+ All Categories
Home > Documents > Compaction and the Properties of Mixtures

Compaction and the Properties of Mixtures

Date post: 16-Jan-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
53
1 Compaction and the Properties of Mixtures Compaction Simulation Forum 2012 Cambridge, MA November 13-14, 2012 Gregory E. Amidon, Ph.D. University of Michigan College of Pharmacy
Transcript

1

Compaction and the

Properties of Mixtures

Compaction Simulation Forum 2012

Cambridge, MA

November 13-14, 2012

Gregory E. Amidon, Ph.D.

University of Michigan

College of Pharmacy

2

Introduction

• Can’t tell you much you don’t already know about

compaction simulation

• I know it is a valuable tool

• I am interested in the meeting because

• Materials Science is fundamentally important to

successful, scientific formulation development!

"The best simpleminded test of expertise in a

particular area is an ability to win money in a series

of bets on future occurrences in that area."

--Graham Allison

3

Introduction

• Can’t tell you much you don’t already know about

compaction simulation

• I know it is a valuable tool

• I am interested in the meeting because

• Materials Science is fundamentally important to

successful, scientific formulation development!

• One of my long term goals (20+ years) is to have

a USP Information chapter on Compaction

• What should be in it?

• What should not be in it?

• What is the role of compaction simulators?

4

USP35-NF30 (2012)

Packaging and storage –

Identification –

Microbial enumeration tests –

Loss on Drying –

Residue on ignition –

Chloride, Sulfate, Calcium, Heavy metals –

Assay -

5

My Tablet Compaction Emulation/Simulation

Successes

Application of Emulation (Presster) to:

• Formulation Development (formulation characterization)

• Assess Lubrication (process characterization)

• Dry granulation (process characterization)

The most important tableting properties are still

• Compactiblity

• Tabletability

• Compressibility

6

Testing Strategies: Quasi-static vs Dynamic Hiestand Indices Simulators

Dynamic profile reference: MCC website (Presster): http://www.mcc-online.com/presster.htm#Software

~20 -120 msec

Time, msP

ressu

re,

MP

a

d

Time, s

Pre

ssu

re,

MP

a

d

Sec. to Min.

Up to ~10,000 fold difference in speed!

7

Quasi-static Dynamic

CP, TS, SF

CP, TS, SF

Hd, Hqs, TSo, E’

BI, BFI, SI, VE

CP, TS, SF

FEject,VE,….

Soph

istication

8

Comparison

- Simulator

- Emulator

(Presster)

- “Small”

Instrumented

Press

- Hydraulic

Press

Attribute Simulator Presster Rotary Press Hydraulic

Press

Principle of Operation Complicated Simple Simple Very Simple

Material Requirements < 5 g < 5 g >> 5 g << 5 g

Tablet size range Wide Practical Practical Very Practical

Compaction Profiles Infinite Rotary press Rotary press Square

Speed Control Infinite Wide - Practical Limited -

Practical Very Limited

Rotary Press Emulation Moderate Very Easy Very Easy Impossible

Set up Moderate Easy Easy Very Easy

Instrumentation Excellent Excellent Poor to Good Poor to okay

Data Analysis Excellent Very Good Very Poor to

Good

Very Poor to

Good

Tooling Flexibility Very High B, D tooling B, D tooling Very High

Ease of Use Moderate Very Easy Very Easy Extremely

Easy

Space requirements Moderate Moderate Small to

Moderate

Very Small

Operating Range 50 kN 50kN 50kN 50kN

Tableting speed ? ~ 45

sec/tablet

“fast” “extremely

slow”

Multi-layer capabilities Yes Maybe No No

Best Use R & D R & D R & D R

Cost A lot A lot Little to A lot Very little

Achieves Perfection? Never! Never! Never! Never!

9

Question?

Is the goal to identify success or

understand failure?

If we know what success looks like,

can we avoid failure?

So do your materials science upfront!

10

A tablet is

• a compressed dosage form prepared from a

• mixture of two or more components that are

• processed (eg: milled, blended, granulated)

to achieve

• desired manufacturing properties and other

critical quality attributes, including

• optimal oral bioperformance.

11

Ref: Tye, Sun, Amidon, J.Pharm.Sci. 94(3),

465-72 (2005)

Compression Pressure

Solid Fraction Tensile Strength

Compactability

What matters most in tablet compression is: Compression Pressure, Solid Fraction and Tensile Strength

Intrinsic property = 𝟏 − 𝐩𝐨𝐫𝐨𝐬𝐢𝐭𝐲

=𝑇𝑎𝑏𝑙𝑒𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑇𝑟𝑢𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 1.0

Tensile Strength

is determined by

elasticity, plasticity,

brittleness,

viscoelasticity,

bond strength per

contact area,…

12

Compaction

Pressure

Solid Fraction

Compactibilty

Pressure

Solid Fraction

Compression

Pressure

Tensile

Strength

Compressibility

Compactibilty

Solid Fraction -Tensile Strength relationship is an

Intrinsic Property of a Formulation

Compression

Pressure Faster!

Compression

Pressure Slower

13

Compactability: – Starch1500

0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Te

nsile

Str

en

gth

(M

Pa

)

Porosity

8ms

27ms

20s

90s

Presster: Pregelatinized Starch (Colorcon 1500) (+0.5% Mg Stearate)

Dwell time varied from 8 mSec to 90 Sec Tye, Sun, Amidon, J.Pharm.Sci. 94(3), 465-72 (2005)

10,000 X

difference in

compression

speed

0

0.4

0.8

1.2

1.6

0 50 100 150 200 250 300 350

Compaction Pressure (MPa)

Te

ns

ile

Str

en

gth

(M

Pa

) .

Starch 8 ms

Starch 27 ms

Starch 20 s

Starch 90 s

0.10

0.15

0.20

0.25

0.30

0.35

0 50 100 150 200 250 300 350

Compaction Pressure (MPa)

Po

ros

ity

Starch 8 ms

Starch 27 ms

Starch 20 s

Starch 90 s

14

The Compaction Triangle is really a

3-D view of the compaction profile.

0

2

4

6

8

10

12

14

50

100

150

200

250

0.50.6

0.70.8

0.91.0

Tensi

le S

trength

, M

Pa

Com

pact

ion P

ress

ure

, MP

a

Solid Fraction

Compactibility

Compressibility

Tableta

bility

Compressibility

Curve (CP vs SF)

CP=CPo e-k(1-SF)

Compactability

Curve (TS vs SF)

TS=TSo e-k(1-SF)

Tabletability Curve (TS vs CP)

log(TS) = k log(CP)

15

The Compaction Triangle is really a

3-D view of the compaction profile.

0

2

4

6

8

10

12

14

50

100

150

200

250

0.50.6

0.70.8

0.91.0

Tensi

le S

trength

, M

Pa

Com

pact

ion P

ress

ure

, MP

a

Solid Fraction

Compactibility

Compressibility

Tableta

bility Compactability

Curve (TS vs SF)

TS=TSo e-k(1-SF)

16

0.010

0.100

1.000

10.000

0.700 0.800 0.900

Ten

sile S

tren

gth

(M

Pa)

Solid Fraction

SD Lactose

1.000

10.000

0.650 0.750 0.850 0.950T

en

sile S

tren

gth

(M

Pa)

Solid Fraction

Microcrystalline cellulose

0.100

1.000

10.000

0.500 0.600 0.700 0.800 0.900

Ten

sile S

tren

gth

(M

Pa)

Solid Fraction

Corn Starch

0.100

1.000

10.000

100.000

0.600 0.700 0.800 0.900

Ten

sile S

tren

gth

(M

Pa)

Solid Fraction

Dicalcium Phosphate

0.010

0.100

1.000

10.000

0.700 0.800 0.900

Ten

sile S

tren

gth

(M

Pa)

Solid Fraction

Mannitol

0.100

1.000

0.750 0.850 0.950T

en

sile S

tren

gth

(M

Pa)

Solid Fraction

Lactose Monohydrate

Compactability Curves of Excipients (TS vs SF)

(Consistent with Ryshkewitch & Duckworth Equation)

TS=TSo e-k(1-SF)

17

0.1

1

10

0.65 0.7 0.75 0.8 0.85 0.9 0.95

Ten

sile

Str

engt

h, M

Pa

Solid Fraction

Lactose

SD Lactose

Corn Starch

Pregel

DiCal Phosphate

MCC PH101

Compactability Curves (done by hand on hydraulic press)

As an

intrinsic

property of

a material,

it doesn’t

matter how

these were

measured.

18

The Compaction Triangle is really a

3-D view of the compaction profile.

0

2

4

6

8

10

12

14

50

100

150

200

250

0.50.6

0.70.8

0.91.0

Tensi

le S

trength

, M

Pa

Com

pact

ion P

ress

ure

, MP

a

Solid Fraction

Compactibility

Compressibility

Tableta

bility

Compressibility

Curve (CP vs SF)

CP=CPo e-k(1-SF)

19

Heckel Eq. Walker Eq. Compressibility Eq.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10000 20000 30000

Po

ros

ity,

Pressure, CP

0

0.2

0.4

0.6

0.8

1

0 20000 40000

So

lid

Fra

cti

on

,

Pressure (CP)

CP

K

C

P

)1(' P

K

CCPK

CP"

V

CP

CPK

PK

'

)1( VKP

CP

"

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20000 40000Pre

ss

ure

, C

P

Relative Volume, V

AKCP ln

"1

"ln

""ln

ASF

KCP

AVKP

'1

1ln

''1ln

AK

APCK

)1('

ln

SFK

oeCPCP

BKCP

)1( P

C CPCP

V

CPC

1

P

20

Compressibility Curves of Excipients CP vs SF

(Consistent with Compressibility Equation)

1.00

10.00

100.00

1000.00

0.700 0.800 0.900Co

mp

ressio

n P

ressu

re (

MP

a)

Solid Fraction

Mannitol

1.00

10.00

100.00

1000.00

0.700 0.800 0.900 1.000

Co

mp

ressio

n P

ressu

re (

MP

a)

Solid Fraction

Pregelatinized Starch

1.00

10.00

100.00

1000.00

0.700 0.800 0.900 1.000C

om

pre

ssio

n P

ressu

re (

MP

a)

Solid Fraction

Lactose crystalline

1.00

10.00

100.00

1000.00

0.700 0.800 0.900 1.000

Co

mp

ressio

n P

ressu

re (

MP

a)

Solid Fraction

MCC PH102

1.00

10.00

100.00

1000.00

0.600 0.700 0.800 0.900 1.000

Co

mp

ressio

n P

ressu

re (

MP

a)

Solid Fraction

Dicalcium Phosphate, Dibasic

1.00

10.00

100.00

1000.00

0.700 0.800 0.900 1.000C

om

pre

ssio

n P

ressu

re (

MP

a)

Solid Fraction

Lactose spray process

CP=CPo e-k(1-SF)

21

Binary Mixtures -----

22

Binary Mixture Characterization and

Modeling (partial list)

• Cheng (1983)

• Nyqvist (1983)

• Fell (1988, 1996)

• Leuenberger (1990,99,00)

• Cook (1990)

• Celik (1996)

• Rubinstein (1998)

• Wurster (1997, 2007)

• Doelker (2000)

• Van Veen (2002,04)

• ……..

• Hancock (2005,06)

• Kaerger (2004)

• Martino (2004)

• Mielck (2006)

• Bentham (2005,06)

• Wu (2006)

• Michrafy (2007)

• Bansal (2011)

• Etzler (2011)

• ……..

23

Binary Mixture Model (50-50 mix) (equal sized monodispersed spheres)

Interaction

A-A 10

B-B 9

A-B 16

mix = x2 AA + (1-x)2 BB + 2x(1-x) AB

Pure A Pure B Mech. Prop

of Mixture

Theory x = 0.5

x2 0.25

(1-x)2 0.25

2x(1-x) 0.5

Xi= volume

fraction of i

24

Mixing Rules

mix = x2 AA + (1-x)2 BB + 2x(1-x) AB

Then: mix x AA + (1-x) BB = xiI

If one assumes: AB = 0.5 (AA + BB)

Linear Mixing Rule

25

Experimental Details Materials (8 excipients) • Microcrystalline Cellulose PH101 (FMC)

• Microcrystalline Cellulose PH102 (FMC)

• Dicalcium Phosphate Dihydrate (Rhodia)

• Lactose Spray Process (Foremost)

• Lactose Monohydrate (Foremost)

• Corn Starch

• Pregelatinized Starch (Colorcon)

• Mannitol

Methods

• Determine true density by gas pycnometry (Micromeritics)

• Compress: hydraulic hand press (Carver), 3/8” round, flat-faced tooling

• Hold at pressure manually 30 sec.

• Decompress slowly over ~30 sec.

• Measure tablet dimensions, weigh immediately after tablet ejection

• Measure tablet crushing force (Schleuniger) immediately.

• Calculate tablet tensile strength

26

Linear mixture plots (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Corn Starch

MCC PH 101 and Corn Starch

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 50 100

Co

mp

ressio

n P

ressu

re Te

nsi

le S

tre

ngt

h

% Dicalcium phosphate

MCC PH101 and Dicalcium Phosphate

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Lactose SD

MCC PH 101 and Lactose SD

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Mannitol

MCC PH 101 and Mannitol

27

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Dicalcium phosphate

Lactose SD and Dicalcium Phosphate

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 20 40 60 80 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Mannitol

Lactose SD and Mannitol

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Lactose SD

Corn Starch and Lactose SD

Linear mixture plots (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

28

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 50 100

Co

mp

ressio

n P

ressu

re

Tesn

sile

Str

en

gth

% Dicalcium phosphate

Mannitol and Dicalcium Phosphate

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100

Co

mp

ression

Pressu

re Te

nsi

le S

tre

ngt

h

% Mannitol

Corn Starch and Mannitol

Linear mixture plots (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

Neither Tensile Strength nor Compression Pressure

follows linear mixing rule very well for most excipients

29

Mixing Rules

mix = x2 AA + (1-x)2 BB + 2x(1-x) AB

If one assumes: AB =(AA * BB) 1/2

Then: log(mix) xlog(AA)+(1-x)log(BB)

= xilog(i)

= x

AA 1-x

BB

Power Law

30

Power Law: Application of Berthelot Principle Ref: Etzler, et al. J. Adhes. Sci. Technol. (2011)

AB = (AA * BB) 1/2

Berthelot principle (1898) states that the interaction between

dissimilar molecules can be estimated as the geometric mean

of the interaction between like molecules.

In other words:

log(mix) xlog(AA) + (1-x)log( BB) = xilog(i)

Ref: FMEtzler, et al., J. Adhes. Sci. Technol. 25: 501-519,(2011).

DBerthelot, Sur le melange des gaz, Comptes Rendus 126: 1857-61 (1898).

n m n+m/2 sqrt(n*m)

1 100 50.5 10.000

1.2 100 50.6 10.954

1 120 60.5 10.954

31

Van der Waals had something to say about

this….

In the absence of direct experience, I wondered if I could compensate

for (a lack of data) by a simple hypothesis, (for) which we then check the

consequences. It is for this reason that I assumed 1,2 = 1 2, and in

fact, numerical verifications were found very satisfactory… (Berthelot)

It may well be that in many cases the value of 1,2 is slightly away from

1 2, and the calculated density in this case can be regarded only as

approximate. (Van der Waals)

32

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Corn Starch

MCC PH 101 and Corn Starch

1.00

10.00

100.00

1000.00

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Dicalcium phosphate

MCC PH 101 and Dicalcium Phosphate

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Mannitol

MCC PH 101 and Mannitol

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Lactose SD

MCC PH 101 and Lactose SD

Power Law plots: MCC (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

33

1.00

10.00

100.00

1000.00

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Dicalcium phosphate

MCC PH 101 and Dicalcium Phosphate

Power Law plots: DiCal Phosphate (SF=0.85, green CP, purple TS)

3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Tesn

sile

Str

en

gth

% Dicalcium phosphate

Mannitol and Dicalcium Phosphate

Dicalcium…

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 20 40 60 80 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Dicalcium phosphate

Lactose SD and Dicalcium Phosphate

34

Power Law plots: SD Lactose (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Lactose SD

Corn Starch and Lactose SD

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 20 40 60 80 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Dicalcium phosphate

Lactose SD and Dicalcium Phosphate

1.00

10.00

100.00

1000.00

0.10

1.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Mannitol

Lactose SD and Mannitol

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Lactose SD

MCC PH 101 and Lactose SD

35

Power Law plots: Mannitol (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

1.00

10.00

100.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Mannitol

Corn Starch and Mannitol

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Tesn

sile

Str

en

gth

% Dicalcium phosphate

Mannitol and Dicalcium Phosphate

Dicalcium…

1.00

10.00

100.00

1000.00

0.10

1.00

0 50 100C

om

pre

ssion

Pre

ssure

Ten

sile

Str

en

gth

% Mannitol

Lactose SD and Mannitol

36

Power Law plots: (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

Conclusion: Power Law does a rather good job of predicting the

Tensile Strength and Compression Pressure properties of binary

mixtures of a variety of excipients.

37

1.00

10.00

100.00

1000.00

0.10

1.00

10.00

0 50 100

Co

mp

ressio

n P

ressu

re

Ten

sile

Str

en

gth

% Lactose SD

Corn Starch and Lactose SD

Power Law plots: Where it fails (SF=0.85, green CP, purple TS) 3/8 in. Round, Flat Faced tooling, Carver Press, 30 sec dwell and decompression

1.00

10.00

100.00

1000.00

0.10

1.00

0 50 100C

om

pre

ssion

Pre

ssure

Ten

sile

Str

en

gth

% Mannitol

Lactose SD and Mannitol

Conclusion:

Power Law sometimes

doesn’t do a good job of

predicting the Tensile

Strength of binary

mixtures of two poor

bonding excipients.

Power Law sometimes

doesn’t do a good job of

predicting Compression

Pressure of binary

mixtures of a hard and a

soft excipient.

38

Modeling Mixtures • Given

• The Power Law relationship between the two components

log(mix)= x log(A)+ (1-x) log(B)

• And Ryshkewitch & Duckworth Eq. for Tensile Strength

log(i) = ki • i + B • And Compressibility Eq. for Compression Pressure

log(CPi) = k • i + A

• Predictions of mix can be made for ANY mixture (xi) at ANY solid fraction and Compression Pressure.

log( mix) = xi log(i)

39

Binary Mixture Formulations (Typical placebo blend of SDL and MCC)

• Blend (w/w) in V blender for 15 min • Microcrystalline Cellulose, Coarse (PH102)

• Lactose, Spray Process Standard

• Blend (Lubricate) in V blender for 5 min* • Magnesium Stearate 0.5% (w/w)

• Compress to Solid Fractions between ~0.6

and ~0.9

* Note: A Critical “Processing” Step”

40

0.001

0.01

0.1

1

10

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2

0.4 0.6

0.8 1.0

Tensile Strength Experimental

Predicted

Lactose – MCC Binary Mixtures

41

Accuracy of Predictions

Log linear Model

Tensile Strength -6.82%

Experimental errors are typically in the range of 5% to 10%.

42

Conclusions on Binary Mixtures

and the Model • Most excipient mixtures are well behaved and follow the

Power Law, Ryshkewitch & Duckworth and

Compressibility Equations.

• Properties of mixtures can be reasonably accurately

predicted based on properties of individual components.

• Exceptions appear to be mixtures of poor bonding (eg: low

strength) materials such as lactose, mannitol, starch, magnesium

stearate.

An understanding of mixtures is a key step to making

formulation development more scientific.

Why does our data fit so well? Well, we are careful in

determining properties at a constant solid fraction.

43

Formulations -----

Formulation =

Drug + Excipients

Reduce a ternary mixture to a binary mixture of:

Component 1: Drug

Component 2: Excipients

(eg: MCC + SDLactose +…)

44

Multicomponent Equation

Multicomponent Mixture =

log(mix) = xi log(i)

xi= volume fraction of ith component

i = Mechanical property (eg: Tensile Strength, Compression

Pressure) of ith component

45

Model Multicomponent Formulations

MgSt MCC Lactose API % .

0.5 1 2 0, 20, 30, 40, 60, 100

0.5 1 1 0, 40, 60, 100

0.5 2 1 0, 20, 40, 60, 100

Characterization of Three Direct Compression “Base

Formulations” with API with 0.5% Mg Stearate

47

Error in the Estimate Tensile Strength of

Formulations (API, MCC, SDLactose, MagStearate)

Error in Estimate

Tensile Strength 13.9%

Experimental Errors are typically in the range of 5% to 10%.

Note: Tensile strength is over-estimated by 13.9%. This may be due

to the effect of Magnesium Stearate which is not accounted for

because it is at a low level (0.5% w/w). Could consider this a

“processing” effect.

48

Predictive?

Insightful?

Useful?

49

3 Component Mixtures (SF=0.85, Hydraulic Press)

SD

Lactose

MCC

PH101

DiCalcium

Phosphate

dihydrate

Mannitol Corn

Starch

Aspirin TS

Pred.

MPa

TS

Meas.

MPa

CP

Pred.

MPa

CP

Meas.

MPA

33.3% 33.3% 33.3% 2.8 2.5 183 140

66.6% 16.7% 16.7% 1.4 1.2 142 127

33.3% 33.3% 33.3% 0.7 0.6 86 82

66.6% 16.7% 16.7% 0.7 0.5 97 88

33.3% 33.3% 33.3% 1.6 1.9 70 118

16.7% 16.7% 66.6% 0.4 0.5 21 56

50

API-1 Predictions (~30% API) Mechanical

Property

(SF=0.85)

Predicted

with MCC

PH101

Measured

Formula

With MCC

PH101

Measured

Formula

With MCC

PH105

Rating

Compression

Pressure

90 98 104 Attribute

Tensile

Strength

3.2 2.7 3.1 Attribute

Dynamic

Hardness

295 273 291 Marginal

Bonding Index 0.6 1.0 1.07 Marginal

Brittle Fracture 0.15 0.09 0.15 Attribute

Viscoelasticity 7.2 5.3 5.7 Attribute

51

API-1 Predictions (~30% API) Mechanical

Property

(SF=0.85)

Predicted

with MCC

PH101

Measured

Formula

With MCC

PH101

Measured

Formula

With MCC

PH105

Rating

Compression

Pressure

90 98 104 Attribute

Tensile

Strength

3.2 2.7 3.1 Attribute

Dynamic

Hardness

295 273 291 Marginal

Bonding Index 0.6 1.0 1.07 Marginal

Brittle Fracture 0.15 0.09 0.15 Attribute

Viscoelasticity 7.2 5.3 5.7 Attribute

52

Conclusions • Predictions of mechanical properties of mixtures can be

made with a degree of confidence

• But there are many things left to study and understand

• Interaction terms

• Effect of processing (lubrication, granulation)

• “Acceptance criteria” for properties

• “Low strength” excipients seem to be deviants

• Useful for:

• Formulator training (eg: things are additive!)

• Formulation development

• Feasibility assessment

• Excipient selection: Type, grade, quantity

• Process selection (DC, Granulation)

• Focusing discussion and asking good questions

• Contributes to Product and Process Understanding!

53

Finally

• “Essentially, all models are wrong but some are

useful.” George Box (1987)

• “If the predictions are wrong, how fascinating!”

Greg Amidon (2012)

• “The history of science is the history of the

gradual clearing away of this nonsense or of

its replacement by fresh but already less

absurd nonsense.” Friedrich Engels (1890)

54

Acknowledgements

• Junghyun Kim UMichigan Pharm Engineering

U North Carolina, grad student

• Connie Skoug Upjohn, Pfizer, Abbott

• Pam Meyer Upjohn, Pharmacia, Pfizer

• Don Shrauger Upjohn

• Frank McGill Upjohn

• Patrick Marsac UMichigan, Purdue, Merck

• Ken Yamamoto Upjohn, Pfizer


Recommended