+ All Categories
Home > Documents > Chap#5 nwa

Chap#5 nwa

Date post: 09-Apr-2018
Category:
Upload: noman-qadir-leghari
View: 231 times
Download: 0 times
Share this document with a friend
73
www.electrical.net.tc 2010 www.electrical.net.tc  Page 1 PROBLEMS Q#5.1: In the network of the figure, the switch K is closed at t = 0 with the capacitor uncharged. Find values for i, di/dt and d 2 i/dt 2 at t = 0+, for element values as follows: V 100 V R 1000  C 1 F + R V C - Switch is closed at t = 0 (reference time) We know Voltage across capacitor before switching = V C (0-) = 0 V According to the statement under Q#5.1. V C (0+) = V C (0-) = 0 V V 100 i C (0+) = i(0+) = = = 0.1 Amp. R 1000 Element and initial condition Equivalent circuit at t = 0+ C Sc Switch Drop Rise i(0+) Short circuit Drop Applying KVL for t 0 Sum of voltage rise = sum of voltage drop
Transcript
Page 1: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 1/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 1

PROBLEMS 

Q#5.1: In the network of the figure, the switch K is closed at t = 0 with the capacitor

uncharged. Find values for i, di/dt and d2i/dt

2at t = 0+, for element values as

follows:

V 100 VR  1000  

C 1 F

+ R 

V C

-

Switch is closed at t = 0 (reference time)

We know

Voltage across capacitor before switching = VC(0-) = 0 V

According to the statement under Q#5.1.

VC(0+) = VC(0-) = 0 V

V 100

iC(0+) = i(0+) = = = 0.1 Amp.

R 1000Element and initial condition Equivalent circuit at t = 0+

C

Sc

Switch

Drop

Rise i(0+) Short circuit

Drop

Applying KVL for t 0

Sum of voltage rise = sum of voltage drop

Page 2: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 2/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 2

1

V = iR + idt

C

Differentiating with respect to „t‟ 

di i

R + = 0

dt C

di(0+) -i(0+)

= [eq. 1]

dt CR 

By putting the values of i(0+), C & R 

di(0+) -(0.1)

=

dt (1 F)(1 k )

di(0+)

= -100 Amp/sec

dt

Differentiating eq. 1 with respect to „t‟ 

d2i(0+) -di(0+) 1

=

dt2

dt CR 

Putting the corresponding values

d2i(0+)

= 100, 000 amp/sec2 

dt2 

Q#5.2: In the given network, K is closed at t = 0 with zero current in the inductor.

Find the values of i, di/dt, and d2i/dt

2at t = 0+ if 

R  10  

L 1 H

V 100 V

+ R 

V

- L

Page 3: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 3/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 3

Key closed at t = 0

iL(0+) = iL(0-) = i(0+) = 0 Amp

According to the statement under Q#5.2:

Drop

Rise

Open circuit Drop

i(0+)

Element and initial condition Equivalent circuit at t = 0+

oc

Applying KVL for t 0

Sum of voltage rise = sum of voltage drop

Ldi

V = iR +

dt

Ldi

= V – iR 

dt

di V - iR 

= [eq. 1]

dt L

di(0+) V – i(0+)R 

=

dt L

Putting corresponding values

di(0+) V – (0)R 

=

dt L

di(0+) V

=

dt L

di(0+) 100

=

dt 1

di(0+)

= 100 Amp/sec

dt

Page 4: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 4/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 4

Differentiating [eq. 1]

d2i d V iR 

= -

dt2

dt L L

d2i -Rdi

=

dt2

Ldt

d2i(0+) -Rdi(0+)

=

dt2

Ldt

Putting corresponding values

d2i(0+)

= -1, 000 Amp/sec2 

dt2 

Q#5.3: In the network of the figure, K is changed from position a to b at t = 0. Solve

for i, di/dt, and d2i/dt

2at t = 0+ if 

R  1000  

L 1 H

C 0.1 F

V 100 V

a K 

b R 

V C L

Equivalent circuit at t = 0+

b

Page 5: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 5/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 5

sc

Applying KVL for t 0

Sum of voltage rise = sum of voltage drop

1 Ldi

Ri + idt + = 0 [eq. 1]

C dt

Equivalent circuit at t = 0-

a

i(0+)

sc

V 100

iL(0+) = iL(0-) = i(0+) = = = 0.1 Amp

R 1000

Initial condition:

VC(0-) = VC(0+) = 0

Also we know for t 0

VR + VL + VC = 0

iR + VL + VC = 0

At t = 0+

i(0+)R + VL(0+) + VC(0+) = 0

(0.1)(1000) + VL(0+) + 0 = 0

VL(0+) = -100 Volts

And

di

VL = L

dt

di VL 

=

dt L

di(0+) VL(0+)

=

dt L

Putting corresponding values

di(0+)

Page 6: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 6/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 6

= -100 Amp/sec

dt

Differentiating [eq. 1] with respect to „t‟ 

Rdi i Ld2i

+ + = 0

dt C dt2 

Rdi(0+) i(0+) Ld2i(0+)

+ + = 0

dt C dt2 

Putting corresponding values

d2i(0+)

= 9, 00000 Amp/sec2 

dt2 

Q#5.4: For the network and the conditions stated in problem 4-3, determine the

values of dv1/dt and dv2/dt at t = 0+.

V 1  

C1 C2 V 2  

V1 2 V

V2 1 V

R  1  

C1 1 F

C2 ½ F

Af ter switching: 

V1 V2 

Page 7: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 7/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 7

Applying KCL at node 1:

V1  – V2 dV1 

+ C1 = 0

R dt

V1(0+) – V2(0+)  dV1(0+)

+ C1 = 0

R dt

Putting corresponding values

2 V – 1 V  dV1(0+)

+ (1 F)  = 0

1 dt

Simplifying

dV1(0+)

= -1 Volt/sec

dt

At node 2:

V2  – V1 dV2 

+ C2 = 0

R dt

V2(0+) – V1(0+)  dV2(0+)

+ C2 = 0

R dt

Putting corresponding values

1 V – 2 V  dV2(0+)

+ (1/2) = 0

1 dt

Simplifying

dV2(0+)

= 2 Volt/sec

dt

According to KCL

“Sum of currents entering into the junction must equal to the sum of the currents leaving the junction” 

Q#5.5: For the network described in problem 4.7, determine values of d2v2/dt

2and

d3v2/dt

3at t = 0+.

NODE

R 1 +

Page 8: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 8/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 8

R 2 V2 

V1 C

-

R 1 

10  R 2  20  

C 1/20 F

VC(0-) = VC(0+) = 0 V

Applying KCL at NODE for t 0

V2 dV2 V2  – V1 

+ C + = 0 … (1) 

R 2 dt R 1At t = 0+

V2(0+)  dV2(0+)  V2(0+) – V1(0+)

+ C + = 0

R 2 dt R 1 V1 = e

-tVolts

V2 = VC(0+) = 0 Volts

0  dV2(0+)  0 – e-0+

 

+ C + = 0

R 2 dt R 1 

Simplifying

dV2(0+) 

= 2 Volt/sec

dt

Differentiating eq. 1 with respect to „t‟ 

1 dV2 d2V2 1 dV2 dV1 

+ C + - = 0

R 2 dt dt2

R 1 dt dt

1 dV2 1  d2V2 1 dV2 d(e

-t)

+ + - = 0

20  dt 20 dt2

10  dt dt

1 dV2 1  d2V2 1 dV2 1 d(e

-t)

+ + - = 020  dt 20 dt2

10  dt 10 dt

3 dV2 1  d2V2 1 d(e

-t)

+ - = 0

20  dt 20 dt2

10 dt

d(e-t) = -e

-t 

Page 9: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 9/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 9

3 dV2 1  d2V2

+ + 0.1e-t  = 0 … (2) 

20  dt 20 dt2

At t = 0+

3 dV2(0+)  1  d2V2(0+) 

+ + 0.1e-t(0+)

= 0

20  dt 20 dt2

Simplifying

d2V2(0+) 

= -8 Volt/sec2 

dt2 

Differentiating eq. 2

3 d2V2 1  d3V2

+ - 0.1e-t

= 0

20  dt2

20 dt3

At t = 0+

3 d2V2(0+)  1  d

3V2(0+) 

+ - 0.1e-t(0+)

= 0

20  dt2

20 dt3

Putti ng corr esponding values and simpli fying 

d3V2(0+) 

= 26 Volts/sec3 

dt3

Q#5.6: The network shown in the accompanying figure is in the steady state with the

switch k closed. At t = 0, the switch is opened. Determine the voltage across the

switch, VK , and dVK /dt at t = 0+.

SOLUTION:

VK  

Page 10: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 10/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 10

R  1  

L 1 H

C ½ F

V 2 V

Equi valent network before switchi ng 

i(0+) sc

V 2

iL(0+) = iL(0-) = i(0+) = = = 2 Amp

R 1

1

Also VK = VC = idtC

dVK  i

=

dt C

At t = 0+

dVK  i(0+)

=

dt C

dVK  2

=

dt (1/2)

dVK 

= 4 Volts/sec

dt

Q#5.7: In the given network, the switch K is opened at t = 0. At t = 0+, solve for the

values of v, dv/dt, and d2v/dt

2if 

Page 11: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 11/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 11

I 10 A

R  1000  

C 1 F

V

Switch is opened at t = 0Equivalent circuit at t = 0-

No current flows through R soVC(0-) = VC(0+) = i(0-)R = V(0+)

Here

i(0-) = 0

VC(0-) = VC(0+) = (0)R 

VC(0-) = VC(0+) = 0 Volts

For t 0; according to KCL at V

V dV

+ C = I … (1)

R dt

At t = 0+

V(0+) dV(0+)+ C = I

R dt

Simplifying

dV(0+)

= 107

Volts/sec

dt

Page 12: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 12/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 12

Differentiating (1) with respect to „t‟ 

1 dV d2V

+ C = 0

R dt dt2 

At t = 0+

1 dV(0+) d2V(0+)

+ C = 0

R dt dt2 

Simplifying

d2V(0+)

= -1010

Volts/sec2 

dt2 

Q#5.8: The network shown in the figure has the switch K opened at t = 0. Solve for

V, dV/dt, and d2V/dt

2at t = 0+ if 

I 1 A

R  100  

L 1 H

V

Equi valent circuit before switchi ng: 

Page 13: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 13/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 13

Because

iL(0-) = 0 A

iL(0-) = iL(0+) = 0 A

Therefore

After switching (t = 0+)

V

So

V(0+) = (I)(R)

V(0+) = (1)(100)

V(0+) = 100 Volts

For t 0

Applying KCL at node V

V 1

+ Vdt = I … (1) 

R L

Differentiating (1) with respect to „t‟ 

1 dV V

+ = 0 … (2)

R dt L

At t = 0+

1 dV(0+) V(0+)

+ = 0

R dt L

Simplifying

dV(0+)

= -10, 000 Volts/sec

dt

Page 14: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 14/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 14

Differentiating (2) with respect to „t‟ 

1 d2V 1 dV

+ = 0

R dt2

L dt

At t = 0+

1 d2V(0+) 1 dV(0+)

+ = 0

R dt2

L dt

Simplifying

d2V(0+)

= 1, 000, 000 Volts/sec2 

dt2

Q#5.9: In the network shown in the figure, a steady state is reached with the switch

K open. At t = 0, the switch is closed. For the element values given, determine the

value of Va(0-) and Va(0+).

Circui t diagram: 

Vb 

Va 

Equi valent circuit before switchi ng: 

Page 15: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 15/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 15

sc

R eq = (10 + 20) 10

(10 + 20)(10)

R eq =

(10 + 20) + 10

300

R eq =

40

R eq = 7.5  

After simplification R eq 

i(0-)

5 V

Page 16: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 16/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 16

V

i(0-) =

R eq 

5

i(0-) =

7.5

i(0-) = 0.667 Amp.

i(0-) = iL(0-)

Va(0-)

20

Va(0-) = (5)

(10 + 20)

Va(0-) = 3.334 Volts

Also equivalent network at t = 0+

Page 17: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 17/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 17

t = 0+

Vb 

Va

Applying KCL at node Va

Va  – 5 Va - Vb Va 

+ + = 0

10 20 10

After simplification we get

Vb = 5Va  –  10 … (i) 

Applying KCL at node Vb

Vb - Va Vb  – 5 2 

+ + = 0

20 10 3

9Vb  – 3Va + 10 = 0 … (ii)

Substituting value of Vb from (i) into (ii)

9[5Va  – 10] – 3Va + 10 = 0

45Va  – 90 – 3Va + 10 = 0

42Va  – 80 = 0

Va(0+) = 1.905 Volts

Q#5.10: In the accompanying figure is shown a network in which a steady state is

reached with switch K open. At t = 0, the switch is closed. For the element values

given, determine the values of Va(0-) and Va(0+).

Page 18: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 18/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 18

CIRCUIT DI AGRAM: 

Vb 

Va 

Equi valent circuit before switchi ng 

R eq 

Page 19: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 19/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 19

VC(0-) = Va(0-) = 0 V

Equivalent network at t = 0+

Vb 

Va 

Applying KCL at node Va

Va  – 5 Va - Vb Va 

+ + = 0

10 20 10

After simplification we get

Vb = 5Va  –  10 … (i) 

At Vb = 5 V

5 = 5Va  – 10

Va(0+) = 3 Volts

Q#5.11: In the network of figure P5-9, determine iL(0+) and iL() for the conditions

stated in problem 5-9.

Equi valent circuit before switchi ng: 

+

-

Page 20: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 20/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 20

sc

R eq = (10 + 20) 10

(10 + 20)(10)

R eq =

(10 + 20) + 10

300

R eq =

40

R eq = 7.5  

After simplification R eq 

i(0-)

5 V

Page 21: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 21/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 21

V

i(0-) =

R eq 

5

i(0-) =

7.5

i(0-) = 0.667 Amp.

i(0-) = iL(0-)

iL(0-) = iL(0+) = 0.667 Amp.

Equivalent network at t =  

Va 

Applying KCL at node Va iL() 

Va  – 5 Va Va 

+ + = 0

10 20 10

After simplification we get

Va() = 2 Volts

V Va 

iL() = +

Page 22: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 22/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 22

10 20 After simplification we get

iL() = 0.6 Amp.

Q#5.12: In the network given in figure p5-10, determine Vb(0+) and Vb() for the

conditions stated in Prob. 5-10.

At t = 0-, equivalent network is

VC(0-) = VC(0+) = 5 Volts

Page 23: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 23/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 23

Also equivalent network at t = is

Vb 

Va 

According to KCL at Va

Va  – 5 Va - Vb Va 

+ + = 0

10 20 10

After simplification we get

Va = 0.2Vb + 2 … (i) 

According to KCL at Vb

Vb  – 5 Vb  – Va

+ = 0

10 20

After simplification we get

3Vb  – Va  – 10 = 0

Putting the value of Va we get

Vb() = 4.286 Volts

Q#5.13: In the accompanying network, the switch K is closed at t = 0 with zero

capacitor voltage and zero inductor current. Solve for (a) V1 and V2 at t = 0+, (b) V1 

and V2 at t = , (c) dV1/dt and dV2/dt at t = 0+, (d) d2V2/dt

2at t = 0+.

Page 24: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 24/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 24

CIRCUIT DIAGRAM 

R 1 

V1 

L

C

V2 

R 2 

Equi valent network af ter switchi ng 

Page 25: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 25/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 25

According to statement under Q#5.13

At t = 0-

VC(0-) 0 VVC(0+) 0 V

iL(0-) 0 A

iL(0+) 0 A

Equivalent network at t = 0+

V2(0+) = iL(0+)(R 2)

V2(0+) = (0)(R 2)

V2(0+) = 0 V

V1(0+) + V2(0+) = VC(0+)

Putting corresponding values

V1(0+) + 0 = 0

V1(0+) = 0

Equivalent circuit at t =  

V1() = iR 2R 2V

iR2 = 

R 1 + R 2 

VR 2 

V1() =

R 1 + R 2VC() = V – iR 1R 1 

VR 1 

VC() = V –  

R 1 + R 2After simplification we get

VR 2 

VC() =

R 1 + R 2

SinceVC() = V1() + V2()

VR 2 

V2() =

R 1 + R 2V1() = VC() - V2()

VR 2 VR 2 

V1() = -

Page 26: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 26/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 26

R 1 + R 2 R 1 + R 2 

V1() = 0 Volts Self justified

(c)

V1 

V2 

 According to KCL at node ‘V 1 ’  

V – V1 dV1 1

+ C + V1 – V2)dt = 0 … (i)

R 1 dt L

Differentiating with respect to „t‟ 

1 dV dV1 d2V1 1

- + C + (V1  – V2) = 0 … (iii) 

R 1 dt dt dt2

L

According to KCL at node ‘V 2 ’  

V2 1

+ V2 – V1)dt = 0 … (ii)

R 2 L

Differentiating with respect to „t‟ 

Page 27: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 27/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 27

1 dV2 1 

+ (V2 – V1) = 0 … (iV) 

R 2 dt L

As

V1 = V1 + V2 

By putting the value of V1 in (iii) & (iv)

1 dV d(V1 + V2)  d2(V1 + V2)  1

- + C + (V1 + V2  – V2) = 0

R 1 dt dt dt2

L

1 dV dV1 dV2 d2V1 d

2V2 1

- - + C + + (V1) = 0 … (V) 

R 1 dt dt dt dt2

dt2

1 dV2 1 

+ (V2 – V1) = 0 … (iV) 

R 2 dt L

1 dV2 1 

+ (V2 – (V1 + V2)) = 0 … (iV) 

R 2 dt L

1 dV2 1 

+ (V2 – V1 - V2) = 0

R 2 dt L

1 dV2 1 

+ ( – V1) = 0 … (Vi)

R 2 dt L

From (V) & (Vi) we can find the values of dV 1/dt & dV2/dt.

(d)

Refer part C.

Q#5.14: The network of Prob. 5-13 reaches a steady state with the switch K closed.At a new reference time, t = 0, the switch K is opened. Solve for the quantities

specified in the four parts of Prob. 5-13.

(a)

Equi valent circuit before switchi ng 

Page 28: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 28/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 28

At t = 0-

V

iL(0-) =

R 1 + R 2VC(0-) = V – iR1(0-)R 1Here

iR1(0-) = iL(0-) 

VC(0-) = V – iL(0-)R 1

VR 1 VC(0-) = V -

R 1 + R 2

VR 2 

VC(0-) =

R 1 + R 2 

Page 29: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 29/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 29

V2 = iR2R 2V

iR2(0-) = iR1(0-) = 

R 1 + R 2

VR 2 

V2 =

R 1 + R 2

VR 2 

V2(0-) =

R 1 + R 2 

V1(0-) + V2(0-) = VC(0-)

V1(0-) = VC(0-) - V2(0-)

VR 2 VR 2 V1(0-) = -

R 1 + R 2 R 1 + R 2 

V1(0-) = 0 Volts 

Equivalent network after switching

V1(0+)

VC(0+)

V2(0+)

VC(0-) = VC(0+)

VR 2 

+-

Page 30: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 30/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 30

VC(0+) =

R 1 + R 2 

V

iL(0-) = iL(0+) =

R 1 + R 2 

V2(0+) = iL(0+)R 2

VR 2 

V2(0+) =

R 1 + R 2 

V1(0+) + V2(0+) = VC(0+)

V1(0+) = VC(0+) - V2(0+)

VR 2 VR 2 

V1(0+) = -

R 1 + R 2 R 1 + R 2 

V1(0+) = 0 Volts 

(b)

Equivalent network at t =  

At t = capacitor will be fully discharged and acts as an open circuit.

Hence

VC() = 0 V

iL() = 0 A

V2() = iL()R 2V2() = (0)R 2

Page 31: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 31/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 31

V2() = 0 Volt

(c)

For t 0, the equivalent network is

V1 

V2 

V2 V1

Applying KCL at node „V1‟

1 dV1 

(V1  – V2)dt + C = 0 … (i) 

L dt

d -V2 

C (V1 + V2) = … (ii)

dt R 2 

As

V1 = V1 + V2 

1 d(V1 + V2)

(V1 + V2 – V2)dt + C = 0

L dt

1 d(V1 + V2)

V1dt + C = 0

L dt

Page 32: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 32/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 32

Differentiating (i) with respect to „t‟ 

1 d2V1 d

2V2 

V1 + C + C = 0 … (iii) 

L dt2

dt2 

Differentiating (ii) with respect to „t‟ 

d2

-1 dV2 

C (V1 + V2) = … (iV)

dt2

R 2 dt

After simplification we get the values of dV1/dt & dV2/dt.

(d)

Refer part c.

Q#5.15: The switch K in the network of the figure is closed at t = 0 connecting the

battery to an unenergized network. (a) Determine i, di/dt, and d2i/dt

2at t = 0+. (b)

Determine V1, dV1/dt, and d2V1/dt

2at t = 0+.

V0 i

V1 

Equivalent circuit after switching

Page 33: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 33/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 33

Here

VC(0-) = VC(0+) = 0 Volt

iL(0-) = iL(0+) = 0 A

i(0+) = 0 A

iL(0+) = i(0+)

Applying KVL around outside loop

di

L + iR 2 = V0 … (i) 

dt

At t = 0+

di(0+)

L + i(0+)R 2 = V0 … (i) 

dt

By putting corresponding values we get

di(0+) V0 

=

dt L 

Differentiating (i) with respect to „t‟ 

d2i di

L + R 2 = 0

dt2

dt

At t = 0+

d2i(0+) di(0+)

L + R 2 = 0

dt2

dt

Simplifying we get

d2i(0+) -RV0 

=

dt2

L2 

Referring to the network at t = 0+

V1(0+) = VR1(0+) = iR1(0+)(R 1)

V0 

Page 34: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 34/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 34

iR1(0+) =

R 1 

V0R 1 

V1(0+) =

R 1 

V1(0+) = V0

(b)

Also

V1 = V0 for all t  0

dV1(0+) d2V1(0+)

= = 0

dt dt2 

Q#5.16: The network of Prob. 5.15 reaches a steady state under the conditions

specified in that problem. At a new reference time, t = 0, the switch K is opened.

Solve for the quantities specified in Prob. 5.15 at t = 0+.

Equi valent circuit before switchi ng 

V0 

R 2 

V0 

iL(0-) =

R 2 

VC(0-) = VR2(0-) = iL(0-)(R 2)

V0 

VC(0-) = VR2(0-) = (R 2)

Page 35: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 35/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 35

+

-

R 2 

VC(0-) = VR2(0-) = V0 

As

VC(0-) = VC(0+) = V0

Equi valent network at t = 0+ 

i(0+)

V0 

i(0+) = iL(0-) = iL(0+) =

R 2V1(0+) = V0  – VR1(0+)

V1(0+) = V0  – iL(0+)R 1

V0 

V1(0+) = V0  –  R 1R 2 

Page 36: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 36/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 36

R 2  – R 1 

V1(0+) = V0  –  

R 2

Equivalent cir cuit for t  0 

R 1 

L

i

C

R 2

Applying KVL around the loop 

1 di

i(R 1 + R 2) + idt + L = 0 … (i)

C dt

Also

VR1 + VR2 + VL + VC = 0

i(0+)R 1 + i(0+)R 2 + VL(0+) + VC(0+) = 0

VL(0+) = -i(0+)R 1 - i(0+)R 2 - VC(0+)

Here

VC(0+) = -V0

V0 

i(0+) =

R 2V0 V0 

VL(0+) = - R 1 - R 2  – (-V0)

Page 37: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 37/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 37

R 2 R 2 

V0

VL(0+) = - R 1  – V0 + V0 

R 2

V0

VL(0+) = - R 1 

R 2 

And

di

VL = L

dt

di(0+) VL(0+)

=

dt L

Putting corresponding value

di(0+) -V0R 1 

=

dt R 2L

Differentiating eq. (i) with respect to „t‟ 

1 di

i(R 1 + R 2) + idt + L = 0 … (i) 

C dt

di i d2i

(R 1 + R 2) + + L = 0

dt C dt2

At t = 0+

di(0+) i(0+) d2i(0+)

(R 1 + R 2) + + L = 0

dt C dt2

Here

di(0+) -V0R 1 

=

dt R 2L

V0 

i(0+) =

Page 38: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 38/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 38

R 2Putting corresponding values and simplifying

d2i(0+) V0 R 1(R 1 + R 2) 1

= -

dt2 R 2 L C

Also

di

V1 = L + iR 2 

dt

Differentiating with respect to „t‟ 

dV1 d2i di 

= L + R 2 

dt dt2 dt

At t = 0+

dV1(0+)  d2i(0+) di(0+) 

= L + R 2 

dt dt2

dt

By putting corresponding values and simplifying

dV1(0+) V0 R 12

1

= -

dt R 2 L C

We know

-1

V1 = idt - iR 1 

C

Differentiating with respect to „t‟ 

dV1 -i di

= - R 1 

dt C dt

Differentiating with respect to „t‟ 

d2V1 -di 1 d

2i 

= - R 1 dt

2dt C dt

At t = 0+

d2V1(0+) -di(0+) 1 d

2i(0+)

= - R 1 

dt2

dt C dt2 

Putting corresponding values and simplifying

Page 39: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 39/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 39

d2V1(0+) V0R 1 2 R 1(R 1 + R 2)

= -

dt2

R 2L C L

Q#5.17: In the network shown in the accompanying figure, the switch K is changed

from a to b at t = 0. Show that at t = 0+,

V

i1 = i2 = -

R 1 + R 2 + R 3 

i3 = 0

a C3 

b

V R 2 

+ R 3 

i1 i2 

- i3

R 1 L1 

C1 C2 

Equi valent circuit before switchi ng  

L2 

+ -

Page 40: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 40/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 40

At t = 0-, capacitor C3 is fully charged to voltage V that is VC3(0-) = V and behaves

as an open circuit, so current in L1, L2 becomes and other two capacitors also fully

charged.

iL1(0-) = iL1(0+) = 0 A

iL2(0-) = iL2(0+) = 0 A

VC1(0-) = VC1(0+) = 0 V

VC2(0-) = VC2(0+) = 0 V

Equivalent circuit after switching 

After simplification we get

i2 

i1 

+ -

+ -

Page 41: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 41/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 41

Hence

-V

i1 = i2 =

R 1 + R 2 + R 3C1 behaves short circuit being uncharged at t = 0- & L1 behaving open circuit since

iL(0-) = iL(0+) = 0 A

and i3 = 0 [L2 behaving open circuit].

Q#5.18: In the given network, the capacitor C1 is charged to voltage V0 and the

switch K is closed at t = 0. When

R 1  2 M 

V0 1000 V

R 2  1 M 

C1  10 F

C2  20 F

solve for d2i2/dt

2at t = 0+.

+

C1 i1 

V0 C2 

- i2 

R 2

R 1 

Equi valent circuit before switchi ng 

i2 

Page 42: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 42/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 42

VC1(0-) = V0

VC2(0-) = 0 VEquivalent circuit after switching

+

V0 i1 i2 

-

VC1(0+) = V0

VC2(0+) = 0 V

For t 0

For loop 1: 

1

R 2(i1  – i2) + i1dt = 0 … (i)

C1

For loop 2: 

1

R 2(i2  – i1) + i2dt + R 1i2 = 0 … (ii)

C2

1

R 2(i1  – i2) = - i1dt

Page 43: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 43/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 43

C1

1

R 2(i2  – i1) = i1dt … (iii)

C1

Taking loop around outside

i2R 1 = V0 

V0 

i2 = … (a)

R 1 

In loop 1

According to KVL : 

R 2(i1  – i2) = V0

R 2i1  – R 2i2 = V0

Putting the value of i2 and simplifying

V0(R 1 + R 2)

i1 = … (b) 

R 1R 2 

Putting corresponding values we get

i1(0+) 1.5(10-

) Amp.

i2(0+) 5(10-4

) Amp.

Substituting value of R 2(i2  – i1) in eq. (ii)

1 1

i1dt + i2dt + R 1i2 = 0

C1 C2

Differentiating with respect to „t‟ i1 di2 i2 

+ R 1 +  = 0 … (iv) 

C1 dt C2 

At t = 0+

i1(0+) di2(0+)  i2(0+)

+ R 1 +  = 0

C1 dt C2

By putting corresponding values we get

di2(0+)

= -8.75(10-5

) Amp/sec.dt

Differentiating eq. (iii) with respect to „t‟ 

di2 di1 i1 

R 2 - R 2 = 

dt dt C1 

At t = 0+

Page 44: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 44/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 44

di2(0+)  di1(0+)  i1(0+)

R 2 -  R 2 = 

dt dt C1 

By putting corresponding values and simplifying

di1(0+)

= -2.375(10-4

) Amp/sec.

dt

Differentiating eq. (iv) with respect to „t‟ 

1 di1 d2i2 1 di2 

+ R 1 + = 0

C1 dt dt2

C2 dt

At t = 0+

1 di1(0+)  d2i2(0+)  1 di2(0+)

+ R 1 + = 0

C1 dt dt2

C2 dt

Putting corresponding values and simplifying

d2i2(0+)

= 1.40625(10-5

) Amp/sec2.

dt2 

Q#5.19: In the circuit shown in the figure, the switch K is closed at t = 0 connecting

a voltage, V0sin t, to the parallel RL-RC circuit. Find (a) di1/dt and (b) di2/dt at t =

0+.

i1 i2 

Equivalent circuit after switching 

+

-

+

Page 45: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 45/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 45

At t 0

Applying KVL around outside loop

di2 

Ri2 + L = V0sin t … (i) 

dt

Applying KVL around inside loop

1

Ri1 + i1dt = V0sin t … (ii) 

C

Equivalent circuit at t = 0+ 

iL(0+) = iL(0-) = 0 A

VC(0+) = 0 V

V0sin t

i1 =

At t = 0+

V0sin (0+)

i1(0+) =

V0sin 0

+

-

Page 46: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 46/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 46

i1(0+) =

i1(0+) = 0 A

From (i)

At t = 0+

di2(0+)

Ri2(0+) + L = V0sin (0+) … (i) 

dt

By putting corresponding values we get

di2(0+)

= 0 Amp/sec

dt

Differentiating eq. (ii) with respect to „t‟ 

1

Ri1 + i1dt = V0sin t … (ii) 

C

di1 i1 

R + = V0cos t

dt C

At t = 0+

di1(0+)  i1(0+)

R + = V0cos (0+)

dt C

By putting corresponding values & simplifying we get

di1(0+) V0 

=

dt R 

Q#5.20: In the network shown, a steady state is reached with the switch K open with

V 100 V

R 1  10  

R 2  20  

R 3  20  

L 1 HC 1 F

. At time t = 0, the switch is closed.

(a) Write the integrodifferential equations for the network after the switch is

closed.

(b) What is the voltage V0 across C before the switch is closed? What is its

polarity?

(c) Solve for the initial value of i1 and i2(t = 0+).

Page 47: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 47/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 47

(d) Solve for the values of di1/dt and di2/dt at t = 0+.

(e)  What is the value of di1/dt at ? 

Circui t diagram: 

i

i2 i1 

Equi valent circuit before switchi ng: 

R 2 

R 1 

R 3 

Page 48: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 48/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 48

Simplifying

i

VC(0-)

VC(0-) = iR2(R 2) = VR2 

Here

V

iR2 =

R 1 + R 2 

VR 2 

VR2 =

R 1 + R 2 

By putting corresponding values we get

VC(0-) = VR2 = 66.667 V

V

iL(0-) =

R 1 + R 2 

iL(0-) = 3.334 A

For t 0

i2 i1 

Page 49: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 49/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 49

Applying KVL around outside loop

di1 

R 2i1 + L = V … (i) 

dt

Applying KVL around inside loop

1

R 3i2 + i2dt = V … (ii) 

C

Since

10

iL(0+) = iL(0-) = iR2(0-) = i1(0-) = i1(0+) = Amp.

3

V – VC(0+)

i2(0+) =

R 3 

Here

VC(0+) = 6.667 Volts

Putting corresponding values & simplifying

i2(0+) = 1.667 Amp.

From eq. (i)

At t = 0+

di1(0+)

R 2i1(0+) + L = V … (i) 

dt

Putting corresponding values we get

di1(0+)

= 33.334 Amp/sec.

dt

Differentiating eq. 2:

di2 i2 

R 3 + = 0

dt C

At t = 0+

di2(0+) i2(0+)

R 3 + = 0

dt C

Putting corresponding values

di2(0+)

= 83.334(104) Amp/sec.

dt 

From eq. (i)

Page 50: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 50/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 50

At t =  

di1()

R 2i1() + L = V … (i) 

dt

Heredi1()

= 0 Amp/sec

dt

i1() = 5 Amp.

Equivalent circui t after switching: 

iL(0+)

VC(0+)

Q#5.21: The network shown in the figure has two independent node pairs. If the

switch K is opened at t = 0, find the following quantities at t = 0+:

(a)  V1

(b) V2 

(c) dV1/dt

(d) dV2/dt

Circui t diagram: 

V1 V2 

L

i(t) K R 1 C

R 2 

+

-

Page 51: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 51/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 51

I nitial conditions: 

iL(0-) = iL(0+) = 0 A

VC(0-) = VC(0+) = 0 V

Applying KCL at node „V1‟ 

1 V1 

(V1  – V2)dt + = i(t) … (i) 

L R 1 

Differentiating with respect to „t‟ 

(V1  – V2) 1 dV1 di(t)

+ =

L R 1 dt dt

At t = 0+

(V1(0+) – V2(0+)) 1 dV1(0+)  di(0+)

+ =

L R 1 dt dt 

Putting corresponding values we get

dV1(0+) di(t)(0+) V1(0+) R 1 

= -

dt dt L 

Applying KCL at node „V2‟ 

1 V2 dV2 

(V2  – V1)dt + + C = 0 … (ii)

L R 2 dt

At t = 0+

(V2(0+) – V1(0+)) 1 dV2(0+)  dV2(0+)

+ + C = 0

L R 2 dt dt 

Putting corresponding values we get

dV2(0+)

= 0 V/sec.

dt

Equivalent circuit at t = 0+ V1(0+) V2(0+)

Page 52: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 52/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 52

Q#5.22: In the network shown in the figure, the switch K is closed at the instant t =

0, connecting an unenergized system to a voltage source. Show that if V(0) = V,

then:

di1(0+)/dt, di2(0+)/dt =? L1 L2 

R 1 

L3 

R 3 

i1 i2 

R 2 

iL1(0-) = iL1(0+) = 0 A

iL2(0-) = iL2(0+) = 0 A

For t 0

According to KVL

Loop 1: 

di1 d(i1  – i2) d(i1  – i2) di1 di2 

R 1i1 + L1 +  L3 + R 2(i1  – i2) +  M13 + M31 + (-M32) = V(t)

dt dt dt dt dt

Af ter simpli fi cation 

di1 di2 

i(R 1 + R 2) – i2R 2 + (L1 + L3 + 2M13) - (L3 + M13 + M23) = V(t) … (i) 

+

-

Page 53: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 53/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 53

dt dt

i1(0+) = i2(0+) = 0

At t = 0+

di1(0+) di2(0+)

i(0+)(R 1 + R 2) – i2(0+)R 2 + (L1 + L3 + 2M13) - (L3 + M13 + M23) = V(t)

dt dt

Putting corresponding values we get

di1(0+) di2(0+)

(L1 + L3 + 2M13) - (L3 + M13 + M23) = V … (ii)

dt dt

According to KVL

Loop 2: 

di2 d(i2  – i1) d(i2  – i1) di1 di2 

R 3i2 + L2 +  L3 + R 2(i2  – i1) +  M23 - M31 + M32 = 0

dt dt dt dt dt

After simplifying

di2 di1 

i2(R 3 + R 2) – i1R 2 + (L2 + L3 + 2M23) - (L3 + M13 + M23) = 0 … (iii) 

dt dt

At t = 0+

di2(0+) di1(0+)

i2(0+)(R 3 + R 2) – i1(0+)R 2 + (L2 + L3 + 2M23) - (L3 + M13 + M23) = 0

dt dt

Putting corresponding values we get

di2(0+) di1(0+)

(L2 + L3 + 2M23) - (L3 + M13 + M23) = 0 … (iv)

dt dt

From (ii) & (iv) we can determine the values of di1(0+)/dt & di2(0+)/dt.

 MASHAALLAH BHAI’S REFERENCE: 

In order to indicate the physical relationship of the coils and, therefore, simplify the

sign convention for the mutual terms, we employ what is commonly called the dotconvention. Dots are placed beside each coil so that if currents are entering both

dotted terminals or leaving both dotted terminals, the fluxes produced by these

currents will add.

If one current enters a dot and the other current leaves a dot, the mutual induced

voltage and self-induced voltage terms will have opposite signs.

Q#5.23: For the network of the figure, show that if K is closed at t = 0, d2i1(0+)/dt

2?

Page 54: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 54/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 54

CIRCUIT DI AGRAM: 

L

R 1 

i1 C  i2 R 2 

V(t)

I nitial conditions: 

iL(0-) = iL(0+) = 0 A = i2(0+)

VC(0-) = VC(0+) = 0 V

Equivalent circuit after switching 

V(t)

i1(t) =

R 1 

At t = 0+

V(0+)

i1(0+) =

R 1 

For t 0

Loop 1: 

1

R 1i1 + (i1  – i2)dt = V(t) … (i) 

+

-

+

-

Page 55: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 55/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 55

C

Differentiating (i) with respect to „t‟ 

di1 (i1  – i2) dV(t)

R 1 + =  … (ii) 

dt C dt

At t = 0+

di1(0+)  (i1(0+) – i2(0+)) dV(0+)

R 1 + = 

dt C dt

Putting corresponding values we get

di1(0+) dV(0) V(0) 1

= -

dt dt R 1C R 1

Differentiating (ii) with respect to „t‟ 

d2i1 1 di1 di2 d

2V(t)

R 1 +  - = 

dt2

C dt dt dt2 

At t = 0+

d2i1(0+)  1 di1(0+) di2(0+) d

2V(0+)

R 1 +  - = 

dt2

C dt dt dt2 

From here we can determine the value of d2i1(0+)/dt

2.

Q#5.24: The given network consists of two coupled coils and a capacitor. At t = 0,

the switch K is closed connecting a generator of voltage, V(t) = V sin (t/(MC)1/2

).

Show that

Va(0+) = 0, dVa(0+)/dt = (V/L)(M/C)1/2

, and d2Va(0+)/dt

2= 0. 

CIRCUIT DI AGRAM:  

M

a

+

-

Page 56: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 56/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 56

Va 

V(t)

Equivalent circuit at t = 0+

After simplification

diL(0+)

Va(0+) = VC(0+) + M

dt

+

-

Page 57: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 57/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 57

We know for t 0, according to KVL

di 1

L + idt = V(t) … (a) 

dt C

At t = 0+di(0+)

L + VC(0+) = V(0+)

dt

Here

VC(0+) = 0 V

V(t) = V sin (t/(MC)1/2

)

V(0+) = V sin ((0+)/(MC)1/2

)

V(0+) = V sin (0)

V(0+) = V (0)

V(0+) = 0 V

Putting corresponding values we get

di(0+)

= 0 Amp/sec.

dt

iL(0-) = iL(0+) = i(0+) = 0 A

Now

di(0+)

Va(0+) = VC(0+) + M … (i)

dt

Putting corresponding values we get

Va(0+) = 0 Volt

Now

Differentiating (i) with respect to „t‟ 

dVa dVC d2i

= + M … (b) 

dt dt dt2 

Differentiating (a) with respect to „t‟ 

d2i i dV(t)

L + = … (a) 

dt2

C dt

Here

V

d(V(t)) = cos (t/(MC)1/2

)

(MC)1/2 

At t = 0+

d2i(0+) i(0+) dV(0+)

L + = … (c) 

dt2

C dt

Putting corresponding values we get

d2i(0+) V

=

Page 58: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 58/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 58

dt2

L(MC)1/2

 

At node a, apply KCL

1 dVC (VC  – V(t)) + C = 0 … (c) 

L dt

Rearranging

dVC(0+)

iL(0+) + C = 0

dt 

dVC(0+)

0 + C = 0

dt 

dVC(0+)

= 0

dt 

dVa dVC d2i

= + M … (b) 

dt dt dt2 

At t = 0+

dVa(0+)  dVC(0+)  d2i(0+)

= + M … (b) 

dt dt dt2 

Putting corresponding values we get

dVa(0+)  V M=

dt L C 

Differentiating (b) with respect to „t‟ 

d2Va d

2VC d

3i

= + M

dt2

dt2

dt3 

Differentiating (c) with respect to „t‟ 

d3i(0+) 1 di(0+) d

2V(0+)

L + = … (c) 

dt3 C dt dt2 d

2V(0+)

=?

dt2 

V

d(V(t)) = cos (t/(MC)1/2

)

(MC)1/2

 

Page 59: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 59/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 59

-V

d2(V(t)) = sin (t/(MC)

1/2)

(MC)

-V

d2(V(0+)) = sin (0+/(MC)

1/2)

(MC)

-V

d2(V(0+)) = sin (0)

(MC)

-V

d2(V(0+)) = (0)

(MC)

d2V(0+)

= 0

dt2 

d3i(0+)

= 0 Amp/sec3 

dt3 

Differentiating (c) with respect to „t‟ 

(VC  – V(t)) d2VC 

+ C = 0 … (c) L dt

At t = 0+

(VC(0+) – V(0+)) d2VC(0+)+ C = 0 … (c) 

L dt2 

Putting corresponding values

d2VC(0+)

= 0 V/sec2 

dt2 

d2Va d

2VC d

3i

= + M

dt2

dt2

dt3

 At t = 0+

d2Va(0+)  d

2VC(0+)  d

3i(0+)

= + M

dt2

dt2

dt3 

d2Va(0+)

= 0 Volt/sec2 

Page 60: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 60/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 60

dt2

Q#5.25: In the network of the figure, the switch K is opened at t = 0 after the

network has attained a steady state with the switch closed. (a) Find an expression

for the voltage across the switch at t = 0+. (b) If the parameters are adjusted such

that i(0+) = 1 and di/dt (0+) = -1, what is the value of the derivative of the voltage

across the switch, dVK /dt (0+) ?

CIRCUIT DI AGRAM: 

+ V K   -

R 2 

R 1 C

V

i

L

Initial conditions:

i(0+) = 1

di(0+)

= -1

dt

Page 61: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 61/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 61

Equi valent network af ter switchi ng: 

VK  

sc

V

iL =

R 2 

V

iL(0-) = iL(0+) =

R 2 

At t = 0+

VK (0+) = VR1(0+)

VR1(0+) = iL(0+)(R 1)

Putting corresponding value we get

V

VR1(0+) = R 1 

R 2 

For t 0

1

VK = iR 1 + idt

C

Differentiating with respect to „t‟ 

dVK  di i

= R 1 + 

dt dt C

Page 62: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 62/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 62

At t = 0+

dVK (0+)  di(0+) i(0+)

= R 1 + 

dt dt C

Putting corresponding value we get

dVK (0+) 1

= - R 

dt C 

Q#5.26: In the network shown in the figure, the switch K is closed at t = 0

connecting the battery with an unenergized system.

(a) Find the voltage Va at t = 0+.

(b) Find the voltage across capacitor C1 at t = .

CIRCUIT DI AGRAM: 

R 1 

Va 

C1 C2 

R 2 

V L

Equivalent network at t = 0+

Page 63: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 63/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 63

After simplification:

R 2 

Va(0+) = V

Equivalent network at t =  

VC1() = V.

Page 64: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 64/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 64

Q#5.27: In the network of the figure, the switch K is closed at t = 0. At t = 0-, all

capacitor voltages and inductor currents are zero. Three node to datum voltages are

identified as V1, V2, and V3.

(a) Find V1 and dV1/dt at t = 0+.

(b) Find V2 and dV2/dt at t = 0+.

(c) Find V3 and dV3/dt at t = 0+.

CIRCUIT DI AGRAM: 

V1 V3 

V2 

Using KCL at node ‘V 1 ’  

For t 0

(V1  – V(t)) dV1 (V1  – V2) 1

+ C1 + +  (V1  – V3)dt = 0 … (i) 

R 1 dt R 2 L

Using KCL at node ‘V 2 ’  

(V2  – V1) dV2 1

+ C2 + V2dt = 0 … (ii) 

R 2 dt L2 

Using KCL at node ‘V 3 ’  

1 dV3 

(V3  – V1)dt + C3 = 0 … (iii) 

L1 dt

At t = 0+, capacitor C1 becomes short circuit as a result of which

+

-

Page 65: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 65/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 65

V1(0+) 0 V

V2(0+) 0 V

V3(0+) 0 V

At t = 0+

1 dV3

(V3  – V1)dt + C3 = 0 … (iii) 

L1 dt

dV3(0+)

iL1(0+) + C3 = 0

dt

After simplification we get

dV3(0+)

= 0 Volt/secdt

Here

iL1(0-) = iL1(0+) = 0 A

At t = 0+

(V2(0+) – V1(0+)) dV2(0+) 

+ C2 + iL2(0+) = 0 … (ii) 

R 2 dt

iL2(0-) = iL2(0+) = 0 A

Putting corresponding values we get

dV2(0+)

= 0

dt

At t = 0+ eq. (i) reveals

(V1(0+) – V(0+)) dV1(0+)  (V1(0+) – V2(0+)) 1

+ C1 + +  (V1(0+) – V3(0+))dt = 0

R 1 dt R 2 L

Putting corresponding values we get

dV1(0+)

= 0 Volt/sec.

dt

Q#5.28: In the network of the figure, a steady state is reached, and at t = 0, the

switch K is opened.

(a) Find the voltage across the switch, VK at t = 0+.

iL3(0+)

Page 66: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 66/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 66

(b) Find dVK /dt at t = 0+.

CIRCUIT DI AGRAM: 

V K  

+ -

Equi valent network before switchi ng 

R 1 R 2 

i(0-)

Page 67: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 67/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 67

R 3 

At t = 0-

VC1(0-) = i(o-) R 2 

V

i(0-) =

R 1 + R 2 + R 3 

VR 2 

VC1(0-) =

R 1 + R 2 + R 3 

VC1(0-) = i(o-) R 2 

VR 3 

VC1(0-) =

R 1 + R 2 + R 3VC2(0-) = V – VR1(0-)

Equi valent network af ter switchi ng 

V1 K 

Page 68: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 68/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 68

At t 0

At node K, according to KCL

d dVk  VK   – V1 

C1 (VK   – V1) + C3 +  = 0

dt dt R 2 

After simplification we get

dV1 1  dVK  (VK   – V1)

= (C3 + C1) + … (i)

dt C1 dt R 2 

 At node ‘V 1 ’ according to KCL 

(V1 - V) dV1 d(V1 - VK ) (V1 - VK )

+ C2 + C1 + = 0

R 1 dt dt R 2After simplification we get

dV1 1 dVK  (VK   – V1) (V – V1)

= C1 + + … (ii)

dt (C1 + C2) dt R 2 R 1 

Equating (i) & (ii) we get dVK /dt at t = 0+.

Hint:

V1(0+) = VC2(0-) = V – VR1(0-)

Here

VR 1 

VR1(0-) =

R 1 + R 2 + R 3

VR 2 + VR 3 

V – VR1(0-) =

R 1 + R 2 + R 3 

Q#5.29: In the network of the accompanying figure, a steady state is reached with

the switch K closed and with i = I0, a constant. At t = 0, switch K, is opened. Find:

(a) V2(0-) =?

(b) V2(0+) =?

(c)  (dV2/dt)(0+).

CIRCUIT DI AGRAM: 

1 2

R 2 +

V2 

C

I0 

Page 69: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 69/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 69

R 1 R 3 L

-

Equi valent network at t = 0- 

After simplification we get

R 1 R 2 

I0 

I0 

Page 70: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 70/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 70

Now

According to current divider ru le: 

R 1I0 

iR2 =

R 1 + R 2We know V2(0-) = VL(0-) = 0

Equi valent network at t = 0+ 

R 1 

I0R 1 VC(0+)

iL(0+)

I0 

+ -

+

-

+ -

Page 71: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 71/72

www.electrical.net.tc  2010 

www.electrical.net.tc Page 71

After simplification

V2(0+)

VC(0+)

I0R 1 

At node „V1‟ 

V1 d(V1  – V2)

+ C = I0 … (i) 

R 1 dt

At node „V2‟ 

V2 d(V2  – V1) 1

+ C + V2dt … (ii) 

R 3 dt L

From eq. (ii)

d(V1  – V2) V2 1

C = + V2dt

+

-

+ -

Page 72: Chap#5 nwa

8/7/2019 Chap#5 nwa

http://slidepdf.com/reader/full/chap5-nwa 72/72

www.electrical.net.tc  2010 

dt R 3 L

Substituting the value of Cd(V1  – V2)/dt in (i) we get

V2 1 V1 

V2dt + = I

R 3 L R 1 

At t = 0+

V2(0+) 1 V1(0+)

+  V2(0+)dt + = I0 … (iii) 

R 3 L R 1 

Putting corresponding values we get

I0R 1R 2 

V1(0+) =

R 1 + R 2 

Differentiating eq. (iii) with respect to „t‟ and from here putting the value of 

dV1(0+)/dt in eq. (i) we get dV2(0+)/dt.

Hint:

In eq. (i)

V1(0+) I0R 1R 2 

=

R 1 (R 1 + R 2)R 1 

dV2(0+) -I0R 1R 3 

=

dt C(R 1 + R 2)(R 1 + R 3)

dV1(0+) -R 1 dV2(0+)

=

dt R 3 dt

THE END.


Recommended