+ All Categories
Home > Technology > Cu stp 07_crs(tower)

Cu stp 07_crs(tower)

Date post: 18-Dec-2014
Category:
Upload: manuel-silva
View: 499 times
Download: 2 times
Share this document with a friend
Description:
 
66
SOLAR THERMAL POWER GEEN 4830 ECEN 5007 Manuel A. Silva Pérez [email protected] 7. Central Receiver Systems
Transcript
Page 1: Cu stp 07_crs(tower)

SOLAR THERMAL POWERGEEN 4830 – ECEN 5007

Manuel A. Silva Pérez

[email protected]

7. Central Receiver Systems

Page 2: Cu stp 07_crs(tower)

Central Receiver Systems - CRS

14/7/101 GEEN 4830 – ECEN 5007

Page 3: Cu stp 07_crs(tower)

Solar Thermal Power Plant.

Basic configuration

Beam irradiance

Concentrator

Receiver

Thermal

Storage

Concentrated irradianceElectricity

Power

conversion

system

Thermal energy

BoilerFossil fuel

Biomass

14/7/102 GEEN 4830 – ECEN 5007

Page 4: Cu stp 07_crs(tower)

Central Receiver System

http://www1.eere.energy.gov/solar/power_towers.html14/7/103 GEEN 4830 – ECEN 5007

Page 5: Cu stp 07_crs(tower)

CRS (Gema Solar, Molten salts)

14/7/104 GEEN 4830 – ECEN 5007

Page 6: Cu stp 07_crs(tower)

CRS

(Phoebus, Open air volumetric receiver)

14/7/105 GEEN 4830 – ECEN 5007

Page 7: Cu stp 07_crs(tower)

Collector System (concentrator)

14/7/10GEEN 4830 – ECEN 50076

Page 8: Cu stp 07_crs(tower)

Heliostat field

The concentrator is the “heliostat field”, a Fresnel

concentrator

Main elements

Heliostat

Control System

14/7/10GEEN 4830 – ECEN 50077

Page 9: Cu stp 07_crs(tower)

The heliostat

“an instrument consisting of a mirror mounted on an axis moved by clockwork by which a sunbeam is steadily reflected in one direction”

Basic components

Reflecting surface

Structure and tracking mechanism

Control system

Typology:

Glass - metal

Stretched membrane

Size: 1 m2 to 150 m2

14/7/108 GEEN 4830 – ECEN 5007

Page 10: Cu stp 07_crs(tower)

Heliostat

Back support

structure

Elevation drive

Azimuth drive

Reflecting surface

Reflected ray

Incident ray

14/7/109 GEEN 4830 – ECEN 5007

Page 11: Cu stp 07_crs(tower)

Burning mirror, Hoesen (18th century)

14/7/1010 GEEN 4830 – ECEN 5007

Page 12: Cu stp 07_crs(tower)

Glass – metal heliostat

14/7/1011 GEEN 4830 – ECEN 5007

Page 13: Cu stp 07_crs(tower)

Heliostat

14/7/1012 GEEN 4830 – ECEN 5007

Page 14: Cu stp 07_crs(tower)

Glass – metal heliostat

14/7/1013 GEEN 4830 – ECEN 5007

Page 15: Cu stp 07_crs(tower)

Glass – metal heliostats

14/7/1014 GEEN 4830 – ECEN 5007

Page 16: Cu stp 07_crs(tower)

Stretched membrane heliostats

14/7/1015 GEEN 4830 – ECEN 5007

Page 17: Cu stp 07_crs(tower)

Stretched membrane heliostats

14/7/1016 GEEN 4830 – ECEN 5007

Page 18: Cu stp 07_crs(tower)

Stretched membrane heliostats

14/7/1017 GEEN 4830 – ECEN 5007

Page 19: Cu stp 07_crs(tower)

Reflectivity

Reflectivity of a new, clean mirror ≈ 0.90 ÷ 0.94

14/7/1018 GEEN 4830 – ECEN 5007

Page 20: Cu stp 07_crs(tower)

Mirror quality

Heliostat facets are spherically curved

For large focal distances, a parabolic surface can be approximated by

an spherical surface of radius r = 2f (f: focal distance).

14/7/10GEEN 4830 – ECEN 500719

Page 21: Cu stp 07_crs(tower)

Mirror quality

2222

cspSD

Ideal spherical curvature

Spherical curvature, with waviness

2222

cspSD

14/7/1020 GEEN 4830 – ECEN 5007

Page 22: Cu stp 07_crs(tower)

Distortion

Spherical reflectors generate distortion of the image

Dependent on time (relative position sun-heliostat)

14/7/10GEEN 4830 – ECEN 500721

Summer solstice, noon

Summer solstice, 7:30 a.m. Summer solstice, 7:30 p.m.

Page 23: Cu stp 07_crs(tower)

Heliostat field layout

Surround field

North (south) field

Secondary concentration

Secondary concentrator optics tower (SCOT)

14/7/1022 GEEN 4830 – ECEN 5007

Page 24: Cu stp 07_crs(tower)

North field

0

200

400

600

800

1000

-600 -400 -200 0 200 400 600

14/7/1023 GEEN 4830 – ECEN 5007

Page 25: Cu stp 07_crs(tower)

Surrounding field

14/7/1024 GEEN 4830 – ECEN 5007

Page 26: Cu stp 07_crs(tower)

Geometrical performance of heliostats

14/7/1025 GEEN 4830 – ECEN 5007

Page 27: Cu stp 07_crs(tower)

Cosine factor

Yearly average cosine factor for a

north heliostat field

14/7/1026 GEEN 4830 – ECEN 5007

Page 28: Cu stp 07_crs(tower)

Shading and blocking

14/7/1027 GEEN 4830 – ECEN 5007

Shading & blocking

Shading

Blocking

Page 29: Cu stp 07_crs(tower)

Air transmittance

14/7/1028 GEEN 4830 – ECEN 5007

Air transmittance

Page 30: Cu stp 07_crs(tower)

Spillage

14/7/1029 GEEN 4830 – ECEN 5007

Page 31: Cu stp 07_crs(tower)

Receiver system

Function

Components

Types of receivers

Working fluids

14/7/10GEEN 4830 – ECEN 500730

Page 32: Cu stp 07_crs(tower)

Receiver system

14/7/1031 GEEN 4830 – ECEN 5007

Page 33: Cu stp 07_crs(tower)

Receiver types

14/7/1032 GEEN 4830 – ECEN 5007

Page 34: Cu stp 07_crs(tower)

Cavity receivers

14/7/10GEEN 4830 – ECEN 500733

Page 35: Cu stp 07_crs(tower)

Cavity receivers

14/7/10GEEN 4830 – ECEN 500734

Page 36: Cu stp 07_crs(tower)

Molten salt cavity receiver

14/7/10GEEN 4830 – ECEN 500735

Page 37: Cu stp 07_crs(tower)

External, cylindrical receiver

14/7/10GEEN 4830 – ECEN 500736

Page 38: Cu stp 07_crs(tower)

External, cylindrical receiver

14/7/10GEEN 4830 – ECEN 500737

Page 39: Cu stp 07_crs(tower)

External, cylindrical receiver

14/7/10GEEN 4830 – ECEN 500738

Page 40: Cu stp 07_crs(tower)

Tubular receiver (boiler)

14/7/1039 GEEN 4830 – ECEN 5007

Page 41: Cu stp 07_crs(tower)

Volumetric receivers

14/7/10GEEN 4830 – ECEN 500740

Page 42: Cu stp 07_crs(tower)

Volumetric receivers

14/7/10GEEN 4830 – ECEN 500741

Page 43: Cu stp 07_crs(tower)

Heat transfer characteristics of tubular and

volumetric receivers

14/7/10GEEN 4830 – ECEN 500742

Page 44: Cu stp 07_crs(tower)

Detail of a volumetric absorber (wire mesh)

14/7/10GEEN 4830 – ECEN 500743

Page 45: Cu stp 07_crs(tower)

Detail of a volumetric absorber

(ceramic cups)

14/7/10GEEN 4830 – ECEN 500744

Page 46: Cu stp 07_crs(tower)

Working fluids

14/7/10GEEN 4830 – ECEN 500745

Page 47: Cu stp 07_crs(tower)

Working fluids for CRS

Water / steam

Saturated steam

Superheated steam

Molten salts

Air

Pressurized

Atmospheric

Sodium

Thermal oils

14/7/10GEEN 4830 – ECEN 500746

Page 48: Cu stp 07_crs(tower)

Comparison of HTF’s

14/7/10GEEN 4830 – ECEN 500747

Page 49: Cu stp 07_crs(tower)

Power conversion system

Rankine cycle (steam turbine)

Brayton cycle (gas turbine)

Combined cycle (gas turbine + steam turbine)

Stirling engines

(MHD)

14/7/10GEEN 4830 – ECEN 500748

Page 50: Cu stp 07_crs(tower)

CRS: pros and cons.

Pros:

Ability to achieve high temperatures

Wide industrial base for most components

Multiple technological options

Technologically proven

Multiple thermal energy storage options

High potential for improved effciency or cost reduction

Cons.:

Complexity

Short commercial record

Best technology still undefined

14/7/10GEEN 4830 – ECEN 500749

Page 51: Cu stp 07_crs(tower)

Energy Balance of Central Receiver

Systems

14/7/10GEEN 4830 – ECEN 500750

Page 52: Cu stp 07_crs(tower)

High concentration concepts

Secondary concentration

Increase flux density on the absorber

Reduce requirements for primary concentrator (heliostats)

Secondary Concentrator Optics Tower

The receiver can be placed at the ground level

Solar Furnaces

Very high concentration ratios

Combine a field of flat heliostats and a parabolic concentrator

Not for electricity generation

14/7/10GEEN 4830 – ECEN 500751

Page 53: Cu stp 07_crs(tower)

Secondary concentrators

REFOS Project (DLR)

14/7/10GEEN 4830 – ECEN 500752

Page 54: Cu stp 07_crs(tower)

SCOT (Secondary Concentrator Optics

Tower)

Weizmann Institute (Israel)

14/7/10GEEN 4830 – ECEN 500753

Page 55: Cu stp 07_crs(tower)

SCOT (Secondary Concentrator Optics

Tower)

14/7/10GEEN 4830 – ECEN 500754

Page 56: Cu stp 07_crs(tower)

Beam Down

14/7/10GEEN 4830 – ECEN 500755

Page 57: Cu stp 07_crs(tower)

Solar Furnaces

14/7/10GEEN 4830 – ECEN 500756

Page 58: Cu stp 07_crs(tower)

Solar Furnaces

14/7/10GEEN 4830 – ECEN 500757

Page 59: Cu stp 07_crs(tower)

CRS projects

14/7/10GEEN 4830 – ECEN 500758

Page 60: Cu stp 07_crs(tower)

CRS (PS10, sat. steam)

14/7/1059 GEEN 4830 – ECEN 5007

Page 61: Cu stp 07_crs(tower)

PS10 and PS20 (Abengoa Solar, Spain)

14/7/1060 GEEN 4830 – ECEN 5007

Page 62: Cu stp 07_crs(tower)

CRS (Gema Solar, Molten salts)

14/7/1061 GEEN 4830 – ECEN 5007

Page 63: Cu stp 07_crs(tower)

Gema Solar (Torresol Energy, Spain)

14/7/1062 GEEN 4830 – ECEN 5007

Page 64: Cu stp 07_crs(tower)

Gema SolarDesign Data

Total Reflective Area 285.200 m2

Number of heliostats 2480

Total Area covered by Heliostat Field 142.31 Ha

Thermal output of the Receiver 120 MWt

Tower height 120 m

Heat Storage Capacity (equivalent to turbine operation) 15 hours

Steam Turbine power 17 MWe

Natural Gas Thermal Power 16 MWt

Projected Operative Figures

Direct solar radiation over Heliostats 2062 kWh/m2

Annual Energy sales 96.400 MWhe

Contribution of Natural Gas 15%

Capacity utilization 65 %

CO2 savings 23.000 – 85.000 t/y

14/7/1063 GEEN 4830 – ECEN 5007

Page 65: Cu stp 07_crs(tower)

Sierra Solar (e-Solar, USA)

14/7/1064 GEEN 4830 – ECEN 5007

Page 66: Cu stp 07_crs(tower)

Unit #1 (100 kW hybrid GT) (Aora Solar,

Israel)

14/7/1065 GEEN 4830 – ECEN 5007


Recommended