+ All Categories
Home > Documents > Cerebro Mix

Cerebro Mix

Date post: 10-Apr-2016
Category:
Upload: jose-roberto-kershaw-filho
View: 52 times
Download: 14 times
Share this document with a friend
Description:
Test Software CerebroMIX
55
10/01/2016 1/55 Demo Version CerebroMix - Evaluation Version Pressure Vessel Calculations ASME VIII Division 1 2015 Edition Project: 001 - CÉREBRO Vessel: PV - 10.000 L - PVI - PVE - VAC Date: 10/01/2016
Transcript
Page 1: Cerebro Mix

10/01/2016 1/55Demo Version

CerebroMix - Evaluation Version

Pressure Vessel Calculations

ASME VIII Division 1

2015 Edition

Project: 001 - CÉREBRO

Vessel: PV - 10.000 L - PVI - PVE - VAC

Date: 10/01/2016

Page 2: Cerebro Mix

10/01/2016 2/55Demo Version

CerebroMix - Evaluation Version

1 - Settings Summary

Vessel Type......................................................................................................... VerticalShell material................................................................................................ SA-240 304Top head material......................................................................................... SA-240 304Bottom head material.................................................................................... SA-240 304Top head...................................................................... Ellipsoidal 2:1 R/D=0.9 r/D=0.17Bottom head................................................................. Ellipsoidal 2:1 R/D=0.9 r/D=0.17Inside diameter..................................................................................................... 2000,0 mmShell length........................................................................................................... 2935,0 mmInternal pressure................................................................................................... 0,19613 MPaExternal pressure................................................................................................. 0,19613 MPaVacuum................................................................................................................ 0,04000 MPaDesign temperature.............................................................................................. 150,00 °CProduct density (ρ)................................................................................................ 1500,0 kg/m3

Test fluid density (ρT)............................................................................................ 1000,0 kg/m3

2 - Shell Calculations

Material......................................................................................................... SA-240 304Internal Pressure (Pi)............................................................................................ 0,19613 MPa

Design Internal Temperature (TD)......................................................................... 150,00 °C

Inside Diameter (D).............................................................................................. 2000,0 mmInternal Corrosion Allowance (tic).......................................................................... 1,5000 mm

External Corrosion Allowance (tec)........................................................................ 0,0000 mm

Longitudinal Joint.................................................. Category A, Type 1, None UW-11(c) Circumferential Joint............................................. Category A, Type 1, None UW-11(c) Joint Shell x Top Head.......................................... Category A, Type 1, None UW-11(c) Joint Shell x Bottom Head.................................... Category A, Type 1, None UW-11(c)

2.1 - Cylindrical Section 12.1.1 - Basic data

Length (Ls)............................................................................................................ 2935,0 mm

Longitudinal Joint Efficiency (El)........................................................................... 0,70000

Circumferential Joint Efficiency (Ec)...................................................................... 0,70000

2.1.2 - Static Head CalculationsOperating Static Head - PS (HS = 3461,5 mm)...................................................... 0,05092 MPa

Static Head for Shop Hydrostatic Test - Pth (Hth = 2000,0 mm)............................ 0,01961 MPa

Static Head for Field Hydrostatic Test - Ptv (Htv = 3460,0 mm)............................. 0,03393 MPa

2.1.3 - Internal Pressure Calculationscorroded inside radius of shell section (R)........................................................... 1001,5 mminternal design pressure (P= Pi + PS).................................................................... 0,24705 MPa

Minimum Thickness under Internal Pressure (t)................................................... 3,4247 mmCircumferential stress govern for internal pressure .Thickness for circumferential stress is given by UG-27(c)(1), as follows:

tP R

S E 0,6 P=

Page 3: Cerebro Mix

10/01/2016 3/55Demo Version

CerebroMix - Evaluation Version

t0,24705 1001,5×

103,42 0,7× 0,6 0,24705×=

∴t = 3,4247mm

Thickness for longitudinal stress is given by UG-27(c)(2), as follows:

tP R

2 Sl E 0,4 P+=

t0,24705 1001,5×

2 103,42× 0,7× 0,4 0,24705×+=

∴t = 1,7077mm 2.1.4 - Allowable Compressive Stress by UG-23(b)

Condition

Design Temperature/Corroded

Design Temperature/New

Test Temperature/Corroded

Test Temperature/New

Ro

mm

1012,7

1012,7

1012,7

1012,7

t

mm

11,200

12,700

11,200

12,700

A Factor

0,001382

0,001568

0,001382

0,001568

B Factor

MPa

56,390

58,740

70,645

74,003

S

MPa

103,42

103,42

137,90

137,90

SC

MPa

56,390

58,740

70,645

74,003

a) Ro = outside radiusb) t = Thicknessc) A = 0,125/(Ro/t) - UG-23(b) Step 1d) S = maximum allowable tensile stress - UG-23(a)e) Sc = minimum between S and B

2.1.5 - External Pressure Calculations

External Pressure (Pe).......................................................................................... 0,19613 MPa

Vacuum (Pv).......................................................................................................... 0,04000 MPa

External Design Pressure of Shell Section (P = Pe + Pv)...................................... 0,23613 MPa

corroded external diameter of shell section (DO).................................................. 2025,4 mm

minimum thickness under external pressure (t)................................................... 10,269 mmdesign length between lines of support (L)........................................................... 2500,0 mmDO/t....................................................................................................................... 197,23

L/DO...................................................................................................................... 1,2343

External Chart.......................................................................................................... HA-1Factor A................................................................................................................3,8426E-4Factor B (5065,9 psi)............................................................................................ 34,928 MPa

Cylindrical section has DO/t ≥ 10.The value of Pa is calculated by (see UG-28(c)(1) Step 6):

Pa

4 B

3 DO t/

=

Pa

4 34,928×

3 2025,4 10,269/( )×=

∴Pa = 0,23613MPa

calculated maximum allowable external working pressure (Pa)........................... 0,23613 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

2.1.6 - Minimum Nominal Thickness Calculations

Minimum Thickness (t)......................................................................................... 10,269 mmMinimum Thickness with Corrosion Allowance (tc)............................................... 11,769 mm

Page 4: Cerebro Mix

10/01/2016 4/55Demo Version

CerebroMix - Evaluation Version

Nominal Thickness (tn)......................................................................................... 12,700 mm

As t n ≥ tc, nominal thickness is adequate.

2.1.7 - MAEP Calculationscorroded external diameter of shell section (DO).................................................. 2025,4 mm

corroded thickness of shell section (t).................................................................. 11,200 mmdesign length between lines of support (L)........................................................... 2500,0 mmDO/t....................................................................................................................... 180,84

L/DO...................................................................................................................... 1,2343

External Chart.......................................................................................................... HA-1Factor A................................................................................................................4,3810E-4Factor B (5475,7 psi)............................................................................................ 37,753 MPa

Cylindrical section has DO/t ≥ 10.The value of MAEP is calculated by (see UG-28(c)(1) Step 6):

MAEP4 B

3 DO t/

=

MAEP4 37,753×

3 2025,4 11,2/( )×=

∴MAEP = 0,27836MPa

Maximum Allowable External Pressure (MAEP).................................................. 0,27836 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

2.1.8 - UHA-44(a)(1)(a) Forming Strain

Forming Strain (strain).......................................................................................... 0,63099 %Plate Thickness (t)................................................................................................ 12,700 mmFinal Center Line Radius (Rf)................................................................................ 1006,4 mm

Original Center Line Radius (RO).......................................................................... ∞ mm

strain50 t

Rf

1Rf

Ro

=

strain50 12,7×

1006,41

1006,4

∞×=

∴strain = 0,63099

Verify UHA-44 and table UHA-44 for required heat treatment.

Page 5: Cerebro Mix

10/01/2016 5/55Demo Version

CerebroMix - Evaluation Version

3 - Top Head Calculations

3.1 - Head SpecificationsHead............................................................................. Ellipsoidal 2:1 R/D=0.9 r/D=0.17Material......................................................................................................... SA-240 304Nominal Thickness (tn)......................................................................................... 9,5300 mm

Internal Pressure (Pi)............................................................................................ 0,19613 MPa

External Pressure (Pe).......................................................................................... 0,0000 MPa

Vacuum (V)........................................................................................................... 0,04000 MPaInternal Temperature (Ti)...................................................................................... 150,00 °C

External Temperature (Te).................................................................................... 150,00 °C

Design Temperature (TD)...................................................................................... 150,00 °C

Allowable Stress at Design Temperature (S)....................................................... 103,42 MPaAllowable Stress at Test Temperature (ST).......................................................... 137,90 MPa

Inner Corrosion (tic)............................................................................................... 1,5000 mm

Outer Corrosion (tec)............................................................................................. 0,0000 mm

Thin Out................................................................................................................ 2,5000 mmStraight Flange Length (hs)................................................................................... 25,000 mm

3.2 - Static Head Calculations3.2.1 - Straight Flange Section

Operating Static Head - PS (HS = 526,50 mm)......................................................7,7448E-3 MPa

Static Head for Shop Hydrostatic Test - Pth (Hth = 2000,0 mm)............................ 0,01961 MPa

Static Head for Field Hydrostatic Test - Ptv (Htv = 525,00 mm).............................5,1485E-3 MPa

3.2.2 - Ellipsoidal SectionOperating Static Head - PS (HS = 501,50 mm)......................................................7,3771E-3 MPa

Static Head for Shop Hydrostatic Test - Pth (Hth = 2000,0 mm)............................ 0,01961 MPa

Static Head for Field Hydrostatic Test - Ptv (Htv = 500,00 mm).............................4,9033E-3 MPa

3.3 - Internal Pressure Calculations3.3.1 - Straight Flange Section

corroded inside radius of straight flange section (R)............................................ 1001,5 mminternal design pressure (P= Pi + PS).................................................................... 0,20388 MPa

Minimum Thickness under Internal Pressure (t)................................................... 2,8252 mmCircumferential stress govern for internal pressure .Thickness for circumferential stress is given by UG-27(c)(1), as follows:

tP R

S E 0,6 P=

t0,20388 1001,5×

103,42 0,7× 0,6 0,20388×=

∴t = 2,8252mm

Thickness for longitudinal stress is given by UG-27(c)(2), as follows:

tP R

2 Sl E 0,4 P+=

t0,20388 1001,5×

2 103,42× 0,7× 0,4 0,20388×+=

∴t = 1,4094mm

Page 6: Cerebro Mix

10/01/2016 6/55Demo Version

CerebroMix - Evaluation Version

3.3.2 - Allowable Compressive Stress by UG-23(b)

Condition

Design Temperature/Corroded

Design Temperature/New

Test Temperature/Corroded

Test Temperature/New

Ro

mm

1009,5

1009,5

1009,5

1009,5

t

mm

8,0300

9,5300

8,0300

9,5300

A Factor

0,000994

0,001180

0,000994

0,001180

B Factor

MPa

50,413

53,435

61,592

66,141

S

MPa

103,42

103,42

137,90

137,90

SC

MPa

50,413

53,435

61,592

66,141

a) Ro = outside radiusb) t = Thicknessc) A = 0,125/(Ro/t) - UG-23(b) Step 1d) S = maximum allowable tensile stress - UG-23(a)e) Sc = minimum between S and B

Note: By UG-32(l), when a straight flange is provided, its thickness shall be at least that required for a seamlessshell of the same inside diameter.

3.3.3 - Ellipsoidal SectionFactor K

K Factor (K).......................................................................................................... 1,0000K factor for ellipsoidal heads is calculated by 1-4(c)(1):

K1

62

D

2 h

2

+=

K1

62

2000

2 500×

2

+×=

∴K = 1

corroded K factor (Kc)........................................................................................... 0,99801K factor for ellipsoidal heads is calculated by 1-4(c)(1):

Kc

1

62

Dc

2 hc

2

+=

Kc

1

62

2003

2 501,5×

2

+×=

∴Kc = 0,99801 Minimum Thickness : 1-4(c)(1)

Joint efficiency (E)................................................................................................ 0,70000internal design pressure (P = Pi + PS)................................................................... 0,20351 MPa

Minimum Thickness under Internal Pressure (t)................................................... 2,8105 mmMinimum thickness under internal pressure is given by Appendix 1-4(c)(1):

tP D K

2 S E 0,2 P=

t0,20351 2003× 0,99801×

2 103,42× 0,7× 0,2 0,20351×=

∴t = 2,8105mm

Page 7: Cerebro Mix

10/01/2016 7/55Demo Version

CerebroMix - Evaluation Version

Minimum Thickness : Maximum between 1-4(c)(1) and UG-16

Minimum Thickness by 1-4(c)(1) (t1-4(c))................................................................ 2,8105 mm

Minimum Thickness by UG-16 (tUG-16).................................................................. 1,5000 mm

Minimum Thickness under Internal Pressure (t)................................................... 2,8105 mm

3.4 - External Pressure Calculations3.4.1 - Straight Flange Section

External Design Pressure of Head Straight Flange (Pe)....................................... 0,0000 MPa

Vacuum (Pv).......................................................................................................... 0,04000 MPa

External Pressure of Head Straight Flange (P = Pe + Pv)..................................... 0,04000 MPa

corroded external diameter of straight flange section (DO)................................... 2019,1 mm

minimum thickness under external pressure (t)................................................... 5,6870 mmdesign length between lines of support (L)........................................................... 3333,8 mmDO/t....................................................................................................................... 355,03

L/DO...................................................................................................................... 1,6512

External Chart.......................................................................................................... HA-1Factor A................................................................................................................1,1760E-4Factor B (1544,6 psi)............................................................................................ 10,650 MPa

Straight Flange Section has DO/t ≥ 10.The value of Pa is calculated by (see UG-28(c)(1) Step 6):

Pa

4 B

3 DO t/

=

Pa

4 10,65×

3 2019,1 5,687/( )×=

∴Pa = 0,04MPa

calculated maximum allowable external working pressure (Pa)........................... 0,04000 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

3.4.2 - Ellipsoidal SectionDesign Data

K0 factor (KO)......................................................................................................... 0,89158

equivalent outside spherical radius (RO)............................................................... 1800,2 mm

External Pressure (Pe).......................................................................................... 0,0000 MPa

Vacuum (Pv).......................................................................................................... 0,04000 MPa

External Design Pressure (P = Pe + Pv)................................................................ 0,04000 MPa

minimum thickness under external pressure (t)................................................... 3,3801 mmThickness by UG-33(a)(1)(a)

Minimum thickness under external pressure, by UG-33(a)(1)(a), is computed by Appendix 1-4(c)(1), using a designpressure 1.67 times the design external pressure, assuming a joint efficiency E = 1.00 for all cases.

t1,67 P D K

2 S E 0,2 P=

t1,67 0,04× 2003× 0,99801×

2 103,42× 1× 0,2 0,04×=

∴t = 0,64555mm Thickness by UG-33(d)

RO KO DO=

RO 0,89158 2019,1×=

Page 8: Cerebro Mix

10/01/2016 8/55Demo Version

CerebroMix - Evaluation Version

∴RO = 1800,2mm

External Chart.......................................................................................................... HA-1Factor A................................................................................................................2,3471E-4Factor B (3089,5 psi)............................................................................................ 21,301 MPa

By UG-33(d) and UG-28(d) Step 1, factor A is calculated:

A0,125

RO t/=

A0,125

1800,2 3,3801/=

∴A = 2,3471E-4

The value of Pa is calculated by (see UG-28(d) Step 4):

Pa

B

RO t/

=

Pa

21,301

1800,2 3,3801/( )=

∴Pa = 0,04MPa

calculated maximum allowable external working pressure (Pa)........................... 0,04000 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

Minimum Thickness under External Pressure by UG-33

Minimum Thickness per UG-33(a)(1)................................................................... 0,64555 mmMinimum Thickness per UG-33(d)....................................................................... 3,3801 mmMinimum Thickness per UG-16............................................................................ 1,5000 mmDesign Thickness due to External Pressure........................................................ 3,3801 mm

3.5 - Minimum Nominal Thickness Calculations3.5.1 - Straight Flange

Minimum Thickness (t)......................................................................................... 5,6870 mmMinimum Thickness with Corrosion Allowance (tc)............................................... 7,1870 mm

3.5.2 - EllipsoidalMinimum Thickness (t)......................................................................................... 3,3801 mmMinimum Thickness with Thin-Out (tf).................................................................. 5,8801 mm

Minimum Thickness with Thin-Out and Corrosion Allowances (tc)....................... 7,3801 mm

3.5.3 - ResultsMinimum Thickness (t)......................................................................................... 5,6870 mmMinimum Thickness with Thin-Out (tf).................................................................. 5,8801 mm

Minimum Thickness with Thin-Out and Corrosion Allowances (tc)....................... 7,3801 mm

Nominal Thickness (tn)......................................................................................... 9,5300 mm

As t n ≥ tc, nominal thickness is adequate.

3.6 - MAEP Calculations3.6.1 - Straight Flange Section

corroded external diameter of straight flange section (DO)................................... 2019,1 mm

corroded thickness of straight flange section (t)................................................... 8,0300 mm

Page 9: Cerebro Mix

10/01/2016 9/55Demo Version

CerebroMix - Evaluation Version

design length between lines of support (L)........................................................... 3333,8 mmDO/t....................................................................................................................... 251,44

L/DO...................................................................................................................... 1,6512

External Chart.......................................................................................................... HA-1Factor A................................................................................................................1,9722E-4Factor B (2594,6 psi)............................................................................................ 17,889 MPa

Cylindrical section has DO/t ≥ 10.The value of MAEP is calculated by (see UG-28(c)(1) Step 6):

MAEP4 B

3 DO t/

=

MAEP4 17,889×

3 2019,1 8,03/( )×=

∴MAEP = 0,09486MPa

Maximum Allowable External Pressure (MAEP).................................................. 0,09486 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

3.6.2 - Ellipsoidal SectionMaximum Allowable External Pressure : UG-33(a)(1)(a)

Corroded Thickness............................................................................................. 5,5300 mmMaximum Allowable External Pressure................................................................ 0,34245 MPa

Check of MAEP by UG-33(a)(1)(a) and Appendix 1-4(c)(1):

MAEP2 S E t

1,67 D K 0,2 t+( )=

MAEP2 103,42× 1× 5,53×

1,67 2003 0,99801× 0,2 5,53×+( )×=

∴MAEP = 0,34245MPa Maximum Allowable External Pressure : UG-33(d)

K0 factor................................................................................................................ 0,89158

corroded equivalent outside spherical radius....................................................... 1800,2 mm

RO KO DO=

RO 0,89158 2019,1×=

∴RO = 1800,2mm

External Chart.......................................................................................................... HA-1Factor A................................................................................................................3,8399E-4Factor B (5062,4 psi)............................................................................................ 34,904 MPa

By UG-33(d) and UG-28(d) Step 1, factor A is calculated:

A0,125

RO t/=

A0,125

1800,2 5,53/=

∴A = 3,8399E-4

The value of MAEP is calculated by (see UG-28(d) Step 4):

MAEPB

RO t/

=

MAEP34,904

1800,2 5,53/( )=

Page 10: Cerebro Mix

10/01/2016 10/55Demo Version

CerebroMix - Evaluation Version

∴MAEP = 0,10722MPa

Maximum Allowable External Pressure (MAEP).................................................. 0,10722 MPaMaximum Allowable External Pressure : UG-33

Maximum Allowable External Pressure : UG-33(a)(1)(a)..................................... 0,34245 MPaMaximum Allowable External Pressure : UG-33(d).............................................. 0,10722 MPaMaximum Allowable External Pressure (MAEP).................................................. 0,10722 MPa

3.7 - UHA-44(a)(1)(a) Forming Strain3.7.1 - Straight Flange Section

Forming Strain (strain).......................................................................................... 0,47424 %Plate Thickness (t)................................................................................................ 9,5300 mmFinal Center Line Radius (Rf)................................................................................ 1004,8 mm

Original Center Line Radius (RO).......................................................................... ∞ mm

strain50 t

Rf

1Rf

Ro

=

strain50 9,53×

1004,81

1004,8

∞×=

∴strain = 0,47424

3.7.2 - Ellipsoidal Section

Forming Strain (strain).......................................................................................... 2,0732 %Plate Thickness (t)................................................................................................ 9,5300 mmFinal Center Line Radius (Rf)................................................................................ 344,77 mm

Original Center Line Radius (RO).......................................................................... ∞ mm

strain75 t

Rf

1Rf

Ro

=

strain75 9,53×

344,771

344,77

∞×=

∴strain = 2,0732

Verify UHA-44 and table UHA-44 for required heat treatment.

3.8 - Tapered Transition and Straight Flange LengthTapered Transition required per UW-13(b)(3) ?........................................................ YesFormed Thickness of Head (th)............................................................................. 9,5300 mm

Nominal Thickness of Shell (ts)............................................................................. 12,700 mm

Offset between Shell and Head (y)....................................................................... 1,5850 mmMinimum length of required taper ( = 3·y)............................................................ 4,7550 mmDifference in Thickness between Shell and Head (∆).......................................... 3,1700 mm

Difference in Thickness / Thinner Section Ratio (∆r)............................................ 0,33263

Page 11: Cerebro Mix

10/01/2016 11/55Demo Version

CerebroMix - Evaluation Version

By UW-13(b)(3), a tapered transition having a length not less than three times de offsetbetween the adjacent surfaces of abutting sections in Fig. UW-13.1 sketches (j) and (k) shallbe provided at joints between formed heads and shells that differ in thickness by more than1/4 the thickness of the thinner section or by more than 1/8 in. (3 mm), whichever is less

Page 12: Cerebro Mix

10/01/2016 12/55Demo Version

CerebroMix - Evaluation Version

4 - Bottom Head Calculations

4.1 - Head SpecificationsHead............................................................................. Ellipsoidal 2:1 R/D=0.9 r/D=0.17Material......................................................................................................... SA-240 304Nominal Thickness (tn)......................................................................................... 15,880 mm

Internal Pressure (Pi)............................................................................................ 0,19613 MPa

External Pressure (Pe).......................................................................................... 0,19613 MPa

Vacuum (V)........................................................................................................... 0,04000 MPaInternal Temperature (Ti)...................................................................................... 150,00 °C

External Temperature (Te).................................................................................... 150,00 °C

Design Temperature (TD)...................................................................................... 150,00 °C

Allowable Stress at Design Temperature (S)....................................................... 103,42 MPaAllowable Stress at Test Temperature (ST).......................................................... 137,90 MPa

Inner Corrosion (tic)............................................................................................... 1,5000 mm

Outer Corrosion (tec)............................................................................................. 0,0000 mm

Thin Out................................................................................................................ 3,0000 mmStraight Flange Length (hs)................................................................................... 40,000 mm

4.2 - Static Head Calculations4.2.1 - Straight Flange Section

Operating Static Head - PS (HS = 3501,5 mm)...................................................... 0,05151 MPa

Static Head for Shop Hydrostatic Test - Pth (Hth = 2000,0 mm)............................ 0,01961 MPa

Static Head for Field Hydrostatic Test - Ptv (Htv = 3500,0 mm)............................. 0,03432 MPa

4.2.2 - Ellipsoidal SectionOperating Static Head - PS (HS = 4003,0 mm)...................................................... 0,05888 MPa

Static Head for Shop Hydrostatic Test - Pth (Hth = 2000,0 mm)............................ 0,01961 MPa

Static Head for Field Hydrostatic Test - Ptv (Htv = 4000,0 mm)............................. 0,03923 MPa

4.3 - Internal Pressure Calculations4.3.1 - Straight Flange Section

corroded inside radius of straight flange section (R)............................................ 1001,5 mminternal design pressure (P= Pi + PS).................................................................... 0,24764 MPa

Minimum Thickness under Internal Pressure (t)................................................... 3,4329 mmCircumferential stress govern for internal pressure .Thickness for circumferential stress is given by UG-27(c)(1), as follows:

tP R

S E 0,6 P=

t0,24764 1001,5×

103,42 0,7× 0,6 0,24764×=

∴t = 3,4329mm

Thickness for longitudinal stress is given by UG-27(c)(2), as follows:

tP R

2 Sl E 0,4 P+=

t0,24764 1001,5×

2 103,42× 0,7× 0,4 0,24764×+=

∴t = 1,7117mm

Page 13: Cerebro Mix

10/01/2016 13/55Demo Version

CerebroMix - Evaluation Version

4.3.2 - Allowable Compressive Stress by UG-23(b)

Condition

Design Temperature/Corroded

Design Temperature/New

Test Temperature/Corroded

Test Temperature/New

Ro

mm

1015,9

1015,9

1015,9

1015,9

t

mm

14,380

15,880

14,380

15,880

A Factor

0,001769

0,001954

0,001769

0,001954

B Factor

MPa

60,888

62,707

76,585

78,768

S

MPa

103,42

103,42

137,90

137,90

SC

MPa

60,888

62,707

76,585

78,768

a) Ro = outside radiusb) t = Thicknessc) A = 0,125/(Ro/t) - UG-23(b) Step 1d) S = maximum allowable tensile stress - UG-23(a)e) Sc = minimum between S and B

Note: By UG-32(l), when a straight flange is provided, its thickness shall be at least that required for a seamlessshell of the same inside diameter.

4.3.3 - Ellipsoidal SectionFactor K

K Factor (K).......................................................................................................... 1,0000K factor for ellipsoidal heads is calculated by 1-4(c)(1):

K1

62

D

2 h

2

+=

K1

62

2000

2 500×

2

+×=

∴K = 1

corroded K factor (Kc)........................................................................................... 0,99801K factor for ellipsoidal heads is calculated by 1-4(c)(1):

Kc

1

62

Dc

2 hc

2

+=

Kc

1

62

2003

2 501,5×

2

+×=

∴Kc = 0,99801 Minimum Thickness : 1-4(c)(1)

Joint efficiency (E)................................................................................................ 0,70000internal design pressure (P = Pi + PS)................................................................... 0,25502 MPa

Minimum Thickness under Internal Pressure (t)................................................... 3,5221 mmMinimum thickness under internal pressure is given by Appendix 1-4(c)(1):

tP D K

2 S E 0,2 P=

t0,25502 2003× 0,99801×

2 103,42× 0,7× 0,2 0,25502×=

∴t = 3,5221mm

Page 14: Cerebro Mix

10/01/2016 14/55Demo Version

CerebroMix - Evaluation Version

Minimum Thickness : Maximum between 1-4(c)(1) and UG-16

Minimum Thickness by 1-4(c)(1) (t1-4(c))................................................................ 3,5221 mm

Minimum Thickness by UG-16 (tUG-16).................................................................. 1,5000 mm

Minimum Thickness under Internal Pressure (t)................................................... 3,5221 mm

4.4 - External Pressure Calculations4.4.1 - Straight Flange Section

External Design Pressure of Head Straight Flange (Pe)....................................... 0,19613 MPa

Vacuum (Pv).......................................................................................................... 0,04000 MPa

External Pressure of Head Straight Flange (P = Pe + Pv)..................................... 0,23613 MPa

corroded external diameter of straight flange section (DO)................................... 2031,8 mm

minimum thickness under external pressure (t)................................................... 11,607 mmdesign length between lines of support (L)........................................................... 3333,8 mmDO/t....................................................................................................................... 175,04

L/DO...................................................................................................................... 1,6408

External Chart.......................................................................................................... HA-1Factor A................................................................................................................3,4116E-4Factor B (4496,1 psi)............................................................................................ 30,999 MPa

Straight Flange Section has DO/t ≥ 10.The value of Pa is calculated by (see UG-28(c)(1) Step 6):

Pa

4 B

3 DO t/

=

Pa

4 30,999×

3 2031,8 11,607/( )×=

∴Pa = 0,23613MPa

calculated maximum allowable external working pressure (Pa)........................... 0,23613 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

4.4.2 - Ellipsoidal SectionDesign Data

K0 factor (KO)......................................................................................................... 0,88615

equivalent outside spherical radius (RO)............................................................... 1800,4 mm

External Pressure (Pe).......................................................................................... 0,19613 MPa

Vacuum (Pv).......................................................................................................... 0,04000 MPa

External Design Pressure (P = Pe + Pv)................................................................ 0,23613 MPa

minimum thickness under external pressure (t)................................................... 9,6459 mmThickness by UG-33(a)(1)(a)

Minimum thickness under external pressure, by UG-33(a)(1)(a), is computed by Appendix 1-4(c)(1), using a designpressure 1.67 times the design external pressure, assuming a joint efficiency E = 1.00 for all cases.

t1,67 P D K

2 S E 0,2 P=

t1,67 0,23613× 2003× 0,99801×

2 103,42× 1× 0,2 0,23613×=

∴t = 3,8119mm Thickness by UG-33(d)

RO KO DO=

RO 0,88615 2031,8×=

Page 15: Cerebro Mix

10/01/2016 15/55Demo Version

CerebroMix - Evaluation Version

∴RO = 1800,4mm

External Chart.......................................................................................................... HA-1Factor A................................................................................................................6,6969E-4Factor B (6392,5 psi)............................................................................................ 44,075 MPa

By UG-33(d) and UG-28(d) Step 1, factor A is calculated:

A0,125

RO t/=

A0,125

1800,4 9,6459/=

∴A = 6,6969E-4

The value of Pa is calculated by (see UG-28(d) Step 4):

Pa

B

RO t/

=

Pa

44,075

1800,4 9,6459/( )=

∴Pa = 0,23613MPa

calculated maximum allowable external working pressure (Pa)........................... 0,23613 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

Minimum Thickness under External Pressure by UG-33

Minimum Thickness per UG-33(a)(1)................................................................... 3,8119 mmMinimum Thickness per UG-33(d)....................................................................... 9,6459 mmMinimum Thickness per UG-16............................................................................ 1,5000 mmDesign Thickness due to External Pressure........................................................ 9,6459 mm

4.5 - Minimum Nominal Thickness Calculations4.5.1 - Straight Flange

Minimum Thickness (t)......................................................................................... 11,607 mmMinimum Thickness with Corrosion Allowance (tc)............................................... 13,107 mm

4.5.2 - EllipsoidalMinimum Thickness (t)......................................................................................... 9,6459 mmMinimum Thickness with Thin-Out (tf).................................................................. 12,646 mm

Minimum Thickness with Thin-Out and Corrosion Allowances (tc)....................... 14,146 mm

4.5.3 - ResultsMinimum Thickness (t)......................................................................................... 11,607 mmMinimum Thickness with Thin-Out (tf).................................................................. 12,646 mm

Minimum Thickness with Thin-Out and Corrosion Allowances (tc)....................... 14,146 mm

Nominal Thickness (tn)......................................................................................... 15,880 mm

As t n ≥ tc, nominal thickness is adequate.

4.6 - MAEP Calculations4.6.1 - Straight Flange Section

corroded external diameter of straight flange section (DO)................................... 2031,8 mm

corroded thickness of straight flange section (t)................................................... 14,380 mm

Page 16: Cerebro Mix

10/01/2016 16/55Demo Version

CerebroMix - Evaluation Version

design length between lines of support (L)........................................................... 3333,8 mmDO/t....................................................................................................................... 141,29

L/DO...................................................................................................................... 1,6408

External Chart.......................................................................................................... HA-1Factor A................................................................................................................4,7066E-4Factor B (5670,2 psi)............................................................................................ 39,094 MPa

Cylindrical section has DO/t ≥ 10.The value of MAEP is calculated by (see UG-28(c)(1) Step 6):

MAEP4 B

3 DO t/

=

MAEP4 39,094×

3 2031,8 14,38/( )×=

∴MAEP = 0,36893MPa

Maximum Allowable External Pressure (MAEP).................................................. 0,36893 MPaAs Pa ≥ P, minimum thickness is valid for external pressure

4.6.2 - Ellipsoidal SectionMaximum Allowable External Pressure : UG-33(a)(1)(a)

Corroded Thickness............................................................................................. 11,380 mmMaximum Allowable External Pressure................................................................ 0,70430 MPa

Check of MAEP by UG-33(a)(1)(a) and Appendix 1-4(c)(1):

MAEP2 S E t

1,67 D K 0,2 t+( )=

MAEP2 103,42× 1× 11,38×

1,67 2003 0,99801× 0,2 11,38×+( )×=

∴MAEP = 0,7043MPa Maximum Allowable External Pressure : UG-33(d)

K0 factor................................................................................................................ 0,88615

corroded equivalent outside spherical radius....................................................... 1800,4 mm

RO KO DO=

RO 0,88615 2031,8×=

∴RO = 1800,4mm

External Chart.......................................................................................................... HA-1Factor A................................................................................................................7,9008E-4Factor B (6762,1 psi)............................................................................................ 46,623 MPa

By UG-33(d) and UG-28(d) Step 1, factor A is calculated:

A0,125

RO t/=

A0,125

1800,4 11,38/=

∴A = 7,9008E-4

The value of MAEP is calculated by (see UG-28(d) Step 4):

MAEPB

RO t/

=

MAEP46,623

1800,4 11,38/( )=

Page 17: Cerebro Mix

10/01/2016 17/55Demo Version

CerebroMix - Evaluation Version

∴MAEP = 0,29469MPa

Maximum Allowable External Pressure (MAEP).................................................. 0,29469 MPaMaximum Allowable External Pressure : UG-33

Maximum Allowable External Pressure : UG-33(a)(1)(a)..................................... 0,70430 MPaMaximum Allowable External Pressure : UG-33(d).............................................. 0,29469 MPaMaximum Allowable External Pressure (MAEP).................................................. 0,29469 MPa

4.7 - UHA-44(a)(1)(a) Forming Strain4.7.1 - Straight Flange Section

Forming Strain (strain).......................................................................................... 0,78775 %Plate Thickness (t)................................................................................................ 15,880 mmFinal Center Line Radius (Rf)................................................................................ 1007,9 mm

Original Center Line Radius (RO).......................................................................... ∞ mm

strain50 t

Rf

1Rf

Ro

=

strain50 15,88×

1007,91

1007,9

∞×=

∴strain = 0,78775

4.7.2 - Ellipsoidal Section

Forming Strain (strain).......................................................................................... 3,4230 %Plate Thickness (t)................................................................................................ 15,880 mmFinal Center Line Radius (Rf)................................................................................ 347,94 mm

Original Center Line Radius (RO).......................................................................... ∞ mm

strain75 t

Rf

1Rf

Ro

=

strain75 15,88×

347,941

347,94

∞×=

∴strain = 3,423

Verify UHA-44 and table UHA-44 for required heat treatment.

4.8 - Tapered Transition and Straight Flange LengthTapered Transition required per UW-13(b)(3) ?........................................................ YesFormed Thickness of Head (th)............................................................................. 15,880 mm

Nominal Thickness of Shell (ts)............................................................................. 12,700 mm

Offset between Shell and Head (y)....................................................................... 3,1800 mmMinimum length of required taper ( = 3·y)............................................................ 9,5400 mmHead Thickness to Shell Thickness Ratio............................................................ 1,2504Minimum Straight Flange Length (lfmin)................................................................. 38,000 mm

Maximum Straight Flange Length (lfmax)................................................................ 38,000 mm

Page 18: Cerebro Mix

10/01/2016 18/55Demo Version

CerebroMix - Evaluation Version

Straight Flange Length (lf)..................................................................................... 40,000 mm

Straight flange length is greater than maximum valu e.

By UW-13(b)(3), when a taper is requered on any formed head thicker than the shell andintended for butt welded attachment [Fig. UW-13.1 sketckes (l) and (m)], the straight flangeshall be long enough so that the required length of taper does not extended beyond thetangent line.In Fig. UW-13.1, sketches (l) and (m), the minimum length of straight flange is 3*th (headnominal thickness), but need not exceed 1 1/2 in (38 mm) except when necessary to providerequered length of taper.

Page 19: Cerebro Mix

10/01/2016 19/55Demo Version

CerebroMix - Evaluation Version

5 - Hydrostatic Field Test based on MAWP per UG-99( b)

5.1 - Test DataThe Field Test is performed with the vessel in the................................. Vertical PositionMAWP for Vessel................................................................................................. 0,19613 MPaField Hydrostatic Test Gauge Pressure at 21,000 °C........................................... 0,33996 MPaUG-99(b) Pressure Factor.................................................................................... 1,3000UG-99(b) Stress Ratio.......................................................................................... 1,3333

5.2 - Shell CalculationsCylindrical Section 1

thickness with corrosion allowances included (t).................................................. 12,700 mmInside Radius (R).................................................................................................. 1000,0 mmTest Pressure with Static Head (P)...................................................................... 0,37389 MPaStress in Test Conditions (S)................................................................................ 42,378 MPa

Circumferential stress govern for internal pressure. The stress in test conditions is given by UG-27(c)(1):

SP R 0,6 t+( )

E t=

S0,37389 1000 0,6 12,7×+( )×

0,7 12,7×=

∴S = 42,378MPa

5.3 - Top Head Stress CalculationsStraight Flange Section

thickness with corrosion allowances included (t).................................................. 9,5300 mmInside Radius (R).................................................................................................. 1000,0 mmTest Pressure with Static Head (P)...................................................................... 0,34511 MPaStress in Test Conditions (S)................................................................................ 52,029 MPa

Circumferential stress govern for internal pressure. The stress in test conditions is given by UG-27(c)(1):

SP R 0,6 t+( )

E t=

S0,34511 1000 0,6 9,53×+( )×

0,7 9,53×=

∴S = 52,029MPa Ellipsoidal Section

Test Pressure with Static Head............................................................................ 0,34487 MPathickness with corrosion allowances included...................................................... 7,0300 mmInside Diameter.................................................................................................... 2000,0 mmJoint efficiency...................................................................................................... 0,70000Stress at Test Conditions..................................................................................... 70,130 MPa

The stress at test conditions is given by 1-4(c)(1):

SP K D 0,2 P t+

2 t E=

S0,34487 1× 2000× 0,2 0,34487× 7,03×+

2 7,03× 0,7×=

∴S = 70,13MPa

Page 20: Cerebro Mix

10/01/2016 20/55Demo Version

CerebroMix - Evaluation Version

5.4 - Bottom Head Stress CalculationsStraight Flange Section

thickness with corrosion allowances included (t).................................................. 15,880 mmInside Radius (R).................................................................................................. 1000,0 mmTest Pressure with Static Head (P)...................................................................... 0,37429 MPaStress in Test Conditions (S)................................................................................ 33,992 MPa

Circumferential stress govern for internal pressure. The stress in test conditions is given by UG-27(c)(1):

SP R 0,6 t+( )

E t=

S0,37429 1000 0,6 15,88×+( )×

0,7 15,88×=

∴S = 33,992MPa Ellipsoidal Section

Test Pressure with Static Head............................................................................ 0,37919 MPathickness with corrosion allowances included...................................................... 12,880 mmInside Diameter.................................................................................................... 2000,0 mmJoint efficiency...................................................................................................... 0,70000Stress at Test Conditions..................................................................................... 42,112 MPa

The stress at test conditions is given by 1-4(c)(1):

SP K D 0,2 P t+

2 t E=

S0,37919 1× 2000× 0,2 0,37919× 12,88×+

2 12,88× 0,7×=

∴S = 42,112MPa

Page 21: Cerebro Mix

10/01/2016 21/55Demo Version

CerebroMix - Evaluation Version

6 - Vessel Calculations Summary

Design Temperature............................................................................................. 150,00 °CDesign Internal Pressure...................................................................................... 0,19613 MPaMaximum Allowable Working Pressure (MAWP) by UG-98(a)............................ 0,19613 MPaMaximum Allowable External Pressure (MAEP).................................................. 0,09486 MPa

Page 22: Cerebro Mix

10/01/2016 22/55Demo Version

CerebroMix - Evaluation Version

7 - Pressure Summary

Vessel Components

Top Head

Shell

Bottom Head

Ellipsoidal

Straight Flange

Section 1

Straight Flange

Ellipsoidal

Internal

Pressure

(MPa)

0,19613

0,19613

0,19613

0,19613

0,19613

Fluid

Static Head

(MPa)

7,3771E-3

7,7448E-3

0,05092

0,05151

0,05888

External

Pressure

(MPa)

0,0000

0,0000

0,19613

0,19613

0,19613

Vacuum

(MPa)

0,04000

0,04000

0,04000

0,04000

0,04000

Overtickness

Internal

(mm)

1,5000

1,5000

1,5000

1,5000

1,5000

External

(mm)

0,0000

0,0000

0,0000

0,0000

0,0000

Thin

Out

(mm)

2,5000

0,0000

---

0,0000

3,0000

Vessel Components

Top Head

Shell

Bottom Head

Ellipsoidal

Straight Flange

Section 1

Straight Flange

Ellipsoidal

Total Internal

Pressure

(MPa)

0,20351

0,20388

0,24705

0,24764

0,25502

Total External

Pressure

(MPa)

0,04000

0,04000

0,23613

0,23613

0,23613

MAWP

(MPa)

0,19613

0,19613

0,19613

0,19613

0,19613

MAEP

(MPa)

0,10722

0,09486

0,27836

0,36893

0,29469

MAWP : Maximum Allowable Working Pressure [UG-98(a) ]MAWP is the least of the values found for maximum allowable working pressure for any ofthe essential parts of the vessel, ajusted for any difference in static head that may existbetween the part considered and the top of the vessel.

If MAWP is not included in Code calculation report then vessel do not need to be test basedon MAWP and the nameplate may reflect the design pr essure applied as MAWP.

a) Maximum Allowable Working Pressure for Vessel : 0,19613 MPa at 150,00 °Cb) Maximum Allowable External Pressure : 0,09486 MPa at 150,00 °C

Page 23: Cerebro Mix

10/01/2016 23/55Demo Version

CerebroMix - Evaluation Version

8 - Thickness Summary

Vessel Components

Top Head

Shell

Bottom Head

Straight Flange

Ellipsoidal

Section 1

Straight Flange

Ellipsoidal

Nominal

(mm)

9,5300

9,5300

12,700

15,880

15,880

Design

(mm)

7,1870

7,3801

11,769

13,107

14,146

After

Forming

(mm)

7,1870

4,8801

11,769

13,107

11,146

Welded

Joint

Efficiency

0,70

0,70

0,70

0,70

0,70

Load Case

External Pressure

External Pressure

External Pressure

External Pressure

External Pressure

a) Nominal : commercial plate/schedule thicknessb) Design : minimum design thickness with corrosion and forming allowances.c) After Forming : minimum thickness of material after forming.

Page 24: Cerebro Mix

10/01/2016 24/55Demo Version

CerebroMix - Evaluation Version

9 - Hydrostatic Field Test based on MAWP per UG-99( b)

Field hydrostatic test gauge pressure is 0,33996 MPa at 21,000 °C (MAWP = 0,19613 MPa). The field test is performed with the vessel in the vertical position.

Vessel Components

Top Head

Shell

Bottom Head

Straight Flange

Ellipsoidal

Section 1

Straight Flange

Ellipsoidal

Local Test

Pressure

(MPa)

0,34511

0,34487

0,37389

0,37429

0,37919

Test Liquid

Static Head

(MPa)

5,1485E-3

4,9033E-3

0,03393

0,03432

0,03923

Stress

Ratio

1,333

1,333

1,333

1,333

1,333

Stress at

Test

(MPa)

52,029

70,130

42,378

33,992

42,112

Maximum Test

Stress

(MPa)

186,16

186,16

186,16

186,16

186,16

a) Pressure Factor - UG-99(b): 1,300b) Stress Ratio - UG-99(b) : 1,333c) Local Test Pressure = Test Pressure + Static Fluid Headd) Maximum Test Stress = 0,9 x Yield Strength

Page 25: Cerebro Mix

10/01/2016 25/55Demo Version

CerebroMix - Evaluation Version

10 - Calculations of Periof of Vibration

Length of Leg from base to LT (L)........................................................................ 2013,6 mmNumber of Legs (N).............................................................................................. 4Modulus of Elasticity (E)....................................................................................... 204815 MPaMoment of Inertia of Leg - XX (Ix)......................................................................... 6310977 mm4

Moment of Inertia of Leg - YY (Iy)......................................................................... 6310977 mm4

10.1 - Operating CorrodedVessel Weight (W)................................................................................................ 196960 NLeg Deflection (y).................................................................................................. 103,67 mmPeriod of Vibration (T).......................................................................................... 0,64601 sFundamental Frequency (f).................................................................................. 1,5480 Hz

Fundamental period and deflection are given by:

y2 W L3

3 N E Ix Iy+

=

y2 196960× 2013,63×

3 4× 204815× 6310977 6310977+( )×=

∴y = 103,67mm

T 2 π y

g=

T 2 π×0,10367

9,8066×=

∴T = 0,64601

10.2 - Operating NewVessel Weight (W)................................................................................................ 199764 NLeg Deflection (y).................................................................................................. 105,14 mmPeriod of Vibration (T).......................................................................................... 0,65059 sFundamental Frequency (f).................................................................................. 1,5371 Hz

Fundamental period and deflection are given by:

y2 W L3

3 N E Ix Iy+

=

y2 199764× 2013,63×

3 4× 204815× 6310977 6310977+( )×=

∴y = 105,14mm

T 2 π y

g=

T 2 π×0,10514

9,8066×=

∴T = 0,65059

Page 26: Cerebro Mix

10/01/2016 26/55Demo Version

CerebroMix - Evaluation Version

10.3 - Empty CorrodedVessel Weight (W)................................................................................................ 26581 NLeg Deflection (y).................................................................................................. 13,991 mmPeriod of Vibration (T).......................................................................................... 0,23732 sFundamental Frequency (f).................................................................................. 4,2137 Hz

Fundamental period and deflection are given by:

y2 W L3

3 N E Ix Iy+

=

y2 26581× 2013,63×

3 4× 204815× 6310977 6310977+( )×=

∴y = 13,991mm

T 2 π y

g=

T 2 π×0,01399

9,8066×=

∴T = 0,23732

10.4 - Empty NewVessel Weight (W)................................................................................................ 29864 NLeg Deflection (y).................................................................................................. 15,718 mmPeriod of Vibration (T).......................................................................................... 0,25155 sFundamental Frequency (f).................................................................................. 3,9754 Hz

Fundamental period and deflection are given by:

y2 W L3

3 N E Ix Iy+

=

y2 29864× 2013,63×

3 4× 204815× 6310977 6310977+( )×=

∴y = 15,718mm

T 2 π y

g=

T 2 π×0,01572

9,8066×=

∴T = 0,25155

10.5 - Test NewVessel Weight (W)................................................................................................ 143130 NLeg Deflection (y).................................................................................................. 75,335 mmPeriod of Vibration (T).......................................................................................... 0,55070 sFundamental Frequency (f).................................................................................. 1,8159 Hz

Fundamental period and deflection are given by:

y2 W L3

3 N E Ix Iy+

=

Page 27: Cerebro Mix

10/01/2016 27/55Demo Version

CerebroMix - Evaluation Version

y2 143130× 2013,63×

3 4× 204815× 6310977 6310977+( )×=

∴y = 75,335mm

T 2 π y

g=

T 2 π×0,07533

9,8066×=

∴T = 0,5507

11 - Seismic Calculations

11.1 - Seismic base shearSeismic code................................................................................................... UBC 1997Support............................................................................................... Ground SupportedVertical seismic accelerations considered................................................................. YesForce multiplier..................................................................................................... 0,33330Minimum weight multiplier.................................................................................... 0,20000Seismic zone (Table 16-I).............................................................................................. 1Seismic zone factor Z(Table 16-I)........................................................................ 0,07500Soil profile (Table 16-J)................................................................................................ SA

Importance factor : I (Table 16-K)........................................................................ 1,0000Seismic coefficient : Ca (Table 16-Q)................................................................... 0,06000

11.2 - Seismic Shear: Operating Corroded11.2.1 - Fundamental Period T

Fundamental Period - Method A (Ta).................................................................... 0,17560 s

Maximum Fundamental Period - Method B (Tmax)................................................ 0,24584 s

Fundamental Period - Method B (Tb).................................................................... 0,64601 s

Fundamental Period for Design Base Shear (T).................................................. 0,24584 sBy 1630.2.2, Method A, the value T may be approximated from the following formula (30-8):

T Ct hn

3 4/

=

T 0,02 18,113( )3 4/

×=

∴T = 0,1756s

By 1630.2.2, Method B, the value of T calculated using the structural properties of resisting elements shall notexceed a value 40 percent greater than the value of T obtained from Method A in Seismic Zones 1, 2 and 3.

11.2.2 - Design Base Shear - Static ProcedureTotal Design Base Shear (30-4)........................................................................... 16024 NMaximum Total Design Base Shear (30-5).......................................................... 9848,0 NMinimum Total Design Base Shear (30-6)........................................................... 1299,9 NDesign Base Shear (LRFD Design)...................................................................... 9848,0 NDesign Base Shear (ASD Design = LRFD/1.4).................................................... 7034,3 NMaximum Concentrated Force at Top (Ftmax)........................................................ 2462,0 N

Page 28: Cerebro Mix

10/01/2016 28/55Demo Version

CerebroMix - Evaluation Version

Concentrated Force at Top (LRFD Design) (Ft)................................................... 0,0000 N

Concentrated Force at Top (ASD Design) (Ft)..................................................... 0,0000 N

By 1630.2.1, the total design base shear in a given direction shall be determined from the following formula (30-4):

VCv I

R TW=

V0,06 1×

3 0,24584×196960×=

∴V = 16024N

The total design base shear need not exceed the following (30-5):

V2,5 Ca I

RW=

V2,5 0,06× 1×

3196960×=

∴V = 9848N

The total design base shear shall not be less than the following (30-6):

V 0,11 Ca I W=

V 0,11 0,06× 1× 196960×=

∴V = 1299,9N

Seismic vertical acceleration coefficient (m)........................................................ 0,20000Seismic vertical acceleration coefficient is calculated by:

m Ka Fk=

m 0,03571 5,6×=

∴m = 0,2 11.2.3 - Design Base Shear Summary

Component

Top Head

Shell Section 1

Legs

Weight

N

20246

46893

2030,9

Elevation

above Base

mm

4988,6

2053,6

0,0000

Fx

Shear

Distributed

N

283,54

419,07

23,957

Seismic

Shear

at Bottom

N

1118,9

6567,8

7034,3

Bending Moment

at Bottom

N.m

244,95

12678,74

26955,49

11.3 - Seismic Shear: Operating New11.3.1 - Fundamental Period T

Fundamental Period - Method A (Ta).................................................................... 0,17560 s

Maximum Fundamental Period - Method B (Tmax)................................................ 0,24584 s

Fundamental Period - Method B (Tb).................................................................... 0,65059 s

Fundamental Period for Design Base Shear (T).................................................. 0,24584 sBy 1630.2.2, Method A, the value T may be approximated from the following formula (30-8):

T Ct hn

3 4/

=

T 0,02 18,113( )3 4/

×=

∴T = 0,1756s

By 1630.2.2, Method B, the value of T calculated using the structural properties of resisting elements shall notexceed a value 40 percent greater than the value of T obtained from Method A in Seismic Zones 1, 2 and 3.

Page 29: Cerebro Mix

10/01/2016 29/55Demo Version

CerebroMix - Evaluation Version

11.3.2 - Design Base Shear - Static ProcedureTotal Design Base Shear (30-4)........................................................................... 16252 NMaximum Total Design Base Shear (30-5).......................................................... 9988,2 NMinimum Total Design Base Shear (30-6)........................................................... 1318,4 NDesign Base Shear (LRFD Design)...................................................................... 9988,2 NDesign Base Shear (ASD Design = LRFD/1.4).................................................... 7134,4 NMaximum Concentrated Force at Top (Ftmax)........................................................ 2497,0 N

Concentrated Force at Top (LRFD Design) (Ft)................................................... 0,0000 N

Concentrated Force at Top (ASD Design) (Ft)..................................................... 0,0000 N

By 1630.2.1, the total design base shear in a given direction shall be determined from the following formula (30-4):

VCv I

R TW=

V0,06 1×

3 0,24584×199764×=

∴V = 16252N

The total design base shear need not exceed the following (30-5):

V2,5 Ca I

RW=

V2,5 0,06× 1×

3199764×=

∴V = 9988,2N

The total design base shear shall not be less than the following (30-6):

V 0,11 Ca I W=

V 0,11 0,06× 1× 199764×=

∴V = 1318,4N

Seismic vertical acceleration coefficient (m)........................................................ 0,20000Seismic vertical acceleration coefficient is calculated by:

m Ka Fk=

m 0,03571 5,6×=

∴m = 0,2 11.3.3 - Design Base Shear Summary

Component

Top Head

Shell Section 1

Legs

Weight

N

20209

47010

2030,9

Elevation

above Base

mm

4988,6

2053,6

0,0000

Fx

Shear

Distributed

N

285,14

426,29

24,093

Seismic

Shear

at Bottom

N

1123,1

6665,9

7134,4

Bending Moment

at Bottom

N.m

245,44

12849,32

27330,81

11.4 - Seismic Shear: Empty Corroded11.4.1 - Fundamental Period T

Fundamental Period - Method A (Ta).................................................................... 0,17560 s

Maximum Fundamental Period - Method B (Tmax)................................................ 0,24584 s

Fundamental Period - Method B (Tb).................................................................... 0,23732 s

Fundamental Period for Design Base Shear (T).................................................. 0,23732 sBy 1630.2.2, Method A, the value T may be approximated from the following formula (30-8):

Page 30: Cerebro Mix

10/01/2016 30/55Demo Version

CerebroMix - Evaluation Version

T Ct hn

3 4/

=

T 0,02 18,113( )3 4/

×=

∴T = 0,1756s

By 1630.2.2, Method B, the value of T calculated using the structural properties of resisting elements shall notexceed a value 40 percent greater than the value of T obtained from Method A in Seismic Zones 1, 2 and 3.

11.4.2 - Design Base Shear - Static ProcedureTotal Design Base Shear (30-4)........................................................................... 2240,1 NMaximum Total Design Base Shear (30-5).......................................................... 1329,1 NMinimum Total Design Base Shear (30-6)........................................................... 175,44 NDesign Base Shear (LRFD Design)...................................................................... 1329,1 NDesign Base Shear (ASD Design = LRFD/1.4).................................................... 949,33 NMaximum Concentrated Force at Top (Ftmax)........................................................ 332,26 N

Concentrated Force at Top (LRFD Design) (Ft)................................................... 0,0000 N

Concentrated Force at Top (ASD Design) (Ft)..................................................... 0,0000 N

By 1630.2.1, the total design base shear in a given direction shall be determined from the following formula (30-4):

VCv I

R TW=

V0,06 1×

3 0,23732×26581×=

∴V = 2240,1N

The total design base shear need not exceed the following (30-5):

V2,5 Ca I

RW=

V2,5 0,06× 1×

326581×=

∴V = 1329,1N

The total design base shear shall not be less than the following (30-6):

V 0,11 Ca I W=

V 0,11 0,06× 1× 26581×=

∴V = 175,44N

Seismic vertical acceleration coefficient (m)........................................................ 0,20000Seismic vertical acceleration coefficient is calculated by:

m Ka Fk=

m 0,03571 5,6×=

∴m = 0,2 11.4.3 - Design Base Shear Summary

Component

Top Head

Shell Section 1

Legs

Weight

N

3423,7

8953,1

2030,9

Elevation

above Base

mm

4988,6

2053,6

0,0000

Fx

Shear

Distributed

N

27,698

46,926

25,215

Seismic

Shear

at Bottom

N

202,29

812,43

949,33

Bending Moment

at Bottom

N.m

61,53

1679,80

3576,57

Page 31: Cerebro Mix

10/01/2016 31/55Demo Version

CerebroMix - Evaluation Version

11.5 - Seismic Shear: Empty New11.5.1 - Fundamental Period T

Fundamental Period - Method A (Ta).................................................................... 0,17560 s

Maximum Fundamental Period - Method B (Tmax)................................................ 0,24584 s

Fundamental Period - Method B (Tb).................................................................... 0,25155 s

Fundamental Period for Design Base Shear (T).................................................. 0,24584 sBy 1630.2.2, Method A, the value T may be approximated from the following formula (30-8):

T Ct hn

3 4/

=

T 0,02 18,113( )3 4/

×=

∴T = 0,1756s

By 1630.2.2, Method B, the value of T calculated using the structural properties of resisting elements shall notexceed a value 40 percent greater than the value of T obtained from Method A in Seismic Zones 1, 2 and 3.

11.5.2 - Design Base Shear - Static ProcedureTotal Design Base Shear (30-4)........................................................................... 2429,5 NMaximum Total Design Base Shear (30-5).......................................................... 1493,2 NMinimum Total Design Base Shear (30-6)........................................................... 197,10 NDesign Base Shear (LRFD Design)...................................................................... 1493,2 NDesign Base Shear (ASD Design = LRFD/1.4).................................................... 1066,6 NMaximum Concentrated Force at Top (Ftmax)........................................................ 373,29 N

Concentrated Force at Top (LRFD Design) (Ft)................................................... 0,0000 N

Concentrated Force at Top (ASD Design) (Ft)..................................................... 0,0000 N

By 1630.2.1, the total design base shear in a given direction shall be determined from the following formula (30-4):

VCv I

R TW=

V0,06 1×

3 0,24584×29864×=

∴V = 2429,5N

The total design base shear need not exceed the following (30-5):

V2,5 Ca I

RW=

V2,5 0,06× 1×

329864×=

∴V = 1493,2N

The total design base shear shall not be less than the following (30-6):

V 0,11 Ca I W=

V 0,11 0,06× 1× 29864×=

∴V = 197,1N

Seismic vertical acceleration coefficient (m)........................................................ 0,20000Seismic vertical acceleration coefficient is calculated by:

m Ka Fk=

m 0,03571 5,6×=

∴m = 0,2 11.5.3 - Design Base Shear Summary

Page 32: Cerebro Mix

10/01/2016 32/55Demo Version

CerebroMix - Evaluation Version

Component

Top Head

Shell Section 1

Legs

Weight

N

3420,6

9231,5

2030,9

Elevation

above Base

mm

4988,6

2053,6

0,0000

Fx

Shear

Distributed

N

28,675

55,044

26,103

Seismic

Shear

at Bottom

N

209,21

924,91

1066,6

Bending Moment

at Bottom

N.m

63,53

1879,37

4015,02

Page 33: Cerebro Mix

10/01/2016 33/55Demo Version

CerebroMix - Evaluation Version

12 - Wind Calculations

12.1 - Wind Pressure CalculationsWind code....................................................................................................... UBC 1997Elevation base above grade................................................................................. 0,0000 mmBasic Wind Speed................................................................................................ 140,00 km/hExposure (Section 1616)............................................................................................... BPressure coefficient : Cq (Table 16-G).................................................................. 0,80000

Importance factor : Iw (Table 16-K)....................................................................... 1,0000

Wind stagnation pressure : qs (Table 16-F).......................................................... 0,93254 kN/m2

By Section 1620, design wind pressure is determined with the following formula (20-1):

P Ce Cq qs Iw=

Rewriting this equation as function of Ce:

P 15,5812 Ce=

12.2 - Design Wind Pressures

Height

ft

15

20

Ce

0,62

0,67

Wind Pressure

psf

9,6603

10,4394

12.3 - Wind Shear: Operating Corroded

Component

Top Head

Shell 1

Legs

Elevation

above Base

mm

4988,6

4572,0

2053,6

0,0000

Effective

OD

m

2,0191

2,0254

2,0254

0,0000

Area

0,6943

0,8437

5,1008

1,1381

Wind

Pressure

kN/m2

0,49984

0,49984

0,46254

0,46254

Wind

Force

N

347,01

421,73

2359,3

526,40

Wind

Shear

at Bottom

N

347,01

768,74

3128,1

4000,1

Bending

Moment

at Bottom

N.m

68,66

301,06

5207,98

12710,78

12.4 - Wind Shear: Operating New

Component

Top Head

Shell 1

Legs

Elevation

above Base

mm

4988,6

4572,0

2053,6

0,0000

Effective

OD

m

2,0191

2,0254

2,0254

0,0000

Area

0,6943

0,8437

5,1008

1,1381

Wind

Pressure

kN/m2

0,49984

0,49984

0,46254

0,46254

Wind

Force

N

347,01

421,73

2359,3

526,40

Wind

Shear

at Bottom

N

347,01

768,74

3128,1

4000,1

Bending

Moment

at Bottom

N.m

68,66

301,06

5207,98

12710,78

Page 34: Cerebro Mix

10/01/2016 34/55Demo Version

CerebroMix - Evaluation Version

12.5 - Wind Shear: Empty Corroded

Component

Top Head

Shell 1

Legs

Elevation

above Base

mm

4988,6

4572,0

2053,6

0,0000

Effective

OD

m

2,0191

2,0254

2,0254

0,0000

Area

0,6943

0,8437

5,1008

1,1381

Wind

Pressure

kN/m2

0,49984

0,49984

0,46254

0,46254

Wind

Force

N

347,01

421,73

2359,3

526,40

Wind

Shear

at Bottom

N

347,01

768,74

3128,1

4000,1

Bending

Moment

at Bottom

N.m

68,66

301,06

5207,98

12710,78

12.6 - Wind Shear: Empty New

Component

Top Head

Shell 1

Legs

Elevation

above Base

mm

4988,6

4572,0

2053,6

0,0000

Effective

OD

m

2,0191

2,0254

2,0254

0,0000

Area

0,6943

0,8437

5,1008

1,1381

Wind

Pressure

kN/m2

0,49984

0,49984

0,46254

0,46254

Wind

Force

N

347,01

421,73

2359,3

526,40

Wind

Shear

at Bottom

N

347,01

768,74

3128,1

4000,1

Bending

Moment

at Bottom

N.m

68,66

301,06

5207,98

12710,78

12.7 - Wind Shear: Test New

Component

Top Head

Shell 1

Legs

Elevation

above Base

mm

4988,6

4572,0

2053,6

0,0000

Effective

OD

m

2,0191

2,0254

2,0254

0,0000

Area

0,6943

0,8437

5,1008

1,1381

Wind

Pressure

kN/m2

0,49984

0,49984

0,46254

0,46254

Wind

Force

N

114,51

139,17

778,58

173,71

Wind

Shear

at Bottom

N

114,51

253,69

1032,3

1320,0

Bending

Moment

at Bottom

N.m

22,66

99,35

1718,63

4194,56

Page 35: Cerebro Mix

10/01/2016 35/55Demo Version

CerebroMix - Evaluation Version

Legs Calculations

13 - Vessel Data

Operating Weight (corroded) (Wo)........................................................................ 196960 N

Operating Weight (new) (Won).............................................................................. 199764 N

Empty Weight (corroded) (We)............................................................................. 26581 N

Empty Weight (new) (We)..................................................................................... 29864 N

Test Weight (new) (WT)........................................................................................ 143130 N

14 - Legs Data

Number of Legs (N).............................................................................................. 4Height from Base to Bottom of Vessel (Hbc)......................................................... 1500,0 mm

Total Leg Length (L)............................................................................................. 2200,0 mm

14.1 - Shape DataShape...................................................................................................... 5" Schedule 40Material.................................................................................................. SA-106 Grade AAllowable Stress................................................................................................... 138,00 MPaYield Stress........................................................................................................... 206,82 MPaModulus of Elasticity............................................................................................. 204815 MPaDiameter (OD)...................................................................................................... 141,30 mmThickness (t)......................................................................................................... 6,5532 mmFillet Leg to Vessel............................................................................................... 6,3500 mm

14.2 - Base Plate DataType.................................................................................................. Circular Base PlateMaterial....................................................................................................... ASTM SA-36Allowable Stress................................................................................................... 138,00 MPaYield Stress........................................................................................................... 250,00 MPaModulus of Elasticity............................................................................................. 206000 MPaThickness (tbp)....................................................................................................... 12,700 mm

Diameter (Dbp)....................................................................................................... 230,00 mm

Foundation Bearing Stress (Sfb)........................................................................... 5,0995 MPa

14.3 - Anchor Bolts DataSize and Type..................................................................... 1,000 inch series 8 threadedNumber per Leg.................................................................................................... 2Allowable Stress................................................................................................... 137,29 MPaCorrosion Allowance............................................................................................. 0,0000 mmBolt Circle............................................................................................................. 2050,0 mm

Page 36: Cerebro Mix

10/01/2016 36/55Demo Version

CerebroMix - Evaluation Version

15 - Vessel and Legs Support

Ø2000

2935

2833

,1

3000

1500

2200

2013

,618

6,43

Ø2050(bolts circle)

2935 Section 1

Ø2000

2935

2833

,1

3000

1500

2200

2013

,618

6,43

Ø2050(bolts circle)

2935 Section 1

Page 37: Cerebro Mix

10/01/2016 37/55Demo Version

CerebroMix - Evaluation Version

16 - Resume of Legs Design

Seismic Loads and Operating Conditions - Corroded

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

64470

73860

83250

73860

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

5,70

0,45

5,81

0,45

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

5,31

0,00

5,31

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,367

0,387

0,397

0,387

Seismic Loads and Operating Conditions - Corroded

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

64470

64470

83250

83250

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

4,15

4,15

4,26

4,26

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

3,76

3,76

3,76

3,76

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,462

0,462

0,492

0,492

Seismic Loads and Operating Conditions - New

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

65395

74911

84428

74911

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

5,78

0,45

5,90

0,45

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

5,39

0,00

5,39

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,372

0,393

0,403

0,393

Page 38: Cerebro Mix

10/01/2016 38/55Demo Version

CerebroMix - Evaluation Version

Governing Condition

Seismic Loads and Operating Conditions - New

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

65395

65395

84428

84428

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

4,20

4,20

4,32

4,32

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

3,81

3,81

3,81

3,81

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,469

0,469

0,499

0,499

Seismic Loads and Empty Conditions - Corroded

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

8723,9

9967,9

11212

9967,9

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

0,77

0,06

0,78

0,06

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

0,72

0,00

0,72

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,050

0,052

0,055

0,052

Seismic Loads and Empty Conditions - Corroded

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

8723,9

8723,9

11212

11212

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

0,56

0,56

0,57

0,57

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,51

0,51

0,51

0,51

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,062

0,062

0,068

0,068

Page 39: Cerebro Mix

10/01/2016 39/55Demo Version

CerebroMix - Evaluation Version

Seismic Loads and Empty Conditions - New

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

9807,0

11199

12591

11199

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

0,86

0,07

0,88

0,07

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

0,81

0,00

0,81

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,056

0,059

0,062

0,059

Seismic Loads and Empty Conditions - New

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

9807,0

9807,0

12591

12591

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

0,63

0,63

0,65

0,65

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,57

0,57

0,57

0,57

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,070

0,070

0,076

0,076

Seismic Loads and Vacuum Conditions - Corroded

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

64470

73860

83250

73860

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

5,70

0,45

5,81

0,45

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

5,31

0,00

5,31

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,367

0,387

0,397

0,387

Page 40: Cerebro Mix

10/01/2016 40/55Demo Version

CerebroMix - Evaluation Version

Seismic Loads and Vacuum Conditions - Corroded

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

64470

64470

83250

83250

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

4,15

4,15

4,26

4,26

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

3,76

3,76

3,76

3,76

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,462

0,462

0,492

0,492

Seismic Loads and Vacuum Conditions - New

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

65395

74911

84428

74911

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

5,78

0,45

5,90

0,45

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

5,39

0,00

5,39

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,372

0,393

0,403

0,393

Seismic Loads and Vacuum Conditions - New

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

65395

65395

84428

84428

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

4,20

4,20

4,32

4,32

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

3,81

3,81

3,81

3,81

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,469

0,469

0,499

0,499

Page 41: Cerebro Mix

10/01/2016 41/55Demo Version

CerebroMix - Evaluation Version

Wind Loads and Operating Conditions - Corroded

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

55745

59088

62431

59088

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,95

0,36

2,99

0,36

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

2,62

0,00

2,62

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,232

0,239

0,246

0,239

Wind Loads and Operating Conditions - Corroded

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

55745

55745

62431

62431

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,19

2,19

2,23

2,23

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

1,85

1,85

1,85

1,85

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,279

0,279

0,293

0,293

Wind Loads and Operating Conditions - New

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

56586

59929

63272

59929

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,96

0,36

3,00

0,36

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

2,62

0,00

2,62

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,234

0,241

0,248

0,241

Page 42: Cerebro Mix

10/01/2016 42/55Demo Version

CerebroMix - Evaluation Version

Wind Loads and Operating Conditions - New

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

56586

56586

63272

63272

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,19

2,19

2,23

2,23

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

1,85

1,85

1,85

1,85

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,281

0,281

0,295

0,295

Wind Loads and Empty Conditions - Corroded

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

4631,6

7974,4

11317

7974,4

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,65

0,05

2,69

0,05

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

2,62

0,00

2,62

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,123

0,130

0,137

0,130

Wind Loads and Empty Conditions - Corroded

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

4631,6

4631,6

11317

11317

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

1,88

1,88

1,92

1,92

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

1,85

1,85

1,85

1,85

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,170

0,170

0,184

0,184

Page 43: Cerebro Mix

10/01/2016 43/55Demo Version

CerebroMix - Evaluation Version

Wind Loads and Empty Conditions - New

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

5616,3

8959,1

12302

8959,1

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,65

0,05

2,69

0,05

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

2,62

0,00

2,62

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,125

0,132

0,140

0,132

Wind Loads and Empty Conditions - New

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

5616,3

5616,3

12302

12302

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

1,88

1,88

1,93

1,93

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

1,85

1,85

1,85

1,85

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,172

0,172

0,186

0,186

Wind Loads and Test Conditions - New

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

41836

42939

44042

42939

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

1,12

0,26

1,13

0,26

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

0,86

0,00

0,86

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,126

0,129

0,131

0,129

Page 44: Cerebro Mix

10/01/2016 44/55Demo Version

CerebroMix - Evaluation Version

Wind Loads and Test Conditions - New

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

41836

41836

44042

44042

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

0,86

0,86

0,88

0,88

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,61

0,61

0,61

0,61

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,142

0,142

0,147

0,147

Wind Loads and Vacuum Conditions - Corroded

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

55745

59088

62431

59088

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,95

0,36

2,99

0,36

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

2,62

0,00

2,62

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,232

0,239

0,246

0,239

Wind Loads and Vacuum Conditions - Corroded

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

55745

55745

62431

62431

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,19

2,19

2,23

2,23

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

1,85

1,85

1,85

1,85

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,279

0,279

0,293

0,293

Page 45: Cerebro Mix

10/01/2016 45/55Demo Version

CerebroMix - Evaluation Version

Wind Loads and Vacuum Conditions - New

Force Attack Angle : 0,0000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

56586

59929

63272

59929

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,96

0,36

3,00

0,36

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

0,00

2,62

0,00

2,62

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,234

0,241

0,248

0,241

Wind Loads and Vacuum Conditions - New

Force Attack Angle : 45,000 °

Legs

0,0000 °

90,000 °

180,00 °

270,00 °

Axial Load

Pu

N

56586

56586

63272

63272

ΦcPn

N

455670

455670

455670

455670

Bending Moments

X-X

Mu

kN.m

2,19

2,19

2,23

2,23

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Y-Y

Mu

kN.m

1,85

1,85

1,85

1,85

ΦbMn

kN.m

21,94

21,94

21,94

21,94

Combined

Loads

0,281

0,281

0,295

0,295

17 - Shape Calculations for Governing Condition

Vessel Weight (W)................................................................................................ 199764 NAdditional for Vertical Accelerations (Wv)............................................................. 39953 N

Total Shear at Base (V)........................................................................................ 7134,4 NShear at Tangente Line (VLT)................................................................................ 6665,9 N

Moment at Tangente Line (MLT)............................................................................1,28493E7 N.mm

17.1 - Axial Loads per LegDue to Weight of Vessel (PD)................................................................................ 49941 N

Due to Vertical Accelerations (PE)........................................................................ 9988,2 N

Due to Moment at Tangente Line : Seismic Loads (PME)..................................... 6344,1 N

Axial load due to vessel weight is calculated by:

PD

W

N=

PD

199764

4=

∴PD = 49941N

Axial load due to vertical accelerations is calculated by:

PE

Wv

N=

Page 46: Cerebro Mix

10/01/2016 46/55Demo Version

CerebroMix - Evaluation Version

PE

39953

4=

∴PE = 9988,2N

Axial load due to bending moment at tangent line is calculated by:

PMe

4 MLT

N D=

PMe

4 1,28493E7×

4 2025,4×=

∴PMe = 6344,1N

17.2 - Bending Loads per LegHorizontal Load on Leg (Fh).................................................................................. 1783,6 N

Unbraced Length of Leg (L).................................................................................. 2013,6 mmTotal Leg Eccentricity (Ecc).................................................................................. 6,0407 mmForce Attack Angle in Leg (β)............................................................................... 45,000 °

Bending Due External Loads - X-X (MEx).............................................................. 2539519 N.mm

Bending Due External Loads - Y-Y (MEy).............................................................. 2539519 N.mm

17.3 - Loads for ASD DesignAxial Load (Pa)...................................................................................................... 66273 N

Bending Due Weigth and Eccentricity (MDxa)........................................................ 400338 N.mm

Total Benging Moment - X-X (Mbx)....................................................................... 2939857 N.mm

Total Benging Moment - Y-Y (Mby)........................................................................ 2539519 N.mm

Axial load for ASD design is given by:

Pa PD PE+ PME+=

Pa 49941 9988,2+ 6344,1+=

∴Pa = 66273N

Bending moment due leg eccentricity is given by:

MDxa Pa Ecc=

MDxa 66273 6,0407×=

∴MDxa = 400338N.mm

Total bending moment XX is given by:

Mbx Fh cos β( )| | L MDxa+=

Mbx 1783,6 cos 45( )| |× 2013,6× 400338+=

∴Mbx = 2939857N.mm

Total bending moment YY is given by:

Mby Fh sin β( )| | L=

Mby 1783,6 sin 45( )| |× 2013,6×=

∴Mby = 2539519N.mm

17.4 - Loads for LRFD DesignAxial Load (Pu)...................................................................................................... 84428 N

Bending Due Weigth and Eccentricity (MDxl)......................................................... 510003 N.mm

Total Benging Moment - X-X (Mux)....................................................................... 4319282 N.mm

Page 47: Cerebro Mix

10/01/2016 47/55Demo Version

CerebroMix - Evaluation Version

Total Benging Moment - Y-Y (Muy)........................................................................ 3809278 N.mm

LRFD Combination Loads are given by AISI ManualAxial load for LRFD design is given by:

Pu KD PD KE PE PME++=

Pu 1,2 49941× 1,5 9988,2 6344,1+( )×+=

∴Pu = 84428N

Bending moment due leg eccentricity is given by:

MDxl Pu Ecc=

MDxl 84428 6,0407×=

∴MDxl = 510003N.mm

Total bending moment XX is given by:

Mux K Fh cos β( )| | L MDxl+=

Mux 1,5 1783,6× cos 45( )| |× 2013,6× 510003+=

∴Mux = 4319282N.mm

Total bending moment YY is given by:

Muy K Fh sin β( )| | L=

Muy 1,5 1783,6× sin 45( )| |× 2013,6×=

∴Muy = 3809278N.mm

18 - Check of Pipe by AISI-LRFD 1991

18.1 - Design of Cylindrical Tubular MembersOutside Diameter (D)............................................................................................ 141,30 mmWall Thickness (t)................................................................................................. 6,5532 mmYield Stress (Fy).................................................................................................... 206,82 MPa

Modulus of Elasticity (E)....................................................................................... 204815 MPaUnbraced Length of Member (L).......................................................................... 2013,6 mmEffective Length Factor (K)................................................................................... 1,2000Unbraced Length of Member: Bending Plane X (Lbx)........................................... 2013,6 mm

Effective Length Factor: Bending Plane X (Kbx).................................................... 1,2000

Unbraced Length of Member: Bending Plane Y (Lby)........................................... 2013,6 mm

Effective Length Factor: Bending Plane Y (Kby).................................................... 1,2000

Coefficient (Cmx).................................................................................................... 0,85000

Coefficient (Cmy).................................................................................................... 0,85000

By section C6, cylindrical tubular members must have a ratio of outside diameter to wall thickness no greater than:

D

t0,441

E

Fy

141,3

6,55320,441

204815

206,82× ≤

∴ 21,562016 436,71964 ≤ 18.1.1 - Nominal Strengths

Page 48: Cerebro Mix

10/01/2016 48/55Demo Version

CerebroMix - Evaluation Version

Section 6.1 - Bending

Elastic Section Modulus of the Full, Unreduced Cross Section (Sf)..................... 89327 mm3

Nominal Flexural Strength (Mn)............................................................................2,30936E7 N.mm

By section C6.1, as D/t ≤ 5.3f E/Fy, nominal flexural bending is given:

Mn 1,25 Fy Sf=

Mn 1,25 206,82× 89327×=

∴Mn = 2,30936E7N.mm 18.1.2 - Section 6.2 - Compression

Elastic Buckling Stress (Fe).................................................................................. 787,66 MPa

Flexural Buckling Stress (Fn)................................................................................ 193,25 MPa

Area (see C6.2) (Ao)............................................................................................. 2774,1 mm2

Effective Area at Stress Fn (Ae)............................................................................. 2774,1 mm2

Nominal Compression Strength (Pn)..................................................................... 536083 N

By C4.1, the elastic buckling stress, Fe, is given by:

Fe

π2 E

K L r/( ) 2=

Fe

π2 204815×

1,2 2013,6× 47,697/( ) 2=

∴Fe = 787,66MPa

By 6.2, as Fe > Fy/2, the flexural buckling stress is given by:

Fn Fy 1 Fy 4 Fe/=

Fn 206,82 1 206,82 4 787,66×/( )×=

∴Fn = 193,25MPa

The effective area at stress Fn is given by:

Ao

0,037 t E

D Fy

0,667+ A=

Ao

0,037 6,5532× 204815×

141,3 206,82×0,667+ 2774,1×=

∴Ao = 6564,4mm2

As Ao is greater than A, Ao is taken equal to A. Ao = 2774,1 mm²

R Fy 2 Fe/=

R 206,82 2 787,66×/=

∴R = 0,36234

Ae 1 1 R2 1 Ao A/ A=

Ae 1 1 0,362342 1 2774,1 2774,1/( )× 2774,1×=

∴Ae = 2774,1mm2

Page 49: Cerebro Mix

10/01/2016 49/55Demo Version

CerebroMix - Evaluation Version

The nominal axial strength is given by:

Pn Fn Ae=

Pn 193,25 2774,1×=

∴Pn = 536083N

moment of inertia of the full, unreduced cross section about the axis ofbending(Ib= Ibx = Iby)............................................................................................... 6310977 mm4

Nominal Axial Strength Determined in Accordance with Section C6, with Fn =Fy (Pno).................................................................................................................. 573746 N

18.2 - Load Combination:Required Axial Strength (Pu)................................................................................. 84428 N

Required Flexural Strength : X Plane (Mux).......................................................... 4319282 N.mm

Required Flexural Strength : Y Plane (Muy).......................................................... 3809278 N.mm

Flexural Stress - Mux ≤ΦbMnx.......................................................................... Acceptable

Flexural Stress - Muy ≤ΦbMny.......................................................................... Acceptable

Compression - Pu ≤ΦcPu................................................................................. Acceptable

PEx - (see C5-5)..................................................................................................... 2185043 N

PEy - (see C5-5)..................................................................................................... 2185043 N

Magnification Factor (αnx)..................................................................................... 0,95454

Magnification Factor (αny)..................................................................................... 0,95454

Combined Axial Load and Bending................................................................ AcceptableBy Section C5, the required strenths Pu, Mux, and Mny shall satisfy the following interations equations:

Pu

φcPn

Cmx Mux

φbMnx αnx

+Cmy Muy

φbMny αny

+ 1 ≤

84428

536083

0,85 4319282×

2,30936E7 0,95454×+

0,85 3809278×

2,30936E7 0,95454×+ 1 ≤

∴ 0,47092387 1 ≤ Pu

φcPn

Mux

φbMnx

+Muy

φbMny

+ 1 ≤

84428

573746

4319282

2,30936E7+

3809278

2,30936E7+ 1 ≤

∴ 0,49913512 1 ≤ Direction X

PE

π2 E Ib

Kb Lb

2=

PE

π2 204815× 6310977×

1,2 2013,6×( ) 2=

∴PE = 2185043N

α 1Pu

φc PE

=

α 184428

0,85 2185043×=

∴α = 0,95454

Direction Y

PE

π2 E Ib

Kb Lb

2=

Page 50: Cerebro Mix

10/01/2016 50/55Demo Version

CerebroMix - Evaluation Version

PE

π2 204815× 6310977×

1,2 2013,6×( ) 2=

∴PE = 2185043N

α 1Pu

φc PE

=

α 184428

0,85 2185043×=

∴α = 0,95454

19 - Leg Fillet Weld

Figure 19.1 - Outline of the welded joint

Weld Total Length (Lw)......................................................................................... 514,15 mm

Weld Section Modulus (Zw)................................................................................... 29146 mm2

Weld Polar Modulus (Jw)....................................................................................... 4066321 mm3

Distance to Weld CG (e)...................................................................................... 67,596 mmGoverning Weld Load (fx)..................................................................................... -1261,2 N

Governing Weld Load (fy)..................................................................................... 1261,2 N

Direct Shear (f1).................................................................................................... 128,90 N/mm

Torsion Shear (f2)................................................................................................. 44,123 N/mm

Direct Shear (f3).................................................................................................... 2,4530 N/mm

Torsion Shear (f4)................................................................................................. 42,215 N/mm

Bending (f5)........................................................................................................... -87,130 N/mm

Radial Shear (f6)................................................................................................... -0,62635 N/mm

Resultant Shear Load (f)...................................................................................... 199,08 N/mmWeld Allowable Stress (fw).................................................................................... 47,771 MPa

Minimum Fillet Size (tw)......................................................................................... 4,1674 mm

Leg to vessel fillet weld is satisfactory.Governing loads on weld are given by:

fx Fh cos β( )=

fx 1783,6 cos 135( )×=

∴fx = -1261,2N/mm

fy Fh sin β( )=

Page 51: Cerebro Mix

10/01/2016 51/55Demo Version

CerebroMix - Evaluation Version

fy 1783,6 sin 135( )×=

∴fy = 1261,2N/mm

The properties of weld section are given by:

ed2

b 2 d+=

e186,432

141,3 2 186,43×+=

∴e = 67,596mm

Jw

b 2 d+( ) 3

12

d2 b d+( ) 2

b 2 d+=

Jw

141,3 2 186,43×+( ) 3

12

186,432 141,3 186,43+( ) 2×

141,3 2 186,43×+=

∴Jw = 4066321mm3

Zw

2 b d d2+

3=

Zw

2 141,3× 186,43× 186,432+

3=

∴Zw = 29146mm2

Fillet of weld is checked by a procedure given by Bednar, chapter 10.Shear loads in weld are given by:

f1 Pa Lw/=

f1 66273 514,15/=

∴f1 = 128,9N/mm

f2fy L b

2 Jw

=

f21261,2 2013,6× 141,3×

2 4066321×( )=

∴f2 = 44,123N/mm

f3fyLw

=

f31261,2

514,15=

∴f3 = 2,453N/mm

f4fy L e

Jw

=

f41261,2 2013,6× 67,596×

4066321=

∴f4 = 42,215N/mm

f5fx L

Zw

=

f5-1261,2 2013,6×

29146=

∴f5 = -87,13N/mm

Page 52: Cerebro Mix

10/01/2016 52/55Demo Version

CerebroMix - Evaluation Version

f6fxLw

=

f6-1261,2

2013,6=

∴f6 = -0,62635N/mm

f f1 f2+2

f3 f4+2

+ f5 f6+2

+=

f 128,9 44,123+( ) 2 2,453 42,215+( ) 2+ -87,13 -0,62635+( ) 2+=

∴f = 199,08N/mm

Allowable weld stress is given by:

fw 0,707 E Sa=

fw 0,707 0,49× 137,9×=

∴fw = 47,771MPa

Minimum fillet size is given by:

tw

f

fw=

tw

199,08

47,771=

∴tw = 4,1674mm

20 - Base Plate Calculations

Governing Condition............................. Seismic Loads and Operating Conditions - NewBase Plate Diameter (Dbp).................................................................................... 230,00 mm

Base Plate Area (Abp)............................................................................................ 41548 mm2

Distance from Edge to Shape (m)........................................................................ 44,350 mmAxial Load (P)....................................................................................................... 56285 NBase Plate Allowable Stress (Fb).......................................................................... 138,00 MPa

Bearing Pressure (fc)............................................................................................ 1,3547 MPa

Foundation Bearing Stress (Sac)........................................................................... 5,0995 MPa

Minimum Base Plate Thickness (tmin)................................................................... 7,6109 mm

Base Plate Thickness (tbp).................................................................................... 12,700 mm

Bearing pressure is acceptable.Base plate stress is acceptable.Bearing pressure is given by:

fcP

Abp

=

fc56285

41548=

∴fc = 1,3547MPa

Minimum base plate thickness is given by:

tbp

3 fc m2

Fb

=

Page 53: Cerebro Mix

10/01/2016 53/55Demo Version

CerebroMix - Evaluation Version

tbp

3 1,3547× 44,352×

138=

∴tbp = 7,6109mm

21 - Anchor Bolts Calculations

Governing Condition..................... Seismic Loads and Operating Conditions - CorrodedCorroded Bolt Area (Ab)........................................................................................ 355,48 mm2

Tensile Loading per Leg (T)................................................................................ -36091 NAnchor Bolt Allowable Stress (Sa)......................................................................... 137,29 MPa

There is no net overturning moment.Number of bolts is satisfactory.Bolt diameter based on root area is given by:

db

4 Ar

π=

db

4 355,48×

π=

∴db = 21,275mm

Bolt root area with corrosion allowance is given by:

Ab

π4

db c2

=

Ab

π4

21,275 0( ) 2×=

∴Ab = 355,48mm2

22 - Local Stress Analysis

Governing Condition............................. Seismic Loads and Operating Conditions - New

22.1 - Vessel DataInside Diameter (D).............................................................................................. 2003,0 mmThickness (t)......................................................................................................... 12,700 mmWeight (W)........................................................................................................... 199764 NInternal Pressure (P)............................................................................................ 0,24425 MPaAllowable Stress (Sa)............................................................................................ 103,42 MPa

Allowable Compressive Stress (Sc)...................................................................... 56,390 MPa

22.2 - Legs Support DataAxial Load (Pa)...................................................................................................... 66273 N

Bending Moment (Ma)...........................................................................................1,34223E7 N.mm

Width of Leg (see Bednar) (h).............................................................................. 141,30 mmUse Pad Plate............................................................................................................. No

Page 54: Cerebro Mix

10/01/2016 54/55Demo Version

CerebroMix - Evaluation Version

22.3 - Local StressesTensile Stress - Section a-a (fta)........................................................................... 7,4664 MPa

Compressive Stress - Section b-b (fcb)................................................................. 14,224 MPa

Tensile stress in section a-a is acceptable.Compressive stress in section b-b is acceptable.

Figure 22.1 - Local stress at shell

Local stress analysis of leg-to-shell junction is based on Bednar, pages 151 to 152.The approximate maximum general longitudinal stress in shell at section a-a is:a) in tension

fta4 Ku Ma

π D2 t

P D

4 t+

Ku W

π D t=

fta4 1× 1,34223E7×

π 20032× 12,7×

0,24425 2003×

4 12,7×+

1 199764×

π 2003× 12,7×=

∴fta = 7,4664MPa

b) in compression

ftaPe D

4 t

4 Ku Ma

π D2 t+

Ku W

π D t+=

fta0,23613 2003×

4 12,7×

4 1× 1,34223E7×

π 20032× 12,7×+

1 199764×

π 2003× 12,7×+=

∴fta = 12,145MPa

The approximate maximum localized stress to cause buckling above the leg top at section b-b is:

fcbPa

L2 t=

fcb66273

366,86 12,7×=

∴fcb = 14,224MPa

where the effective resisting length is given by:

L2 h 2 R t+=

L2 141,3 2 1001,5 12,7××+=

Page 55: Cerebro Mix

10/01/2016 55/55Demo Version

CerebroMix - Evaluation Version

∴L2 = 366,86mm


Recommended