+ All Categories
Home > Documents > CMPEN 411 VLSI Digital Circuits Spring 2013 Lecture 01...

CMPEN 411 VLSI Digital Circuits Spring 2013 Lecture 01...

Date post: 14-Jun-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
104
Sp13 CMPEN 411 L01 S1 CMPEN 411 VLSI Digital Circuits Spring 2013 Lecture 01: Introduction Kyusun Choi Course Website: http://www.cse.psu.edu/~kyusun/class/cmpen411/13s/index.html [Adapted from Rabaey‟s Digital Integrated Circuits, Second Edition, ©2003 J. Rabaey, A. Chandrakasan, B. Nikolic]
Transcript

Sp13 CMPEN 411 L01 S1

CMPEN 411VLSI Digital Circuits

Spring 2013

Lecture 01: Introduction

Kyusun Choi

Course Website: http://www.cse.psu.edu/~kyusun/class/cmpen411/13s/index.html

[Adapted from Rabaey‟s Digital Integrated Circuits, Second Edition, ©2003 J. Rabaey, A. Chandrakasan, B. Nikolic]

Sp13 CMPEN 411 L01 S2

How Do the Pieces Fit Together?

I/O systemInstr. Set Proc.

Compiler

OperatingSystem

Application

Digital Design

Circuit Design

Instruction SetArchitecture

Firmware

Coordination of many levels of abstraction

Under a rapidly changing set of forces

Design, measurement, and evaluation

Datapath & Control

Memory

system

Sp13 CMPEN 411 L01 S3

Course Contents

Introduction to digital integrated circuits

CMOS devices and manufacturing technology. CMOS logic gates and their layout. Propagation delay, noise margins, and power dissipation. Combinational (e.g., arithmetic) and sequential circuit design. Memory circuit design.

Course goals

Ability to design and implement CMOS digital circuits and optimize them with respect to different constraints: size (cost), speed, power dissipation, and reliability

Course prerequisites

EE 310. Electronic Circuit Design

CMPEN 471. Logic Design of Digital Systems

Sp13 CMPEN 411 L01 S4

Background from CMPEN 471 and EE 310

Basic circuit theory

resistance, capacitance, inductance

MOS gate characteristics

Hardware description language

VHDL or verilog

Use of modern EDA tools

simulation, synthesis, validation (e.g., Synopsys)

schematic capture tools (e.g., LogicWorks)

Logic design

logical minimization, FSMs, component design

Sp13 CMPEN 411 L01 S5

Course Structure

Design and tool intensive class

Industrial Standard toolset for layout

- Online documentation and tutorials

HSPICE for circuit simulation

unix (Sun/Solaris) operating system environment

Lectures:

2 weeks on the CMOS inverter

3 weeks on static and dynamic CMOS gates

2 weeks on C, R, and L effects

2 week on sequential CMOS circuits

2 weeks on design of datapath structures

2 weeks on memory design

1 week on design for technology scaling, trends

Schedule is on-line syllabus

Sp13 CMPEN 411 L01 S6

What is the most important invention for the last 50 years?

Sp13 CMPEN 411 L01 S7

The evolution of IC

When was the first transistor invented?

A. 1945 B. 1947 C. 1951 D. 1958

The inventors were in which company?

A. IBM B. Bell Lab C. TI D. Motorola

Sp13 CMPEN 411 L01 S8

The evolution of IC

When was the first transistor invented?

Modern-day electronics began with the invention in 1947 of the transfer resistor, also known as the bi-polar transistor by Bardeen et.al at Bell Laboratories

Sp13 CMPEN 411 L01 S9

The evolution of IC

When was the first IC invented?

A. 1956 B. 1958 C. 1959 D. 1961

The inventor was with which company?

A. IBM B. Bell Labs C. TI D. Motorola

Sp13 CMPEN 411 L01 S10

The evolution of IC

When was the first IC (integrated circuit) invented?

In 1958 the integrated circuit was born when Jack Kilby at Texas Instruments successfully interconnected, by hand, several

transistors, resistors and capacitors on a single substrate

Sp13 CMPEN 411 L01 S11

Transistor Revolution

Transistor –Bardeen et.al. (Bell Labs) in 1947

Bipolar transistor – Schockley in 1949

First bipolar digital logic gate – Harris in 1956

First monolithic IC – Jack Kilby in 1958

First commercial IC logic gates – Fairchild 1960

Sp13 CMPEN 411 L01 S12

MOSFET Technology

MOSFET transistor - Lilienfeld (Canada) in 1925 and Heil (England) in 1935

CMOS – 1960‟s, but plagued with manufacturing problems (used in watches due to their power limitations)

PMOS in 1960‟s (calculators)

NMOS in 1970‟s (4004, 8080) – for speed

CMOS in 1980‟s – preferred MOSFET technology because of power benefits

BiCMOS, Gallium-Arsenide, Silicon-Germanium

SOI, Copper-Low K, strained silicon, High-k gate oxide...

Sp13 CMPEN 411 L01 S13

CMPEN 411 VLSI Digital Circuits

Kyusun Choi

VLSI Chip Pictures

Sp13 CMPEN 411 L01 S14

Sp13 CMPEN 411 L01 S15

Sp13 CMPEN 411 L01 S16

Sp13 CMPEN 411 L01 S17

Fig. 12 Increase in wafer sizes, showing the increased number of dice (chips) per wafer available when increasing the wafer area. (a) 100-mm (4-in.) wafer. (b) 150-mm (6-in.) wafer. (c) 300-mm (12-in.) wafer. (Intel Corp.)

Fig. 7 Person with lint-free garments in a vertical laminar-flow clean room forintegrated-circuit fabrication with 300-mm (12-in.) wafer. (Personnel do not handle wafers in this manner. This was done just for the photograph.) (Intel Corp.)

Sp13 CMPEN 411 L01 S18

Sp13 CMPEN 411 L01 S19

Sp13 CMPEN 411 L01 S20

Sp13 CMPEN 411 L01 S21

Sp13 CMPEN 411 L01 S22

Sp13 CMPEN 411 L01 S23

Sp13 CMPEN 411 L01 S24

Sp13 CMPEN 411 L01 S25

Sp13 CMPEN 411 L01 S26

Sp13 CMPEN 411 L01 S27

Sp13 CMPEN 411 L01 S28

Sp13 CMPEN 411 L01 S29

Fig. 1. Cross-section of a 64-bit

high-speed processor in a 90nm

technology. (Courtesy: IBM)

Sp13 CMPEN 411 L01 S30

Sp13 CMPEN 411 L01 S31

Sp13 CMPEN 411 L01 S32

Sp13 CMPEN 411 L01 S33

Sp13 CMPEN 411 L01 S34

Sp13 CMPEN 411 L01 S35

Sp13 CMPEN 411 L01 S36

Programmable Logic Gate Array

Sp13 CMPEN 411 L01 S37

Programmable Logic Gate Array

Sp13 CMPEN 411 L01 S38

Programmable Logic Gate Array

Sp13 CMPEN 411 L01 S39

Programmable Logic Gate Array

Sp13 CMPEN 411 L01 S40

Programmable Logic Gate Array

Sp13 CMPEN 411 L01 S41

Programmable Logic Gate Array

Sp13 CMPEN 411 L01 S42

Sp13 CMPEN 411 L01 S43

Worldwide Semiconductor RevenueSource: ISSCC 2003 G. Moore “No exponential is forever, but „forever‟ can be delayed”

Sp13 CMPEN 411 L01 S44

Transistors shipped per year

How many transistors you can buy with 1$?

Sp13 CMPEN 411 L01 S45

Average Transistor Price by Year

Sp13 CMPEN 411 L01 S46

1’’ Wafer in 1964 vs. 300 mm (12 ”) Wafer in 2003

Sp13 CMPEN 411 L01 S47

The IC in 1961 vs. Intel Pentium 4 in 2004

Sp13 CMPEN 411 L01 S48

Moore’s Law

In 1965, Gordon Moore predicted that the number of transistors that can be integrated on a die would double every 18 months (i.e., grow exponentially with time).

Amazingly visionary – million transistor/chip barrier was crossed in the 1980‟s.

2300 transistors, 108 KHz clock (Intel 4004) - 1971

16 Million transistors (Ultra Sparc III)- 1998

42 Million, 2 GHz clock (Intel P4) - 2001

125 Million, 3.4Ghz (Intel P4 Prescott)- 2004 Feb 02

234 Million, IBM Cell processor, 2005

1.7 Billion, 1.6Ghz (Intel Itanium-2)-2006, Sept.

Sp13 CMPEN 411 L01 S49

Moore’s Law plot (from his original paper)

Sp13 CMPEN 411 L01 S50

Moore’s Law in Microprocessors

40048008

80808085 8086

286

386

486Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010

Year

Tra

nsis

tors

(M

T)

2X growth in 1.96 years!

# transistors on lead microprocessors double every 2 years

Courtesy, Intel

Sp13 CMPEN 411 L01 S51

# of Transistors per Die

Source: ISSCC 2003 G. Moore “No exponential is forever, but „forever‟ can be delayed”

Sp13 CMPEN 411 L01 S52

Intel 4004 Microprocessor (10000 nm) 1971

2300 transistors

13.5 mm2

108k Hz

Sp13 CMPEN 411 L01 S53

Intel Pentium 4 –Prescott (2004)

90 nm

Area: 112 mm2

125 M transistors

L1-Instruction: 16K

L1-Data: 16K

L2: 1MB

Sp13 CMPEN 411 L01 S54

Two chips you are seeing today

Microprocessor ASIC (Application Specific IC)

366MHz 40mm2 3.65M 40Mhz 10 mm2 500K

Sp13 CMPEN 411 L01 S55

IBM Cell Overview

IBM/Toshiba/Sony joint project - 4-5 years, 400 designers, 3/9/2001, $400M, 234 million transistors, 4+ Ghz, 256 Gflops (billions of floating pointer operations per second)

P

P

U

S

P

U

S

P

U

S

P

U

S

P

U

S

P

U

S

P

U

S

P

U

S

P

U

M

I

C

R

R

A

C

B

I

C

MIB

Cell Prototype Die (Pham et al, ISSCC 2005)

Sp13 CMPEN 411 L01 S56

State-of-the Art: Lead Microprocessors

Pentium 4 180 nm (2001) 1.7 G Hz 42 M transistors 217 mm2

Pentium 4 130 nm (2003) 3.2G Hz 55 M Transistors 131 mm2

Pentium 4 90 nm (2004) 3.4 Hz 125 M Transistors 112 mm2

Pentium on 65nm (2005/2006) 250 Million

Pentium on 45nm (2007) 400 to 500 Million

Freq

(HZ)

Transistors Die size

mm2

Power Date

Server IBM Power 4+ 1.7G 180M 267 N/A 2003

Itanium 2 1.5G 410M 374 130W 2003

IBM Power 5 2G 276M 389 N/A 2004/2

PC IBM Power PC970 1.8G 58M 118 42W 2003/6

Pentium 4 3.2G 55M 131 82W 2003/6

AMD Athlon 64 2.2G 105M 192 89W 2003/9

Pentium 4 (Prescott)

3.4G 125M 112 103W 2004/2

(All use 0.13 um technology except Pentium 4 – Prescott, which uses 90 nm tech)

Sp13 CMPEN 411 L01 S57

State-of-the Art: Lead Microprocessors (up to date)

300mm wafer and Pentium 4 IC. Photos courtesy of Intel.

Sp13 CMPEN 411 L01 S59

Die Size Growth

40048008

80808085

8086286

386486

Pentium ® procP6

1

10

100

1970 1980 1990 2000 2010

Year

Die

siz

e (

mm

)Die size grows by 14% to satisfy Moore’s Law

Courtesy, Intel

Sp13 CMPEN 411 L01 S60

Clock Frequency

Lead microprocessors frequency doubles every 2 years

P6

Pentium ® proc486

3862868086

8085

8080

8008

40040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

Fre

qu

en

cy (

Mh

z)

2X every 2 years

Courtesy, Intel

Sp13 CMPEN 411 L01 S61

Power Dissipation

P6Pentium ® proc

486

386

2868086

80858080

80084004

0.1

1

10

100

1971 1974 1978 1985 1992 2000

Year

Po

wer

(Watt

s)

Lead Microprocessors power continues to increase

Courtesy, Intel

Power delivery and dissipation will be prohibitive

Sp13 CMPEN 411 L01 S62

Power Density

4004

8008

8080

8085

8086

286386

486Pentium® proc

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

Po

wer

Den

sit

y (

W/c

m2)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Power density too high to keep junctions at low temp

Courtesy, Intel

Sp13 CMPEN 411 L01 S63

Power Density

4004

8008

8080

8085

8086

286386

486Pentium® proc

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

Po

wer

Den

sit

y (

W/c

m2)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Power density too high to keep junctions at low temp

Courtesy, Intel

Sp13 CMPEN 411 L01 S64

ITRS

The “International Technology Roadmap for Semiconductors” (ITRS) is the industry‟s prediction for the future of semiconductors.

It is mostly an extrapolation of existing trends.

The ITRS is often “slow”.

http://public.itrs.net

Sp13 CMPEN 411 L01 S65

Technology Directions: “Old” SIA Roadmap

Year 1999 2002 2005 2008 2011 2014

Feature size (nm) 180 130 100 70 50 35

Mtrans/cm2 7 14-26 47 115 284 701

Chip size (mm2) 170 170-214 235 269 308 354

Signal pins/chip 768 1024 1024 1280 1408 1472

Clock rate (MHz) 600 800 1100 1400 1800 2200

Wiring levels 6-7 7-8 8-9 9 9-10 10

Power supply (V) 1.8 1.5 1.2 0.9 0.6 0.6

High-perf power (W) 90 130 160 170 174 183

Battery power (W) 1.4 2.0 2.4 2.0 2.2 2.4

http://public.itrs.net

Sp13 CMPEN 411 L01 S66

Technology Scaling

Technology shrinks by ~0.7 per generation

With every generation can integrate 2x more functions on a chip; chip cost does not increase significantly

Cost of a function decreases by 2x

But …

How to design chips with more and more functions?

Design engineering population does not double every two years…

Hence, a need for more efficient design methods

Exploit different levels of abstraction

Sp13 CMPEN 411 L01 S67

Design Abstraction Levels

SYSTEM

GATE

CIRCUIT

VoutVin

CIRCUIT

VoutVin

MODULE

+

DEVICE

n+

S D

n+

G

Sp13 CMPEN 411 L01 S69

Design Productivity Crisis

We need to improve the productivity via design automation

1996: 100 person in P6 team

2007: 1600 person in P10 team

Question: ?? Person in P38 team ?

Answer: Every inhabitant of our planet

Year Tech. (nm)

Complexity Frequency 3 Yr. Design Staff Size

Staff Costs

1997 350 13 M Tr. 400 MHz 210 $90 M

1998 250 20 M Tr. 500 MHz 270 $120 M

1999 180 32 M Tr. 600 MHz 360 $160 M

2002 130 130 M Tr. 800 MHz 800 $360 M

Sp13 CMPEN 411 L01 S70

Major Design Challenges

Microscopic issues

ultra-high speeds

power dissipation and supply rail drop

growing importance of interconnect

noise, crosstalk

reliability, manufacturability

clock distribution

Macroscopic issues

time-to-market

design complexity (millions of gates)

high levels of abstractions

reuse and IP, portability

systems on a chip (SoC)

tool interoperability

Sp13 CMPEN 411 L01 S71

Testing and Faults

1/7/2013 71L12: Testing

Sp13 CMPEN 411 L01 S72

Chip Technology

1/7/2013 72L12: Testing

Sp13 CMPEN 411 L01 S73

1/7/2013 73L12: Testing

Chip Technology

Sp13 CMPEN 411 L01 S74

1/7/2013 74L12: Testing

Chip Technology

Sp13 CMPEN 411 L01 S75

1/7/2013 75L12: Testing

Chip Technology

Sp13 CMPEN 411 L01 S76

1/7/2013 76L12: Testing

Chip Technology

Sp13 CMPEN 411 L01 S77

1/7/2013 77L12: Testing

Chip Technology

Sp13 CMPEN 411 L01 S78

1/7/2013 78L12: Testing

Chip Technology

GHz frequency

Sp13 CMPEN 411 L01 S79

Testing and Faults

1/7/2013 79L12: Testing

Sp13 CMPEN 411 L01 S80

Testing and Faults

1/7/2013 80L12: Testing

Sp13 CMPEN 411 L01 S81

Testing and Faults

1/7/2013 81L12: Testing

Sp13 CMPEN 411 L01 S82

Testing and Faults

1/7/2013 82L12: Testing

Sp13 CMPEN 411 L01 S83

Testing and Faults

1/7/2013 83L12: Testing

Sp13 CMPEN 411 L01 S84

Testing and Faults

1/7/2013 84L12: Testing

Sp13 CMPEN 411 L01 S85

Testing and Faults

1/7/2013 85L12: Testing

Sp13 CMPEN 411 L01 S86

Testing and Faults

1/7/2013 86L12: Testing

Sp13 CMPEN 411 L01 S87

Testing and Faults

1/7/2013 87L12: Testing

Sp13 CMPEN 411 L01 S88

Testing and Faults

1/7/2013 88L12: Testing

Sp13 CMPEN 411 L01 S89

Testing and Faults

1/7/2013 89L12: Testing

Sp13 CMPEN 411 L01 S90

Testing and Faults

1/7/2013 90L12: Testing

Sp13 CMPEN 411 L01 S91

Testing and Faults

1/7/2013 91L12: Testing

Sp13 CMPEN 411 L01 S92

Wafer Cost

1/7/2013 92L12: Testing

Chip Yield

Sp13 CMPEN 411 L01 S93

Testing and Faults

1/7/2013 93L12: Testing

Sp13 CMPEN 411 L01 S94

Testing and Faults

1/7/2013 94L12: Testing

Sp13 CMPEN 411 L01 S95

Testing and Faults

1/7/2013 95L12: Testing

Sp13 CMPEN 411 L01 S96

Testing and Faults

1/7/2013 96L12: Testing

Sp13 CMPEN 411 L01 S97

Wafer Cost

1/7/2013 97L12: Testing

Yield = 6/12 = 50% Yield = 57/64 = 89%

Wafer Cost = $10,000

Sp13 CMPEN 411 L01 S98

Wafer Cost

1/7/2013 98L12: Testing

Sp13 CMPEN 411 L01 S99

1/7/2013 99L12: Testing

Wafer Cost

Sp13 CMPEN 411 L01 S100

1/7/2013 100L12: Testing

Wafer Cost

Sp13 CMPEN 411 L01 S101

1/7/2013 101L12: Testing

Wafer Cost

Sp13 CMPEN 411 L01 S102

1/7/2013 102L12: Testing

Wafer Cost

Sp13 CMPEN 411 L01 S103

1/7/2013 103L12: Testing

Wafer Cost

Sp13 CMPEN 411 L01 S104

Testing and Faults

1/7/2013 104L12: Testing

Fault Cost:

Wafer $0.01 - $ 0.1

Packaged Chip $0.1 - $1

Board $1 - $10

System $10 – 100

Field $100 - $1000

Sp13 CMPEN 411 L01 S105

Testing and Faults

1/7/2013 105L12: Testing

Pentium Bug:

824 633 702 441.0 X 1/ 824 633 702 441.0

= 0.999 999 996 274 709 702

Due to faulty floating point number divide look-up table

Sp13 CMPEN 411 L01 S106

Next Lecture and Reminders

Next lecture

Design metrics

- Reading assignment – 1.3

Reminders


Recommended