+ All Categories
Home > Documents > Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine...

Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine...

Date post: 17-Mar-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
44
Global Industry Response Group recommendations Report No. 464 May 2011 Capping & Containment
Transcript
Page 1: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

Global Industry Response Group recommendationsReport No. 464May 2011

Capping &Containment

Capping_ARTWORK:Layout 1 13/6/11 17:15 Page 1

Page 2: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

OGP Vision, Missionand Objectives

VisionTo work on behalf of the world’s oil and gas exploration and production (E&P)companies to promote safe, responsible, and sustainable operations.

Mission• To facilitate continuous improvement in HSE, security, social responsibility, engineering

and operations.

• To undertake special projects and develop industry positions on critical issues affecting the industry.

• To create alignment between oil & gas E&P companies and with relevant national and international industry associations.

• To advance the views and positions of oil & gas E&P companies to international regulators,legislative bodies and other relevant stakeholders.

• To provide a forum for sharing experiences, debating emerging issues and establishing common ground to promote cooperation, consistency and effectiveness.

Objectives

• To improve understanding of our industry by being a visible, accessible, reliable and credible source of information.

• To represent and advocate industry views by developing effective proposals based on professionally established technical arguments in a societal context.

• To improve the collection, analysis and dissemination of data on HSE and securityperformance.

• To develop and disseminate good practice in HSE, security, engineering and operationscontinually improved by feedback from members, regulators and other stakeholders.

• To promote awareness and good practice in social responsibility and sustainability.

• To ensure that the membership is highly representative of our industry.

Capping_ARTWORK:Layout 1 13/6/11 17:15 Page ifc1

Page 3: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

01 Capping & Containment

Disclaimer

Whilst every effort has been made to ensure the accuracy of the informationcontained in this publication,neither the OGP nor any of its members pastpresent or future warrants its accuracy or will, regardless of its or theirnegligence, assume liability for any foreseeable or unforeseeable use madethereof, which liability is hereby excluded. Consequently, such use is at therecipient’s own risk on the basis that any use by the recipient constitutesagreement to the terms of this disclaimer. The recipient is obliged to informany subsequent recipient of such terms.This document may provide guidancesupplemental to the requirements of local legislation. Nothing herein,however, is intended to replace, amend, supersede or otherwise depart fromsuch requirements. In the event of any conflict or contradiction between theprovisions of this document and local legislation, applicable laws shall prevail.

Copyright notice

The contents of these pages are © The International Association of Oil & Gas Producers. Permission is given to reproduce this report in whole or in part provided (i) that the copyright of OGP and (ii) the source areacknowledged. All other rights are reserved. Any other use requires the prior written permission of the OGP.

These Terms and Conditions shall be governed by and construed inaccordance with the laws of England and Wales. Disputes arising here from shall be exclusively subject to the jurisdiction of the courts ofEngland and Wales.

Capping_ARTWORK:Layout 1 13/6/11 17:15 Page 1

Page 4: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

2 Capping & Containment02 Capping & Containment

Capping_ARTWORK:Layout 1 17/6/11 14:55 Page 2

Page 5: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

3 Capping & Containment03 Capping & Containment

ContentsExecutive Summary 04Capping and Containment for I/JDA Project 061.0 OGP’S Global Industry Response Group (GIRG) 072.0 GIRG’S Capping & Containment Team 09 3.0 Deepwater Regions outside the Gulf of Mexico 124.0 Global Technical Specifications & Response Time 14 5.0 Response Time 17 6.0 Capping and Subsea Dispersant Systems 20 7.0 Containment Systems 26 8.0 Organisational Models for Project Execution & Deployment Phases 33 9.0 Proposal 3410.0 Conclusions & Proposals 37 Glossary 40

Capping_ARTWORK:Layout 1 13/6/11 17:15 Page 3

Page 6: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

04 Capping & Containment

Executive Summary

The International Association of Oil & Gas Producers (OGP) formed the Global Industry Response Group (GIRG) in July 2010 in the aftermath of the tragic accident in the Gulf of Mexico on the Macondo prospect, Montara in Australia, and other similarincidents. Previously, the oil and gas industry had drilled more than14,000 deepwater wells around the world without major incidentbut, this history notwithstanding, the Macondo and Montaraaccidents were a reminder of the risks inherent in such operations.

GIRG

Capping_ARTWORK:Layout 1 13/6/11 17:15 Page 4

Page 7: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

05 Capping & Containment

GIRG aimed to ensure that the lessonslearned from Macondo, Montara andother accidents are applied around theworld. To do that, part of GIRG's remitis to monitor and collate the outcomesof the official Macondo and Montaraaccident investigations. This process is helping to identify and answer otherquestions about Macondo, Montara and other deepwater operations.

GIRG is working in three areas:• Prevention: developing better capabilities

and practice in well engineering design and well operations management in order to reduce the likelihood of future incidents

• Intervention: improving well capping responsereadiness (in the event of an incident) and to study further the need for, and feasibility of,global containment solutions

• Response: delivering effective and fit-for-purposeoil spill response preparedness and capability

OGP formed three teams of technical experts toaddress these objectives: Well Engineering Designand Equipment/Operating Procedures; Cappingand Containment; and Oil Spill Response. Eachteam has prepared a report documenting its work in support of GIRG's objectives. This reportdocuments the conclusions and recommendationsof the Capping and Containment Team.

Scope for the Capping and Containment TeamThe Capping and Containment Team was tasked to “determine whether a single, worldwide,standardised capping and/or containment system(outside the Gulf of Mexico) could and should be designed and deployed with the support ofinternational and national associations, inconsultation with governments and regulators.” The work was performed by a full-time team, called the ‘GIRG Capping and Containment Team’(the Team), which included staff from BG Group,BP, Chevron, ConocoPhillips, ENI, ExxonMobil,Petrobras, Shell, Statoil and Total. This reportsummarises the work and recommendations of the Team drawn up over a 14-week period(September to mid-December 2010).

ResultsThe main conclusions and recommendations are: • Industry should further develop capping and

dispersant injection capability so that it isavailable for global response to deepwater well control incidents

• Industry should study further the need for and feasibility of containment solutions

Further work is required to understand the netbenefits and potential impact on risk of providingcontainment in the different regions.The Team recommends these actions be performedby having the companies of the ManagementCommittee of OGP negotiate a Joint DevelopmentAgreement (JDA) to execute the following mainactivities:

• Design a capping toolbox with a range ofequipment to allow wells to be closed in

• Design additional hardware for the subsea injection of dispersant

• Study further the need for, and feasibility of, a global containment system:− Advance the design of a Common SubseaSystem (flowlines, jumpers and risers) that wouldsupport a range of potential surface capture vessels− Assess the technical and commercial feasibilityof using Vessels of Opportunity (drillships, DPFPSOs, DP well test vessels) employed from theirmain functionality to improve their processing/storage capacity− Review alternatives such as the use of purpose-built containment vessels− Continue to assess the need for containmentsystems on a worldwide basis

• Develop organisation models for the storage,maintenance, and potential deployment of any equipment

• Review requirement for procedures related toequipment being designed under the JDA Project for application in shallow water and forproducing subsea wells

The work to develop these capping, subseadispersant and possible containment systems for use worldwide is anticipated to be performed in stages with final investment decisions made fordifferent systems at different dates. Futureinvestments in capping and containment systemswould depend on the final decisions on the systemsto be developed and deployed, but could be in therange of hundreds of millions of dollars.Acting on the Team's recommendations, the eightcompanies in the Management Committee of OGP– together with BG Group – have signed an InterimJoint Development Agreement (IJDA) with Shellacting as the operator. This IJDA has no contractualties to OGP, but is an agreement between thecompanies to provide the resources to carry out the activities recommended by the Team to assessfurther and develop international capping andcontainment systems. A full JDA is expected to besigned in the near future.

Capping_ARTWORK:Layout 1 13/6/11 17:15 Page 5

Page 8: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

06 Capping & Containment

Capping & ContainmentPhases for I/JDA ProjectThe long-term storage, maintenanceand operation of the equipmentdeveloped under the I/JDA Projectcould be managed by one or more potential deploymentorganisations, ranging fromcommercial suppliers of equipment and services to a (not-for-profit)deployment organisation where allcompanies of the oil and gas industrycan participate – similar to the MarineWell Containment Company (MWCC) in the Gulf of Mexico, or Oil SpillResponse Ltd (OSRL).

The I/JDA Project could function up to the pointwhen commercial entities construct equipment,provide services and/or a new company/organisation is formed. The details of the

deployment organisation, the way in whichoperating companies could access theequipment and procedures, and its fundingmechanisms and fee structure, could bedeveloped during the I/JDA Project.

The planned work scope and the cooperation of nine major oil and gas companies under anI/JDA, demonstrates the oil and gas industry’scontinued commitment to jointly take action.

Continued cooperation is being sought withorganisations like the MWCC and OSPRAG to:

• avoid duplication of effort by takingadvantage of the work and learnings from these other initiatives; and

• encourage standardisation of emergencyresponse equipment.

Capping & Containment Phases for I/JDA

OGP GIRG C&C TeamOGP GIRG C&C Team

Deployment Organisation

Execution Organisation (JDA)

Capping & Dispersant Hardware

Pre-FEED/FEED Possible next phases:Detailed/Procure/Fabricate/Maintain/Store/Respond

Containment - Common System

Pre-FEED Possible next phases: FEED/Detailed Design/Procure/Fabricate/Maintain/Store/Respond

Containment - Surface OptionsFurther Feasibility

+ Alternatives

Interim JDAFeb 2011

I/JDA/JDAQ1/Q3 2011

Decision on possible further investmentcommitments - Q3 2011 onwards

Possible next phases: Pre-FEED/FEED/Detailed Design/Procure/Fabricate/Maintain/Store/Respond

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 6

Page 9: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

07 Capping & Containment

1.0 OGP’S Global IndustryResponse Group (GIRG)OGP and GIRG

The International Association of Oil & GasProducers (OGP), announced the formation of a Global Industry Response Group (GIRG) onthe 14th of July 2010. The overall objective of the OGP GIRG was to discuss and devisepractices to:(a) Improve drilling safety and reduce likelihood

of a well incident(b) Decrease the time it takes to stop the

flow from an uncontrolled well(c) Improve both subsurface and surface

response capabilities

GIRG did this by identifying and gatheringwork being done by OGP’s member companiesand associations, and national regulators, in response to the Macondo and Montaraaccidents and other well incidents.After the announcement of the plan to developa Marine Well Containment System (MWCS)for the Gulf of Mexico, other oil and gascompanies, governments and authorities raisedquestions on the potential need for and desireto have similar capability available in different

regions around the world.Some individual initiatives had already started among operators and nationalassociations, and some coordination wasneeded between these initiatives to avoidduplication and inconsistency.GIRG was tasked to examine the industry’scapability to prevent and respond to a majorwell incident and identify opportunities forimprovement.Structure of GIRG and setup of Sub-GroupsIn order to achieve these objectives, threeseparate GIRG sub-groups were established to focus on Prevention (Well Engineering Design& Equipment/Operating Procedures Team),Intervention (Capping & Containment Team),and Response (Oil Spill Response Team). See Figure 1.1.Prevention is the most effective way to reducethe risks from well control events, and remains a primary focus for the industry's work.Improvements to oil spill response, and capping and containment, could reduce the consequences of an event.

Figure 1.1 Organisational structure of GIRG

Capping andContainment

Team

GIRG Co-ordination

Group

OGPManagementCommittee

Oil Spill Response

Team

Well EngineeringDesign & Equipment

/Operating Procedures Team

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 7

Page 10: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

08 Capping & Containment

OGP’S Global IndustryResponse Group (GIRG)continued

Over the past 10 months more than 100industry specialists have worked on these three teams. These teams have establishedcooperation with other existing industry efforts,such as MWCC, API JITF, OSPRAG, OLF, IADC,API, and specialist service providers (e.g. OSRL)and continue to work closely with them to alignefforts and eliminate duplication where possible.

• The Well Engineering Design &Equipment/Operating Procedures Team islooking into improvements in well design and procedures and has brought forwardrecommendations. It is likely that the mostsignificant reduction in the risk of deepwaterdrilling will come from work in this area

• The Capping & Containment Team wastasked to determine whether a singleworldwide standardised capping and/orcontainment system could and should bedesigned and deployed with the support ofinternational and national associations, inconsultation with governments and regulators.The Capping and Containment Team was a full-time 12-person team that includedspecialists from BG Group, BP, Chevron, ENI, ExxonMobil, Petrobras, Shell, Statoil,and Total

• The overall purpose of the Oil Spill Response(OSR) Team was to gather and shareinformation and conclusions on OSRperformance from members and memberassociations in respect of Macondo, Montaraand similar accidents, distil learning pointsand recommend possible improvements forOGP/IPIECA action

OGP will continue to monitor developments in this area and will continue to assess the need for any additional activities that might be required to assist in achieving the objectivesof GIRG.

This document summarises the conclusions and recommendations of the Capping &Containment Team. Separate documents havebeen prepared that summarise the findings and recommendations of the Well EngineeringDesign & Equipment/Operating ProceduresTeam and Oil Spill Response Team.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 8

09 Capping & Containment

2.0 GIRG’S Capping & Containment TeamCapping and containment are onlyparts of an incident response.

In the case of a loss of well control,there are a number of actions which need to be considered before a containment system may becomenecessary.

The primary focus during a response is to be able to shut in the well – stopping allhydrocarbon flow to the environment. Manymethods could and would be taken to shut in a well before a containment system could bedeployed at site, including using the BOP,intervening downhole, capping, or using otherdirect intervention means such as commencingdevelopment of relief wells.

Methods that involve closing off the flow fromthe wellbore at the mudline, rather thandownhole, are defined by OGP as cappingmethods. In the rare case that the flow ofhydrocarbons from the well could not bestopped, the use of a containment system couldreduce the flow of hydrocarbons to theenvironment until a relief well or other methodstops the flow. A containment system could bedesigned to capture well fluid to reducedischarge to the environment and bring it to thesurface for processing, collection and export.The equipment and facilities used to cap orcontain a well vary and increase if containmentis used. Figure 2.1 shows an overview ofpotential systems and sub-systems, both subseaand surface, considered by the Capping andContainment Team as part of its analysis and

development of functional requirements. Theindustry would benefit from a common definitionof capping and containment terminology. OGPrecommends that the terminology in Figure 2.1be used by its members.

Definition of Capture DeviceA capture device is a mechanism used toenable either the shut-in of a subsea well or the capture and collection of hydrocarbons from an uncontrolled release and feed them to a selected conduit for collection anddisposal. This can be capping stacks, “tophats”, cofferdams, open water funnels, etc.

Definition of CappingCapping is the act of putting a device on a well with an uncontrolled flow of hydrocarbons.The device has the capacity to close in the well,if the cap itself and the equipment downhole inthe wellbore have integrity to withstand theresulting shut-in pressures.

The cap would typically be placed on theexisting wellhead, subsea Blowout Preventer(BOP) or Lower Marine Riser Package (LMRP)through which the well is blowing out.

The capping device could also have the abilityto connect with or include a diverter spool thatwould enable containment of liquidhydrocarbons if there were an inability to shut in the well, such as with concern aboutdownhole integrity.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 9

Page 11: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

09 Capping & Containment

2.0 GIRG’S Capping & Containment TeamCapping and containment are onlyparts of an incident response.

In the case of a loss of well control,there are a number of actions which need to be considered before a containment system may becomenecessary.

The primary focus during a response is to be able to shut in the well – stopping allhydrocarbon flow to the environment. Manymethods could and would be taken to shut in a well before a containment system could bedeployed at site, including using the BOP,intervening downhole, capping, or using otherdirect intervention means such as commencingdevelopment of relief wells.

Methods that involve closing off the flow fromthe wellbore at the mudline, rather thandownhole, are defined by OGP as cappingmethods. In the rare case that the flow ofhydrocarbons from the well could not bestopped, the use of a containment system couldreduce the flow of hydrocarbons to theenvironment until a relief well or other methodstops the flow. A containment system could bedesigned to capture well fluid to reducedischarge to the environment and bring it to thesurface for processing, collection and export.The equipment and facilities used to cap orcontain a well vary and increase if containmentis used. Figure 2.1 shows an overview ofpotential systems and sub-systems, both subseaand surface, considered by the Capping andContainment Team as part of its analysis and

development of functional requirements. Theindustry would benefit from a common definitionof capping and containment terminology. OGPrecommends that the terminology in Figure 2.1be used by its members.

Definition of Capture DeviceA capture device is a mechanism used toenable either the shut-in of a subsea well or the capture and collection of hydrocarbons from an uncontrolled release and feed them to a selected conduit for collection anddisposal. This can be capping stacks, “tophats”, cofferdams, open water funnels, etc.

Definition of CappingCapping is the act of putting a device on a well with an uncontrolled flow of hydrocarbons.The device has the capacity to close in the well,if the cap itself and the equipment downhole inthe wellbore have integrity to withstand theresulting shut-in pressures.

The cap would typically be placed on theexisting wellhead, subsea Blowout Preventer(BOP) or Lower Marine Riser Package (LMRP)through which the well is blowing out.

The capping device could also have the abilityto connect with or include a diverter spool thatwould enable containment of liquidhydrocarbons if there were an inability to shut in the well, such as with concern aboutdownhole integrity.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 9

Page 12: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

10 Capping & Containment

GIRG’S Capping &Containment Teamcontinued

The functional capabilities of the cappingdevice are affected by the well status (integrityor damage to the wellhead) can be furtherdefined as:

− Hard Seal Cap: provides a high-pressureconnection to an existing connector on the wellhead, BOP or LMRP and may bemechanically latched

− Soft Seal Cap: provides a low pressureseal (may be an elastomeric seal to anelement of the well or a seabed caissonover the well with the capacity to preventseawater from mixing with well fluids. It may not be mechanically latched (butcould be) to the riser flange, BOP orwellhead if directly over the well (e.g. “top hat”). Some devices are designed toallow the release of some of thehydrocarbons (e.g. for pressure control)

− No Seal Cap: provides no seal to theseabed, BOP or wellhead, can freely allow seawater to intermix with well fluidsand does not ensure capture of allhydrocarbons (e.g. Cofferdam)

Definition of ContainmentIn the rare event that intervention in the well or capping cannot shut-in a well, a containmentsystem could be used to bring leaking oil from a subsea wellhead in a controlled way to thesurface for storage and disposal.

Figure 2.1 Overview of possible capping and containment elements DispersantOptions

ContainmentOptions

CappingOptions

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 10

Page 13: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

11 Capping & Containment

GIRG’S Capping & Containment Teamcontinued

System OverviewAn overview of a number of possible subseaand surface elements, including possible vesselsto be used to capture and contain liquidhydrocarbons, are provided in Figure 2.1.

System components range from capture devices(hard seal, soft seal, or no seal) with diverterspools that fit over a subsea well, the subseasystems and relevant surface systems and/orvessels for handling, flaring, storing, andshipping to facilities that can effectively disposeof the liquid hydrocarbons and associatedcontaminated water.

Key activities performed by theCapping & Containment Team1. Mapping of the regions around the world

(outside the Gulf of Mexico) that haveoffshore drilling, particularly in deep water,and the establishment of regional metoceanand reservoir conditions such as maximumdischarge rates and fluid compositions.

2. Definition of the key global technicalspecifications for capping and containmentsystem(s) based on the data received.

3. Estimation of potential response times thatcould be achieved for each region.

4. Review and analysis of concepts (currentlyknown or newly developed) against a set of acceptance criteria, taking the globalspecifications into account.

5. Recommendation of global capping andcontainment systems and identification ofconcepts/options of subsea and surfacecomponents that could be engineered andconstructed.

6. Definition of the activities to be performed by industry through an I/JDA for the nextphase of work.

At a high level the following boundaries weredeveloped to define the work scope covered by the Team:

Wells1. Subsea Wellhead / BOP in Water

Depths up to 3000 metres

2. Oil and Condensate Exploration and Development Wells (note: Arctic wells are excluded)

Capping3. Capping Devices (including gas wells)

Containment4. Containment System (excluding gas wells)

5. Subsea systems and infrastructure

6. Riser systems and foundations

7. Riser-to-vessel connection system

8. Emergency disconnect systems

9. Surface or subsea processing system

10. Surface containment vessels

11. Shuttle tankers

General12. Subsea power supplies –

hydraulic and electric

13. Subsea controls

14. Subsea dispersant injection systems forintroduction into hydrocarbon flow

15. Installation vessels and support

16. Subsea exploration wells

17. Global (except Gulf of Mexico)

18. Cost and schedule to develop

19. Schedule to deploy after incident

20. Governance model

Based on informal discussions with regulatorsand within the Team, a number of topics thatwere not part of this initial work arerecommended to be included in the next phaseof work under the I/JDA Project. A full list ofrecommendations and proposed actions isfound in Section 10 Conclusions andRecommendations.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 11

Page 14: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

12 Capping & Containment

3.0 Deepwater Regions outside the Gulf of Mexico

Figure 3.1 Overview of potential offshore basins with Subsea BOPs in the next 5 years

The map below (Figure 3.1) shows potential offshore basins in the world wherewells have been or could, in the next 5 years, be drilled using subsea BOPs.

In order to achieve an effective evaluation of concepts within the expected time frame, the Teamdecided to narrow the near-term scope from a comprehensive global view to a review of selectedkey regions and countries. The Team decided to focus the near-term efforts on the mature areasshown in Figure 3.2. The seven mature regions are believed to be representative of all globalbasins, but this view could be tested against specific requirements of other regions and countriesduring the further work detailed in Section 9.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 12

Page 15: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

13 Capping & Containment

Figure 3.2 Overview of mature offshore basins (excluding Gulf of Mexico) with Subsea BOPs

Any “single solution” for response to a subsea uncontrolled hydrocarbon release occurringanywhere in the world outside the US Gulf of Mexico would have to be able to operate within the most demanding design and operating conditions to be seen anywhere around the globewhere wells are being or might be drilled with subsea BOPs.

NEAR TERM FOCUS

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 13

Page 16: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

14 Capping & Containment

4.0 Global Technical Specifications & Response TimeA set of Global Technical Specificationswas established as the basis fortechnical assessment of variouscapping and containment systemoptions that were identified and/ordeveloped. The Team obtainedreservoir, metocean, technical andoperational data for representativecountries in the mature deepwaterregions.

The data enquiry focused on potential drillingoperations in water depths equal to or greaterthan 300 metres as this is where developmentsgenerally transition from fixed platforms tofloating production and/or subseadevelopment. The data collected does notrepresent a complete data set of industryactivities, but is sufficient to allow the high-levelscreening assessment presented in this report.The key technical variables assessed were:

• Worst Case Discharge• Shut-in wellhead pressure at the seabed• Metocean conditions• Water depth• Contaminants in the produced fluids

Global Technical SpecificationThe Worst Case Discharge rate (WCD) usedhere is as defined by BOEMRE (the UnitedStates Bureau of Ocean Energy Management,Regulation and Enforcement) and as clarified bythe Society of Petroleum Engineers (SPE). Theanalysis of the data showed (see Figure 4.1)that most of the wells (85-90%) have a WCDflow potential of 100 kbpd or less. It alsohighlights that those wells that have a flowpotential of more than 100 kbpd have flowpotentials significantly higher. In other words astep change in flow potential appears to occurat around 100 kbpd.

Figure 4.1 Worst case discharge RateDistribution (excluding Gulf of Mexico)

Liquid Discharge Rate (kbpd)

Wel

l’s p

erce

nta

ge

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 14

Page 17: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

15 Capping & Containment

Global Technical Specifications & Response Timecontinued

On this basis, the proposal developed forcontainment capacity for a global system wasset at a flow capacity of 100 kbpd. WCD ratesare unlikely to occur in cases wherecontainment would be required. In cases wherethe well is fully unconstrained, normal access tothe wellbore should be possible and normalkilling operations could take place as is safeand appropriate. If there are restrictions in thewellbore that limit access to the wellbore, theserestrictions could likely reduce the flowconsiderably compared to the WCD rate.

The shut-in wellhead pressure at the seabed isshown in Figure 4.2. The vast majority of wellsoutside of the Gulf of Mexico (85-90%) forwhich information was provided have a shut-inwellhead pressure of less than 10 kpsi. Thereare some deeper wells, and some high potentialgas wells, which have the potential for higherpressures which would require the provision ofa 15 kpsi capping system. The higher pressurerating affects only the capping components of acapping and containment system. Only thosecomponents directly attached to the wellheadwould be exposed to the full wellhead shut-inpressure. Containment systems components,downstream of the capping system, would be exposed only to a reduced pressuredetermined by the setting of the pressure control and relief system.

There are operational advantages to using thelightest cap suitable for the pressure to becontained, such as air transportability and theability to install using a range of offshorevessels. Therefore the Team concluded that it isreasonable and desirable to have both 10 kpsiand 15 kpsi systems available in the cappingtool box, allowing selection of the mostappropriate one for coping with the specificuncontrolled hydrocarbon releasecharacteristics.

Figure 4.2 Wellhead Pressure Distribution(excluding Gulf of Mexico)

Pressure Rating (kpsi)

Wel

l’s p

erce

nta

ge

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 15

Page 18: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

16 Capping & Containment

Global Technical Specifications & Response Timecontinued

Other parameters of importance are:

• Metocean conditions. Wind, wave, andcurrent conditions are an important designconsideration for offshore systems, as theycan define when a floating system has toabandon location because of weather andwhen offloading operations can beperformed. The magnitude and duration ofextreme conditions varies greatly betweenregions. In general, there are three categoriesof metocean regions:− ‘Benign’ regions, such as West Africa,

where both the operating and extremeconditions are moderate

− Regions which experience occasionalsevere (tropical) storms, but which havemoderate day-to-day operating conditions,such as the Gulf of Mexico

− Regions with extreme conditions and withrough day-to-day operating conditions,particularly in winter, such as NorthwestEurope (North Sea/West of Shetland) and Eastern Canada

• Water depth. The data collected by the Teamshows that 3000 metres is a reasonablemaximum depth to use at present for designpurposes when developing capping andcontainment systems. If and when deeperwells are drilled, available capping andcontainment systems would have to bereviewed for applicability in the greaterdepths. In particular, the availability ofinstallation equipment (umbilicals, ROVs,etc.), capable of operating in depths greaterthan 3000 m should then be considered

• Contaminants. The data include actual oranticipated levels of Carbon Dioxide andHydrogen Sulphide, as these could affect themetallurgy selection for a global capping andcontainment system. Most wells have levels ofboth contaminants well within the capabilitiesof ‘standard’ materials and, therefore, theproposal for capping and containmentequipment is to select materials complyingwith NACE MR-075 Zone 3.

In summary, most wells and operating regionsfit within:

• 100 kbd WCD flow potential

• 10 kpsi wellhead pressures

• Flowing wellhead temperature < 150 deg C.

• NACE MR-075 (ISO-15156) zone 3metallurgy (study required to confirmmetallurgy)

• 300m – 3000m water depths

• Broad range of metocean conditions withoccasional severe storms

These criteria formed the foundation of thedesign basis for the proposed capping andcontainment system components. Although most wells fit within a 10 kpsi shut-in wellheadpressure, the Team concluded that it isreasonable and desirable to have both 10 kpsiand 15 kpsi systems available in the cappingtool box.

It is inevitable when design limits are selectedthat some wells will fall outside the designenvelope. In the next phase of OGP work, the Team recommends that the GIRG WellEngineering Design & Equipment/OperatingProcedures Team reviews these wells to considerhow their design might be altered to providededicated mitigations for well parameters thatfall outside the design envelope.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 16

Page 19: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

17 Capping & Containment

5.0 Response Time

Response time is an importantparameter when comparing capping and containment systemconfigurations.

Response time (see Figure 5.1) is the timeneeded to mobilise and deploy the system, fromthe notification of the uncontrolled hydrocarbonrelease, to the moment a cap or a fullcontainment system is connected to the well and functioning.

All incidents are different, and all responses will be specific to the incident. Figure 5.1 is

a generic chart that the Team used to assessresponse times for the systems at locations itstudied. The figure is not intended as a tool forplanning specific well incident responses.Immediately following an uncontrolledhydrocarbon release there would be an initialperiod during which response teams aremobilised and the general situation is assessed.This is the time needed to set up response teamsand determine requirements for people,equipment and vessels.

Figure 5.1 Generic Response Activity Model

Mobilisation WellCapped

WellContained

WellKilled

Time

Immediate attempts to close BOP

ROV mobilisation and the site survey

Dispersant mobilisation and site inspection

Debris clearance and well access

Capping systemassembly

Capping systemdeployment

Containment system mobilisation

Relief Well Operations

Containment systeminstallation

Containmentoperations

Well Incident

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 17

Page 20: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

18 Capping & Containment

Response Timecontinued

Following a notification, detailed surveyoperations would begin, and in parallelmobilisation of a subsea dispersant injectionsystem, debris removal equipment, cappingequipment and containment systems wouldcommence simultaneously. Once the first surveyis done, the results are analysed and the firstassessment of the situation is updated, anddebris removal operations to get access to thewell (if needed) may be carried out. The surveyand debris clearance operations are very muchdependent upon the actual damage observedand may range substantially.

Once the capping and containment system (if used) components have arrived in countryand have been assembled, the actualdeployment – which constitutes the load-out,offshore installation and hook-up – is carried out prior to in-situ function testing.

It is impossible to estimate absolute responsetimes for installing a capping assembly or forstarting containment through a containmentsystem, because the actual time would be

dependent upon inter alia the type of theuncontrolled release, the specific damage to the well/BOP, storage location of equipment,regional infrastructure and availableinstallation/support vessel spreads. The Teamused some of the Macondo activity durationsstrictly for relative comparative purposes toestablish general ranges of minimum response time.

Estimate of minimum response time for Capping Equipment Mobilisation by air and assembly of thecapping equipment is anticipated to becompleted during the survey and site clearingoperations. The components of a cappingassembly would likely be flown in from a globalstorage location. Once arrived in country andassembled, the actual deployment and offshoreinstallation of the cap is estimated to take aminimum of 3-4 days, assuming the rig remainsoperational and can install the cap and/oranother Vessel of Opportunity is available incountry to undertake that activity.

Figure 5.2 Example of possible response timeswith assumed storage and load-out locations

Storage Base

Regional loading point

Sites

6-7 weeks4-6 weeks

6-8 weeks

7-10 weeks

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 18

Page 21: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

19 Capping & Containment

Response Timecontinued

As noted earlier, it is impossible to develop a single response time value for a cappingassembly. The Team estimated a globalresponse time range of some 1-4 weeks forcapping based on the actual activity durationsexperienced on Macondo once the requiredequipment had been built and/or beenmodified.

Estimate of minimum response time for Containment SystemSeveral issues make it difficult to estimate aminimum response time for the containmentsystem. It may not be possible to transport allcomponents of a containment system by air. The longer duration of the marine transportationof those components needs to be taken intoaccount in the response time calculation.Furthermore, if one centrally-stored, singlecontainment system is intended to serve allregions in the world, then the distance betweenthe storage base location and the uncontrolledhydrocarbon release location has a significanteffect on the response time, due to the need formarine transportation.

The impact on response time is illustrated inFigure 5.2, for an example where thecontainment system is stored in a base alongthe coast of West Africa. Since the offshoreinstallation of an entire containment system ismore complex than deployment of a cap,another key input parameter is the availabilityin the region of Vessels of Opportunity (VoO) toinstall containment equipment and/or supportthe overall operation, regardless of whether thedrilling rig is still intact and functioning.

Once equipment has arrived in the country, aminimum of two additional weeks is estimatedto be needed to install the subsea, flowline and riser components of a containment systemand to hook-up capture vessel(s), resulting in a minimum containment response time range of some minimum of 4-6 weeks (though it isimpossible to develop a single response timevalue for a containment system). This rangeapplies to a scenario where the elements of acontainment system that cannot be transportedby air are stored in the deepwater region wherethe uncontrolled hydrocarbon release occurred.

The team recommends that more work beperformed as part of the assessment of technicaland commercial feasibility of potentialcontainment solutions in the next phase of work in the I/JDA Project. This work couldestimate response times for a range of possiblecontainment systems, considering the number of systems used and outline the investmentsrequired and changes in risk resulting from thedifferent assumptions.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 19

Page 22: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

20 Capping & Containment

6.0 Capping & SubseaDispersant SystemsThe Team assessed the state-of-the artequipment that could be used to cap a subsea well and provide subseainjection of dispersants into a flowingsubsea well. These systems aredescribed in this section and based onthe functional requirements outlined inSection 4. The Team's recommendationson capping and subsea dispersantsystems that could be pursued furtherby industry are given in Section 10Conclusions and Recommendations.

Capping Equipment The Team reviewed existing, committed, andproposed solutions for subsea well cappingsystems. The capping configurations weredivided into three main groups;

• hard seal capping devices• soft seal capping devices• no seal capping devicesMany groups have started development ofdeepwater subsea capping equipment as a result of the Macondo accident.

• MWCS: interim response cap and longer-termcap, each with diverting capabilities to allowfor containment in the Gulf of Mexico

• OSPRAG: capping device for use in UK waters

• Helix Fast Response System: subsea shut offdevice (SSOD) for use as a cap and diverterwith Helix's Gulf of Mexico-basedcontainment system

• Wild Well Control: developing commercially-available subsea capping devices

All the capping initiatives include a valve stackwith choking capability and several interfacesto cover a variety of scenarios. Individual oilcompanies are also performing work to developways to cap a blowing well.

The major part of the cap configurations madefor use in the Macondo response will be part of the response kit available for the Gulf ofMexico, under the MWCC. Two of the soft-sealcapture devices are now part of the kitprepared for the UK offshore sector.

Figure 6.1 Custom-made Capping Stacks (left Flange Stackused on Macondo, Middle OSPRAG, Right MWCS)

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 20

Page 23: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

21 Capping & Containment

Capping and SubseaDispersant Systemscontinued

Hard Seal Capping DevicesCapping Stacks

Capping stacks are devices made explicitly for capping subsea wells after an uncontrolledhydrocarbon release. They can have a range in the number of valves, which may be acombination of gate valves and/or ram valves.Design pressures and bore diameters can vary, depending on the functional requirements.A typical feature utilised for these types ofcapping stacks is that they come with a numberof different connection interfaces.

Typical configurations are the capping stacksproposed by MWCS and OSPRAG. Twocapping stacks were designed and made forMacondo. Chevron rented a 3-ram stack for its drilling operations West of Shetland in late 2010.

Work Over (WO), Light WellIntervention (LWI) and Through Tubing Rotary Drilling Systems (TTRD)These systems exist and are in regular use. They are designed to perform Work Over andLight Well Interventions on subsea wells. Athrough-tubing drilling system has also beendeveloped to connect to existing wells andperform drilling through the production tubing.

These systems may be used as capping devicesdue to their configuration with standardconnector systems and valve stacks able to shut in against well pressure. A purpose-builtdiverter system would have to be installedtogether with these systems to be able toconnect to a flowing well.

Figure 6.2 WO System with Diverter (Left), TTRD (Middle),LWI (Right) - Courtesy of FMC

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 21

Page 24: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

22 Capping & Containment

Capping and SubseaDispersant Systemscontinued

HXT and VXT systemsValve trees for production and injection wellsmay also be suitable as capping devices. Theseare divided into two types, vertical (VXT) andhorizontal (HXT) trees. The main differencebetween these two types used as a cappingdevice is that the VXT has a valve that allowsthe vertical bore to be closed after installation,while the HXT would need a plug or high pressurecap in order to close the vertical bore access.

There are several systems from different vendorsin use in all the subsea regions. The technologyis proven in use and the systems contain manyof the same features as WO, LWI and TTRDsystems. However, few systems are kept in stockas most of them are installed on production andinjection wells.

Most of the systems are 5 to 10 kpsi, only a few are 15 kpsi.

BOP systemsA BOP could be used as a hard seal cappingdevice. BOPs provide full-bore access withdifferent rams to close in a well which is out ofcontrol. A BOP is, however, large and heavyand this may cause challenges if connecting toa well head with integrity issues. It may alsocause installation challenges.

Special arrangements may be developed toaccommodate the requirements for a specificscenario (such as using only a part of the BOP).

Figure 6.3 Typical Subsea Configuration

Figure 6.4 BOP Configurations - Small BOPwith RAMS (Left), Full Size BOP (Right)

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 22

Page 25: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

23 Capping & Containment

Capping and SubseaDispersant Systemscontinued

External tree caps/debris capsExternal tree caps and debris caps have beendesigned to be used as a second barrier on topof production or injection trees. They have alsobeen used as a second barrier cap onwellheads during drilling operations (inbetween drilling and completion operations).

There may be an installation issue if a cap like this is used on a flowing well as they do nothave vertical access (do not allow flowthrough).

Internal capping devices

This sealing device may be used to seal insidetubulars, BOPs or subsea trees. A developmentand testing phase would be needed becausethis technology is not proven in use.

There may be an installation issue because itrequires full access inside and through the BOP,which cannot be assumed for all blowouts.

Soft Seal Capping DevicesTop hat configurations

The term "top hat" was used in the Macondoresponse to describe several soft-seal caps thatwere built and deployed during the response.Some had an elastomer seal around a pipe orflange and some had permanent vent openingsto the ocean. Only one was actually used tocollect hydrocarbons.

Caisson configurationsEntities have proposed seabed soft-seal capscovering the BOP that use suction anchors orweight to give a seal. As far as the Team know,designs have not been completed for any ofthese concepts.

Figure 6.5 Debris Cap for Production Tree (HXT)

Figure 6.6 Typical Top Hat Configuration

SEALINGGROMMET

DIAMONDWIRE

SAW CUT

DIAMONDWIRE

SAW CUT

METHANOLLINE

SEALINGGROMMET

UNDERCOMPRESSION

METHANOLLINE

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 23

Page 26: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

24 Capping & Containment

Capping and SubseaDispersant Systemscontinued

No-Seal Capping Devices No-sealing devices would collect oil and waterfrom the open ocean or with large openings tothe ocean but could not cap a well. Althoughseveral approaches have been proposed, onlytwo devices have actually been used in attemptsto collect hydrocarbons from flowing subseawells. A ‘Sombrero’ was used by well controlexperts to collect oil from the shallow waterIXTOC 1 in the Gulf of Mexico (1979) and a‘Cofferdam’ was used on Macondo (2010).

The majority of the no-seal devices reviewed by the Team require research and development(R&D) to further enhance them.The Teamrecommends that investigation of no-sealcapping devices be performed as separate R&D work from the I/JDA that was formed towork on capping and containment.

Subsea Dispersant Injection Systems Deployment of dispersant to the oil at sourceusing a subsea system is a relatively newapproach. It was used in response to an oil spill for the first time on Macondo, after fieldtesting, and pursuant to the authorisation of thefederal government. Whereas dispersant hastraditionally been applied to oil on the surfaceof the water, a subsea system injects thedispersant directly into the hydrocarbon source.

The primary purpose of dispersant is to breakup large volumes of oil into microscopicdroplets that can more easily disperse,evaporate, or be remediated by naturally-occurring bacteria. This can minimise theamount of oil that reaches shore and reducesenvironmental impact to marshes, wetlands, and beaches. Another effect observed at thesea surface above the Macondo well that isrelevant to future capping and containmentresponse as well as oil spill response efforts was that the subsea application of dispersant at Macondo caused a reduction in theconcentration of volatile organic compounds(VOCs) in the air near the source area.

The Team concludes that this ability to create a safer work environment for vessels andpersonnel engaged in response activities hasthe potential to enable access to work areasabove uncontrolled releases that mightotherwise be inaccessible. The teamrecommends that industry continues to advanceequipment to allow dispersant to be deployedsubsea as soon as is safely possible after anincident occurs. Industry should considerdeveloping or refining a subsea dispersantsystem that can be safely set up to work as anautonomous system in case of disconnectiondue to weather conditions or other causes. Innormal operational mode, the system would be operated from a vessel fit for the purpose.

The subsea system may consist of subseastorage tanks, flowlines, a manifold, distributionpanels, subsea pumps and a control system. A possible conceptual subsea dispersantconfiguration is shown in Figure 6.7.

Engineering would be helpful to further developsystems and enable a more efficient applicationand injection. It is important to design thedispersant system to interface efficiently with thecapping and possible containment systems andto allow dispersant to be provided through avariety of options. The MWCC plans to includea subsea dispersant injection system. Thissystem is expected to be ready for use in theGulf of Mexico together with the rest of theMWCS package.

The logistical demands of dispersant supplymerit further consideration.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 24

Page 27: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

25 Capping & Containment

Capping and SubseaDispersant Systemscontinued

The Team has advised the GIRG OSR Team on the importance of subsea injectionof dispersant. The OSR Team will take the lead on behalf of OGP for advocacywith regulators to pre-approve the use of subsea dispersants worldwide.

Figure 6.7 Conceptual Subsea Dispersant Injection System

Dispersant Float System

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 25

Page 28: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

26 Capping & Containment

7.0 ContainmentSystemsThis section presents the potentialcontainment systems that the Teamreviewed. The Team’s recommendationon systems to be pursued further byindustry is given in Section 10Conclusions and Recommendations.

Functional RequirementsThe following technical specifications from thelist discussed in Section 4 form the basis for the assessment of global containment systems:• 100 kbpd WCD flow potential• NACE MR-075 (ISO-15156) zone 3

metallurgy• 300m – 3000m water depths• Broad range of metocean conditions with

occasional severe storms In addition, the Team suggests these keyfunctional requirements as the industry assessesthe technical and commercial feasibility ofpossible containment systems:

• All containment equipment should be suitable for use or long-term storage for at least 20 years

• All containment equipment should bedesigned for a six month operating life during a response

• Dispersant injection points should be provided for any residual subseahydrocarbon flow to sea

• In the case where well pressure integrity is notassured, the pressure control and pressurerelief system should be capable of protectingthe well from high pressure

• Flowlines should be sufficiently long to beable to locate manifolds or riser bases asignificant distance (on the order of 1000 m)away from the well

• Quick disconnect and easy re-connectcapability of the surface capture vessel(s) tomanage possible adverse weather conditionsis recommended

Containment Solutions Reviewed The Team reviewed existing, committed, andproposed industry solutions for subsea oilcontainment. The systems that were of mostinterest during the evaluation were: • Marine Well Containment System (MWCS)

• Helix Fast Response System (Helix FRS)• Below Water Separation System (BWS) • Use of existing surface vessel fleet such as

DP Drill ships, Well Test Vessels and FPSOsEach is described in this section.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 26

Page 29: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

In July 2010, Chevron, ConocoPhillips, ExxonMobil and Shell sanctioned thedesign and construction of the essential equipment required to provide a cappingand containment system in the Gulf of Mexico for 100,000 barrels a day ofliquid handling with 200 mmscfd of associated gas flaring. BP has since joinedthe Marine Well Containment Company. The system includes a subseacontainment assembly that comprises a diverter spool and sealing cap, flowlines,manifolds, and two free-standing risers to carry the hydrocarbon liquids to twomodular capture vessels of 50,000 bpd of fluid and 100 mmscfd gas flaringcapacity each. Capture vessels are based on Dynamic Positioning (DP) tankersused for alternative service and on well-test type separation facilities installedduring an incident. Export is by commercially available tankers.

27 Capping & Containment

Capping Systemscontinued

Figure 7.1 Marine Well Containment System (MWCS)

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 27

Page 30: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

Helix Energy Services is proposing a containment system based on existingfloating assets it has in the Gulf of Mexico that were used for containment during the Macondo accident. The system will have a total capacity of 55,000 bpd and 95 mmscfd gas flaring in 8,000 feet of water and will be stationed in the Gulf of Mexico.

Capping Systemscontinued

Figure 7.2 Helix Fast Response System (Helix ESG Fast Response System)

28 Capping & Containment

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 28

Page 31: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

The Below Water Separator System (BWS) is a concept based on a novelcombination of existing equipment to create a new system. Well production iscontained and collected at the base of a riser tower and transmitted to buoyancymodule / separator (below water) where high-pressure liquid and gasseparation takes place. Gas flow is sent to an oil/gas burner. Oil flow is sent to a low-pressure separation package skid mounted on a support vessel ofopportunity (Floating Capture Facility, FCF) or to the flare system to be incineratedduring disconnect of the FCF. Feasibility of the system needs to be demonstratedand it requires further design maturation, including prototype testing.

Capping Systemscontinued

29 Capping & Containment

Figure 7.3 Below Water Separation System (BWS)

WELL HEAD MANIFOLD SUCTION PILE

ROV HP RISERBASE

FREE STANDINGRISER

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 29

Page 32: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

Several DP drillships with well test capability and DP Extended Well Test vessels exist. Other DP drillships could be upgraded to have well test capability,adding to the fleet. In addition, there are a few DP FPSOs that could potentiallybe mobilised. In the event of a uncontrolled hydrocarbon release, several ofthese vessels could be contracted and connected in a response to achieve therequired 100 kbpd capacity. A Common Subsea System (see below) would have to be deployed with multiple connection points to allow the connection of multiple risers.

Capping Systemscontinued

Figure 7.4 Use of existing surface vessel fleet such as DP Drill ships, Well Test Vesselsand Floating Production, Storage and Offloading Vessels (FPSOs)

30 Capping & Containment

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 30

Page 33: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

All of the containment solutions considered share the need for subseainfrastructure for collecting well hydrocarbons from the discharge location andmoving them to the capturing vessels or to the oil and gas flaring device on thesurface. Such a Common Subsea System, shown in Figure 7.5, could consist offree-standing hybrid risers, top-tensioned risers, catenary risers, riser bases,jumpers, flowlines and manifolds. These components should be compatible, in terms of interfaces and connecting points, with different options of surfacefacilities and capture vessels.

Capping Systemscontinued

Figure 7.5 Common Subsea System

31 Capping & Containment

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 31

Page 34: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

32 Capping & Containment

Capping Systemscontinued

Evaluation of Containment Systems for Use GloballyThe focus of the evaluation of the surfacefacilities has been to identify facilities that meetthe technical and functional specifications andthat could be deployed within similar responsetimes to each of the regions considered. Asexplained in Section 5, the mobilisation of asingle system such as the MWCS or the Helixsystem from one storage base would result in a wide range in response times. The MWCShas station-keeping limitations and would not be able to work reliably in harsh environments(like the North Sea or West of Shetlands)without major upgrades to the vessels’ dynamicpositioning capability, which creates concernsabout costs and deliverability. The Helix systemhas similar limitations and in addition does notmeet the technical specification of 100 kbpdflow potential.

Review of available vessels in each of theregions has concluded that even in the less-prolific regions there are often at least a fewdrill ships, extended well test vessels, DP FPSOs,and multi-service vessels (MSV) that could beused for containment response. If employed toallow capture or disposal of oil, these vesselsand vessels operating in an adjacent regioncould be mobilised to allow for rapiddeployment in the event of an uncontrolledhydrocarbon release in the region. The Teamconcluded that the advantages of this are:

• The relatively large number of vesselsavailable that could be employed

• The geographic spread of deployment of those vessels and the resulting quickresponse times

• The capability of drillships to remain on station in severe weather

• And the fact that the vessels would be in continuous use, rather than stacked

The team recommends that the technical andcommercial feasibility of using the existing and upgraded fleet as containment vesselsshould be studied.

Recognising that technical and commercialfeasibility have not yet been demonstrated andthat there is not yet a consensus that theprovision of containment around the world gives a net benefit, the Team recommended thatthe work under the JDA Project advance thepossible development and assessment ofalternative containment solutions during the next phase of work.

The BWS has the potential to provide analternative approach to dealing with anuncontrolled hydrocarbon release and thepossibility for a further reduced response timeand reduced safety risks (due to lower staffinglevels). The reduced response time is based on the ability to locate the BWS in regionalcentres. The BWS riser system could bemobilised and operational whilst the vessels of opportunity (described above) are brought to location to capture and process the liquidhydrocarbons.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 32

Page 35: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

33 Capping & Containment

8.0 Organisational Models for ProjectExecution & Deployment PhasesThe Capping and Containment Teamreviewed organisation models for the Execution and Deployment Phasesof the international capping andcontainment systems recommended in Section 1. Figure 8.1 defines theactivities performed during theExecution and Deployment Phases ofthe capping and containment systems.

Project PhaseA Project Execution Phase model similar to thatof the MWCC is being adopted. The eightcompanies in the Management Committee ofOGP – together with BG Group – signed anIJDA in February 2011. The IJDA may progressto a JDA, under which the following activitiesmay be performed:

(a) Cooperation in the selection and design of acapping toolbox and dispersant hardware

(b) Study further the need for and feasibility of a common containment system (includingfallback solutions and alternatives), and

(c) Further investigation of, and development of solutions for, certain operational issuesrelated to capping and containment ofhydrocarbons released from a well.

Shell is the operator under the I/JDA. The I/JDAProject has no contractual ties to the OGP, but is a consortium of companies that wish tosupport further development and assessment ofinternational capping and containment systems.

Deployment PhaseThe Team does not make a recommendation for a particular organisational model for theDeployment Phase of international cappingand/or containment systems. The execution ofany work required to develop new equipmentand the long-term maintenance and operationof that equipment could be managed by acombination of a not-for-profit organisation –similar to the MWCC in the Gulf of Mexico orOil Spill Response Ltd (OSRL) – and commercialsuppliers of goods and services.

The Team reviewed potential models for theDeployment Phase and has includeddevelopment of the Deployment PhaseOrganisation as part of the work recommendedto be performed by the I/JDA Project. The Teamrecommends that the scope of the I/JDA Projectinclude work to:• Provide the mechanism for funding and

managing the activities agreed (see Section9) by the participating companies until theestablishment of a deployment organisation

• Determine the most appropriate permanentdeployment organisation (structure,commercial and organisational models,governance) for the operational phase

The Team suggests that these factors be consideredas the deployment organisation is developed:• Assigned scope• Equipment exclusive to response or

available for other jobs• Regional, multi-regional, or global• Commercial or not-for-profit• OPEX and CAPEX• Funding mechanism• Ownership of equipment

Figure 8.1 Capping and Containment Organisational Plan

OGP GIRG C&C TeamOGP GIRG C&C Team

Deployment Organisation

Execution Organisation (I/JDA)

Project Phases

MaintainStore RespondHandover to

OperationsProcure

FabricateDetailedDesign

Pre-FEEDFEED

Select Concept

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 33

Page 36: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

34 Capping & Containment

9.0 Proposal

The work to develop capping, subseadispersant, and containment systems for useworldwide is anticipated to be performed instages with final investment decisions fordifferent systems at different dates.

Proposal regarding Capping and Dispersant SystemsFrom the analysis undertaken, the Teamproposes the development of a “capping tool box” rather than a capping tool, toaccommodate differences in the variouswellhead/BOP configurations which could be found, as well as the various regionalrequirements in terms of pressure rating. The Team recommends that engineering ofsystems for capping is pursued in the nextphase of work.

Activity 1: Develop a “Capping Toolbox”

Enter into Pre-FEED and FEED phases forcapping equipment. The objective of this phaseof work is to provide a design that, ifconstructed, would provide the industry with a “toolbox” of capping equipment available for a number of scenarios and circumstances(e.g. different pressure regimes, varyingwellbore access, several adaptor spools). As appropriate, the Team recommends that thedesigns are developed in cooperation withOSPRAG and the MWCC to maximiseinterchange-ability and minimise design effort.

The Team acknowledges the substantial benefitsderived from the subsea application ofdispersant at Macondo. Specifically relevant tocapping and containment is the reduction in theconcentration of hydrocarbons, includingVOCs, at the sea surface. This has the potentialto make possible access to work areas aboveuncontrolled releases that might otherwise beinaccessible. The Team recommends that

Figure 9.1 Phases for work on Capping and Containment for I/JDA

OGP GIRG C&C TeamOGP GIRG C&C Team

Deployment Organisation

Execution Organisation (I/JDA)

Capping & Dispersant Hardware

Pre-FEED/FEED Possible next phases:Detailed/Procure/Fabricate/Maintain/Store/Respond

Containment - Common System

Pre-FEED Possible next phases: FEED/Detailed Design/Procure/Fabricate/Maintain/Store/Respond

Containment - Surface OptionsFurther Feasibility

+ Alternatives

Interim JDAFeb 2011

IJDA/JDAQ1/Q3 2011

Decision on possible further investmentcommitments - Q3 2011 onwards

Possible next phases: Pre-FEED/FEED/Detailed Design/Procure/Fabricate/Maintain/Store/Respond

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 34

Page 37: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

35 Capping & Containment

Proposalcontinued

design, engineering and possible procurementof enhanced systems for subsea application ofdispersant chemicals is pursued in the nextphase(s) of work.

Activity 2: Design Subsea Dispersant Injection Hardware

Enter into Pre-FEED and FEED phases forequipment/facilities to inject dispersant into theflow of hydrocarbons at, or above, the seabed.As appropriate, the Team recommends that thedesigns be developed in cooperation withOSPRAG and the MWCC to maximiseinterchangeability and minimise design effort.

Proposal regarding Operational Issues A recurring theme in the review of the Team’swork and regulators’ feedback was the requestto look into capping and containment issuesregarding operations in shallow water and forexisting producing subsea wells. As most of the wells around the world are in water depthsshallower than the 300m cut-off used here, andmany producing subsea wells exist, the Teamrecommends that further work is done inresponse to these comments. For the hardwarebeing developed, the next phase should exploreissues and solutions with regards to installationand operations in shallow water as well as the applicability of those systems on currentproducing subsea wells.

Activity 3: Work Operational Issues related to Capping and Containment

Develop outstanding items of work that were not included in the GIRG first phase but areimportant to be included in the total project.

• Installation of capping/capture/containmentdevices developed under the I/JDA Project inshallow water and operational proceduresrelated to this

• Review of capping/containment capabilitiesdeveloped under the I/JDA Project forproducing subsea wells

The intent of this work is to understand theapplicability of the systems developed by theI/JDA Project, and not to design new hardwarefor use in shallow water or on producing subsea wells.

Proposal regarding Containment System Containment system equipment can be split into subsea and surface elements. The subseaelements are relatively independent of thesurface elements and are termed the ‘CommonSubsea System’. The Common Subsea Systemconsists of subsea elements such as freestanding hybrid risers, top-tensioned risers,catenary/lazy wave risers, riser bases, jumpers,flowlines, and manifolds. The Team proposes to start further work on pre-FEED and FEED ofthe ‘Common Subsea System’.

The comparative analysis of the differentsurface elements of the containment system hasconcluded that several containment systemslargely meet the system and regional criteria.Therefore, the differences in minimum responsetime and cost became overriding for theselection of the surface facilities solution. Furtherwork is recommended to assess the need forcontainment worldwide and the technical andcommercial feasibility of, and potentialimprovements to, surface handling capabilitiesfor hydrocarbons using currently availabledynamically-positionedvessels/drillships/mobile testing units. The Teamrecommends further assessment of alternativesin case technical or commercial feasibility of thevessel of opportunity solution is not proven.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 35

Page 38: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

36 Capping & Containment

Proposalcontinued

Activity 4: Study further the need for and feasibility of a Containment System

The design of the Containment System includesboth hardware and procedural elements. Keyactivities potentially include:

• Enter into Pre-FEED for subsea facilitiesarchitecture, comprising manifolds, jumpers,umbilicals, flow lines and risers, which areintended to allow deployment of the CommonSubsea System and then connection tosurface handling infrastructure. Include studiesof critical elements and Pre-FEED of commonsystem: preliminary engineering design plusdevelopment of key design, installation andoperating philosophies. The Team anticipatesthat the design work will be done with anappropriate contractor and that the I/JDAProject will attempt to liaise with the MWCC

• Develop operating procedures includingsimultaneous operations, taking lessonslearned from accidents like Macondo andMontara into account. Describe the scopeand limits of the equipment, procedures andoperations that would be provided by thecontainment organisation and how thatinteracts with the overall well responseactivities. Develop logistics and operatingprocedures (including simultaneousoperations) and command control proceduresto enable safe and efficient use of equipmentdeveloped as part of the I/JDA Project.Develop most appropriate models fororganisations that will assemble, own,operate and maintain the equipment

• Analyse capability and commercialagreements required to use currentvessel/testing fleet as surface containmentvessels. Workscope includes preparation ofagreements and due diligence(HAZID/HAZOP) of potential vessels toestimate technical modifications/enhancement requirements (storage andoffloading, flare capability). Existing testingand operating equipment around the worldwould be used rather than building purpose-built/converted vessels

• Work on alternatives and fall back solutionsfor surface elements of the containmentsystems. Investigate the drivers for cost andschedule of such vessels and their operability

• Continue to work with the member companiesof the I/JDA to assess whether globalcontainment provides a net benefit for thereduction of the risks of well control incidents,given the improvements in well control and deployment of capping stacks proposedby OGP

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 36

Page 39: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

37 Capping & Containment

10.0 Conclusions and ProposalsThe Capping and Containment Team gatheredand assessed information that allowed it todevelop conclusions and recommendationsaddressing the objectives it was given. It did itswork within the context of the overall objectivesof OGP GIRG to discuss and devise practices to:

(a) Improve drilling safety and reduce the likelihood of a well incident

(b) Decrease the time it takes to stop the flow from an uncontrolled well

(c) Improve both subsurface and surface response capabilities

ConclusionsGIRG concludes that the most effective meansfor reducing the risk of well control incidents isthrough improvements to drilling safety that canreduce the likelihood of incidents.

Capping• Capping equipment can be developed based

on existing technology to provide a hard sealcap. The capping equipment can also divertflow to a containment system or allow well killoperations when set up with a diverter spoolequipped with side outlets and adequateconnectors to kill, choke and divert

• It is reasonable and desirable to have both10 kpsi and 15 kpsi caps available so thatthe responding operator can select the mostappropriate one for coping with the specificblowout characteristics. There are operationaladvantages to using the lightest cap suitablefor the pressure to be contained

• Reduced bore caps are judged to beacceptable, providing work in next phaseconfirms the preliminary results showinginstallation forces are acceptable

• Capping components are or can be designedto be transportable by air

• It is impossible to estimate absolute responsetimes to cap a well, as the actual time isdependent upon the type of uncontrolledhydrocarbon release, the actual damage tothe well/BOP, storage location of equipment,regional infrastructure and availableinstallation/support vessel spread, and a host

of other environmental and human factors.Installation of capping equipment requires 1-4 weeks best case, though this could beconsiderably longer driven by site survey andcomplicated debris clearance. Air transportfor capping components may reduce timecompared to marine transport

Subsea Dispersant• Application of dispersant subsea could be

helpful in a number of ways includingallowing safe access to work areas above anuncontrolled release to carry out surveys,wellbore intervention, capping, andcontainment

Containment• The Team was asked “to determine whether a

single worldwide standardised containmentsystem (outside the Gulf of Mexico) could andshould be designed and deployed”. The Teamdid not make a final conclusion on this, butrather recommends that further work be doneto understand technical and commercialsolutions (the “could” part) and the net benefitof providing containment (the “should” part).Describing the net risk benefit of providingcontainment for deepwater drilling fordifferent regions requires a clear descriptionof the risks involved in deepwater drilling andthe resources required to develop containmentsystems to reduce those risks. The Teamrecommends that the following drivers beconsidered as OGP and the I/JDA Projectassess the net benefit to risk of providingcontainment:− Improved prevention can reduce the

likelihood of a well control event − Macondo showed that a hard-seal cap

can successfully stop the flow of oil to the ocean

− Macondo showed that a containmentsystem could reduce flow into theenvironment

− Containment may reduce the consequencesof other release scenarios (like damagedtop connections on a BOP)

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 37

Page 40: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

38 Capping & Containment

Conclusions and Proposalscontinued

• It is impossible to estimate absolute responsetimes for a containment system, as the actualtime is dependent upon the type ofuncontrolled hydrocarbon release, the actualdamage to the well/BOP, storage location ofequipment, regional infrastructure andavailable installation/support vessel spread.Initiation of containment could require aminimum of 4-6 weeks best case from initialnotification to first operation

• Not all containment components could betransportable by air. The marinetransportation time of containmentcomponents and the mobilisation ofinstallation vessels required to install subseacontainment equipment drive the critical pathschedule, which affects the number oflocations at which containment equipmentmight be stored. Some or all containmentequipment might be stored regionally

• Sea conditions in certain areas of the world(like the North Sea – West of Shetlands, andEastern Canada) demand powerful DPsystems for station keeping, beyond thecurrent capability of ordinary DP tankers orwell test vessels

• The high DP power demand of NorthSea/West of Shetland/Canada drives theglobal solution towards including drillships,which have high powered DP systems whencompared to other DP vessels. Drillships haveother advantages, including: − They carry their own riser systems for

connection to subsea infrastructure− Some have tanks which are (or could be)

capable of oil storage− They are in regular operation and

maintenance with trained and experiencedcrews, hence availability is high

• Dedicated DP FPSOs for collection would belarge and complex facilities. Unless used inregular service, readiness and availabilitywould be a concern. The equipment requiredto make them capable of regular service (gascompression, water treatment, subsea controlsystems, etc) would make the vessels evenmore complex and costly

Collaboration with other initiatives • The capping, dispersant, and subsea

containment systems proposed by GIRG arealigned with the MWCC

• The capping system being developed byOSPRAG is compatible with GIRG cappingtoolbox.

Recommendations• The Team recommends that industry pursue

design of a capping toolbox and additionalsubsea dispersant equipment. Designs shouldbe developed with OSPRAG and the MWCProject to maximise interchange-ability andminimise design effort

• The Team recommends that the need forglobal containment is further assessed.Containment is needed only if the well cannot be shut in using the BOP, downholeinterventions, or capping stacks. Wellincidents are extremely rare; those that cannotbe handled by BOP, downhole intervention orcapping are even rarer

• The Team recommends that a JDA beexecuted to establish an Execution Phaseorganisation similar to that executing theMWCC. That organisation should then carryout the proposed scope of work defined in the activities shown in Section 9

• The Team recommends that a specialworkshop be held to hand over the work ofthe Team to the new JDA Project. During thisworkshop a number of specific tasks can bepassed on to the JDA Project

• Recognising that technical and commercialfeasibility have not yet been demonstratedand that there is not yet a consensus that theprovision of containment around the worldgives a net benefit, the Team recommendedthat the work under the I/JDA Project advancethe possible development and assessment ofalternative containment solutions during thenext phase of work

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 38

Page 41: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

39 Capping & Containment

Conclusions and Proposalscontinued

• As most of the wells around the world are inwater depths shallower than the 300m cut-offused here, and many producing subsea wellsexist, the Team recommends that further workis done to look into capping and containmentissues regarding operations in shallow waterand for existing producing subsea wells

• The Team recommends that a Joint IndustryProject is considered to develop further andvalidate the Below Water Separation concept,studying the structure stability, separationdesign, pressure control and relief, and theburning of hydrocarbons. This JIP coulddevelop a clear path forward comprisingfurther design maturation followed by system integration, qualification testing, and a field trial

• Review of available vessels in each of theregions has concluded that even in the less-prolific regions there are often at least a fewdrill ships, extended well test vessels, DPFPSOs, and multi-service vessels (MSV) thatcould be used for containment response. Theteam recommends that the technical andcommercial feasibility of using the existingand upgraded fleet as containment vesselsshould be studied

• The industry would benefit from a commondefinition of capping and containmentterminology. The Team recommends that theterminology in Figure 2.1 be used by itsmembers

The Team recommends that some of the workthat is identified should be considered by OGPand should not be part of the JDA Project.Specific tasks to be transferred to OGP are:

• It is inevitable when design limits are selectedthat some wells will fall outside the designenvelope. In the next phase of work, those

wells (i.e. wells which have extremecharacteristics outside the capability of anyindustry-provided capping and containmentequipment) should be reviewed with the GIRGWell Design Team to consider how the welldesign might be altered to provide dedicatedmitigations for such wells

• Decide on potential future work activities with regards to

1. Arctic or Ice Prone Areas

2. No-Seal Capping Devices and Soft SealDevices for setting on interfaces with a high incline

3. Operating procedures for capping devicesfor production templates and cluster wells

• The team recommends that industry developequipment to allow dispersant to be deployedsubsea as soon as is safely possible after anincident occurs. Industry should considerdeveloping or refining a subsea dispersantsystem that can be safely set up to work as anautonomous system in case of disconnectiondue to weather conditions or other causes. In normal operational mode, the systemwould be operated from a vessel

• Further work is recommended to assess the need for containment worldwide and thetechnical and commercial feasibility of, andpotential improvements to, surface handlingcapabilities for hydrocarbons using currentlyavailable, DP vessels/drillships/mobile testingunits. The Team recommends furtherassessment of alternatives in case thetechnical or commercial viability of the vesselof opportunity solution is not proven.

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 39

Page 42: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

Glossary

40 Capping & Containment

API American Petroleum Institute

APPEA Australian Petroleum Production & Exploration Association

Bpd Barrels per day

BOP Blowout Preventer

BOEMRE Bureau of Ocean Energy Management, Regulation and Enforcement

CMS Competency Management System

Containment System used to bring leaking oil from a subsea wellheadin a controlled way to the surface for storage and disposal

Deepwater Greater than 300m

Ultra-deepwater Greater than 3000m

Deepwater Rig that operated on the Macondo prospectHorizon in the Gulf of Mexico (see Macondo)

Dispersant A group of chemicals used to accelerate the process of natural dispersion of oil(both at the surface and subsurface)

DP Dynamic Positioning

E&P Exploration & Production

FEED Front-End Engineering and Design

FPSO Floating, Production, Storage and Off-loading Vessel

GIRG Global Industry Response Group

GoM Gulf of Mexico

HWCG Helix Well Containment Group

IADC International Association of Drilling Contractors

IJDA Interim Joint Development Agreement

IMO International Maritime Organization

In Situ Burning The process of burning surface oil at sea,at or close to the site of a spill

IPIECA International Petroleum Industry Environmental Conservation Association

IRF International Regulators Forum

ISO International Organization for Standardization

Capping_ARTWORK:Layout 1 16/6/11 10:41 Page 40

Page 43: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

JDA Joint Development Agreement

JIP Joint Industry Project

JITF Joint Industry Task Force

Mmscfd Million standard cubic feet per day

MWCC Marine Well Containment Company

NOIA National Oil Industry Association

NOGEPA Netherlands Oil & Gas Exploration& Production Association

NORSOK Norwegian Petroleum Industry Standards

OGP International Association of Oil & Gas Producers

OLF Norwegian Oil Industry Association

OSPRAG Oil Spill Prevention and Response Advisory Group (UK)

OSRL Oil Spill Response Limited

OSRO Oil Spill Response Organisation

Macondo Oil and gas prospect in the Gulf of Mexico. Also used as shorthand for theDeepwater Horizon drilling rig accident that took place on 20 April 2010

Montara Oil field in the Timor Sea off the northern coast of Western Australia.Also used as shorthand for the blowout from the Montara wellheadplatform that took place on 21 August 2009

MWCS Marine Well Containment System

R&D Research & Development

TTRD Through Tubing Rotary Drilling

VOC Volatile Organic Compounds

VoO Vessels of Opportunity

WCD Worst Case Discharge Rate

WEC Wells Expert Committee

Well cap Device deployed to control a well incident at source

Well incident Uncontrolled event e.g. blowout

WO Workover

41 Capping & Containment

Glossarycontinued

Capping_ARTWORK:Layout 1 16/6/11 10:41 Page 41

Page 44: Capping& Containment - REMPEC Meetings... · The planned work scope and the cooperation of nine major oil and gas companies under an I/JDA, demonstrates the oil and gas industry’s

Images courtesy of:Oljeindustriens Landsforening OLFShell International 2011ChevronMarc Roussel/TotalDufour Marco/TotalLaurent Pasca/Total

OGPLondon office5th Floor209-215 Blackfriars Road London SE1 8NLTel: +44 (0)20 7633 0272

Brussels officeBoulevard du Souverain 1654th Floor B-1160 BrusselsBelgiumTel: +32 (0)2 566 9150

Email: [email protected]

Capping_ARTWORK:Layout 1 13/6/11 17:16 Page 42


Recommended