+ All Categories
Home > Documents > capitulo-4-introduccion-a-fibras-opticas.ppt

capitulo-4-introduccion-a-fibras-opticas.ppt

Date post: 02-Oct-2015
Category:
Upload: jose-luis-escobar
View: 213 times
Download: 0 times
Share this document with a friend
104
Volition Network Solutions The Leader in Fiber Optic Networkin SEMINARIO DE CERTIFICACION VOLITION-POUYET CAPITULO 4 INTRODUCCION A LAS FIBRAS OPTICAS MEXICO 2001
Transcript
INTRODUCCION A FIBRAS OPTICASSEMINARIO DE CERTIFICACION
MEXICO 2001
Conceptos Básicos
Volition Network Solutions
Historia
1704 Isaac Newton publica “Treatise of Optics” sobre la refracción de la luz.
1850s Se demuestra “La Reflexión Total interna”
1880 Se patenta el concepto “Luz entubada”
*
NOTES: In the mid 1800s a British physicist named John Tyndall demonstrated that light could be kept inside a stream of water. He would place a glass jar with a spout at the bottom on a table and shine a light into the jar along the same axis as the spout. The light would stay inside the water stream until the stream broke apart near the bottom. Tyndall had demonstrated the principle of “total internal reflection”.
In 1880 an engineer named William Wheeler patented a scheme that he thought could “pipe” light through homes and buildings. He made tubes that had a shinny surface on the inside and connected them in the same way that water pipes are connected. He placed a bright light at the beginning of the pipe system and focused the light into the tube. His method was not very efficient, but variations of his idea eventually led to optical fibers.
In the 1950s, Brian O’Brien Sr. of the United States and Harry Hopkins and Narinder Kapany, both from England, worked on a refined concept that used two concentric “layers” of glass with the inner layer having a higher “index of refraction” than the outer layer. In this configuration, the glass could bend and still carry light to the other end. The term “fiber optics” started to be used during this time. O’Brien made bundles of the fibers and used them to transmit light for use in the medical and inspection fields.
Volition Network Solutions
Entrando a la era de la Fibra Óptica
1960 Primer Láser
1970 Fabricación de fibra mono-modo con atenuaciones menores a 20 dB/km
1977 Primer sistema comercial en servicio
1997 Se desarrolla el conector VF-45
1998 Aparecen comercialmente las primeras fuentes VCSEL
*
NOTES: In 1960, a major development occurred that opened the way for advances in fiber optic communications systems. Theodore H. Maiman demonstrated the first working laser. A laser produces a narrow beam of light that can be coupled to a fiber optic strand. This gave the fiber optic systems a greater distance of operation.
In 1970, a breakthrough in fiber optic manufacturing technology was achieved. Scientists at the Corning Glass Works were able to make fiber optic strands that had a loss of less than 20 dB/km. At one time 20 dB/km was thought to be the theoretical limit of the glass.
In 1977, the first commercial long distance system went into operation.
Volition Network Solutions
ISO 11801
ANSI/EIA/TIA 568A
TSB 75
*
NOTES: In 1960, a major development occurred that opened the way for advances in fiber optic communications systems. Theodore H. Maiman demonstrated the first working laser. A laser produces a narrow beam of light that can be coupled to a fiber optic strand. This gave the fiber optic systems a greater distance of operation.
In 1970, a breakthrough in fiber optic manufacturing technology was achieved. Scientists at the Corning Glass Works were able to make fiber optic strands that had a loss of less than 20 dB/km. At one time 20 dB/km was thought to be the theoretical limit of the glass.
In 1977, the first commercial long distance system went into operation.
Volition Network Solutions
Estándares EIA/TIA
¿Qué es una Fibra Optica?
Podemos considerarla como una guía de onda dieléctrica, es decir es un tubo de vidrio maciso muy pequeño, en dos capas, integrada por un núcleo y un revestimiento. El principio de operación de basa en los fenómenos de reflexión y refracción de la luz.
Volition Network Solutions
El efecto del índice de Refración en la Fibra Óptica
El índice de Refracción indica la relación de la velocidad de la luz en el vacío.
Revestimiento
Núcleo
n2
n1
n2
*
Fiber optics is not difficult to understand. It’s as simple as light bouncing down a pipe (although fiber is made of a solid piece of glass). The basis of fiber optic communication is optical fiber, a thin, flexible waveguide through which light is transmitted.
A fiber optic strand is made of two components called the core and the cladding. Light enters the fiber, bounces down the core and exits at the opposite end.
How does this work? Well, the core has a different index of refraction than that of the cladding (about 1%). When the light that enters the core comes to the core/cladding boundary (and since the cladding has a lower refractive index) it will be bent away from the cladding and back into the core. This process is called total internal reflection.
Volition Network Solutions
Elementos de la fibra
Características y ventajas de la Fibra Óptica
No conductiva
No RFI/EMI
Seguridad
*
NOTES: Non-conductive - Fiber strands do not conduct electricity and are therefore not subject to overvoltage situations
No RFI/EMI - There is no induction between fibers to cause interference
No ground loop - Copper cable system could loop through earth ground, but light signals through fiber is not subject to grounding
Data security - There is no electro magnetic radiation and tapping the line is difficult at best.
Greater data capacity - Fiber transmissions have been tested at over 20 gigabits
Lower installed cost - With new technology it is becoming feasible to install fiber optic systems
Volition Network Solutions
Espectro Electromagnético
Rayos Cósmicos
RAyos Gama
Rayos X
*
NOTES: When working with light rays it is more common to specify the wavelength of the light. Visible light is only a small portion of the electromagnetic spectrum. We can see light rays that range from 400 to 700 nanometers (nm). The color of the light we see can be specified by its’ wavelength. Red is in the range of 660nm, green is in the range of 500nm and blue is in the range of 470nm.
Wavelength is calculated using the speed of light in free space divided by the frequency of the wave being measured. By using this formula we find that the wavelength of a typical power outlet in the home (60 Hz) is equal to 3,100 miles. As you can see, the frequency and the wavelength of a signal are inversely proportionate. As the frequency goes up, the wavelength goes down.
Volition Network Solutions
Propiedades de la Luz
Reflexión - Los rayos rebotan en la interfase.
Refracción - Los rayos de luz se desvían al pasar por la interfase.
Rayo Incidente
Rayo Reflejado
Rayo Refractado
Índice de Refracción
Índice de Refracción=
*
The index of refraction is the ratio of the speed of light in a vacuum to the speed of light in a material. The material must be transparent enough to pass some light through it. Light always travels through a vacuum faster than through a material, therefore, the index of refraction will always be greater than 1.
Volition Network Solutions
Indice de refracción*
Cable de Fibra Óptica(SM) 1.471
Vidrio 1.5-1.9
Diamante 2.42
Volition Network Solutions
Aceptación de la Luz en la Fibra
Cono de Aceptancia
N.A. (Apertura Numérica)
*
Light entering the core must do so within a certain acceptance cone (shaped like a funnel) to achieve the total internal reflection. The larger the cone, the easier it is to couple light into the fiber. This cone can be described by a mathematical formula and the result is called the “Numerical Aperture” (NA). The acceptance angle of the air to fiber interface is normally much greater than that of the core to cladding interface. Because light striking the core to cladding interface at an angle greater than the critical angle is lost through the cladding, it is important to use the critical angle of this interface for the acceptance cone.
Volition Network Solutions
Pulso Eléctrico de entrada = Pulso Eléctrico de salida
Conversión
Eléctrica
Concepto Básico de la Transmisión de luz por fibra óptica
Pulso de Luz
*
This is a simplified fiber optic communication system. An electrical pulse is used to trigger an LED generating a light pulse which is injected into the fiber. The detector senses the light pulse and generates a small electrical pulse which is amplified, formatted and presented at the output. The output pulse is the same as the input pulse, as if the fiber link had not even been there.
Volition Network Solutions
Clasificación de las Fibras Opticas
Multimodo
*
Comparison of 3 core sizes: 200um for industrial communications such as PLC’s, 62.5um for local area networks, and 9um for long distance telecommunications and CATV.
Volition Network Solutions
Fibra Multi Modo con perfil de índice escalonado
Fibra con índice escalón
*
There are 2 types of fiber, single mode and multi-mode. Multi-mode means that there are multiple paths (or modes) for the light to travel down the fiber. The larger the core, the more modes it will carry. A 100um core will carry 5744 modes at 850nm.
Multi-mode fibers are either step-index or graded-index. Step-index fibers have a distinct difference (a step) in the core’s and cladding’s index of refraction.
Volition Network Solutions
Dispersión Modal
La luz viaja a través de varias trayectorias (modos)
El tiempo de propagación de los modos varía de acuerdo a la longitud de la trayectoria
Núcleo de la fibra
Fibra Multi Modo con perfil de índice graduado
Fibra Multi Modo con índice graduado
Perfil del índice de refracción
*
The change in index of refraction between core and cladding in a graded-index is gradual. The index is highest in the center of the core and decreases towards the outer edge.
Volition Network Solutions
Fibra Monomodo
Pulso de salida
Pulso de entrada
*
Single mode fiber is a step index fiber. It too has a distinct difference between the core and claddings index of refraction. This type of fiber has a core that is about 10um in diameter.
Volition Network Solutions
Atenuación
Es el decremento de la potencia de una señal óptica desde la entrada hasta la salida.
Entrada
Salida
*
In copper systems we have loss which is called resistance. We measure resistance in ohms.
In fiber we have loss. We call this loss (or decrease in power) attenuation which we measure in dB (decibels). The lower the attenuation, the more light that is transmitted.
Volition Network Solutions
Pérdidas de luz
Se mide en decibeles(dB)
10 dB = 10% Transmisión de Luz
20 dB = 1% Transmisión de Luz
Input Light
Output Light
*
3dB of loss means that you have lost 50% of the light that you’ve started with.
Example: if you have a 100 watt light bulb and have 3 dB of loss you end up with 50 watts of light. If you take that 100 watts and have 6 dB of loss you have 25 watts left ( 50% of 100 watts is 50 watts (the first 3dB) and 50% of 50 watts is 25 watts (a second 3dB for a total of 6dB).
100 watts
Causas de Atenuación
Attenuation of the light can be caused by several factors:
1. Absorption of the light by materials in the glass.
2. Scattering of the light out of the core due to impurities.
3. Leakage of light out of the core due to exceeding the maximum bend radius of the fiber optic strand. This is called a macrobend. Once the light leaves the core, it is absorbed in the cladding.
4. Microbends (high attenuation due to pin-point pressure). This can happen when water surrounds the fiber and then freezes.
Volition Network Solutions
Radio Mínimo de Curvatura
Exceder el Radio Mínimo de Curvatura implica tener Atenuación debido a las Macrocurvaturas.
Dispersión de guia-onda
*
Exceeding the minimum bend radius can cause 2 problems. The first is catastrophic failure (breaking of the fiber).
The second is increased loss. When you bend a fiber to tightly the light in the core leaks out into the cladding.
DEMO: use the 7XE-660 visible light source and bend some fiber till you see the red light “leaking” out.
Volition Network Solutions
Atenuación
Atenuación
Fuentes de Luz
Bajo Costo
Baja Potencia
Bajo Costo
Potencia Media
*
There are 2 types of light sources used in fiber optics, LED’s (used for multi-mode) and lasers (used for single mode).
Light Emitting Diode (LED) - This is an inexpensive semiconductor device that will produce light using a small electrical current to release photons from certain semiconductor materials. The selection of the material determines the wavelength or color of the light. The bandwidth of the light is relatively wide. The amount of output power from the LED is small. The physical size of an LED is much larger than the core of a fiber optic strand. An LED should have a useful life of over 100, 000 hours.
Laser Diode - An expensive semiconductor device that produces a coherent beam of light when stimulated with the proper electrical signals. The selection of materials and the stimulating electrical signals determine the wavelength or color of the light. The bandwidth of the light can be very narrow, sometimes only 1 um wide. The output window of the laser diode is the same size as the core of a fiber optic strand. The amount of output power that can be transferred from the laser diode to the core is much greater than an LED.
Fiber optic strands made of silica have some attenuation at 850 nm, low attenuation at 1300 nm and even lower attenuation at 1550 nm. LEDs can be made to have a relatively high output at 850 nm and 1300 nm while laser diodes can be made to have a high output at all three wavelengths.
Volition Network Solutions
LED vs Laser
*
This is a representation of the spectral characteristics of an output device such as a Laser or LED source. It shows the Central Wavelength and the Spectral Width of the device. LED’s have a Spectral Width of about 50nm to 200nm. This means that the maximum or peak power is comprised of light from within a this portion of the spectrum combined together. Laser’s on the other hand have a very narrow spectral width and the peak power comes from a narrower more concentrated spectrum of light. Photodyne provides this information with every light source shipped.
Volition Network Solutions
Dispositivos Receptores
Foto Diodo de Avalancha:
Volition Network Solutions
Detectores
500
700
900
1100
1300
1500
1700
0.00
0.20
0.40
0.60
0.80
Sensibilidad
500
700
900
1100
1300
1500
1700
Cables
de
CABLES DE FIBRA ÓPTICA
CABLE DE TUBO APRETADO
Tipos Básicos de Cable (Comparación)
TUBO APRETADO= El tubo separador es extruído directamente sobre la Fibra (900 MICRAS)
*
Cables de tubo holgado
Construcción del Cable
Chaqueta externa (PVC)
Volition Network Solutions
Construcción del Cable
Selección del cable adecuado
¿Qué criterios debo seguir?
Cobre
Fibra Óptica
Clasificación del Cable
- Emitido cada 3 años por la NFPA
- En 1987 NEC requirió que todos los cables de fibra cumplieran cierto nivel de seguridad contra el fuego.
- Es sólamente un recomendación - Artículo 770 : Cable de Fibra Óptica
UL - Underwriters Laboratory
- Se designana OF: Fibra Óptica
- OFC : Fibra Óptica Conductivo
- OFNR : Riser - Prueba UL 1666
- OFNP : Plenum - Prueba NFPA 262 - 1985
- Cable libre de Halógenos
3Telecom Systems Division
Volition Network Solutions
Clasificación del Cable
La NEC 1987 requiere que todos los cables de fibra óptica deben cumplir con cierto nivel de seguridad contra el fuego. Un cable completamente dieléctrico se designa OFN (fibra óptica no-conductivo) contrario a un OFC (fibra óptica conductivo). El cable OFN es de aplicación general. Debe pasar la Prueba de Flama en Charola Vertical UL 1581.
OFNR (fibra óptica no-conductivo riser) implica que todo miembro dieléctrico del cable de fibra esté clasificado como “riser”. Un riser es una charola o hueco vertical por el que corre el cable de piso a piso dentro de un edificio. Los cables riser deben poseer “características resistivas al fuego capaces de prevenir la expansión del fuego de un piso a otro” Los cable riser deben pasar las pruebas UL 1666. (más estricta que la UL 1581)
3Telecom Systems Division
Volition Network Solutions
Clasificación del Cable
OFNP (Fibra óptica no-conductivo plenum) implica que todo miembro dieléctrico del cable de fibra óptica esté clasificado como “plenum”. Plenum es el espacio usado para el manejo del aire acondicionados. El cable Plenum debe tener “características adecuadas de resistencia al fuego y baja producción de humos”. Los cables plenum deben pasar la prueba NFPA 262-1985 test, la cual es la más estricta de todas la pruebas UL para cable. Los cables plenum se prueban para características de humo y flama, pero no para emisiones tóxicas.
3Telecom Systems Division
Volition Network Solutions
Aplicaciones
Atado Aéreo
Instalación Vertical
Directamente Enterrado
Se recomienda cable de tubo apretado (Breakout o tight buffer)
Evitar aplastar, enrollar y curvaturas cerradas.
Los procedimientos de instalación son los mismos que los de cable eléctrico.
Cubiertas tipo OFNP o LSZH
Volition Network Solutions
Ambientes del Cable
Instalación similar a los cables eléctricos soportados por una guía.
Se recomienda tubo holgado debido al severo medio ambiente y temperatura.
La mayoría de los tubos holgados pueden ser engrapados cada 3 a 5 pies, sujetados con cinchos o atados helicoidalmente.
Opción de cable autosoportado
Atado Aéreo
Instalación Vertical
Directamente Enterrado
Ambientes del Cable
Se requiere engrapado:
3 - 5 pies exteriores
50 - 100 pies interiores
La migración de las fibras en tubo holgado puede ser reducida colocando lazos de 1 a 1.5 pies en lo alto, en el fondo y al centro.
Cuniertas tipo OFNR o LSZH
Uso de Fire Barriers
Atado Aéreo
Instalación Vertical
Directamente Enterrado
Ambientes del Cable
El Cable se puede colocar directamente enterrado.
Se recomienda cable armado por el severo medio ambiente, roedores y rocas.
Accesorios de localización
Atado Aéreo
Instalación Vertical
Directamente Enterrado
Comparativos
Diámetro Mayor Menor
Resistencia al impacto Baja Alta
Resistencia al triturado Baja Alta
Cambio de atenuación a baja
temperatura Bajo Alto
Volition Network Solutions
CONECTORES DE FIBRA OPTICA
Conectores de Fibra Optica
Los conectores de fibra óptica son dispositivos diseñados para proporcionar una unión mecánica, temporal, confiable y de bajas pérdidas de dos extremos de fibra óptica o de un extremo de fibra óptica con algún dispositivo fotoelectrónico.
3 Telecom Systems Division
*
NOTES: In the mid 1800s a British physicist named John Tyndall demonstrated that light could be kept inside a stream of water. He would place a glass jar with a spout at the bottom on a table and shine a light into the jar along the same axis as the spout. The light would stay inside the water stream until the stream broke apart near the bottom. Tyndall had demonstrated the principle of “total internal reflection”.
In 1880 an engineer named William Wheeler patented a scheme that he thought could “pipe” light through homes and buildings. He made tubes that had a shinny surface on the inside and connected them in the same way that water pipes are connected. He placed a bright light at the beginning of the pipe system and focused the light into the tube. His method was not very efficient, but variations of his idea eventually led to optical fibers.
In the 1950s, Brian O’Brien Sr. of the United States and Harry Hopkins and Narinder Kapany, both from England, worked on a refined concept that used two concentric “layers” of glass with the inner layer having a higher “index of refraction” than the outer layer. In this configuration, the glass could bend and still carry light to the other end. The term “fiber optics” started to be used during this time. O’Brien made bundles of the fibers and used them to transmit light for use in the medical and inspection fields.
Volition Network Solutions
Consideraciones de los Conectores
Pérdida o pérdida de inserción; pérdida por mal empatado
Típicamente pérdida menor a 0.2 dB por par empatado (5% de pérdida de señal)
Tipo de contacto: Recto, PC y Angulado
Volition Network Solutions
Connection Loss Factors
Connection Loss Factors
Excentricidad
Núcleo-revestimiento
5.bin
Alineación Triaxial
Componentes Concéntricos
Componentes Longitudinales
Presión del resorte
Alineamiento de férulas
Tolerancias en las Pérdidas de Luz
Fibras con D.E. de 125 micras y 5 micras mal alineadas.
Núcleo multi modo de 50 micras –
Pérdida aceptable
Pérdida no aceptable
Volition Network Solutions
Desplazamiento de Alineamiento Transversal
Desplazamiento en la Alineación Angular
Desplazamiento Angular (en grados)
Desplazamiento de Alineación Longitudinal
Con Gel
Consideraciones de los Conectores
Recto, PC, Angulado
Pérdidas de retorno
Consideraciones de los Conectores
Calidad del Pulido
Proceso de Pulido
Desbastar la Fibra
MM.- Manual
Volition Network Solutions
Pulido de conectores
Oxido de Aluminio
Conectores de Fibra Optica
*
NOTES: In 1960, a major development occurred that opened the way for advances in fiber optic communications systems. Theodore H. Maiman demonstrated the first working laser. A laser produces a narrow beam of light that can be coupled to a fiber optic strand. This gave the fiber optic systems a greater distance of operation.
In 1970, a breakthrough in fiber optic manufacturing technology was achieved. Scientists at the Corning Glass Works were able to make fiber optic strands that had a loss of less than 20 dB/km. At one time 20 dB/km was thought to be the theoretical limit of the glass.
In 1977, the first commercial long distance system went into operation.
Volition Network Solutions
Conectores de Fibra Optica
Volition Network Solutions
Conectores de Fibra Optica
Tendencia al desuso
Volition Network Solutions
Conectores de Fibra Optica
Soluciones de Conectorización 3M
Soluciones de Conectorización
Soluciones de Conectorización
Reutilizable
Soluciones de Conectorización
No requiere adhesivos
Soluciones de Conectorización
No se requieren de instalaciones eléctricas
Ideal en aplicaciones de seguridad
Aplicaciones de alta densidad
VOL-0799
Empalmes de Fibra Óptica
Empalme por Fusión
• Se alinean las fibra y son fusionadas por un arco eléctrico en la unión.
• Bajas pérdidas, típicamente para núcleos pequeños de fibras mono modo.
• No se require adhesivos epóxicos.
• Equipo de alto costo.
Fibrlok II
Fibrlok II
Herramienta para Empalmes Mecánicos
Procedimiento simplificado de empalme, no requie entrenamiento especial
Desempeño y Confiabilidad probada
3 Telecom Systems Division
FibrMax
8400
Familia 8400.
Diferentes tipos de conectores
Volition Network Solutions
Standard
TOP
‘‘Economic’’
ONE
PROPTIC : Precabling Circular Frame System
Volition Network Solutions
Cierres de Empalme
Fibra Óptica
Reintervenibles
Fibra Óptica
Sellado perfecto
Volition Network Solutions
FibrDome
Reintervenible
o gabinete
Standard
MPE/O
BPE/O
Building Interface Boxes
METODOS
DE
PRUEBAS
Pruebas de Fibra Optica
Pruebas de pérdidas por inserción (Mediciones de potencia óptica) OPM
Pruebas de retrodispersión o reflectometría (OTDR)
Volition Network Solutions
Prueba de continuidad
Probador de luz intermitente
Usado para verificar que la luz pasa a través de la fibra (continuidad punta a punta)
Se usa para la identificación de fibras
Verificar polaridad en sistemas duplexVerify polarity in a duplex circuit
Esta prueba es úsitl sólo para pruebas fallas sencillas
Volition Network Solutions
Pruebas de pérdidas por inserción
Atenuación
Se realiza utilizando una fuente de luz y un medidor de potencia
Se mide la cantidad de pérdida de señal a lo largo de un enlace de fibra
Medido en dB
Volition Network Solutions
Prueba de atenuación
Proceso de dos pasos
Toma de Referencia (calibración)
Referencia (Calibración)
Paso 1
Considerelo como Cero de referencia
Power Meter
Light Source
Prueba del canal
Atenuación total= P2 - P1
Prueba de atenuación
Atenuación Aceptable
Fibra multimodo
Método de retrodispersión
Principios Básicos (OTDR)
OTDR
*
Principios Básicos del OTDR
Verificando el desempeño del sistema
Ocho pasos para analizar el desempeño
1. Calcular las pérdidas de la fibra
2. Atenuación en conectores
3. Pérdidas por empalmes
Switches Bypass
6. Determinar las pérdidas totales de potencia
7. Calcular el presupuesto de pérdidas
*
Verificando el rendimiento del sistema
Atenuación
Pérdidas en la fibra a la longitud de onda de operación
La atenuación del cable de fibra se expresa en dB/km
1.5 dB/km X 1.5 km = 2.25 dB
Determine las pérdidas por conectores
1.0 dB por par conectado
Pérdidas por empalmes
Atenuación
Verificando el desempeño
Determine la ganancia del sistema
Promedio de potencia del transmisor- sensibilidad del receptor
(-18.0 dB) - (-31.0 dB) = 13.0 dB
Determine pérdidas de potencia (2.6 dB)
Margen de operación - use 2.0 dB
Pérdidas en el receptor - si no están establecidas, considere 0.0 dB
Margen de reparación - 2 empalmes a .3 dB = .6 dB
Presupuesto de enlace - Ganancia del sistema - Pérdidas de potencia
13.0 dB - 2.6 dB = 10.4 dB
*
Verificando el rendimiento
Menos
Margen de desempeño del sistema 2.25 dB
*
Verificando el desempeño
Ancho de Banda
Expresado en Mhz
Velocidad de transmisión máxima para operar el sistema sin traslape de pulsos de luz que produzcan BER
Debe ser >= ancho de banda del sistema
*

Recommended