+ All Categories
Home > Documents > Cod , n Balance in Stp Model

Cod , n Balance in Stp Model

Date post: 03-Jun-2018
Category:
Upload: hrk65
View: 218 times
Download: 0 times
Share this document with a friend

of 11

Transcript
  • 8/11/2019 Cod , n Balance in Stp Model

    1/11

    ergamon

    0043- 1354( 94) 00155- 3

    Wat Res

    Vol . 29, No. 2 , pp. 633-643, 1995

    C op yr i gh t 1995 E l s e v i e r S c i e nc e L t d

    P r i n t e d i n G r e a t B r i t a i n . A l l r i gh t s re s e r ve d

    0043-1354/95 7.00 + 0.00

    C O D N D N I T R O G E N M S S B L N C E S I N C T I V T E D

    S L U D G E S Y S T E M S

    P. S . BARKER an d P. L. DOLD*

    Dep artm ent of Civil Engineering, M cM aster University, 1280 M ain Street West, Hamilton, O ntario,

    Cana da L8S 4L7

    First received December 1993; accepted in revised orm Ma y 1994)

    A ~t ra ct- -C OD and ni trogen balances we re per formed on four dif ferent types of laboratory-scale

    activated sludge system: aerobic, anoxic, anox ic-aero bic and an aero bic-a no xic- aero bic biological excess

    pho spho rus removal systems). The systems included a variety o f configurations, with differing wastewater

    characteristics and ope rating parameters. The results suggest that goo d COD balances are to be expected

    in aerob ic and anox ic-aerobic systems. Systems incorporat ing anaerobic zones exhibi t low C OD balances

    ( less than 80%). Ferme ntat ion in the anaerobic zone apparently is implicated in this loss of COD. The

    consequences of the COD loss include bot h a significant decrease in oxygen requirements an d in sludge

    production comp ared to aerobic or an oxic-aerob ic systems. Possible mechanisms for the loss of COD and

    areas which require further study are discussed.

    Key words--activated sludge, mass balances, CO D, T KN , nitr if ication, denitr if ication, biological excess

    pho spho rus removal (BEPR), fermentation, anae robic stabilization

    I N T R O D U C T I O N

    C u r r e n t u n d e r s t a n d i n g o f a c t i v a t e d s l u d g e s y s t e m

    b e h a v i o u r h a s d e v e l o p e d f ro m o b s e r v a t i o n s o n o p e r -

    a t i n g s y s t e m s . T h e s e h a v e b e e n f u l l - s c a l e p l a n t s , p i l o t

    p l a n t s a n d l a b o r a t o r y - s c a l e e x p e r i m e n t a l s y st e m s .

    T h e r e i s a f u n d a m e n t a l r e q u i r e m e n t i f c o n c l u s i o n s

    d r a w n f r o m a n a l y s i s o f e x p e r i m e n t a l d a t a a r e d e fe n -

    s i b l e ; n a m e l y , t h a t d a t a g a t h e r e d f r o m t h e e x p e r -

    i m e n t a l s y s t e m a r e r e l i a b l e . M a s s b a l a n c e s p r o v i d e

    o n e w a y o f c h e c k i n g t h e r e l ia b i l i ty o f t h e d a t a .

    S u r p r i s i n g l y t h i s i s s e l d o m d o n e , m o s t l i k e l y b e c a u s e

    g a t h e r i n g t h e d a t a t o c o n d u c t t h e s e b a l a n c e s m a y

    n e c e s si t a te a d d i t i o n a l s a m p l i n g a n d m o n i t o r i n g o f t h e

    e x p e r i m e n t a l s y s t e m , b e y o n d t h a t r e g a r d e d a s n e ce s s-

    a r y f o r a d d r e s s i n g a p a r t i c u l a r r e s e a r c h p r o b l e m .

    A l s o , i n c e r t a i n c a s e s i t m a y n o t b e f e a s i b l e t o g a t h e r

    t h e r e q u i r e d d a t a ; f o r e x a m p l e , o n a f u l l - s c a le p l a n t

    w i t h d y n a m i c i n f l u e n t l o a d i n g .

    T w o b a l a n c e s w h i c h o f t e n c a n b e a p p l i e d t o e x p e r -

    i m e n t a l d a t a a r e f o r c h e m i c a l o x y g e n d e m a n d ( C O D )

    a n d n i t r o g e n ( N ) . I n a d d i t i o n t o r e f le c t i n g t h e v a l i d i t y

    o f e x p e r i m e n t a l d a t a , r e s u lt s o f m a s s b a l a n c e c a l c u -

    l a t i o n s c a n a l s o b e u s e d t o i n v e s t i g a t e p r o c e s s b e -

    h a v i o u r , l e a d i n g t o a n i m p r o v e d u n d e r s t a n d i n g o f t h e

    u n d e r l y i n g m e c h a n i s m s .

    T h i s p a p e r r e v ie w s th e r e s u l ts o f C O D a n d n i t r o g e n

    m a s s b a l a n c e s o n l a b o r a t o r y - s c a l e a c ti v a t e d s l u d g e

    s y s te m s w i t h a r a n g e o f c o n f ig u r a t i o n s , o p e r a t i n g

    p a r a m e t e r s a n d i n f l u e n t w a s t e w a t e r c h a r a c t e r i s t i c s .

    *Author to whom all correspondence should be addressed.

    I n t h e d i s c u s s i o n o f r e s u l t s , e m p h a s i s i s o n n u t r i e n t

    r e m o v a l s y s t e m s . I n t h e b i o l o g i c a l e x c e s s p h o s -

    p h o r u s r e m o v a l ( B E P R ) s y s te m s i n v e s t ig a t e d in

    t h i s s tu d y , t h e r e s u l t s o f C O D b a l a n c e s s u g g e s t t h e

    p o s s i b i l i t y o f f e r m e n t a t i v e p r o c e s s e s o c c u r r i n g i n t h e

    a n a e r o b i c z o n e , l e a d i n g t o a l o s s o f C O D f r o m

    t h e s y s t e m .

    D A T A B A S E F O R C O D N D N I T R O G E N M A S S

    B A L A N C E S

    C o m p r e h e n s i v e d a t a a r e re q u i r e d to p e r f o r m C O D

    a n d N m a s s b a l a n c e s . T h e d a t a s e t i n c l u d e s i n f o r -

    m a t i o n o n o p e r a t i n g p a r a m e t e r s ( f l o w s , r e c y c l e r a t e s ,

    s l u d g e w a s t a g e , e t c . ) , i n f l u e n t a n d e f f l u e n t c o n c e n -

    t r a t i o n s o f C O D , T K N a n d n i t r a te , a s w el l a s t h e

    c o n c e n t r a t i o n o f n i t r a t e i n e a ch r e a c t o r, t h e o x y g e n

    u t i l i z a t i o n r a t e (s ) a n d t h e v o l a t i l e s u s p e n d e d s o l i d s

    ( V S S ) c o n c e n t r a t i o n o f t h e w a s t e s l u d g e . In a d d i t i o n ,

    t h e C O D / V S S r a t i o a n d t h e T K N / V S S r a t i o s h o u l d

    a l s o b e r e p o r t e d .

    T h e c o m p l e t e d a t a s e t s e l d o m i s a v a i l a b l e f o r

    s y s t e m s w h i c h r e c e i v e a t i m e - v a r y i n g ( i. e . d y n a m i c

    i n p u t o f fl o w a n d / o r c o n c e n t r a t i o n . A l s o , f o r d y -

    n a m i c s y s t e m s , i t i s n e c e s s a r y t o c o n s i d e r a c c u m u -

    l a t i o n t e r m s i n m a s s b a l a n c e c a l c u l a t i o n s ; t h i s

    c o m p l i c a t e s t h e p r o c e d u r e c o n s i d e r a b l y . A l l o f t h e

    s y s te m s c o n s i d e r e d i n t h i s p a p e r w e r e o p e r a t e d u n d e r

    s t e a d y s t a t e c o n d i t i o n s a s fa r a s is p r a c t i ca l . T h a t

    i s, t h e s y s t e m s e a c h r e c e iv e d a f i x e d i n f l u e n t v o l u m e

    p e r d a y a t a c o n s t a n t r a t e , a n d t h e c o m p o s i t i o n o f

    t h e i n f l u e n t w a s n e a r l y u n i f o r m f r o m d a y t o d a y .

    A l s o , a f i x e d v o l u m e o f m i x e d l i q u o r w a s r e m o v e d

    633

  • 8/11/2019 Cod , n Balance in Stp Model

    2/11

    634 P.S. BARKERand P. L. DOLD

    from the systems each day to maintain a constant

    sludge age (SRT, MCRT). Where municipal waste-

    water was used as inf luent, the influent was prepared

    by diluting high-strength wastewater to a target

    COD concentration for the duration of each study.

    Because the wastewater was drawn from the

    same source, the composition (TKN/COD ratio,

    unbiodegradable fractions, etc.) remained reasonably

    constant.

    An impor tant aspect regarding steady-state data is

    that the system necessarily should be operated for an

    extended period (3-4 sludge ages) to ensure attain-

    ing a steady operating condition. Even under this

    condition there will be fluctuations in the values of

    monitored parameters from day to day. Therefore

    it is essential that data used in mass balances

    should be averages obtained over an extended period

    after attaining steady state. This will account for

    small fluctuations in response. Also, averaging over

    an extended period avoids the necessity to include

    accumulation terms in mass balance calculations. In

    the mass balances reported here the steady-state data

    were gathered in this manner.

    Data from five sources for four different types of

    activated sludge system were used in this investi-

    gation:

    aerobic systems--Schroeter

    e t a l

    (1982)

    anoxic only systems- -McClint ock e t a l (1988)

    anoxic-aerobic systems--Arkley and Marais

    (1981)

    anaerobic-anoxic-aerobic systems--Wentzel

    e t a L

    (1989, 1990).

    C O D MASS BALANCES ON EXPERIMENTAL DATA

    The premise of a COD balance is that it should be

    possible to account for the COD entering an acti-

    vated sludge system via the influent in the following

    fractions:

    COD (unfiltered) leaving the system in the

    effluent

    o COD incorporat ed into the sludge mass

    through cell synthesis, enmeshment or

    absorption, leaving the system in the sludge

    wastage stream

    COD oxidized (i.e. the elec trons which are

    transferred from the organic material to the

    electron acceptor). In purely aerobic systems

    this fraction can be estimated from the oxygen

    utilization rate (after deducting the oxygen

    required for nitrifi cation). In systems incorpo-

    rating anoxic zones (that is, where nitrate is

    present but oxygen is not), it is also necessary

    to account for COD oxidized through deni-

    trification.

    The assumption here is that any COD loss due

    to volatilization of organics is negligible. Also, it

    is assumed that denitrification under aerobic con-

    ditions is not significant. These aspects are discussed

    later.

    In systems incorporating denitrification, the

    mass of COD oxidized through denitrificat ion can be

    accounted for by estimating the equivalent amount of

    oxygen which would have been needed if oxygen had

    been the electron acceptor instead of nitrate. It has

    been proposed that denitrification is essentially a four

    step process (Payne, 1981).

    NO3 --, NO{ ~ NO ~ N2 0 ~ N2

    Each step may be represented by a half reaction

    where e- denotes electron equivalents (COD) trans-

    ferred from the organic substrate:

    2e- + NO 3 + 2H ~ NO~- + H2 0

    e- + N O / + 2H --* NO + H20

    2e + 2NO + 2H ---, N2 0 + H2 0

    2e- + N20 + 2H ---, N2 + H20

    The net reaction is obtained by combining the four

    equations:

    10e- + 2NO3 + 12H ~ N2 + 6H20

    or equivalently,

    e +-~NO3 6 + 1 3

    - +~H --* i-6N2 + ~H20

    Similarly, the half reaction for the reduction of

    oxygen is given by:

    1 H 1

    e- +~O 2+ --* iH2 0

    The above two equations imply that the transfer of

    one electron equivalent requires the reduction of

    1/4 mol o f oxygen or 1/5 mol of nit rate , i.e.:

    -~ mol nitr ate - ~ mol oxygen

    g NO 3 - N - 32

    ~- g oxygen

    1 mg NOa -- N - 2.86 mg oxygen

    The assumption here is that nitrate denitrified is

    converted to nitrogen gas (N2), and that there is no

    release of intermediates (NO2, NO, N20). If inter-

    mediates were released the factor of 2.86 would be

    lower.

    A detailed description of the COD mass balance

    procedure is described in the Appendix.

    NITROGEN MASS BALANCES ON EXPERIMENTAL

    DATA

    In general, nitrogen enters the system in the

    form of organic N or ammonia. The influent TKN

    gives a measure of the amount of these compounds

    present. If the system is nitrifying, the majority of

    the influent TK N is converted to nit rate. I f the

    system includes unaerated zones, then denitrifi-

    cation will result in the conversion of a portion of

    the nitrate to nitrogen gas (or the intermediates

    discussed above). Nitrogen leaving the system in

    the gaseous form can be estimated by performing a

  • 8/11/2019 Cod , n Balance in Stp Model

    3/11

    CO D and nitrogen mass balances 635

    T

    Fig. 1. Aero bic system configuration utilized by Schroeter e t

    a l (1982).

    NO

    Fig. 2. Anoxic system configuration utilized by McC lintock

    e t aL (1988).

    n i t r a t e b a l a n c e o n t h e u n a e r a t e d r e a c t o r s . A f r a c t i o n

    o f t h e i n f l u e n t T K N i s a l s o u t i l i z e d i n c e ll s y n th e s i s ,

    l e a v i n g t h e s y s t e m i n t h e s l u d g e w a s t a g e s y s t e m .

    T h e r e f o r e , i t s h o u l d b e p o s s i b l e t o a c c o u n t f o r t h e

    m a s s o f n i t r o g e n i n t h e i n f l u e n t in t h e f o l l o w i n g

    f r a c t i o n s

    e f f l u e n t T K N ( u n f i l t e r e d )

    e f f luen t n i t r a te

    T K N o f t h e w a st e s lu d g e

    n i t r o g e n c o n v e r t e d t o g a s e o u s n i t r o g e n

    t h r o u g h d e n i t r i fi c a t i o n (i f th e s y s t em i n c lu d e s

    u n a e r a t e d z o n e s ) .

    A s w i t h t h e C O D b a l a n c e , a e r o b i c d e n i t r if i c a ti o n is

    n o t c o n s i d e r e d h e r e. A s i g n if i ca n t a m o u n t o f a e r o b i c

    d e n i t r i fi c a t i o n i n a s y s te m w o u l d r e s u lt i n l o w C O D

    a n d N b a l a n c e s .

    A d e t a i l e d d e s c r i p t i o n o f t h e n i t r o g e n m a s s b a l a n c e

    p r o c e d u r e i s d e s c r i b e d i n t h e A p p e n d i x .

    AEROBIC SYSTEMS

    S c h r o e t e r e t a l ( 1 9 8 2 ) o p e r a t e d f o u r p a i r s o f

    a e r o b i c l a b - s c a l e sy s t e m s a t t e m p e r a t u r e s o f 1 2 a n d

    2 0 C . T h e s y s t e m s w e r e o p e r a t e d a t s l u d g e a g e s o f

    3 , 8 a n d 2 0 d a y s ; t w o s y s t e m s w e r e o p e r a t e d a t t h e

    3 d a y s l u d g e a g e f o r r e a s o n s d i s c u s s e d l a t e r . T h e

    i n f l u e n t c o n s i s t e d o f d o m e s t i c w a s t e w a t e r , d i l u t e d

    w i t h t a p w a t e r t o a c o n c e n t r a t i o n o f 5 00 m g C O D / I .

    A l l s y s t e m s w e r e s i n g l e r e a c t o r s y s t e m s a s s h o w n

    in Fig. 1.

    T h e r e s u l ts o f m a s s b a l a n c e s f o r C O D a n d N

    f o r t h e S c h r o e t e r

    e t a l

    ( 1982) sys tems a r e l i s ted in

    T a b l e I . T h e r e s u l t s a r e v e r y g o o d f o r a l l s y s t e m s ,

    r e g a r d l e s s o f w h e t h e r n i t r i f i c a t i o n w a s o c c u r r i n g

    ( s y s t e m s a t t h e 3 d a y s l u d g e a g e a n d 1 2 '~ C w e r e n o t

    n i t r i f y i n g ; a l l o t h e r s y s t e m s n i t r i f i e d f u l l y ) . A s t h e

    n i t r o g e n b a l a n c e s a r e c l o s e t o 1 0 0 , i t i s u n l i k e l y t h a t

    a e r o b i c d e n i t r i f i c a t i o n o c c u r r e d i n t h e s e s y s t e m s t o a

    s i g n i f i c a n t e x t e n t .

    I n i t ia l l y o n l y o n e s y s t e m w a s o p e r a t e d a t a 3 d a y

    s l u d g e a g e ; h o w e v e r , th e C O D b a l a n c e o b t a i n e d a t

    1 2 C w a s p o o r ( 8 1 . 7 v e r s u s N b a l a n c e o f 9 7 . 4 ) .

    E x a m i n a t i o n o f t h e s y st e m i n d i c a te d t h a t i n a d v e r t e n t

    a e r a t i o n d u e t o t u r b u l e n c e a t t h e r e a c t o r s u r f a c e w a s

    t h e c a u s e , l e a d i n g t o u n d e r e s t i m a t e s o f t h e o x y g e n

    u t i l iz a t i o n r a t e . W h e n t h e p r o b l e m w a s r e m e d i e d

    ( b y u s i n g a s m a l l e r s t i r r e r p a d d l e ) t w o s y s t e m s w e r e

    o p e r a t e d i n p a r a ll e l a n d v e r y g o o d C O D a n d N

    b a l a n c e s w e r e o b t a i n e d f o r b o t h . T h i s h i g h l i g h t s t h e

    n e e d f o r c a r e f u l a t t e n t i o n t o e x p e r i m e n t a l d e t a i l , a n d

    t h e u t i l i t y o f m a s s b a l a n c e s i n c h e c k i n g t h e v a l i d i t y o f

    e x p e r i m e n t a l d a t a .

    ANOXIC ONLY SYSTEMS

    M c C l i n t o c k e t a l ( 1 9 88 ) o p e r a t e d l a b - s c a l e s in g l e

    r e a c t o r a e r o b i c a n d a n o x i c s y s t e m s i n p a r a l l e l a t f i v e

    d i f f e r e n t s l u d g e a g e s . T h e 3 d a y s l u d g e a g e s y s t e m s

    w e r e o p e r a t e d a s f l o w t h r o u g h s y s t e m s ; s y s t e m s a t

    l o n g e r s l u d g e a g e s w e r e o p e r a t e d a s s i n g l e r e a c t o r

    s y s t e m s w i t h a b a f f l e i n s e r t e d t o s e p a r a t e t h e m i x e d

    l i q u o r z o n e f r o m t h e s l u d g e s e tt l i n g z o n e . F u n c t i o n -

    a l l y t h e s y s t e m s a r e s h o w n s c h e m a t i c a l l y i n F i g . 2 .

    A l l s y s t e m s r e c e i v e d a s y n t h e t i c s e w a g e ( p r i m a r i l y

    b a c t o p e p t o n e ) , w i t h n i t r a t e a n d o x y g e n s u p p l i e d i n

    e x c e s s t o t h e a n o x i c a n d a e r o b i c r e a c t o r s , r e s p e c t -

    i v e ly . U n f o r t u n a t e l y , a s o x y g e n u t i l i z a t i o n r a t e s w e r e

    n o t r e p o r t e d , C O D b a l a n c e s c a n n o t b e c o n d u c t e d o n

    t h e a e r o b i c s y s t e m s .

    R e s u l ts o f m a s s b a l a n c e s fo r C O D a n d N f o r

    t h e M c C l i n t o c k e t a l ( 1988) sys tems a r e l i s ted

    i n T a b l e 2 . C O D b a l a n c e s o n t h e a n o x i c s y s t e m s

    r a n g e d f r o m a p p r o x . 95 to 8 5 , w i t h a d e c r e a s i n g

    t r e n d w i t h i n c r e a s i n g s l u d g e a g e ( e x c e p t f o r t h e

    1 5 d a y s y s t e m ) ; n i t r o g e n b a l a n c e s a r e r e a s o n a b l e

    f o r a l l s y s t e m s . ( I t s h o u l d b e n o t e d t h a t t h e d a t a

    f r o m t h e 1 5 d a y a n o x i c s y s t e m i s q u e s t i o n a b l e a s

    s o l i d s p r o d u c t i o n i n t h i s s y s t e m w a s r e p o r t e d l y

    g r e a t e r t h a n t h a t f o r t h e 1 5 d a y a e r o b i c s y s t e m , w h i le

    Table 1. COD and nitrogen mass balances for aerobic systems [data from Schroeter

    et a

    (1982)]

    N balance ( ) COD balance ( )

    Sludge age

    System (d) 12 C 20 C 12 C 20 C

    1 3 100.2 100.5 99.6 100.4

    2 3 100.2 99.5 99.7 100.2

    3 8 100.2 97.5 99.6 99.9

    4 20 99.2 99.4 99.4 98.4

  • 8/11/2019 Cod , n Balance in Stp Model

    4/11

    636

    P. S. BARKERand P. L. DOLD

    Table 2. COD and nitrogen mass balances for anox ic and aerobic systems

    [data from M cClintock t aL (1988)]

    S l u d g e a g e N b a l a n c e C O D b a l a n c e

    S y s t e m T y p e ( d ) ( ) ( )

    1 A e r o b i c 1 .5 1 0 7 . 9 N o t a v a i l a b l e

    2 A e r o b i c 3 . 0 9 9 . 9 N o t a v a i l a b l e

    3 A e r o b i c 6 . 0 1 0 3 . 3 N o t a v a i l a b l e

    4 A e r o b i c I 0 . 0 9 6 . 0 N o t a v a i l a b l e

    5 A e r o b i c 1 5. 2 9 8 . 8 N o t a v a i l a b l e

    6 A n o x i c 1 .5 9 5 . 5 9 4 . 7

    7 A n o x i c 3 . 0 9 8 . 3 9 4 . 4

    8 A n o x i c 6 .1 9 5 . 4 9 1 . 0

    9 A n o x i c 9 . 6 9 5 . 9 8 5 . 5

    1 0 A n o x i c 1 5 .1 9 8 . 0 9 3 . 6

    t h e o t h e r a n o x i c s y s t e m s w e r e o b s e r v e d t o p r o d u c e

    a p p r o x . 4 0 l es s s o l id s t h a n t h e c o r r e s p o n d i n g

    a e r o b i c s y s t e m s ) . C o m p a r i n g t h e s e C O D b a l a n c e

    r e s u l t s w i t h t h o s e f o r t h e S c h r o e t e r e t a l ( t 9 8 2 )

    a e r o b i c s y s t e m s , i t a p p e a r s t h a t c o m p l e t e l y a n o x i c

    s y s t e m s ( e s p e c i a l l y a t l o n g e r s l u d g e a g e s ) m a y e x h i b i t

    p o o r e r b a l a n c e s .

    I n c o n s i d e r i n g p o s s i b l e e x p l a n a t i o n s f o r t h e l o w e r

    C O D b a l a n c e s i n a n o x i c s y s t e m s , i t i s u s e f u l t o

    c o n s i d e r t h e a s s u m p t i o n s m a d e i n p e r f o r m i n g a

    C O D b a l a n c e o n a n a n o x i c s y s t e m . T h e i m p l i c i t

    a s s u m p t i o n w i t h a n o x y g e n e q u i v a l e n c e f a c to r o f 2 . 86

    f o r n i t r a t e d e n i t r i f i e d i s t h a t d e n i t r i f i c a t i o n i s c o m -

    p l e t e . I f d e n i t r i f i c a t i o n i n t e r m e d i a t e s s u c h a s n i t r i c

    o x i d e ( N O ) o r n i t r o u s o x i d e ( N : O ) w e r e r e le a s e d t o

    t h e a t m o s p h e r e , f e w e r e l e c tr o n s w o u l d b e t r a n s f e r r e d

    p e r u n i t n i t r a t e d e n i t r i f i e d , a n d t h e e q u i v a l e n c e f a c t o r

    w o u l d b e l o w e r t h a n 2 . 86 . I f th i s w e r e t h e c a s e , th e

    a c t u a l C O D b a l a n c e w o u l d b e ev e n lo w e r t h a n t h a t

    c a l c u l a t e d u s i n g a f a c t o r o f 2 .8 6 . A s t h e s e a n o x i c

    s y s t e m s t e n d t o h a v e l o w C O D b a l a n c e s , i t s e e m s

    u n l i k e l y t h a t t h e r e l e a s e o f d e n i t r i f i c a t i o n i n t e r m e d i -

    a t e s is a m a j o r f a c t o r ; t h e r e f o r e o t h e r p o s s i b l e c a u s e s

    f o r t h e l o w e r C O D b a l a n c e s s h o u l d b e c o n s i d e r e d

    ( t h e s e a r e d i s c u s s e d l a t e r ) .

    A N O X I C A E R O B I C S Y S T E M S

    A r k l e y a n d M a r a i s ( 19 8 1 ) o p e r a t e d l a b - s c a le

    a e r o b i c , p r e - d e n i t r i f ic a t i o n a n d p o s t - d e n i t r i fi c a t i o n

    s y s t e m s . A l l s y s t e m s w e r e o p e r a t e d a t a 2 0 d a y

    s l u d g e a g e w i t h m u n i c i p a l w a s t e w a t e r a s i n f l u e n t .

    S y s t e m 1 ( o p e r a t e d a s a c o n t r o l ) w a s a s i n g l e r e a c t o r

    a e r o b i c s y s t e m ( F i g . 1 ) . S y s t e m s 2 , 3 a n d 4 w e r e

    t w o - i n s e r i e s r e a c t o r c o n f i g u r a t i o n s o p e r a t e d i n

    t h r e e p o s s i b l e m o d e s : ( i ) b o t h r e a c t o r s a e r a t e d ; o r

    ( ii ) f i rs t r e a c t o r u n a e r a t e d ( p r e - d e n i t r i f i c a t io n ) ; o r

    ( i i i ) s e c o n d r e a c t o r u n a e r a t e d ( p o s t - d e n i t r i f i c a t i o n ) .

    T h e p r e - a n d p o s t - d e n i t r i f i c a t i o n s y s t e m c o n f i g u r -

    a t i o n s a r e s h o w n i n F i g . 3 . D a t a f o r t h e e x p e r i m e n t a l

    s t u d y w e r e r e p o r t e d f o r a n u m b e r o f p h a s e s c o r re -

    s p o n d i n g t o d i f f er e n t o p e r a t i n g m o d e s . F o r e x a m p l e ,

    S y s t e m 2 w a s o p e r a t e d s e q u e n t i a l l y i n a p o s t -

    d e n i t r i f i c a t i o n , a p r e - d e n i t r i f i c a t i o n a n d a f u l l y

    a e r o b i c m o d e i n p h a s e s I , I I a n d I I I , r e s p e c t i v e l y

    ( se e T a b l e 3 ) . T a b l e 3 a l s o l i st s t h e u n a e r a t e d v o l u m e

    ( o r m a s s ) f r a c t i o n s f o r p h a s e s w i t h u n a e r a t e d

    r e a c t o r s .

    A n i m p o r t a n t f e a t u re o f t h e d a t a i s th e n i t r a t e

    c o n c e n t r a t i o n i n t h e u n a e r a t e d r e a c t o r i n s y s t e m s

    o p e r a t e d i n t h e p r e - d e n i t ri f i c a ti o n m o d e . F o r S y s t e m

    2 ( p h a s e I I , w i t h a n u n a e r a t e d v o l u m e f r a c t i o n o f 0 .4 )

    t h e n i t r a t e c o n c e n t r a t i o n i n t h e u n a e r a t e d r e a c t o r w a s

    a p p r o x . 1 4 m g N / 1 ; t h a t i s , t h e r e a c t o r w a s a n o x i c . F o r

    S y s t e m 4 ( p h a s e s I I a n d I V , w i th a l a r g e r u n a e r a t e d

    v o l u m e f r a c ti o n o f 0 .7 ) t h e n i t r a t e c o n c e n t r a t i o n

    i n t h e u n a e r a t e d r e a c t o r w a s e s s e n t i a l l y z e r o ; t h a t i s ,

    t h e r e a c t o r w a s a n a e r o b i c .

    R e s u l t s o f m a s s b a l a n c e s fo r C O D a n d N f o r

    t h e A r k l e y a n d M a r a i s ( 1 98 1 ) s y s t e m s a r e l i s t e d i n

    T a b l e 3 . B a l a n c e s w e r e p e r f o r m e d o n l y f o r t h o s e

    p h a s e s w h e r e t h e s y s t e m s a p p e a r e d t o b e a t s t e a d y

    s t a t e . T h e f o l l o w i n g f e a t u r e s a r e e v i d e n t :

    C O D b a l a n c e s o n c o m p l e t e l y a e r o b i c s y s te m s

    a v e r a g e a p p r o x . 9 5

    t h e p r e - d e n i t r i f i c a t i o n s y s t e m w i t h a n a n o x i c

    r e a c t o r ( a s o p p o s e d t o a n a e r o b i c ) e x h i b i t s a

    C O D b a l a n c e c l o s e t o 1 0 0 ( 9 6 . 9 - - S y s t e m

    2, phase I I )

    t h e p o s t - d e n i t r i f i c a t i o n s y s t e m w i t h a n a n o x i c

    r e a c t o r (a s o p p o s e d t o a n a e r o b i c ) a l s o e x h i b i t s

    a C O D b a l a n c e c l o s e t o 1 0 0 ( 97 .7 0 /0_

    Sys tem 2 , phase I )

    PRE DENITRIFICATION SYSTEM

    POST DENITRIFICATION SYSTEM

    Fig. 3. Pre- and post-denitrification system configurations

    utilized by Arkley and Martin (1981).

  • 8/11/2019 Cod , n Balance in Stp Model

    5/11

    COD and n i t rogen mass ba lances

    Table 3. C OD and nitrogen mass balances for aerobic and anoxic-aerobic systems [data from A rkley

    and M arais (1981)]

    Unaerated N balance CO D balance

    System Phase Type fraction ( ) ( )

    1 I Aerob ic 0 99.0 92.7

    I 11 Aer obic 0 93.4 95.8

    I I 11 Ae robic 0 99.4 94.2

    2 1 Post-d enitrifica tion 0.40 99.2 97.7

    2 II Pred enitrifica tion 0.40 110.4 96.9

    2 III Aer obic 0 102.3 96.5

    3 I11 Ae robic 0 100.4 95.3

    4 II Pre den it.-- ana ero bic 0.70 105.5 77.3

    4 Ill Aer obic 0 102.1 98.1

    4 1V Pre den it.-- ana ero bic 0.70 93.5 74.2

    637

    t h e p r e - d e n i t r i f i c a t i o n s y s t e m s w h i c h m a i n -

    t a i n e d e s s e n t i a l l y a n a e r o b i c c o n d i t i o n s i n t h e

    u n a e r a t e d r e a c t o r b o t h e x h ib i t C O D b a l an c e s

    b e l o w 8 0 ( S y s t e m 4 , p h a s e I I a n d IV )

    t h e o p e r a t i n g m o d e f o r S y s t e m 4 se q u e n t i a l l y

    w a s c h a n g e d f r o m p r e - d e n i t r i f i c a t i o n t o f u l l y

    a e r o b i c a n d t h e n r e t u r n e d t o p r e - d e n i tr i f i ca -

    t i o n i n p h a s e s I I , I I I a n d I V , r e s p e c t i v e l y . T h e

    n i t r a t e c o n c e n t r a t i o n i n t h e u n a e r a t e d r e a c t o r

    f o r p h a s e s I I a n d I V a c h i e v e d a s t e a d y - s t a te

    v a l u e o f z e ro . T h e C O D b a l a n c e c h an g e d f r o m

    7 7 .3 t o 9 8 .1 t o 7 4 . 2 a s t h e o p e r a t i n g m o d e

    c h a n g e d

    n i t r o g e n b a l a n c e s f o r a l l p h a s e s a v e r a g e c lo s e

    t o 1 0 0 .

    T h e s e o b s e r v a t i o n s s u g g e s t t h a t C O D b a l a n c e s

    f o r b o t h a e r o b i c a n d a n o x i c - a e r o b i c s y s t e m s s h o u l d

    b e c l o s e t o 1 0 0 . H o w e v e r , w h e n a n a n a e r o b i c

    c o n d i t i o n e x i s t s i n t h e s y s t e m , t h e c a l c u l a t e d C O D

    b a l a n c e i s si g n i f ic a n t l y l o w e r : th i s p h e n o m e n o n i s

    d i s c u s s e d l a t e r .

    A N A E R O B I C A N O X I C A E R O B I C S Y S T E M S

    W e n t z e l e t a l ( 1 99 0 ) p r o v i d e c o m p r e h e n s i v e

    d a t a f o r 3 0 l a b - s c a l e n u t r i e n t r e m o v a l s y s t e m s t r e a t -

    i n g m u n i c i p a l w a s t e w a t e r . T h e s e s y s t e m s v a r i e d i n

    c o n f i g u r a t i o n , r e a c t o r s i z e s , r e c y c l e r a t i o s , i n f l u e n t

    f l o w r a t e s a n d w e r e o p e r a t e d o v e r a r a n g e o f s lu d g e

    a g e s f r o m 3 to 2 1 d a y s . T h e r e w e r e f i v e b a s i c c o n -

    f i g u r a t i o n s a s s h o w n i n F i g . 4 : P h o r e d o x , 3 - s t a g e

    B a r d e n p h o , J o h a n n e s b u r g , U n i v e r s i ty o f C a p e T o w n

    ( U C T ) , a n d th e m o d i f i ed U C T ( M U C T ) c o n f i g u r-

    a t i o n . D a t a w e r e r e p o r t e d f o r e a c h s y s t em f o r a

    n u m b e r o f d if f e r e n t b a t c h e s o f i n f l u en t w a s t e w a t e r

    ( d e n o t e d b y a l e t t e r a p p e n d e d t o t h e s y s t e m n u m b e r

    i n T a b l e 4 ) . I n a d d i t i o n , W e n t z e l e t a l (1 9 8 9 ) r e -

    p o r t e d d a t a f o r f o u r d i f f e r e n t l a b - s c a l e e n h a n c e d

    c u l t u r e B E P R s y s t e m s w i t h a c e t a t e a s i n f l u e n t . T h e

    e n h a n c e d c u l t u r e s ( g r e a t e r t h a n 9 0 p o l y P o r g a n -

    i s m s ) w e r e d e v e l o p e d u s in g m o d i f i e d B a r d e n p h o a n d

    U C T s y s t e m s o p e r a t e d a t s l u d g e a g e s o f 7. 5, 1 0 a n d

    2 0 d a y s .

    P H O R E D O XNO)S Y S T E M

    r

    3-STAGEA R D E N P H OY S T E M

    U T

    S Y S T E M

    I I I 1

    1 I I

    MODIFIEDC T Y S T E M

    JOHANNESBURG]Y STEM ~ O

    L E G E N D ~

    A E R O B IC E A C T O R

    A N O X lC E A C T O R

    A N A E R O B IC E A C T O ~

    Fig . 4 . NDBEPR sys tem configura t ions fo r which Wentze l e t a l (1989 , 1990) reported da ta .

  • 8/11/2019 Cod , n Balance in Stp Model

    6/11

    638 P S BARKER and P L DOLD

    Mass balances for COD and N were conducted on

    the data sets for which all the relevant data were

    reported; in certain instances VSS data were omitted

    and it was not possible to calculate balances. In

    certain of the r emaining cases for the mixed culture

    systems treating municipal wastewater, the validity

    of the data was questionable. This was generally

    reflected by very poor N balances; for example,

    balances of 200% output N compared to input N.

    Those data sets were not considered here. Table 4

    presents results of COD and N mass balance calcu-

    lations for the mixed culture systems with N balances

    between 90 and 110%, as well as the enhanced culture

    systems. The following observations are noted:

    COD balances on the BEPR systems treating

    municipal wastewater are generally substan-

    tially lower than those for the non-BEPR

    systems described earlier (some systems show

    balances below 70%)

    the average of the COD balances for the mixed

    culture BEPR systems with municipal waste-

    water as influent is only 78%

    COD balances for the enhanced culture sys-

    tems with acetate as influen t are all close to the

    average of 91% for these systems

    N balances for both the mixed culture and the

    enhanced culture BEPR systems are close to

    100%

    These results suggest that the presence of an

    anaerobic zone may lead to an appreciable reduction

    in the calculated COD balance for systems with a

    fermentable substra te (such as domestic wastewater).

    DISCUSSION

    The following points summarize the results for

    COD and N balances conducted on the four types of

    activated sludge system:

    COD balances on the completely aerobic sys-

    tems are close to 100%

    COD balances on the anoxic only systems

    range from 95 to 85%, possibly with a de-

    creasing trend as the sludge age increases

    the anoxic-aerobic systems which did not ex-

    hibit anaerobic conditions show COD bal-

    ances close to 100%, while those in which the

    unaerated reactor nitrate concentration

    dropped to zero have balances less than 80%

    the average of the COD balances for the mixed

    culture BEPR systems with municipal waste-

    water as influent is only 78%. The average

    for the enhanced culture BEPR systems with

    acetate as influent is 91/'o

    nitrogen balances for all systems are close

    to 100%. This would indicate that nitrogen

    loss th rough denitrification under aerobic con-

    ditions was n ot significant for these systems.

    The mos t significant finding is that for systems

    incorporating anaerobic zones (i.e. BEPR systems)

    the COD balances, averaging less than 80%, do not

    account for a substantial portion of the influent

    COD.

    This apparent loss of COD in BEPR systems

    with anaerob ic zone has been reported previously, for

    example, by Burke e t a l (1986) in a study on short

    Table 4. COD and nitrogen mas s balances for BEPR systems [data from Wentzel

    e t a l

    (1989, 1990)]

    Sludge age N balance COD balance

    System Type* (d) ( ) ( )

    S y s t e m s w i t h m u n i c i p a l w a s t e w a t e r a s i n f l u e n t

    1 Phoredox 3 93.9 79.4

    1b Phor edox 3 109.8 64.6

    2a Phored ox 4 95.7 85.6

    5a Jhb 5 103.3 81.3

    6a UC T 6 97.5 67.0

    8a UC T 8 99.2 89.7

    10b UC T 8 110.0 74. I

    1 a UC T 10 98.0 70.0

    16a MU CT 15 95.2 85.5

    18a MU CT 15 98.6 83.2

    19b MU CT 15 96.8 74.2

    19c MU CT 15 94.6 85.4

    22a MU CT 20 103.9 65.3

    22b MU CT 20 97.6 77.8

    23a MU CT 20 95. I 73.2

    23b MU CT 20 92.1 86.9

    23c MU CT 20 100.3 87.6

    24a MU CT 20 100.2 60.7

    24c M UC T 20 92.4 80.0

    24d MU CT 20 93.4 84.3

    26a MU CT 21 102.8 85.2

    Averages 98.6 78.1

    E n h a n c e d c u l t u r e s y s t e m s w i t h a c e t a t e a s i n f l u e n t

    1 Bar den pho 20 103.6 88.9

    2 UC T 10 103.1 91.1

    3 Barde npbo I 0 88.6 90.4

    4 Barde npho 7.5 95.9 92.3

    Aver ages 97.8 90.7

  • 8/11/2019 Cod , n Balance in Stp Model

    7/11

    COD and nitrogen mass balances

    639

    s l u d g e ag e B E P R s y s te m s . B o r d a c s a n d T r a c y ( 1 9 88 )

    o b s e r v e d t h a t t h e p r e s e n c e o f a n a n a e r o b i c z o n e

    l e a d s t o a s m u c h a s a 3 0 % r e d u c t i o n i n o x y g e n

    r e q u i r e m e n t s c o m p a r e d t o a c o n v e n t i o n a l a e r o b i c

    p r o c e s s . H o w e v e r , t h e s t u d y w a s b a s e d o n t h e a s -

    s u m p t i o n t h a t t h e r e d u c t i o n in o x y g e n c o n s u m p t i o n

    i s d u e t o t h e r e t e n t i o n o f o r g a n i c s t o r a g e p r o d u c t s

    ( s u c h a s P H B ) b y t h e p o l y P o r g a n i s m s , a n d C O D

    m e a s u r e m e n t s w e r e n o t m a d e . D o l d ( 1 9 9 0 ) n o t e d

    t h a t , u n l e s s C O D l o ss a s s o c i a t e d w i t h a n a e r o b i c

    f e r m e n t a t i o n w a s t a k e n i n t o a c c o u n t , B E P R a c t i -

    v a t e d s l u d g e m o d e l s o v e r p r e d i c t b o t h o x y g e n c o n -

    s u m p t i o n r a t e s in a e r a t e d z o n e s o f B E P R s y s te m s a n d

    v o l a t i le s u s p e n d e d s o l i d s p r o d u c t i o n .

    A r e q u i s i t e f o r B E P R i s t h e p r e s e n c e o f a n

    a n a e r o b i c z o n e w h i c h a l l o w s th e p o l y P o r g a n i s m s t o

    s e q u e s t e r s h o r t c h a i n f a t t y a c i d s ( S C F A ) s u c h a s

    a c e t a te . T h e s e S C F A s a r e s t o r e d b y t h e o r g a n i s m s i n

    t h e f o r m o f P H B u n t i l a n e l e c t r o n a c c e p t o r is a v a i l -

    a b l e . T h e s t o r e d P H B i s t h e n u s e d f o r g r o w t h a n d P

    u p t a k e .

    G e n e r a l l y t h e i n f l u e n t w a s t e c o n t a i n s o n l y a v e r y

    l o w c o n c e n t r a t i o n o f S C F A ; t h e r e f o r e t h e S C F A

    n e c e s s a r y f o r B E P R m u s t b e p r o d u c e d w i t h i n t h e

    s y s te m , l i k e ly in t h e a n a e r o b i c r e a c t o r t h r o u g h a

    f e r m e n t a t iv e p ro c e s s . T h e p r o d u c t i o n o f S C F A u n d e r

    a n a e r o b i c c o n d i t i o n s h a s b e e n o b s e r v e d b y M e g a n c k

    e t a l . ( 19 8 5) . I t w a s n o t e d t h a t s i g n i f i c a n t n u m b e r s

    o f t h e b a c t e r i a

    A e r o m o n a s h y d r o p h i l a

    a f a c u l t a t i v e

    o r g a n i s m c a p a b l e o f u t i l i zi n g s o m e s u g a r s a n d a l c o -

    h o l s u n d e r a n a e r o b i c c o n d i t i o n s , w e r e p r e s e n t i n

    s l u d g e f r o m a l a b - s c a l e B E P R s y s te m . P r o d u c t i o n

    o f S C F A i n t h e a n a e r o b i c z o n e o f B E P R s y s te m s

    p r e s u m a b l y r e s u lt s f ro m t h e f e r m e n t a t i o n o f th e

    c o m p l e x r e a d i l y b i o d e g r a d a b l e C O D i n t h e i n fl u e n t

    ( i. e. t h e S C F A a r e p r o d u c e d v i a t h e o x i d a t i o n o f t h e

    i n fl u e n t c o m p l e x r e a d i l y b i o d e g r a d a b l e C O D u s i n g

    a n i n t e r n a l l y s u p p l i e d o r g a n i c c o m p o u n d a s t h e

    o x i d i z i n g a g e n t ). T h i s h y p o t h e s i s i s s u p p o r t e d b y t h e

    w o r k o f B o r d a c s a n d C h i e s a ( 19 8 9 ) w h o u s e d r a d i o -

    l a b e l l e d s u b s t r a t e s ( g l u c o s e a n d a c e t a t e ) t o t r a c k t h e

    c a r b o n f l o w i n p h o s p h o r u s a c c u m u l a t i n g c u l t u r e s .

    R e s u l t s i n d i c a t e d t h a t a g r e a t e r p e r c e n t a g e o f t h e

    l a b e l le d c a r b o n w a s c o n v e r t e d t o c a r b o n d i o x i d e

    u n d e r a n a e r o b i c c o n d i t i o n s w h e n g l u c o s e w a s t h e

    l a b e l le d s u b s t ra t e c o m p a r e d t o a c e t a t e ( 1 2 a n d 2 % ,

    r espec t ive ly) .

    T h e l o s s o f C O D i n B E P R s y s te m s m o s t l i k e ly

    i s a s so c i a t e d w i t h t h e f e r m e n t a t i o n p r o c e s s o c c u r r i n g

    i n t h e a n a e r o b i c z o n e . H o w e v e r , a f u ll u n d e r s t a n d i n g

    o f t h e f e r m e n t a t i o n b e h a v i o u r d o e s n o t e x i s t . I t h a s

    b e e n s u g g e s t ed t h a t t h e C O D l o s s i s d u e t o r e le a s e

    o f g a s e o u s f e r m e n t a t i o n p r o d u c t s ( e x c l u d i n g c a r b o n

    d i o x i d e w h i c h d o e s n o t h a v e a C O D ) .

    B u r k e

    e t a l .

    ( 1 9 8 6 ) s u g g e s t e d t h a t g e n e r a t i o n o f

    h y d r o g e n g a s o c c u r s d u r i n g t h e a c i d o g e n e s i s p r o c e s s

    i n th e a n a e r o b i c r e a c t o r . M a n y f a c u l ta t i v e o r g a n i s m s

    h a v e b e e n d o c u m e n t e d t h a t a r e c a p a b l e o f f e r m e n t i n g

    g l u c o s e t o p r o d u c e h y d r o g e n a n d c a r b o n d i o x i d e

    g a s e s ( S t a n i e r

    e t a l .

    1 9 7 6 ) . A m o n g t h e s e a r e s o m e

    s p e c i e s o f t h e g e n u s

    A e r o m o n a s

    m e n t i o n e d e a r l i e r a s

    o n e o f th e o r g a n i s m s f o u n d t o o c c u r i n s i g n i fi c a n t

    n u m b e r s i n B E P R p i l o t p l a n t s (M e g a n c k e t a l . 1985;

    M a l n o u e t

    a l .

    1984 .

    A p o s s i b l e a l t e r n a ti v e t o h y d r o g e n a s a g a s e o u s

    C O D l o ss w o u l d b e g e n e r a t i o n o f m e t h a n e d u r i n g

    f e r m e n t a t i o n . F o r t h e s y s t e m s i n v e s t i g a t e d i n t h i s

    s t u d y , t h e o re t i c a l ly m e t h a n e p r o d u c t i o n s h o u l d n o t

    h a v e b e e n p o s s i b l e d u e b o t h t o t h e t e m p e r a t u r e a t

    w h i c h t h e s e p i l o t p l a n t s y s t e m s w e r e o p e r a t e d ( 2 0 C ) ,

    a n d t h e f a c t t h a t m e t h a n o g e n i c b a c t e r i a a r e o b l i g a t e

    a n a e r o b e s ( S t a n i e r , 1 9 76 ) a n d w o u l d n o t l i k e l y s u r -

    v i v e t h e a n a e r o b i c / a e r o b i c s e q u e n c i n g . H o w e v e r , t h i s

    p o s s i b i l it y s h o u l d n o t b e i g n o r e d a s m e t h a n o g e n i c

    b a c t e r i a c a p a b l e o f t o l e r a t i n g l o w o x y g e n c o n c e n -

    t r a t i o n s h av e b ee n d o c u m e n t e d ( G r a d y a n d L i m ,

    1980).

    A n a l t e r n a t i v e t h e o r y t o e x p l a i n t h e s i g n i f i c a n t

    d i s a p p e a r a n c e o f C O D i n B E P R s y s t e m s i s t h e

    h y p o t h e s i s t h a t f e r m e n t a t i o n i n t h e a n a e r o b i c r e a c t o r

    r e su l t s i n t h e p r o d u c t i o n o f v o l a t il e c o m p o u n d s ,

    w h i c h a r e t h e n r e l e a s e d f r o m t h e s y s t e m u n d e r

    a e r o b i c c o n d i t io n s . T h e p r o d u c t i o n o f v o l a t il e c o m -

    p o u n d s ( s u c h a s e t h a n o l , a c e t i c a c i d a n d o t h e r

    v o l a t il e f a tt y a c i d s ) u n d e r o x y g e n l i m i t e d c o n d i t i o n s

    h a s b e e n d o c u m e n t e d f o r a n u m b e r o f f a c u lt a t iv e

    o r g a n i s m s ( S t a n i er e t a l . 1976; V ol lbr echt , 1982) . A

    r e c e n t s t u d y b y W a b l e a n d R a n d a l l ( 1 9 9 2) p r o p o s e d

    t h a t t h i s i s a m o r e p r o b a b l e m e c h a n i s m f o r C O D

    l o ss th a n t h a t o f h y d r o g e n o r m e t h a n e g e n e r a t i o n .

    H o w e v e r , t h e v o l a t i l i z a ti o n m e c h a n i s m s e e m s u n -

    l i k e l y a s t h e s e r e a d i l y b i o d e g r a d a b l e c o m p o n e n t s

    s h o u l d b e r e m o v e d f r o m s o l u t i o n p r i o r to t h e a e r a t e d

    z o n e .

    A s i d e fr o m t h e o b s e r v a t i o n s o n B E P R s y s-

    t e m s t r e a t i n g m u n i c i p a l w a s t e w a t e r , t h i s s t u d y h a s

    i d e n t i f ie d t w o a d d i t i o n a l a s p e c t s w h i c h r e q u i r e

    f u r t h e r r e s e a r c h :

    r e s u l t s f r o m a n o x i c o n l y s y s t e m s i n d i c a t e

    t h a t C O D l o s s o c c u r s t o a l i m i t e d e x t e n t

    i n t h e s e s y s t e m s ; t h i s m a y a l s o b e a s s o c i a t e d

    w i t h f e r m e n t a t i o n . G e n e r a l l y t h e p e r c e p t i o n

    i s t h a t f e r m e n t a t i o n s h o u l d n o t o c c u r i n

    a n o x i c z o n e s o f a c t i v a t e d s l u d g e s y s t e m s .

    H o w e v e r , f e r m e n t a t i o n h a s b e e n o b s e r v e d

    i n t h e p r e s e n c e o f n i t r a t e i n p u r e c u l t u r e

    s t u d i es ( H a d j i p e t r o u a n d S t o u t h a m e r , 1 96 5;

    S t o u t h a m e r a n d B e t t e n h a u s e n , 1 9 7 2)

    i n t h e e n h a n c e d c u l t u r e s y s t e m s w i t h a c e t a t e a s

    i n fl u e n t t h e C O D b a l a n c e s d o n o t a c c o u n t f o r

    a p p r o x . 1 0 % o f t h e i n p u t C O D . F e r m e n t a t i o n

    i n t h es e s y s te m s s h o u l d b e m i n i m a l . T h e C O D

    l o s s p o s s i b l y i s a s s o c i a t e d w i t h t h e p r o c e s s

    o f P H B f o r m a t i o n .

    ON LUSIONS

    T h e r e s u l t s o f t h i s s t u d y s u g g e s t t h a t w h i l e

    g o o d C O D b a l a n c e s a r e t o b e e x p e c t ed i n a e ro b i c

  • 8/11/2019 Cod , n Balance in Stp Model

    8/11

    640 P. S. BARKER an d P. L. DOLD

    a n d a e r o b i c - a n o x i c s y s t e m s , s y s t e m s i n c o r p o r a t i n g

    a n a e r o b i c z o n e s ( i . e . B E P R s y s t e m s ) t e n d t o e x h i b i t

    l o w C O D b a l a n c e s ( le ss t h a n 8 0 % ) . T h i s l o s s o f

    C O D a p p a r e n t l y is a s s o c i a t e d w i t h th e f e r m e n t a t i o n

    p r o c e s s e s o c c u r r i n g i n t h e a n a e r o b i c z o n e o f B E P R

    s y s t em s t r e a t i n g m u n i c i p a l w a s t e w a t e r . W h e t h e r t h i s

    C O D l o ss is a d i r e ct r e s u lt o f f e r m e n t a t i o n ( t h r o u g h

    t h e g e n e r a t i o n o f g a s w h i c h e v o lv e s d u r i n g t h e a c t u a l

    f e r m e n t a t i o n p r o c e s s ) , o r a n i n d i r e c t r e s u l t ( t h r o u g h

    t h e p r o d u c t i o n o f v ol a ti le c o m p o u n d s w h i c h a r e

    r e l e a s e d f r o m t h e s y s t e m u n d e r a e r a t e d c o n d i t i o n s ) ,

    r e m a i n s t o b e d e t e r m i n e d .

    I r r e sp e c t i v e o f t h e r e a s o n ( s ) fo r t h e C O D l o s s ,

    t h is p h e n o m e n o n h a s s i g n if i c a nt i m p l i c a t i o n s w i t h

    r e g a r d s t o r e d u c e d a e r a t i o n c o s t s a n d s l u d g e p r o -

    d u c t i o n i n B E P R v e r s u s c o n v e n t i o n a l a c t i v a t e d

    s l u d g e s y s t e m s . I f t h e c a u s e s o f t h is l o ss o f C O D c a n

    b e d e t e r m i n e d , i t m a y b e p o s s i b le t o d e s i g n a n d / o r

    o p e r a t e s y s t e m s s o a s t o m a x i m i z e C O D l o s s t h e r e b y

    r e d u c i n g t h e c o s t o f a e r a t i o n a n d s l u d g e t r e a t m e n t /

    d i s p o s a l .

    A c k n o w l e d g e m e n t - - T h i s s t u d y f a r m e d p a r t o f t h e a c t iv i t ie s

    o f t h e N a t u r a l S c i e n c e s a n d E n g i n e e r i n g R e s e a r c h C o u n c i l

    ( N S E R C ) / W a s t e w a t e r T e c h n o l o g y C e n t r e I n d u s t r i al C h a i r

    i n E n v i r o n m e n t a l S y s t e m s E n g i n e e r i n g . T h e s u p p o r t o f t h e

    C h a i r s p o n s o r s i s a c k n o w l e d g e d .

    REFERENCES

    Arkley M. J . and Mara is G. v . R . (1981) The e f fec t o f the

    a n o x i c z o n e a n s l u d g e p r o d u c t i o n a n d s e t t l e a b i l i t y i n

    t h e a c t i v a t e d s l u d g e p r o c e s s . R e s e a r c h R e p o r t W 3 8 ,

    D e p a r t m e n t o f C i v i l E n g i n e e r i n g , U n i v e r s i t y o f C a p e

    T o w n .

    B o r d a c s K . a n d C h i e s a S . C . 0 9 8 9 ) C a r b o n f l o w p a t t e r n s

    i n e n h a n c e d b i o l o g i c a l p h o s p h o r u s a c c u m u l a t i n g a c t i -

    va ted s ludge cu l tures . Wat. Sei . Technol . 21, 387 396.

    B o r d a c s K . a n d T r a c y K . ( 19 8 8) R e t e n t i o n o f o r g a n i c

    s t o r a g e p r o d u c t s i n a n a e r o b i ~ a e r o b i c a c t i v a t e d s l u d g e .

    In Proceed ings o f the 61st Annua l Conf. o f the W ater

    Pollut ion Control Federation,

    Dal las , Tex .

    Burke R. A. , Dold P . L . and Mara is G. v . R . (1986)

    B i o l o g i c a l p h o s p h o r u s r e m o v a l i n s h o r t s l u d g e a g e

    a c t i v a t e d s l u d g e p r o c e s s e s . R e s e a r c h R e p o r t W 5 8 ,

    D e p a r t m e n t o f C h e m i c a l a n d C i v i l E n g i n e e r i n g , U n i v e r -

    s i t y o f C a p e T o w n .

    Dold P . L . (1990) A genera l ac t iva ted s ludge model incorpo-

    r a t i n g b i o l o g i c a l e x c e ss p h o s p h o r u s r e m o v a l . I n

    Proceed-

    ings o f the CS CE Annua l Conf. , M a y , H a m i l t o n , C a n a d a .

    Grady C. P . L . and Lim H. C. (1980) Biological Wastewater

    Trea tment . D e k k e r , N e w Y o r k .

    H a d j i p e t r o u L . P . a n d S t o u t h a m e r A . H . ( 1 9 6 5 ) E n e r g y

    p r o d u c t i o n d u r i n g n i t r a t e r e s p i r a t io n b y

    Aerobac ter aero-

    genes. J . gen. Microbiol . 38,

    29-34 .

    M a l n o u D . , M e g a n c k M . , F a u p G . M . a n d d u R o s t u M .

    ( 19 8 4) B i o l o g ic a l p h o s p h o r u s r e m o v a l : s tu d y o f t h e m a i n

    p a r a m e t e r s . Wat. Sei . Technol . 16, 173 185.

    M c C l i n t o c k S . A . , S h e r r a r d J . H ., N o v a k J . T . a n d R a n d a l l

    C. W, (1988) Ni t ra te versus oxygen resp i ra t ion in the

    ac t iva ted s ludge process .

    J . Wat . P o l lu t . Con tro l Fed . 60 ,

    342 350.

    M e g a n c k M . , M a l n o u D , , L e F l o h i c P . , F a u p G . M . a n d

    R o v e l J . M . ( 19 8 5) T h e i m p o r t a n c e o f a c i d o g e n i c m i c r o -

    f l o r a i n b i o l o g i c a l p h o s p h o r u s r e m o v a l . Wat . Sc i . Tech-

    nol.

    17, 199-212.

    Payne W. J. (1981)

    Denitrification.

    W i l e y - l n t e r s c i e n c e ,

    N e w Y o r k .

    S c h r o e t e r W . D . , D o l d P . L . a n d M a r a i s G . v . R . ( 1 9 8 2 ) T h e

    C O D / V S S r a t i o o f t h e v o l a t i l e s o l i d s i n t h e a c t i v a t e d

    s l u d g e p r o c e ss . R e s e a r c h R e p o r t N o . W 4 5 , D e p a r t m e n t

    o f C i v i l E n g i n e e r i n g , U n i v e r s i t y o f C a p e T o w n .

    Stan ie r R. Y. , Adelberg E . A. and Ingraham J . (1976)

    T h e

    Microb ia l Wor ld ,

    4 t h e d i t i o n . P r e n t i c e H a l l , E n g l e w o o d

    Cliffs, N.J.

    S t o u t h a m e r A . H . a n d B e t t e n h a u s e n C . ( 19 7 2) I n f l u e n c e

    o f h y d r o g e n a c c e p t o r s o n g r o w t h a n d e n e r g y p r o d u c -

    t i o n o f Proteus mirab i l i s . An ton ie van Leeuwenhoek 38 ,

    81-90 .

    V o l l b r e c h t D . ( 1 9 8 2 ) O x y g e n - d e p e n d e n t s w i t c h - o v e r f r o m

    r e s p i r a t o r y t o f e r m e n t a t i v e m e t a b o l i s m i n t h e s t r i c t l y

    a e r o b i c Alcaligen es eutrophus. Eur. J . appl . Micro biol .

    Biotechnol. 15, 117 - 122.

    W a b l e M . W . a n d R a n d a l l C . W . ( 1 9 9 2 ) I n v e s t i g a t i o n

    o f r e d u c t i o n i n o x y g e n r e q u i r e m e n t s o f b i o l o g i c a l

    p h o s p h o r u s r e m o v a l s y s t e m s .

    War. Sci . Technol . 26,

    2221 2223.

    W e n t z e l M . C . , E k a m a G . A . , L o e w e n t h a l R . E . , D o l d P .

    L . a n d M a r a i s G . v . R . ( 1 9 8 9 ) E n h a n c e d p o l y p h o s p h a t e

    organism cul tures in ac t iva ted s ludge sys tems . Par t 11 :

    e x p e r i m e n t a l b e h a v i o u r .

    W a t . S A

    15, 71-88.

    W e n t z e l M . C . , E k a m a G . A . , D o l d P . L . a n d M a r a i s

    G. v . R . (1990) Bio logica l excess phosphorus removal - -

    s teady s ta te process des ign . War. SA 16, 29~J,8.

    W R C ( 1 9 8 4 ) Theory , Des ign a nd Opera t ion o f Nu tr ien t

    Removal Ac t iva ted S ludge Processes . W a t e r R e s e a r c h

    C o m m i s s i o n o f S o u t h A f r i c a .

    P P E N D I X

    COD and N Balance Calculat ions

    1) Nomenc la ture

    Q = average in f luent f lowra te ( l /d )

    q = average was tage f lowra te ( l /d )

    $ 1 , = t o t a l i n f l u e n t C O D ( m g C O D / l )

    ST~ = t o t a l e f f l u en t C O D ( m g C O D / l )

    f c v = C O D / V S S r a t i o ( m g C O D / r a g V S S )

    X v = m i x e d l i q u o r v o l a t il e s u s p e n d e d s o l id s o f

    was te s t ream (mg VSS/I )

    O T = t o t a l o x y g e n u t i l iz a t i o n r a t e ( m g O / l / h )

    M O ~ = m a s s o f o x y g e n c o n s u m e d f o r n i t r i fi c a t i o n

    ( r a g O / d )

    V~,~r= volume of aerobic reac tor ( l i t res )

    NTi = average in f luent TKN (mg N/I )

    NT~

    = a v e r a g e e f f l u e n t T K N ( m g N / l )

    NNe = averag e e f f luen t n i t r a te (mg NO3-N/I

    NN.,~r = av erag e ae rob ic n i tra te (m g N O3-N/I)

    N N . . . .. = averag e an oxic n i t ra te ( rag NO 3-N/I )

    NN . .. .. . = av erage ana erob ic n i t ra te (m g N O3-N/I )

    . [~ = n i t rog en f rac t ion of was te s ludg e (mg N / l )

    s = se t t l e r under f low recyc le ra t io wi th respec t to

    inf luent f lowra te

    r = anoxic mixed l iquor recyc le ra t io

    a = n i t r i f i ed /aerobic mixed l iquor recycle ra t io

    Mdcn,~ . .. .. . = m ass of ni tr ate den itr if ied in the ano xic zon e

    ( r a g N / d )

    Md~.. . .. .. . = mass of n i t ra te deni t r i f i ed in the ana erob ic

    z o n e ( r a g N / d )

    Ma~.,~,T = t o t a l m a s s o f n i t r a t e d e n i t r i fi e d i n t h e s y s t em

    ( m g N / d )

    MCOD.~M= m a s s o f C O D i n t h e s y s t e m e f f l u en t ( r ag

    C O D / d )

    Mcoo,,,,,

    = m a s s o f C O D i n t h e w a s t a g e s t r e a m ( r a g

    C O D / d )

    McoD ae r =

    m a s s o f C O D o x i d i z e d u n d e r a e r o b i c c o n -

    d i t io n s ( m g C O D / d )

    MC'OD.d~.. = mass of C OD oxid ized th rou gh deni t r i f i ca t io n

    ( m g C O D / d )

    McoD.o,,~d

    = t o t a l m a s s o f C O D o x i d iz e d i n t h e sy s t e m ( ra g

    C O D / d )

  • 8/11/2019 Cod , n Balance in Stp Model

    9/11

    C O D a n d n i t r o g e n m a s s b a l a n c e s

    641

    M N.N ~ = m a s s o f n i t r a t e - n i t r o g e n i n t h e s y s t e m e f f l u e n t

    ( m g N / d )

    MN,T~ = m a s s o f T K N i n t h e s y s t e m e f f lu e n t ( r ag N / d )

    M N . . . . . =

    m a s s o f n i t r o g e n i n t h e w a s t a g e s t re a m ( m g

    N / d ) .

    1 1) D e n i t r i f i c a t i o n c a l c u l a t i o n s

    I n n i t r i f y i n g s y s t e m s w i t h u n a e r a t e d z o n e s , i n o r d e r t o

    p e r f o r m b o t h C O D a n d N b a l a n c e s , t h e m a s s o f n i t r a t e

    w h i c h i s d e n it r i fi e d i n e a ch o f t h e u n a e r a t e d r e a c t o r s m u s t

    b e d e t e r m i n e d f r o m m a s s b a l a n c e o n n i t r a t e . R e f e r r i n g t o

    F i g . A 1 , f o r a U C T t y p e s y s t e m , t h e m a s s o f n i t r a t e e n t e r i n g

    t h e a n o x i c r e a c t o r p e r d a y i s g i v e n b y :

    i n p u t n i t r a t e = aQ NN. ae r + sQ Nr~ ~ + (1 + r ) Q N N . . . .. .

    S i m i l a r l y , t h e m a s s o f n i t r a t e l e a v i n g t h e a n o x i c r e a c t o r i s

    g i v e n b y :

    o u t p u t n i t r a t e = r Q N N . . .. + (1 + s + a ) Q N N . . ..

    = ( l + r + s + a ) Q N N . . . .

    T h e m a s s o f n i t r a t e d e n i t r i f i e d p e r d a y ( M d ~ , , . . . . . ) i s e q u a l

    t o t h e d i f f e re n c e b e tw e e n t h e i n p u t a n d o u t p u t n i t ra t e :

    Mdeni . . . . . = aQ NN. ae 4 - sQ NNe 4 - (1 4- r ) Q N N . . . . .

    - l + r + s + a ) Q N N . .. .. ( A I )

    A s a s m a l l q u a n t i t y o f n i t r a t e w i ll o f t e n b e i n a d v e r t e n t l y

    r e c y c l e d t o t h e a n a e r o b i c r e a c t o r , a n y d e n i t r i f i c a t i o n

    o c c u r r i n g i n t h e a n a e r o b i c r e a c t o r s h o u l d a l s o b e i n c l u d e d

    i n m a s s b a l a n c e c a l c u l a t io n s . F o r a U C T s y s t e m w i t h o n e

    a n a e r o b i c r e a c t o r ( a s s u m i n g n o n i t r a t e i n t h e i n f l u en t ) , th i s

    i s g iven by :

    M@ni .. . . . . = r Q N N . . . . . - - (1 + r ) Q N N . . . . . (A2)

    T h e t o t a l m a s s o f n i t r a t e d e n i tr i f ie d p e r d a y i n t h e

    s y s t e m i s t h e r e f o r e t h e s u m o f t h e m a s s d e n i t r i f i e d i n t h e

    a n a e r o b i c r e a c t o r , a n d t h e m a s s d e n i t r i f i e d i n t h e a n o x i c

    reac to r , i . e . :

    Mdenit.T = Mdeni ...... 4- Mdeni .... .. (A 3)

    I 1 1) C O D b a l a n c e c a h : u l a t i o n s

    T o p e r f o r m a C O D b a l a n c e o n a s y s t e m , i t i s n e c e s s a ry

    t o e s t i m a t e t h e m a s s o f C O D i n t h e ef f lu e n t, t h e C O D o f t h e

    w a s t e s l ud g e , a n d t h e a m o u n t o f C O D o x i d i ze d . I f t h e

    e f fl u e n t C O D i s k n o w n , t h e m a s s o f C O D i n t h e e ff l ue n t i s

    s i m p l y :

    McoD.e t a = QST e ( A 4 )

    S i m i l a rl y , i f t h e v o l a t i le s u s p e n d e d s o l i ds c o n c e n t r a t i o n

    o f t h e w a s t e s l u d g e ( X v ) is k n o w n , t h e n b y a s s u m i n g a

    v a lu e 2 o f 1.4 8 m g C O D / m g V S S f o r f c v , t h e m a s s o f C O D

    w a s t e d i s g i v e n b y :

    MCOD..a = q X v f c v ( A 5 )

    I d e a l l y , t h e C O D / V S S r a t i o f c v s h o u l d b e d e t e r m i n e d

    e x p e r i m e n t a l l y f o r a p a r t i c u l a r s l u dg e ; h o w e v e r , t h e v a l u e o f

    1 . 4 8 m g C O D / m g V S S h a s be e n sh o w n t o b e a g o o d

    a p p r o x i m a t i o n o v e r a r a n g e o f s lu d g e ag e s a n d w a s t e w a t e r

    c h a r a c t e r i s t i c s ( S c h r o e t e r e t a l . , 1982).

    I n a p u r e ly a e r o b i c s y s te m , t h e a m o u n t o f C O D o x i d i z e d

    i s d e t e r m i n e d f r o m t h e o x y g e n u t i l iz a t i on r a t e , a f t e r d e d u c t -

    i n g t h e o x y g e n r e q u i r e d f o r n i t r i f i c a t i o n . T h i s c a n b e d o n e

    b y a s s u m i n g t h e s o m e w h a t s i m p l i f i e d r e l a t i o n s h i p :

    N H ~ - + 2 0 2 - - * N O 3 + 2 H + + H 2 0 ( A 6 )

    E q u a t i o n ( A 6 ) i m p l ie s th a t 1 m o l o f a m m o n i a r e q u i r e s 2 m o l

    o f o x y g e n t o f o r m 1 m o l o f n i t r a t e . T a k i n g m o l e c u l a r

    w e i g h t s i n to a c c o u n t , t h i s im p l i e s t h a t 1 4 m g N H 4 - N r e q u i re

    6 4 m g o x y g e n , o r e q u i v a l e n t l y , i f x m g 1 o f N O ~ - N a r e

    f o r m e d , t h e n 4 . 5 7 . x m g O / 1 a r e c o n s u m e d . I n a p u r e l y

    a e r o b i c s y s t e m , t h e m a s s o f n i t r a t e f o r m e d i s g i v e n b y t h e

    p r o d u c t o f t h e i n f l u e n t f l o w r a t e a n d t h e e f f lu e n t n i t r a t e

    c o n c e n t r a t i o n ( N Ne ). F o r s y s t e m s i n c o r p o r a t i n g d e n i tr i f ic a -

    t i o n , t h e m a s s o f n i t r a t e f o r m e d i s g i v en b y :

    m a s s n i t r a t e f o r m e d = M a e . , . v + Q N N e

    T h u s t h e m a s s o f o x y g e n c o n s u m e d d u e t o n i t r i f ic a t i o n

    M O N ) i s g iven by :

    M O N = (Md~.u .T + QNNe)4.57 (A7 )

    T h e r e f o r e t h e t o ta l m a s s o f C O D o x i d i z e d p e r d a y u n d e r

    a e r o b i c c o n d i t i o n s ( M c o D . . . r ) , i s g i v e n b y :

    McOD .ae = O T I4~er24 - - M O N

    = O T Vaer24 - (Mdenit. + QN Ne)4.57 (A 8)

    A l t h o u g h e q u a t i o n ( A 6 ) r e p r e s e n t s a s im p l i f i c a ti o n o f

    t h e a c t u a l r e a c t i o n s m e d i a t e d b y t h e n i t r i f y i n g o r g a n i s m s

    N i t r o s o m o n a s a n d N i t r o b a c t e r , t h e e r r o r i n t r o d u c e d b y

    t h i s s i m p l i f i c a t i o n s h o u l d b e m i n i m a l ( G r a d y a n d L i m ,

    1980).

    I n s y s t e m s i n c o r p o r a t i n g u n a e r a t e d z o n e s , s u c h a s t h e

    U C T d e s i g n , t h e m a s s o f C O D o x i d i ze d t h r o u g h d e n i t r i fi c a -

    t i o n m u s t a l s o b e t a k e n i n t o a c c o u n t i n t h e C O D b a l a n c e .

    T h i s i s d o n e b y u s i n g t h e e q u i v a l e n c e f a c t o r o f 2 . 8 6 o u t l i n e d

    ea r l i e r .

    T h u s i f

    M d e n i t . T

    i s t h e t o t a l m a s s o f n i t r a t e d e n i t r i f i e d p e r

    d a y , t h e n t h e t o t a l C O D c o n s u m e d t h r o u g h d e n i t r i f i c a t i o n

    is g iven by :

    McoD,deni = 2 .86Mdenit, r ( A 9 )

    T h e r e f o r e t h e t o ta l a m o u n t o f C O D o x i d i z ed in a s y s te m

    i n c o r p o r a t i n g b o t h n i t r i f i c a t i o n a n d d e n i t r i f i c a t i o n , i s g i v e n

    by :

    mcoo.oxid = McoD.a~.i, + MCOD ...

    = 2.86Macit.+ + O+ Vde,24 -- (Mde. i t. r + QNN ~)4-57 (A 10)

    T h e to t a l a m o u n t o f ' o u t p u t C O D c a n t h e re f o r e b e

    de t e rm ine d f rom the sum o f M coD.et M coD. .~ and M COD.o~ ,d

    u s i n g e q u a t i o n s ( A 4 ) , (A 5 ) a n d ( A I 0 ) , a s w e l l a s t h e e s t i m a t e

    f o r M d .~ .T o b t a i n e d f r o m m a s s b a l a n c e s o n n i t r a t e a r o u n d

    t h e u n a e r a t e d r e a c t o r s ( as d e s c r i b e d e a r l ie r f o r t h e U C T

    system), i .e . :

    o u t p u t C O D

    = M c o D , e t ~ + M c o D . w a s - - M , o O .o x ~ d

    (A 11 )

    r .Q

    a Q

    T o I

    F i g . A I . U C T s y s t e m 6a c o n f i g u r a ti o n [ f r om W e n t z e l e t a l . (1990)].

  • 8/11/2019 Cod , n Balance in Stp Model

    10/11

    6 4 2

    P. S. BARKERa n d P . L . D O L D

    Table A1. Steady-s tate data for the four-reactor UCT System 6a [data f rom Wentzel et aL (1990)]

    Reactor volum es ( l it res ) Anae robic 2.0 lnf luent f lowrate ( l /d) 25

    Anox ic 2.0 r recycle rat io 1

    Aerobic 2.0 s recycle ratio I

    Aerobic 2.0 a recycle ratio I

    Wa stag e rate (I/d) 1.174

    Param eter lnf luent Ana erobic Anox ic Aerobic Aerobic Eff luent

    C O D (mg/l) 510 . . . . 40

    T K N (m g N /l) 42 . . . . 4

    NO 3 (mg N/I) 0.0 0.5 1.5 9.4 10.6 10.5

    O U R ( m g / l/ h ) - - - - 7 8 4 3 - -

    VSS (m g/I) . . . . 2100

    T h e to t a l m a s s p e r d a y o f i n p u t C O D i s g i v en b y

    t h e p r o d u c t o f th e i n f l u e n t f l o w r a t e a n d t h e i n f l u e n t C O D ,

    i.e.:

    i n p u t C O D = QST, (A 12)

    T h u s t h e % C O D b a l a n c e i s g i v e n a s:

    % C O D b a la n c e = ( o u t p u t C O D ~ 10 0

    \

    i np u t C O D

    IV) Nitrogen balance calculat ions

    T o p e r f o r m a n i t r o g e n b a l a n c e o n a s y s t e m , it is n e c e s s a r y

    t o e s t i m a t e t h e m a s s o f n i t r a t e i n t h e e f f l u e n t , t h e m a s s o f

    e f f lu e n t T K N ( u n f il t e re d ) , t h e m a s s o f T K N i n t h e w a s t e

    s l u d g e a n d t h e n i t r o g e n l o s s t h r o u g h d e n i t r i f i c a t i o n .

    I n t e r m s o f t h e v a r i a b l e s d e f i n e d e a rl i e r, t h e m a s s o f

    n i t r a t e i n t h e e f f l u e n t ( M N . N E ) i s g i v e n b y :

    MN,Ne = QNN~ (A 13)

    S i m i l a r l y , t h e m a s s o f T K N i n t h e e f f l u e n t ( M N .T ,) i s g i v e n

    by :

    MN.T~ = Q N w ( A 1 4 )

    T o e s t i m a t e t h e m a s s o f N i n t h e w a s t e s l u d g e , a v a l u e f o r

    f N , t h e n i t r o g e n f r a c t i o n o f t h e s l u d g e , m u s t b e a s s u m e d .

    E x p e r i m e n t a l e v i d e n c e s u g g e s ts a v a l u e o f 0 .1 m g N / m g V S S

    i s r e a s o n a b l e o v e r a r a n g e o f s l u d g e a g e s ( W R C , 1 98 4) ;

    h o w e v e r , i d e al l y f N s h o u l d b e d e t e r m i n e d e x p e r i m e n t a l l y

    f o r a p a r t i c u l a r s y s t e m a n d s e t o f o p e r a t i n g p a r a m e t e r s .

    G i v e n a v a l u e f o r f N , t h e m a s s o f N i n t h e w a s t e s l u d g e

    ( M N ,w a s) i s c a l c u l a t e d f r o m :

    M N . . . = qXv.fN (A 15)

    I n S e c t i o n I I t h e m e t h o d w a s o u t l i n e d f o r e s t i m a t i n g

    t h e m a s s o f N O a - N w h i c h i s d en i t ri f i ed i n t h e u n a e r a t e d

    r e a c t o r s . F o r a U C T s y s t e m , M d ,n ,.T i s c a l c u l a t e d u s i n g

    e q u a t i o n s ( A 1 ) , ( A 2 ) a n d ( A 3 ) .

    T h e t o t a l o u t p u t N i s t h e r e f o r e t h e s u m o f M N .N e , MN,T,

    M N . . . an d Md.i t,T , w h i c h c a n b e c a l c u l a t e d u s i n g e q u a t i o n s

    ( A l 3 ) , ( A 1 4 ) a n d ( A l 5 ) , a s w e l l a s t h e e s t i m a t e f o r M d ~ m t . r

    o b t a i n e d f r o m a m a s s b a l a n c e o n n i t r a t e , i. e. :

    o u t p u t N

    = M N . N e M N , T e - {- M N . w a s M d e n i t . T

    ( A I 6 )

    T h e t o t a l m a s s p e r d a y o f i n p u t N i s g i v e n b y t h e p r o d u c t

    o f t h e i n fl u e n t f l ow r a t e a n d t h e i n f lu e n t T K N ( a s s u m i n g

    zero n i t r a t e i n the in f luen t ) , i . e . :

    i n p u t N =

    QNTi

    (A 17)

    T h e r e f o r e t h e % N b a l a n c e i s g i v e n as :

    ( o u t p u t N )

    % N b a l a n c e = i n p u t N 1 00

    U s i n g S y s t e m 6 a f r o m W e n t z e l

    et al.

    ( 1 9 9 0 ) a s a n

    e x a m p l e , t h e f o l lo w i n g s e c t i o n o u t l i n e s th e m a s s b a l a n c e

    p r o c e d u r e .

    V) COD a nd N ba lance s - -exa mp le ca lcu la t ions

    T h e d a t a n e c e s s a r y f o r p e r f o r m i n g N a n d C O D b a l a n c e s

    f o r S y s t e m 6 a a r e l i s te d i n T a b l e A 1 . S y s t e m 6 a i s a U C T

    c o n f i g u r a t i o n w i t h t w o a e r o b i c r e a c t o r s , o n e a n o x i c a n d o n e

    a n a e r o b i c r e a c t o r a s s h o w n .

    Denitrification calculations. T h e m a s s o f N O 3 - N d e n i -

    t ri f le d i n t h e a n o x i c r e a c t o r i s g i v e n b y e q u a t i o n ( A I ) :

    M d e n i t . . . . . = 4 0 2 .5 m g N / d

    T h e m a s s o f N O 3 - N d e n i t r i fi e d i n th e a n a e r o b i c r e a c t o r i s

    o b t a i n e d f r o m e q u a t i o n ( A 2 ) :

    M d e n i t . . . . . . = 1 2.5 m g N / d

    T h e t o t a l m a s s o f N O 3 - N d e n i t r i fl e d i n t h e s y s t e m is th e s u m

    of Md~nit . . . . a nd Md~ni . . . .. e qu a t i on (A3) :

    MdeniLT = 415 m g N /d

    COD balance calculat ions. F r o m e q u a t i o n ( A 4 ) , t h e m a s s

    o f C O D i n t h e e f f l u e n t i s:

    M co D .e m = 1 0 0 0 m g C O D / d

    T h e m a s s o f C O D i n t h e w a s te s l u d g e is c al c u l at e d u s i n g

    e q u a t i o n ( A 5 ) :

    M c oD .w ~ = 3 6 4 9 m g C O D / d

    U s i n g e q u a t i o n ( A I 0 ) , a n d t h e v a l u e f o r M d ~ n,,T c a l c u l a t e d

    a b o v e , t h e m a s s o f C O D o x i d i z e d is :

    M c oD .o xid = 3 8 9 9 m g C O D / d

    T h e t o t a l o u t p u t C O D i s t h e s u m o f t h e a b o v e t h re e t e r m s

    [or equa t ion (11) ] :

    o u t p u t C O D = 8 5 48 m g C O D / d

    A p p l y i n g e q u a t i o n ( 1 2 ) g i v e s :

    i n p u t C O D = 1 2 ,7 5 0 m g C O D / d

    T h e r e f o r e , t h e % C O D b a l a n c e i s g i v e n b y :

    % C O D b a l an c e = ( o u t p u t C O D / i n p u t C O D ) ' 1 0 0

    = ( 8 5 4 8 / 1 2 , 7 5 0 ) ' 1 0 0

    = 6 7 . 0 %

    T h e r e s u l t s o f t h e C O D b a l a n c e f o r S y s t e m 6 a a re s h o w n i n

    T a b l e A 2 .

    Nitrogen balance calculat ions. R e f e r r i n g t o e q u a t i o n

    ( A 1 3 ) , t h e m a s s o f N O 3 - N i n t h e e f f l u e n t i s:

    M N ,N = 2 6 3 m g N / d

    F r o m e q u a t i o n ( A 1 4 ) , t h e m a s s o f T K N i n t h e e f f lu e n t i s:

    MN.Te = 100 m g N /d

    Table A2. COD balance calculations for

    Sys tem 6a [data f rom Wentzel et al. (1990)]

    I n p u t C O D O u t p u t C O D

    (mg C OD /d) ( rag C OD /d)

    QSTi 12 , 750 MC OD. ~ 1000

    MooD .. . 3649

    Mcom,~i 3899

    Total 12,750 Total 854 8

    % COD balance = 67.0%

  • 8/11/2019 Cod , n Balance in Stp Model

    11/11

    C O D a n d n i t r o g e n m a s s b a la n c e s

    6 4 3

    Table A3. N itrogen balance calculations for

    Sys tem 6a [data f rom Wentzel

    e t a l

    (1990)]

    I n p u t N O u t p u t N

    (mg N/d) (mg N/d)

    0 H ,

    1050 Mrqn~ 263

    MN.zc 100

    MN .. . 247

    Mde.i,.T 415

    Tota l 1050 To ta l 1024

    N balance = 97.5

    T h e m a s s o f N l e a v i n g w i t h t h e w a s t e s l u d g e i s g i v e n b y

    e q u a t i o n ( A I 5 ):

    M N . .. = 2 4 7 m g N / d

    T h e t o t a l o u t p u t N i s t h e n c a l c u la t e d b y s u m m i n g th e a b o v e

    v a l u e s , t o g e t h e r w i t h M d e .i t,T c a l c u l a t e d e a r l i e r [ i.e . e q u a t i o n

    ( A l 6 ) ] , g i v i n g :

    o u t p u t N = 1 0 2 4 m g N / d

    E q u a t i o n ( A l 7 ) i s u s e d t o c a l c u l a t e t h e t o t a l i n p u t N :

    i n p u t N = 1 0 50 m g N / d

    T h e r e f o r e t h e N b a l a n c e i s g i v e n b y :

    N b a l a n c e = ( o u t p u t N / i n p u t N ) * I 0 0

    = ( 1 0 2 4 / 1 0 5 0 ) * 1 0 0

    = 9 7 . 5

    T h e r e s u l t s o f t h e n i t r o g e n b a l a n c e f o r S y s t e m 6 a a r e s h o w n

    i n T a b l e A 3 .

    WR

    2 9 / 2 ~ Q


Recommended