  

An)-­‐Proton  

positron  

An)-­‐Hydrogen  

a   b  

Recommended