+ All Categories
Home > Documents > CFD Modelling of an evaporative Cooling System -...

CFD Modelling of an evaporative Cooling System -...

Date post: 26-Sep-2018
Category:
Upload: hoangnhi
View: 226 times
Download: 1 times
Share this document with a friend
18
CFD Modelling of an evaporative Cooling System Andres Pinilla, Jorge López, Hugo Pineda, Miguel Asuaje, Nicolás Ratkovich Chemical Engineering Department Universidad de los Andes. Colombia 1
Transcript

CFD Modelling of an evaporative Cooling System

Andres Pinilla, Jorge López, Hugo Pineda, Miguel Asuaje, Nicolás Ratkovich

Chemical Engineering Department

Universidad de los Andes. Colombia

1

Content

• Introduction• Cooling by fogging system

• Objectives

• Methodology • Cases of Study

• Results

• Conclusions

• Future Work

2

Introduction

3

Turbines that work in hot weathers

Lower performance at higher temperatures

Cooling system

IntroductionCooling by fogging system

• Water is used to cool down the air.

• Rapid energy transfer given thesmall drop size diameter (3 - 5 𝜇𝑚)• Necessary a complete evaporation

before the turbine inlet.

4

Objectives

CFD modeling of an evaporative cooling system.

• To validate the results found in the simulation with reportedexperimental results.

• To study the heat and mass transfer in the duct.

• To investigate the water droplets behavior in terms ofagglomeration and fractionation.

5

Methodology

• Physical models for dispersed phase (water)• NTC collision model• SSD breakup & SSD distortion• LISA• Two-Way Coupling

6

MethodologyCases of StudyAir

• Ideal gas

Water• Fixed Variables

• Temperature: 30°C• Velocity: 4 m/s • Pressure: 2000 psi (~140 bar)

• Droplet Size• 20 𝜇𝑚

• 50 𝜇𝑚

• Relative humidity• 20%

• 60%

7

MethodologyGeometry

8Figure 1: Duct geometry where the cooling occurs (in mm).

ResultsHeat Transfer

9

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

Tem

per

atu

re(°

C)

Time (s)Experimento Simulación

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

Tem

per

atu

re(°

C)

Time (s)

Experimento Simulación

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

Tem

per

atu

re(°

C)

Time (s)

Experimento Simulación

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

Tem

per

atu

re(°

C)

Time (s)

Experimento Simulación

Figure 2: Results for temperature for each case

ResultsHeat Transfer (cont…)

10

Case Experiment

temperature (°C)

Simulation

temperature (°C)

Difference (%)

A 15.50 16.09 3.82

B 15.34 16.33 6.44

C 23.76 24.73 4.06

D 23.53 24.97 6.12

Figure 3: a) Lateral contour plot of temperature. b) Up contour plot of temperature

ResultsHeat Transfer (cont…)

11

ResultsMass Transfer

12

40

50

60

70

80

90

100

0 0.5 1 1.5 2

Rel

ativ

eh

um

idit

y(%

)

Time (s)

Experimento Simulación

40

50

60

70

80

90

100

0 0.5 1 1.5 2

Rel

ativ

eh

um

idit

y(%

)

Time (s)

Experimento Simulación

0

20

40

60

80

100

0 0.5 1 1.5 2

Rel

ativ

eh

um

idit

y(%

)

Time (s)

Experimento Simulación

0

20

40

60

80

100

0 0.5 1 1.5 2

Rel

ativ

eh

um

idit

y(%

)

Time (s)

Experimento Simulación

Figure 4: Results of relative humidity for case: a) A. b) B, c) C, d) D

ResultsMass Transfer (cont…)

The exact position on the sensors was not clearly specified, this can be a possible cause of error.

13

Case Experiment (%) Simulation (%) Difference %

A 96.00 91.87 4.30

B 95.90 88.74 7.46

C 96.51 92.07 4.59

D 95.66 95.66 7.07

Figure 5: Distribution of the sensors across the duct

ResultsVolume Fraction of Water

14

Figure 6: a) Liquid volume fraction of water a) Lateral view y b) Upside view

ResultsParticle Diameter

After the reduction zone, the droplet size reduces faster, as expected

15

Figure 7: Water droplets diameter

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2

Dia

met

er(μ

m)

Time (s)20HR 50μm 60HR 50μm

Conclusions

• The discrepancy of the experimental and numericalresults are due the not knowledge of the exact location ofthe sensors in the duct. Despite that the final result wasvery close.

• The CFD simulation helps to complement theexperimental study because it is possible to obtainprofiles and contour graphs along the duct and to studyother variables of interest as the density and the behaviorof the water droplets.

16

Conclusions & Future Work

• It is recommended to use nozzles that atomize water with a particlediameter of 20 𝜇𝑚, and with the lowest relative humidity.

• Using CFD tool it is possible to identify where can exist corrosionproblems and also it is possible to modify the geometry in order toimprove the mass and heat transfer.

17Figure 8: Corrosion problem in the duct

CFD Modelling of an evaporative Cooling System

Andres Pinilla, Jorge López, Hugo Pineda, Miguel Asuaje, Nicolás Ratkovich

Chemical Engineering Department

Universidad de los Andes. Colombia

[email protected]

18


Recommended