+ All Categories
Home > Documents > Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED...

Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED...

Date post: 20-Jul-2018
Category:
Upload: lemien
View: 215 times
Download: 0 times
Share this document with a friend
25
NASA Technical Memorandum 100202 Detailed Mechanism of Benzene Oxidation N88-17775 - __- ~ [NASA-TPl-1BO202) DETAILED HECH ANIS14 OF BENZENE OXIDATION [NASA) 24 p Avail: #TIS HC AB3/HF 801 CSCL 07D IJnclas G3/25 010732C David A. Bittker Lewis Research Center Cleveland, Ohio October I987 https://ntrs.nasa.gov/search.jsp?R=19880002393 2018-07-20T00:15:28+00:00Z
Transcript
Page 1: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

NASA Technical Memorandum 100202

Detailed Mechanism of Benzene Oxidation

N88-17775 - __- ~

[NASA-TPl-1BO202) DETAILED HECH ANIS14 OF BENZENE OXIDATION [NASA) 24 p Avail: #TIS HC AB3/HF 801 CSCL 07D

IJnclas G 3 / 2 5 010732C

David A. Bittker Lewis Research Center Cleveland, Ohio

October I987

https://ntrs.nasa.gov/search.jsp?R=19880002393 2018-07-20T00:15:28+00:00Z

Page 2: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

ERRATA

NASA Technica l Memorandum 100202

DETAILED MECHANISM OF BENZENE O X I D A T I O N

by David A . B i t t k e r

October 1987

Page 4 , a t t h e bot tom of t h e page, add t h e f o l l o w i n g l i n e s :

0 the r C- H-0 Re a c t i on s

Two r e a c t i o n s which p l a y a s i g n i f i c a n t ro le i n g e n e r a t i n g r a d i c a l s t h a t c o n t r o l t he benzene i g n i t i o n process a re r e a c t i o n s 3 and 9. The r a t e cons tan ts for these H2-02-CO system r e a c t i o n s a re w e l l e s t a b l i s h e d and a re taken from

Page 16, Table 11, r e a c t i o n number 14: The species C6H60H should be CgH50H

Page 17, T a b l e 111, r e a c t i o n number 14: The species C6H60H should be C6H50H

Page 3: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

DETAILED MECHANISM OF BENZENE O X I D A T I O N

Dav id A . B i t t k e r N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n

Lewis Research Center Cleveland, Oh io 44135

SUMMARY

A d e t a i l e d benzene o x i d a t i o n mechanism, which uses t h e q u a l i t a t i v e pa ths o u t l i n e d by p r e v i o u s i n v e s t i g a t o r s , i s presented. I g n i t i o n d e l a y t imes f o r a r g o n - d i l u t e d m i x t u r e s computed w i t h t h i s mechanism a r e i n s a t i s f a c t o r y agree- ment w i t h exper imen ta l va lues o b t a i n e d from pressure- t ime p r o f i l e s f o r a wide range o f i n i t i a l c o n d i t i o n s . An exper imen ta l temperature versus t ime p r o f i l e

& measured i n a n i t r o g e n d i l u t e d m i x t u r e has a l s o been s u c c e s s f u l l y computed. & A d d i t i o n a l computat ions have qual 1 t a t i v e l y matched seve ra l exper imen ta l spec ies

c o n c e n t r a t i o n versus t i m e p r o f i l e s for t h e n i t r o g e n d i l u t e d r e a c t i o n . App l i ca - t i o n of s e n s i t i v i t y a n a l y s i s a l l owed t h e approximate d e t e r m i n a t i o n o f t h e r a t e cons tan ts for two i m p o r t a n t r e a c t i o n s :

k7 C6H5 + O2 $ C6H50 + 0

k7 = 4 . 5 ~ 1 0 12 ,-15000 cal/RTcm3 mol-ls-l

and

kl 0 C5H5 + O2 + C5H50 + 0

12 e-20000 cal/RTcm3 mol-ls-l k10 = 2 . 0 ~ 1 0

INTRODUCTION

The i n c r e a s i n g importance o f a romat i cs i n t h e p r a c t i c a l hydrocarbon f u e l s o f today has a c c e l e r a t e d research aimed a t improv ing o u r unders tand ing o f t h e h igh- temperature o x i d a t i o n of these compounds. Th is knowledge i s i m p o r t a n t i n c o n t r o l l i n g t h e combustion and emiss ion c h a r a c t e r i s t i c s o f b o t h advanced a i r - c r a f t p r o p u l s i o n and f u t u r e ground-based gas t u r b i n e s . The o x i d a t i o n and p y r o l y s i s of t h e s i m p l e s t a romat i c , benzene, have been s t u d i e d by seve ra l I n v e s t i g a t o r s ( r e f s . 1 t o 4 ) . A r e c e n t r e v i e w paper ( r e f . 5) on a romat i c hydro- carbon o x i d a t i o n p resen ts e x p e r i m e n t a l l y measured temperature and compos i t i on p r o f i l e s for o x i d a t i o n o f one benzene-oxygen-nitrogen m i x t u r e i n a h i g h l y t u r - b u l e n t flow r e a c t o r . I n some r e c e n t work ( r e f . 6 ) i g n i t i o n d e l a y t i m e measure- ments were r e p o r t e d for benzene-oxygen-argon m i x t u r e s i g n i t e d behind a r e f l e c t e d shock. The exper imenta l c o n d i t i o n s covered a wide rdnge o f i n i t i a l composi t ion, temperature, and p ressu re . The i g n i t i o n d e l a y t imes were d e t e r - mined from pressu re versus t ime p r o f l l e s .

Page 4: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

The purpose o f t h e p r e s e n t paper i s t o develop a d e t a i l e d mechanism which reproduces the r e s u l t s of r e f e r e n c e s 5 and 6 o v e r the w i d e s t p o s s i b l e range o f i n i t i a l c o n d i t i o n s . Computat ions were performed w i t h t h e new NASA Lewis genera l chemical k i n e t i c s and s e n s i t i v i t y a n a l y s i s code ( r e f s . 7 to 9). To achieve the b e s t p o s s i b l e agreement s e n s i t i v i t y a n a l y s i s was used t o i d e n t i f y t he most i m p o r t a n t r e a c t i o n s . Adjustments were then made to some of t h e r e a c t i o n r a t e cons tan ts i n t h e mechanism. However, o n l y r a t e cons tan ts w i t h l a r g e u n c e r t a i n t i e s were changed s i g n i f i c a n t l y . These adjustments w e r e made m a i n l y t o r e a c t i o n s i n v o l v i n g benzene and i t s fragments. The r a t e cons tan ts for r e a c t i o n s i n v o l v i n g o t h e r hydrocarbons, e .g . , a c e t y l e n e and methane, were used a t t h e i r l i t e r a t u r e va lues . I n the s e c t i o n s which fo l low, we p r e s e n t comparisons o f computed and exper imen ta l r e s u l t s and d i scuss t h e mechanism f i n a l l y ob ta ined for o p t i m a l match ing w i t h t h e l a t t e r r e s u l t s . We a l s o desc r ibe the s e n s i t i v i t y s tudy which determined t h e r e a c t i o n s which have t h e g r e a t e s t e f f e c t on t h e computed r e s u l t s . , BENZENE O X I D A T I O N MECHANISM

We have f o l l o w e d t h e genera l scheme o u t l i n e d q u a l i t a t i v e l y i n re fe rences 1 and 5 . The o x i d a t i o n process can be d i v i d e d i n t o t h r e e s tages:

I I n i t i a t i o n : The f o r m a t i o n o f oxygen and hydrogen atoms and OH r a d i c a l s as w e l l as some phenyl r a d i c a l s by t h e p y r o l y s i s o f benzene and i t s r e a c t i o n w i t h mo lecu la r oxygen.

I n d u c t i o n : Rapid f o r m a t i o n of phenyl r a d i c a l and i t s o x i d a t i o n and p y r o l y s i s t o form p r i m a r i l y phenoxy r a d i c a l , CgH50; f u r t h e r r e a c t i o n o f CgH5O to form phenol , cyc lopen tad iene , and ace ty lene .

Combustion: O x i d a t i o n of t h e s t a b l e i n t e r m e d i a t e hydrocarbons and r a d i c a l recombinat ions which cause t h e main heat r e l e a s e .

I n t h e i n i t i a t i o n r e g i o n t h e f o l l o w i n g r e a c t i o n s were assumed:

H + O2 + O H k3 + 0

I n t h e i n d u c t i o n r e g i o n the r e a c t i o n s used were as follows:

k. 4 '6"s + H2 H + C6H6

( 1 )

( 2 )

(3)

( 4 )

2

Page 5: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

OH + C6H6 kg C6H5 + HzO ( 6 )

We have w r i t t e n r e a c t i o n s 4 th rough 6 as s imple a b s t r a c t i o n processes, a l t hough t h e p o s s i b i l i t y o f a d d i t i o n processes has been suggested ( r e f . 5 ) .

C6H5 + O2 k7 C6H50 + 0

C H O + M + k8 C 5 H 5 + C O + M 6 5

cyc 10- pen tad ieny l

CO + OH 5 - C 0 2 + H

kl 0 C5H5 + O2 + C 5 H 5 0 + 0

kl 1 C 5 H 5 0 + M C4H5 + CO + M

b u t a d i e n y l

cyc 10- pentadiene

( 7 )

( 8 )

(9)

(10)

( 1 1 )

‘gH5 k5 - C4H3 + C2H2 (15)

M + C 4 H 3 kl + 6 C 4 H z + H + M (16)

These a re t h e s i g n i f i c a n t s teps which occur i n the i n i t i a t i o n and i n d u c t i o n r e g i o n s . A d d i t i o n a l r e a c t i o n s , d iscussed l a t e r , a re needed to model t h e com- b u s t i o n r e g i o n and determine t h e c o n c e n t r a t i o n s o f i n t e r m e d i a t e spec ies . The

3

Page 6: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

complete s e t o f r e a c t l o n s I s necessary f o r model lng t h e temperature and com- p o s l t l o n p r o f l l e s .

R E A C T I O N RATE CONSTANTS

I n t h i s s e c t l o n we d iscuss the s e l e c t l o n o f r a t e constants f o r those r e a c t l o n s I n v o l v l n g benzene and I t s decomposl t lon products whlch have been s tud ied I n recen t exper lmenta l work. Sources f o r r a t e cons tan t o f combustlon- zone r e a c t i o n s a r e a l s o g lven.

Benzene P y r o l y s l s React lon

The p y r o l y s l s o f benzene has been s tud led r e c e n t l y I n t w o l n v e s t i g a t l o n s , by Hsu, L i n , and L l n (Re f . 4 ) and by K l e f e r e t a l . (Ref . 10 ) . Th is work has shown t h a t r e a c t l o n ( 2 ) I s t h e o n l y Impor tan t pa th a t h i g h temperature. The p y r o l y s l s r a t e cons tan t was measured as a f u n c t i o n o f temperature and pressure . For t h e temperature and pressure range o f t h e present computat ions we have used t h e express lon g l ven i n re fe rence 4, whlch agrees w e l l w i t h r e s u l t s o f re fe rence 10.

Rad lca l A t tacks on Benzene

React ions 4, 5 and 6 a r e t h e main r e a c t l o n s f o r g e n e r a t l n g phenyl r a d l c a l . We have used the r a t e c o n s t a n t o f re fe rence 10 f o r t h e H + CgHf, r e a c t i o n . The r e c e n t l y repo r ted exper lmenta l values o f re fe rences 11 and 12 were used f o r t h e 0 t CgH6 and OH + CgH6 r e a c t i o n s . I n a l a t e r s e c t l o n we d iscuss s e n s l t l v - l t y a n a l y s l s computat lons whlch showed t h e pressure and temperature p r o f l l e s t o be q u l t e I n s e n s i t i v e t o moderate v a r l a t l o n s o f these t h r e e r a t e cons tan ts f rom t h e l r l l t e r a t u r e va lues. Th is I s t r u e , even though these r e a c t i o n s a r e a l l impor tan t sources o f phenyl r a d l c a l .

Other cf, and Cg React lons

The r a t e cons tan ts o f some r e a c t i o n s o f phenyl and phenoxy (CgH5O) r a d l c a l have been measured r e c e n t l y . The p r e v l o u s l y quoted work o f re fe rence 10 has determined r a t e c o n s t a n t express ions f o r t h e phenyl r a d l c a l p y r o l y s l s , r e a c t i o n 15. The i r h lgh-pressure un lmolecu la r r e a c t l o n express lon was used I n t h e pre- sent computat lons. The es t lmated r a t e c o n s t a n t f o r p y r o l y s l s o f C4H3, r e a c t i o n 16, I s a l s o taken f rom re fe rence 10. The r a t e cons tan t f o r t h e phenoxy p y r o l - y s i s , r e a c t i o n 8, I s t h e va lue o f L l n and L l n ( r e f . 1 3 ) . The r a t e cons tan ts f o r o t h e r r e a c t i o n s I n t h e l n d u c t l o n r e g l o n had t o be e l t h e r es t lmated o r ad jus ted t o match t h e exper lmenta l da ta . The s e n s l t l v l t y a n a l y s l s computat lons f o r accompl ish ing t h i s task a r e descr ibed below.

4

Page 7: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

re fe rence 14. The r e a c t i o n s o f a c e t y l e n e , which a r e i m p o r t a n t i n t h e combus- t i o n reg ion , were a l l taken from r e f e r e n c e 1 5 . The complete mechanism con- s i s t e d o f 110 r e a c t i o n s among 35 species. A l l r e a c t i o n s and r a t e cons tan ts used fo r these computat ions a r e g i v e n i n t a b l e I.

S E N S I T I V I T Y ANALYSIS STUDY

To i d e n t i f y t h e i m p o r t a n t r e a c t i o n s which c o n t r o l t h e o x i d a t i o n o f benzene and i t s f ragments i n t h e i n d u c t i o n zone, an e x t e n s i v e s e n s i t i v i t y a n a l y s i s was performed. Normal ized s e n s i t i v i t y c o e f f i c i e n t s were computed u s i n g t h e decoupled d i r e c t method desc r ibed i n re ferences 8 and 9. g i v e the v a r i a t i o n o f a l l spec ies c o n c e n t r a t i o n s , temperature and p ressu re w i t h changes i n the i n d i v i d u a l r a t e c o n s t a n t parameters A j , n j , and E j o f t h e

m o d i f i e d A r rhen ius equa t ion

p resen t work s e n s i t i v i t y c o e f f i c i e n t s of seve ra l spec ies c o n c e n t r a t i o n s p l u s temperature and p ressu re w i t h r e s p e c t t o t h e A j determine the i m p o r t a n t r e a c t i o n s . Table 11 shows these c o e f f i c i e n t s for t h e n i t r o g e n d i l u t e d s t o i c h i o m e t r i c o x i d a t i o n of benzene ( i n i t i a l temperature = 1115 K ) i n t he t u r b u l e n t f low r e a c t o r desc r ibed i n r e f e r e n c e 5 . The r e a c t i o n i s a t cons tan t p ressu re so no p ressu re s e n s i t i v i t y c o e f f i c i e n t i s g i ven . The r e s u l t s show t h a t t h e r e a c t i o n s o f CgH5 and C5H5 r a d i c a l s w i t h mo lecu la r oxygen have g r e a t e s t e f f e c t on temperature and seve ra l spec ies compos i t i on . p r o f i l e s . Table I11 shows s e n s i t i v i t y c o e f f i c i e n t s f o r a t y p i c a l s t o i c h i o - m e t r i c benzene oxygen-argon shock i g n i t i o n ( i n i t i a l temperature = 1405 K) from r e f e r e n c e 6. S e n s i t i v i t y c o e f f i c i e n t s of p ressu re a r e now i n c l u d e d . Again t h e dominant r e a c t i o n s a r e t h e CgH5 and C5H5 o x i d a t i o n s . Computations were a l s o performed for a second shock i g n i t i o n a t equ iva lence r a t i o = 2 and an i n i t i a l temperature o f 1600 K. S e n s i t i v i t y c o e f f i c i e n t s for f o u r dependent v a r i a b l e s

.and f i v e r e a c t i o n s a r e shown f o r b o t h c o n d i t i o n s i n t a b l e I V f o r ease o f com- p a r i s o n . The da ta i n t a b l e I V show t h a t computed r e s u l t s should be most s e n s i t i v e t o t h e r a t e cons tan t o f r e a c t i o n 7, t he phenyl o x i d a t i o n , a t b o t h c o n d i t i o n s . However, t h e r e i s a s i g n i f i c a n t change i n t h e s e n s i t i v i t y coef - f i c i e n t s fo r r e a c t i o n 15, t h e phenyl p y r o l y s i s . These c o e f f i c i e n t s change from ve ry smal l va lues f o r t h e s t o i c h i o m e t r i c lower temperature r e a c t i o n t o much l a r g e r va lues f o r t h e r i c h h i g h e r temperature r e a c t i o n . The e f f e c t o f r e a c t i o n 1 5 on t h e p ressu re p r o f l l e i s now i n d i c a t e d t o be g r e a t e r t han t h a t o f r e a c t i o n 10.

Thes? c o e f f i c i e n t s

= A T n j exp ( - E . / R T > for r e a c t i o n j . I n t h e k j 3 J

parameters were used t o

The p r e d i c t i o n s o f t h e s e n s i t i v i t y c o e f f i c i e n t s were t e s t e d by u s i n g t h e " b r u t e f o r c e " or i n d i r e c t method of s e n s i t i v i t y a n a l y s i s . The p reexponen t ia l f a c t o r fo r each r e a c t i o n i n t a b l e I V was changed by f a c t o r s o f 2 and 0.5 and t h e i g n i t i o n computat ion was repeated fo r each change. The e f f e c t o f these r a t e cons tan t v a r i a t i o n s on t h e computed p ressu re p r o f i l e i s shown i n t a b l e V . Given i n t h i s t a b l e a r e va lues o f T ~ , t h e i g n i t i o n - d e l a y t i m e measured from the pressure versus t ime p r o f i l e as desc r ibed i n d e t a i l i n t h e n e x t s e c t i o n . For each r e a c t i o n we show t h e -rP values for k s t d , t h e r a t e c o n s t a n t l i s t e d i n t a b l e I, and a l s o T for 2 k s t d and k s t d / 2 . Also shown a r e t h e p e r c e n t

t a b l e V c o n f i r m a l l t h e s e n s i t i v i t y p r e d i c t i o n s o f t a b l e I V . I n p a r t i c u l a r , changing k15 fo r t h e lower- temperature s t o i c h i o m e t r i c m i x t u r e has a v e r y smal l e f f e c t on zP. The same change i n k15 has a v e r y s i g n i f i c a n t e f f e c t on T~ f o r t h e h igh- temperature r i c h m i x t u r e .

changes i n T~ f o r eac I: r a t e cons tan t v a r i a t i o n . t h e computed r e s u l t s i n

5

Page 8: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

The r e s u l t s o f these s e n s i t i v i t y computat ions were used i n t h e f o l l o w i n g way t o a d j u s t t h e r a t e c o n s t a n t parameters. The A j and E j va lues f o r r e a c t i o n s 7 and 10 were a d j u s t e d i n seve ra l i t e r a t i o n s t o g i v e t h e b e s t match t o t h e i g n i t i o n de lay t imes o f r e f e r e n c e 6 and t h e temperature versus t i m e p r o f i l e o f r e f e r e n c e 5 for t h e benzene-oxygen-nitrogen r e a c t i o n . I t was found, from the matching o f i g n i t i o n d e l a y t imes, t h a t t h e a c t i v a t i o n energy of t h e dominant r e a c t i o n 7 should be as h i g h as p o s s i b l e . Th i s r e a c t i o n i s an exo- the rm ic process and we have used t h e upper l i m i t , suggested i n r e f e r e n c e 1 , of 15 kca l /mo le . The C5H5 o x i d a t i o n , r e a c t i o n 10, i s about 10 kca l /mo le endothermic a t 1200 K . An a c t i v a t i o n energy o f 20 kca l /mo le was found t o g i v e t h e b e s t shape t o t h e computed temperature versus t i m e p r o f i l e f o r t h e benzene- oxygen-n i t rogen r e a c t i o n . The p r e x p o n e n t i a l f a c t o r s o f bo th these r e a c t i o n s w e r e then a d j u s t e d t o g i v e t h e b e s t match t o b o t h t h e i g n i t i o n - d e l a y t i m e s and t h e temperature versus t i m e p r o f i l e . Table V and t h e s e n s i t i v i t y c o e f f i c i e n t s o f t a b l e I1 show t h a t r e a c t i o n 7 s t r o n g l y c o n t r o l s t h e T~ computat ion and t h a t r e a c t i o n s 7 and 10 b o t h have i m p o r t a n t e f f e c t s on the temperature versus t i m e p r o f i l e . Therefore t h e p r e x p o n e n t i a l f a c t o r A7 was determined by match- i n g t h e i g n i t i o n - d e l a y t i m e s and A 1 was then a d j u s t e d to g i v e t h e b e s t match to t h e temperature versus t i m e p r o f i P e. The va lues ob ta ined a re :

k7 = 4 . 5 ~ 1 0 1 2 e-15000 ca l /RT (31113 mol-IS-1

2.0x1012 e-20000 ca l /RT cm3 mol-1s-1 k10 =

Other r a t e cons tan ts f o r r e a c t i o n s i n v o l v i n g cyc lopentadiene, pheno t h e i r f ragments were e s t i m a t e d and a d j u s t e d t o g i v e t h e bes t agreement w r e p o r t e d exper imenta l phenol and cyc lopen tad iene p r o f i l e s i n r e f e r e n c e 5

and t h

DESCRIPTION OF COMPUTATIONAL PROCEDURE

I n t h i s s e c t i o n we d e s c r i b e b r i e f l y t h e apparatus and exper imenta l procedures r e p o r t e d i n r e f e r e n c e s 5 and 6. We then d e s c r i b e o u r mathematical model used t o s i m u l a t e each o f these r e a c t i n g s y s t e m s .

T u r b u l e n t Flow Reactor

Temperature and compos i t i on versus t i m e p r o f i l e s for the r e a c t i o n o f a s t o i c h i o m e t r i c benzene-oxygen m i x t u r e i n a n i t r o g e n atmosphere were o b t a i n e d i n the P r i n c e t o n U n i v e r s i t y f low r e a c t o r ( r e f , 5 ) . A d e t a i l e d d e s c r i p t i o n o f t h i s t u r b u l e n t , chemica l - ra te l i m i t e d dev i ce i s g i v e n i n r e f e r e n c e 16. The r e a c t a n t s were h i g h l y d i l u t e d i n n i t r o g e n t o e l i m i n a t e d i f f u s i o n e f f e c t s . P r o f i l e s o f temperature and compos i t i on w i t h r e s p e c t t o d i s t a n c e were conver ted to t i m e p r o f i l e s by t a k i n g i n t o account the flow v e l o c i t i e s w i t h i n t h e r e a c t o r . The exac t z e r o o f r e a c t i o n t i m e i s a r b i t r a r y and was taken as p o i n t o f f u e l i n j e c t i o n i n t o the h o t o x i d a n t stream. Reference 16 i n d i c a t e s t h a t t h e r e a c t o r i s operated a t one atmosphere p ressu re . I n t h e computat ions, t h e r e f o r e , t h e f low r e a c t o r was modeled as a c o n s t a n t p ressu re homogeneous ba tch r e a c t i o n . For a l l k i n e t i c computat ions o f t h i s work, t h e thermodynamic d a t a a r e from t h e NASA Lewis Research Center d a t a base which i s p a r t of t h e NASA Chemical E q u i l i - b r i u m Composi t ion Computer code 6 f Gordon and McBride ( r e f . 22). The r e c e n t l y r e p o r t e d d a t a o f B u r c a t , Z e l e z n i k and McBride ( r e f . 23) were used f o r phenyl and phenoxy r a d i c a l s . New thermodynamic d a t a f o r severa l benzene p y r o l y s i s and

6

Page 9: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

o x i d a t i o n f ragments (C4H3, C4H , C5H5 and C H5O) were e s t i m a t e d by

c o n c e n t r a t i o n s were compared t o t h e p r o f i l e s presented i n r e f e r e n c e 5. Bonnie J . McBride. Computed t 7 me p r o f i l e s o ? temperature and seve ra l spec ies

Shock-Tube I g n i t i o n Exper iments

The i g n i t i o n d e l a y t imes o f Ref . 6 were o b t a i n e d from measured p ressu re versus t ime t r a c e s f o l l o w i n g i g n i t i o n beh ind a r e f l e c t e d shock wave. The t i m e i n t e r v a l between i g n i t i o n and t h e f i r s t observed " s i g n i f i c a n t " p ressu re r i s e was taken .as t h e i g n i t i o n d e l a y t i m e , t. To match t h e exper imen ta l technlque as c l o s e l y as p o s s i b l e t h e computed i g n i t i o n d e l a y t ime , zP, was o b t a i n e d from t h e computed p ressu re versus t i m e cu rve . The k i n e t i c computat ions were per- formed assuming a constant-volume b a t c h r e a c t i o n behind t h e r e f l e c t e d shock. Be fo re p e r f o r m i n g t h e k i n e t i c computat ions t h e i n i t i a l r e f l e c t e d shock condi - t i o n s i n r e f e r e n c e 6 were recomputed. A smal l c o r r e c t i o n f o r a t t e n u a t i o n o f t h e r e f l e c t e d shock v e l o c l t y was a p p l i e d t o each d a t a p o i n t . shock i n i t i a l temper tures and p ressu res (T5 and p5) were then recomputed u s i n g t h e Chemical E q u i l i b r i u m Code o f reference 22 . temperature, p ressu re , and a l l spec ies c o n c e n t r a t i o n s were then computed. A t y p i c a l computed p ressu re ve rsus t i m e cu rve i s shown i n f i g u r e 1. A l s o shown i s t h e method used t o determine t h e

T~ e x t r a p o l a t e d l i n e s . imen ta l technique. Only 35 o f t h e exper imen ta l p o i n t s r e p o r t e d i n r e f e r e n c e 6 were used for o u r comparisons. a t i o n for one o f two d i f f e r e n t reasons. F i r s t , a l l p o i n t s for which T was l e s s than 100 psec were exc luded. These va lues a r e i n a c c u r a t e because o f pres- sure d i s tu rbances which propagate i n t h e shock tube ahd. cause nonuni form heat- i n g o f t h e gas beh ind t h e r e f l e c t e d shock. D e t a i l s o f t h i s e f f e c t a r e g i v e n i n r e f e r e n c e 19. Second, a l l t h e d a t a taken f o r t h e exper imen ta l m i x t u r e w i t h equiva lence r a t i o o f 0.25 were exc luded because i t was v e r y d i f f i c u l t t o d e t e r - mine accu ra te T va lues from these p ressu re t r a c e s . The p ressu re r i s e was v e r y p o o r l y d e f i n e d f o r a l l these v e r y weak i g n i t i o n s .

The r e f l e c t e d

Complete t i m e p r o f i l e s of

va lue by t h e i n t e r s e c t i o n o f two T h i s method approximated as c l o s e l y as p o s s i b l e t h e exper-

The o t h e r p o i n t s were exc luded from cons ide r -

Table V I l i s t s t h e f i v e m i x t u r e s from r e f e r e n c e 6 which were used i n t h e p resen t comparisons a long w i t h t h e I n i t i a l temperature range o f t h e r e f l e c t e d shocks. M i x t u r e s 3 and 4 a r e i d e n t i c a l for a l l p r a c t i c a l purposes and a r e t r e a t e d as one c o n d i t i o n , equ iva lence r a t i o 1.0 w i t h about 85 p e r c e n t argon d i l u t i o n . Note t h a t comparison o f t h e r e s u l t s for m ix tu re32 w i t h those for m i x t u r e s 3 and 4 g i v e s t h e e f f e c t o f s imp ly d i l u t i n g t h e m i x t u r e w i t h argon a t a c o n s t a n t equ iva lence r a t i o . I n i t l a l pressures fo r t h e r e f l e c t e d shocks ranged from 1 . 7 to 7.1 atm.

RESULTS AND DISCUSSION

Comparison o f Computed and Exper imenta l I g n i t i o n Delay Times

Plots o f computed and exper imen ta l i g n i t i o n de lay t i m e versus r e c i p r o c a l o f temperature a r e shown i n f i g u r e s 2 t o 6 f o r t h e f o u r d i f f e r e n t i n i t i a l con- d i t i o n s g i v e n i n t a b l e V I . The i n d i v i d u a l computed and exper imen ta l p o i n t s a r e shown as w e l l as least -squares l i n e s for each s e t o f p o i n t s . They a r e f i t t e d t o t h e e m p i r i c a l e q u a t i o n

7

Page 10: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

A E I R T T - Ae ( 1 )

or

where R i s t h e u n i v e r s a l gas c o n s t a n t and AE i s an a c t i v a t i o n energy te rm which measures t h e temperature dependence o f T for a f i x e d s e t o f i n i t i a l c o n c e n t r a t i o n s . A d e t a i l e d comparison o f exper imenta l and computed r e s u l t s i s shown i n t a b l e V I I , which a l s o I n c l u d e s an e r r o r a n a l y s i s . ence between each computed and exper imen ta l va lue i s g i v e n a long w i t h t h e pe rcen t s tandard d e v l a t i o n for each s e t o f i n i t i a l c o n c e n t r a t i o n s used. Th is s tandard d e v i a t i o n i s de f i ned by

The p e r c e n t d i f f e r -

where N i s t h e number of p o i n t s . A va lue o f o for a l l 35 p o i n t s used i s a l s o g i v e n .

Examinat ion o f t h i s t a b l e shows s a t l s f a c t o r y agreement between t h e com- pu ted and exper imen ta l i g n i t i o n de lays . T h i s i s e s p e c i a l l y t r u e when one con- s i d e r s t h e u n c e r t a i n t y I n some o f t h e exper imen ta l measurements. For example, t a b l e V I 1 shows t h r e e i ns tances i n which t h e exper imen ta l r e s u l t s do n o t show t h e expected decrease o f i g n i t i o n d e l a y t i m e w i t h i n c r e a s i n g temperature. The agreement between exper iment and computat ion i s poo res t for the l e a n m i x t u r e (0 = 0.5) and s t e a d i l y improves as 4 i nc reases t o 2.0. S i m i l a r behav io r i s a l s o observed for t h e temperature dependence o f i g n i t i o n d e l a y . T h i s can be seen from t a b l e V I 1 1 which l i s t s t h e va lues o f AE computed f r o m equa t ion ( 1 ) for b o t h t h e exper imenta l and computed r e s u l t s . The pe rcen t d e v i a t i o n for t h e a c t i v a t i o n energ ies decreases s t e a d i l y as equ iva lence r a t i o changes from 0.5 to 2.0. From these comparisons i t appears t h a t one or more r e a c t i o n s a re m i s s i n g from t h e mechanism. These r e a c t i o n s a r e much more i m p o r t a n t i n t h e l e a n m i x t u r e s than i n t h e r i c h ones. However, i t should a l s o be p o i n t e d o u t t h a t t h e exper imenta l i g n i t i o n d e l a y t imes f o r t h e l e a n m i x t u r e s a r e more u n c e r t a i n than those for t h e r i c h m i x t u r e s . From f i g u r e s 2 and 5 i t can be seen t h a t t h e computat ions tend to o v e r p r e d i c t t h e i g n i t i o n d e l a y t ime a t t$ = 0 . 5 and u n d e r p r e d i c t i t a t I$ = 2.0.

F i g u r e 6 shows computed and exper imen ta l i g n i t i o n de lay p l o t s for two m i x t u r e s w i t h equ iva lence r a t i o o f 1.0 b u t w i t h d i f f e r e n t amounts o f argon d i l u e n t . The computed r e s u l t s show a much s m a l l e r e f f e c t o f i n e r t d i l u t i o n than observed e x p e r i m e n t a l l y . changed by v a r i a t i o n o f e i t h e r t h e A f a c t o r or t h e a c t i v a t i o n energy of any u n c e r t a i n r a t e cons tan ts .

The e f f e c t of i n e r t gas d i l u t i o n c o u l d n o t be

a

Page 11: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

Comparison of Computed and Exper imental Temperature and Composi t ion P r o f i l e s

F igu res 7 to 12 show computed temperature versus t i m e and seve ra l composi- t i o n versus t i m e p r o f i l e s a l o n g w i t h exper imenta l d a t a f o r t h e n i t r o g e n - d i l u t e d s t o i c h i o m e t r i c CgHg-02 r e a c t i o n r e p o r t e d i n r e f e r e n c e 5. temperature was 1115 K and t h e pressure was 1 atmosphere. The computed and exper imenta l temperature p r o f i l e s i n f i g u r e 7 a r e i n e x c e l l e n t q u a n t i t a t i v e agreement. The computed cyc lopentadiene p r o f i l e o f f i g u r e 8 i s i n semiquan- t i t a t i v e agreement w i t h t h e exper imenta l p r o f i l e . Both t h e peak c o n c e n t r a t i o n o f C5Hg and t h e t i m e a t which i t i s reached a re p r e d i c t e d q u i t e a c c u r a t e l y . The computed p r o f i l e s f o r phenol ( f i g . 9 ) benzene ( f i g . 10) and carbon monoxide ( f i g . 1 1 ) agree o n l y w i t h the q u a l i t a t i v e t rends of t h e co r respond ing exper- imenta l p r o f i l e s . For phenol , t h e computat ion matches t h e magnitude on t h e peak c o n c e n t r a t i o n , b u t t h i s va lue occu rs a t a l a t e r r e a c t i o n t ime . The mecha- nism p r e d i c t s a v e r y sudden disappearance o f benzene, i n s t e a d o f t h e gradual decay observed e x p e r i m e n t a l l y . The exper imenta l r i s e of carbon monoxide con- c e n t r a t i o n and i t s peak va lue a re g r e a t e r than the corresponding computed q u a n t i t i e s . There i s semi -quan t ia t i ve agreement between t h e computed and exper imenta l carbon d i o x i d e p r o f i l e s ( f i g . 1 2 ) . The computed p r o f i l e i s app rox ima te l y l i n e a r whereas t h e exper imenta l p r o f i l e shows a l o n g i n d u c t i o n p e r i o d . However, t h e same s teady -s ta te va lue found e x p e r i m e n t 3 l l y i s g i v e n by the computed p r o f i l e s .

The i n i t i a l m i x t u r e

An a c e t y l e n e versus t i m e p r o f i l e i s a l s o g i v e n i n r e f e r e n c e 5 for t h i s benzene o x i d a t i o n exper iment . The p r e d i c t e d ace ty lene peak c o n c e n t r a t i o n i s about one o r d e r o f magnitude lower than t h e r e p o r t e d exper imen ta l va lue . The s e n s i t i v i t y c o e f f i c i e n t s o f t a b l e I1 show t h a t t h i s c o n c e n t r a t i o n i s c o n t r o l l e d by r e a c t i o n s 7 and 10, as a r e many o t h e r c o n c e n t r a t i o n s . No reasonable changes i n any o f the r e a c t i o n s i n v o l v i n g a c e t y l e n e changed i t s p r o f i l e s i g n i f i c a n t l y . Th i s behav io r i s d i f f e r e n t from t h a t f o r cyc lopen tad iene and phenol . A l though these l a t t e r two c o n c e n t r a t i o n s a re a l s o s t r o n g l y c o n t r o l l e d by r e a c t i o n s 7 and 10, they w e r e s i g n i f i c a n t l y improved by modest ad justments of t h e r a t e con- s t a n t s for r e a c t i o n s 12 and 13, which a r e q u i t e u n c e r t a i n .

CONCLUDING REMARKS

Th is work has presented a d e t a i l e d q u a n t i t a t i v e mechanism for t h e ox ida - t i o n o f benzene. The mechanism s a t i s f a c t o r i l y computes exper imen ta l r e s u l t s f o r bo th argon and n i t r o g e n d i l u t e d systems. F a i r to good agreement was o b t a i n e d between computed and exper imenta l i g n i t i o n d e l a y t imes measured ove r a wide range o f temperature, p ressu re and compos i t i on f o r shock-heated benzene- oxygen-argon m i x t u r e s . The mechanism a l s o does a f a i r j o b of comput ing meas- u red temperature and compos i t i on p r o f i l e s f o r a n i t r o g e n - d i l u t e d benzene o x i d a t i o n i n a q u i t e d i f f e r e n t system, namely a t u r b u l e n t flow r e a c t o r .

The p r e s e n t work has v e r i f i e d t h e r e a c t i o n paths o u t l i n e d i n r e f e r e n c e s 1 and 5 and p resen ts r a t e cons tan t express ions f o r two i m p o r t a n t r e a c t i o n s . S e n s i t i v i t y a n a l y s i s has i d e n t i f i e d these r e a c t i o n s , t he o x i d a t i o n s o f CgH5 and CsHs r a d i c a l s , as b e i n g dominant i n t h e i g n i t i o n o f benzene-oxygen m i x - t u r e s . The express ions f o r these r e a c t i o n r a t e cons tan ts have to be considered approximate because t h e mechanism i s s t i l l incomplete. However, t h e mechanism p r e d i c t e d one temperature versus t i m e p r o f i l e a c c u r a t e l y , i n a d d i t i o n t o the s a t i s f a c t o r y i g n i t i o n de lay t i m e p r e d i c t i o n s . Therefore, i t c o u l d be used fo r hea t - re lease r a t e p r e d i c t i o n s i n p r a c t i c a l , wel l -mixed, benzene-air combustion sys terns.

9

Page 12: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

REFERENCES

1 . Venkat, C . ; B r e z i n s k y , K . ; and Glassman, I.: High Temperature O x i d a t i o n o f Aromat ic Hydrocarbons. N i n e t e e n t h Symposium ( I n t e r n a t i o n a l ) on Combustion, The Combustion I n s t i t u t e , P i t t s b u r g h , 1983, pp. 143-152.

2. McLain, A . G . ; Jachimowski , C.J. ; and Wi lson , C . H . : Chemical K i n e t i c Mode l i ng of Benzene and Toluene O x i d a t i o n Behind Shock Waves. NASA TP- 1472, 1 979.

3. Kern, R . D . , e t a l . : C o l l a b o r a t i v e Shock Tube S t u d i e s o f Benzene Pyrolysis. T w e n t i e t h Symposium ( I n t e r n a t i o n a l ) on Combustion, The Combustion I n s t i t u t e , P i t t s b u r g h , 1985, pp. 789-797.

4 . Hsu, D . S . Y . ; L i n , C . Y . ; and L i n , M.C . : CO Fo rmat ion i n E a r l y Stage H igh Temperature Benzene O x i d a t i o n Under Fuel Lean C o n d i t i o n s . K i n e t i c s o f t h e I n i t i a t i o n Reac t ion , CgH6 + CgH5 + H . ( I n t e r n a t i o n a l ) on Combustion, The Combution I n s t i t u t e , P i t t s b u r g h , 1985,

T w e n t i e t h Symposium

pp. 623-630.

5 . B rez insky , K . : The H igh Temperature O x i d a t i o n o f A romat i c Hydrocarbons. I Prog. Energy Combust. S c i . , v o l . 1 2 , no. 1 , 1986, pp. 1-24.

I 6. B u r c a t , A . ; Snyder, C . ; and Brabbs, T . A . : I g n i t i o n De lay Times o f Benzene

and Toluene w i t h Oxygen i n Argon M i x t u r e s . NASA TM-87312, 1986.

7 . Radhakr ishnan, K . ; and B i t t k e r , D . A . : GCKP86-An E f f i c i e n t Code fo r General Chemical K i n e t i c s and S e n s i t i v i t y A n a l y s i s Computat ions. Presented a t t h e E a s t e r n S t a t e s Combustion I n s t i t u t e Meet ing , Dec. 15-17, 1986.

8 . Radhakr ishnan, K . : Decoupled D i r e c t Method f o r S e n s i t i v i t y A n a l y s i s i n Combustion K i n e t i c s , NASA CR-179636, 1987. Also i n , Advances i n Computer Methods f o r P a r t i a l D i f f e r e n t i a l Equa t ions V I , R . V i chneve tsky and R.D. Stepleman, eds . , I M A C s , 1987.

9. Radhakr ishnan, K . ; and B i t t k e r , D . A . : GCKP87-An E f f i c i e n t General Chemical K i n e t i c s and S e n s i t i v i t y A n a l y s i s Code for Gas-Phase Reac t ions . NASA TP-, 1987, ( I n p r e p a r a t i o n . )

I 10. K i e f e r , J.H., e t a l . : Shock Tube I n v e s t i g a t i o n of Ma jo r Pathways i n t h e High-Temperature Pyrolysis o f Benzene. J . Phys. Chem., v o l . 89, no. 10, May 9, 1985, pp. 2013-2019.

11. N l c o v i c h , J.M.; Gump, C . A . ; and Ravishankara, A . R . : Rates o f Reac t ion o f O(3P) w i t h Benzene and Toluene. J . Phys. Chem., v o l . 86, no. 9, Ap r . 29, 1982, pp. 1684-1690.

12. Madronich, S . ; and F e l d e r , W . : K i n e t i c s and Mechanism o f t h e R e a c t i o n o f OH w i t h C6H6 Over 790-1410 K, J. Phys. Chem., V O l . 89, no. 16, Aug. 1 , 1985, pp . 3556-3561.

13. L i n , C . - Y . ; and L i n , M.C.: Thermal Decompos i t ion o f Me thy l Phenyl E t h e r i n Shock Waves: The K i n e t i c s o f Phenoxy Rad ica l R e a c t i o n s . J. Phys. Chem., vo l . 90, no.3, Jan. 30, 1985, pp . 425-431.

10

Page 13: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

14. Brabbs, T . A . ; B e l l e s , F .E. ; and Brokaw, R.S. : Shock Tube Measurements o f S p e c i f i c Reac t ion Rates i n t h e Branched-Chain H2-CO-02 System. T h i r t e e n t h Symposium ( I n t e r n a t i o n a l ) on Combustion, The Combustion I n s t i t u t e , P i t t s b u r g h , 1973, pp. 129-136.

15. M i l l e r , J . A . , e t a l . : Toward a Comprehensive K i n e t i c Mechanism f o r t h e O x i d a t i o n o f A c e t y l e n e : Comparison o f Model P r e d i c t i o n s w i t h R e s u l t s From Flame and Shock Tube Exper iments . N i n e t e e n t h Symposium ( I n t e r n a t i o n a l ) on Combustion, The Combustion I n s t i t u t e , P i t t s b u r g h , 1983, pp . 181-196.

16. Hautman, D . J . : Pyrolysis and O x i d a t i o n K i n e t i c Mechanisms for Propane. PhD Thes is , P r i n c e t o n U n i v e r s i t y , 1980.

17. West ley , F . : Tab le o f Recommended Rate Cons tan ts f o r Chemical Reac t ions

18. Westbrook, C .K . ; and D r y e r , F .L . : Chemical K i n e t i c Mode l i ng o f

O c c u r r i n g i n Combustion. NSRDS-NBS-67, Ap r . 1980.

Hydrocarbon Combustion. Prog. Energy Combust. S c i . , v o l . 10, no. 1 , 1984, pp. 1-57.

19. Brabbs, T . A . ; and Robertson, T.F.: Methane O x i d a t i o n Behind R e f l e c t e d I g n l t i o n De lay Times Measured by P ressu re and Flame Band Shock Waves:

Emiss ion . NASA TM-87268, 1986.

20. Brabbs, T . A . ; and Brokaw, R .S . : Shock Tube Measurements o f S p e c i f i c R e a c t i o n Rates i n t h e Branched Cha in CH4-CO-02 System: Symposium ( I n t e r n a t i o n a l ) on Combustion, The Combustion I n s t i t u t e , P i t t s b u r g h , 1975, pp. 893-901.

F i f t e e n t h

21. Cher ian , M.A.,: e t a l . : Monoxide i n F lqnes . The Combus t ion ! Ins t i t u t e , P i t t s b u r g h , 1981, pp. 385-396.

K i n e t i c M o d e l l i n g o f t h e O x i d a t i o n o f Carbon E i g h t e e n t h Symposium ( I n t e r n a t i o n a l ) on Combustion,

22. Gordon, S . ; and McBride, B.J. : Computer Program f o r C a l c u l a t i o n o f Complex Chemical E q u i l i b r i u m Compos i t ions , Rocket Performance, I n c i d e n t and R e f l e c t e d Shocks, and Chapman-Jouget Detonat ions, NASA SP-273, 1971.

23. B u r c a t , A . ; Z e l e z n i k , F . J . ; and McBr ide , B .J . : I d e a l Gas Thermodynamic P r o p e r t i e s fo r t h e Pheny l , Phenoxy, and O-Biphenyl R a d i c a l s . NASA TM-83800, 1985.

1 1

Page 14: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

TABLE I . - BENZ€NE OXIOAllON MECHANISM - No

- 1

2

3

4

5

6

7

0

9

10

11

1 2

13

1 4

15

1 6

17

18

19

20 -

Reac t i on

C6H6 + O2 = C6H5 + H02

C6H6 = C6H5 + H

H + O2 = OH + 0

C H

C6H6 + 0 = C H

C H

C H

C6H50 = C5H5 + C O

CO + OH = C02 + H

t H = C6H5 t H2 6 6

6 5 + O H

t OH = C6H5 + H20

+ O2 = C6H50 + 0

6 6

6 5

C5H5 t O 2 = C5H50 + 0

C5H50 t M = C4H5 + CO + M

16H50H = C6H50 + H

:5H5 C6H6 = C5H6 + C6H5

I H + C6H50H = C6H50 + H20

Z6H5 = C H

1 t C 4 H 3 = C4H2 + t i + H

;5H6 + 0 = C5H50 + H

:4H5 = C H

14H2 + 0 = C2H0 + C?H

:4H2 c 0 = C O + C3H2

4 3 + C2H2

+ C2H2 2 3

A cm3, mole,sec

13 6.31 x10

5 . 0 ~ 1 0 ~

1 . 2 6 ~ 1 0

2 . 5 ~ 1 0

2 . 7 8 ~ 1 0

2 . 1 3 ~ 1 0

4 . 5 ~ 1 0

2 . 5 ~ 1 0

4 . 1 7 ~ 1 0

z.ox10

7 . 5 9 ~ 1 0 ’ ~

6 . 0 ~ 1 0

14

14

13

13

12

11

11

12

13

2.ox10”

8 . 0 x 1 O 1 *

I .58x101

51 3 . 3 ~ 1 0

12 5 . 0 ~ 1 0

13 1 . 4 ~ 1 0

13 1 .ox10

12 1.2x10

- n

- 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-10

0

0

0

0 -

Ea c a l o r i e s p e r mole

60 000

108 000

16 300

16 000

4 910

4 580

15 000

43 900

1 000

20 000

1 5 000

88 000

10 000

5 000

82 000

63 000

10 000

32 900

0

0

Source

Ref . 2

Re f . 4

Ref . 14

Re f . 10

Ref . 11

Ref . 12

l h i s work

Ref. 13

Ref . 14

l h i s work

E s t .

E s t .

Est.

€st.

Ref. 10

Re f . 10

€ S t .

L S t .

Ref. 2

Re f . 15

12

Page 15: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

TABLE I . - Cont inued.

1

- No.

- 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 -

React1 on

C4H2 + OH + HCO + C3H2

C2H4 + M + C2H2 + H2 + M

C H + OH = C2H3 + H20 2 4

C2H4 + OH + CH3 + CH20

C2H4 + 0 + CH3 + HCO

2 C2H4 + 0 = CH 0 + CH

C H + M = C 2 H 2 + H + M

C2H3 + O2 = C2H2 + H02

C2H3 + H = C2H2 + H2

C H + O H = C H + H 2 0

C H

C2H3 + C H = C H

C2H3 + 0 = C2H20 + H

CH2 + CH

CH2 + CH2 = C2H3 + H

CH

CH2 + 0 = CH + OH

CH2 + O2 = C O

2

2

2 3

2 3 2 2

2 3 + CH2 = C2H2 + CH3

+ C2H2 2 2 2

= C2H2 + H2

+ OH = CH + H20 2

+ 2H 2 C2H2 + M = C H t H + M

C H + C2H2 = C4H3 + H

C2H2+ O2 = C2H0 + OH

C2H2 + 0 = C2H + OH

C2H2 + 0 = CH + C O

C2H2 + 0 = C2H0 + H

C2H2 + OH = C 2 2 H + H 0

2 2

2

A cm3, mole,sec

3 . 0 ~ 1 O I 3

9 . 3 3 ~ 1 O1

4 . 7 9 ~ 1 0 12

2.OOxl o1 12

13

14

13

3.31 x10

2.51 x10

7 . 9 4 ~ 1 0

1 . 5 8 ~ 1 0

6 . 0 ~ 1 0

5 . 0 0 ~ 1 0 ~ ~

3 . 0 0 ~ 1 0 ~ ~

13 3 . 0 0 ~ 1 0

13 3 . 3 0 ~ 1 0

13 4 . 0 0 ~ 1 0

12 5 . 0 1 ~ 1 0

11 2.51 x10

11 2.00x10

1 . 5 9 ~ 1 0 ’ ~

16 4 . 1 7 ~ 1 0

12

2.00x101

2 .00x l o8

2.20x1010

1 5 3.1 6x1 0

4 3 . 5 5 ~ 1 0

6.31 x l 0 ’

- n

- 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.6;

. bf

0

0

0

1.5

- .b

1 .o 2.7

0 -

Ea a l o r i e s

0

11 200

1 230

960

1 130

5 000

31 500

1 0 000

0

0

0

0

0

0

0

2 5 700

25 000

1 000

37 000

15 900

30 100

15 000

2 580

1 390

7 000

Source

Page 16: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

TABLE I . - Cont lnued. - No

- 46

47

48

49

50

51

52

53

54

5 5

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70 -

Reac t l on

C2H2 + OH = C H 0 t H

C2H2 + C2H = C4H2 + H

C2H2 + CH2 = C3H3 t H

C H + H + M = C 3 H 4 + M

C2H20 + OH = CH20 + HCO

C2H20 t OH = C HO + H20

C2H20 + H = CH

C H 0 + H = C2H0 + H2

C2H20 + 0 = C2H0 + OH

C2H20 + 0 = CH20 + CO

C2H20 + M = CH

C2H0 + O2 = 2CO + OH

Z2H0 + 0 = 2CO + H

:2H0 + OH = 2HCO

:2H0 + H = CH2 + C O

:2H0 + CH2 = C2H3 + C O

Z2H0 t CH2 = CH20 t C2H

:2H0 t C2H0 = C2H2 + 2 C O

:2H + OH = C2H0 + H

:2H t O2 I C2H0 * 0

:2H + 0 = C O t CH

:2H + H2 = C2H2 + H

:H 4 + M = C H 3 + H + M

:H4 + O2 = CH3 + H02

:H

2 2

3 3

2

3 + C O

2 2

+ CO + M 2

+ H = CH3 + H2 4

A cm3, mo1e.sec

~

3 . 2 0 ~ 1 O1

3 . 0 0 ~ 1 0 ~

1 .oox1012

2. 8oX1 o1

1 3 2.OOxlO

12 7 . 5 ~ 1 0

1 . 1 3 ~ 1 0

7 . 5 0 ~ 1 O1

5 . 0 0 ~ 1 0 ~ ~

13

2.oox1 o1 2.00x1016

12

1 2

1 . 4 6 ~ 1 0

1.2ox10

1 . 0 0 ~ 1 0 ~ ~

13

13

5 . 0 0 ~ 1 0

3 . 0 0 ~ 1 0

1 . o o x l 0’

2 . 0 0 ~ 1 0 ~

13 1 .OOxlO

13 5 .OOxlO

5 . 0 0 ~ 1 0 ~ ~

4 . 0 9 ~ 1 Ob

2 . 0 0 ~ 1 017

13

14

7 . 9 4 ~ 1 0

1 .26x10

- n

- 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

3

2.39

3

I

1 -

Ea : a l o r l e s

200

0

0

0

0

3 000

3 428

8 000

8 000

0

60 000

2 500

0

0

0

0

2 000

0

0

1 500

0

864

68 000

56 000

I 1 900

l e f . 18

?ef. 18

t e f . 20

14

Page 17: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

TABLE I . - Cont inued.

I L 1

c o n s t a n t e x p r e s s i o n g i v e n i n Ref . aComputed f r o m k f o r t h e r e c o m b l n a t l o n

- No.

71

72

13

74

75

76

77

18

19

80

81

82

83

84

85

86

87

r e a c t i o n and t h e e q u l l l b r l u m 18.

89

90

91

92

93

A cm3, mole,sec

1 3

1 4

2 . 5 ~ 1 0

1.9x10

3 . 9 8 ~ 1 O1

2.00x1016

13

14

16

13

4 . 7 9 ~ 1 0

1 .29x10

1 .OOxlO

5 . 0 1 ~ 1 0

1 .OOxl o1

2 . 0 0 ~ 1 0 ~ ~

10 1 .OOxl 0

3 . 0 2 ~ 1 O1

2.00x10

3 . 3 1 ~ 1 0

7 . 5 9 ~ 1 0

3 . 3 1 ~ 1 0

13

1 6

12

14

13 5.01x10 , 1 . 0 0 ~ 1 0 ~ ~ ~

14 2 . 9 4 ~ 1 0

3.31 x l 0 ’

1 . 0 0 ~ 1 0 ~ ~

14 2.OOxlO

R e a c t l o n

CH

CH4 + 0 = CH3 + OH

CH3 + OH = CH20 + H2

CH3 + OH = CH 0 + H

CH3 + O2 = CH30 + 0

CH3 + 0 = CH20 + H

+ OH = CH3 + H20 4

3

CH3 + CH3 = C2H4 + HZ

CH30 + M = CH20 + H + M

CH30 + O2 = CH20 + H02

CH30 + H = CH20 + H2

CH3 + CH20 = CH4 + HCO

CH3 + HCO = CH4 + C O

CH3 + H02 = CH30 + OH

CH20 + M = HCO + H + M

CH20 + OH = HCO + H20

CH20 + H = HCO + H2

CH20 + 0 = HCO + OH

IC0 + H02 = CH20 + 0 2

I

I

HCO + M = H + C O + M

HCO + O2 = C O + H02

HCO + OH = CO + H20

HCO + H = C O + H2

HCO + 0 = CO + OH

7 000

0

0

94 I CH + 0, = HCO + 0

1 .OOxl o1 1 .oox l o1

- n

0

0

0

0

0

0

0

0

0

0

.5

.5

0

D

D

D

Ea c a l o r l e s

5 010

11 720

0

27 410

29 000

2 000

32 000

21 000

6 000

0

6 000

0

0

81 000

170

1 0 500

4 600

3 000

15 570

Source

Ref . 19

Ref . 19

Ref. 17

l e f . 17

! e f . 1 1

e f . 17

15

Page 18: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

~-

TABLE I . - Concluded. - No.

- 95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

R e a c t i o n number j

A cm3, mole.sec

1 5

12

13

5 . 8 9 ~ 1 0

2 . 5 1 ~ 1 0

5 . 7 5 ~ 1 0

6 . 7 6 ~ 1 0 ~ ~

2 . 9 5 ~ 1 0 ~ ~

2.51 xlO1'

5.01 x10

5.01 x l 0

5.01 XI O1

2.51 x10

2 . 1 9 ~ 1 0

1 .51x10

1 .41x10

13

13

1 4

13

1 5

23

16 1.oox10 1 3 . 0 2 ~ 1 0 ~ ' 1 . 9 1 ~ 1 0 ~ ~

1

2

3

4

5

6

7

8 9

1 0

12

13

14

15

17

43

44

106

R e a c t i o n

CO t 0 t M = C02 t M

co t o2 = co2 t 0

CO t H02 = C02 t OH

0 t H 0 = O H t OH

0 t H2 = O H t H

H2 t O2 = OH + OH

0 t H02 = OH t O2

OH t H02 = H20 t O2

H t H02 = H20 + 0

H t H02 = OH + OH

H2 + OH = H20 t H

H + 0 2 t M = H 0 + M

H t OH + M = H20 + M

H t 0 t M = OH t M

H t H t M z H t M

O t O t M = O t M

2

2

2

2 I

- n

- 0

0

0

0

0

0

0

0

0

0

0

0

-2

0

0

0 -

Ea c a l o r 1 es

4 100

47 690

22 930

18 360

9 800

38 950

1 000

1 000

1 000

1 900

5 150

- 1 000

0

0

0

- 1 790

Source

~~~

Ref. 17

Ref . 17

Ref . 17

Ref .

Ref .

Ref.

1ABLF. 11. - S E N S l l l V l l l Y COEFt lCl tNlS F O R t)F.NitNE O X l D A l l O N I N A 1URBULENT R E A C l O R ( N I T H O G E N OILUltO)

React 1 on S e n s l t l v l t y c o e f r l c l e n t o f dependent v a r i a b l e n: A j / n ( a d a A j ) a t t i m e = 35 msec

C6H6 + O2 e C H

C6H6 e C6H5 t H

H t 0 2 * OH t 0

C6Hb t H e C H t H2 6 6 C H t O + C H + O H

6 6 6 5 C H t O H + C H t H20

6 6 6 5 C H

6 5 C H O + C5H5 t CO

6 5 CO t O H + C02 t H

C H t O2 + C5H50 t 0 5 5 C H O H s C H 0 + H

6 5 6 5 C H + C 6 H 6 s C H t C6H5 5 5 5 6 OH t C H O H + C H 0 + H20

6 6 6 5

C6H5 + C4H3 t CZH2

C H t 0 +C5H50 t H

C H t O+CH2 t CO

C2H2 t 0 + C2H0 t H

H t O2 t M e H 0 2 t M

t HOZ 6 5

t O2 s C6H50 t 0

5 6

2 2

'gH6

-0.1781

.a959

- .0530

.0058

- .E467

-.EO13

-5.680

.1169

.3546

.4904

- . l a54

- .1399

.0065

.0003

.0172

.1562

.0590

- .0409

C6H5

- 0.2050

.0610

.2073

.0056

- .3351

- .4225

- 6.331

.0804

.1428

.2212

- .0996

- .1176

- .0045

4x1

.0083

.04 56

.0137

- .0039

-0.1169

.5429

- .2415

.0030

-.1150

- .1949

-3.333

- .0435

- .2367

.2088

.3744

- .0772

.1317

- . O O O l

.0157

-. 3350

- .1449

.1975

C5H6

0.0244

.3042

.1247

- .0005

- .2873

- .3740

- .6433

.4413

.1347

.1859

. .0802

.9313

.0074

.0007

- .0876

.0596

.0200

- .0082

C6H60H

0.1129

- .4134

- .0685

- .0027

.1204

.1847

3.089

- . l o 5 1

.zoo1

.4070

.6343

.0439

- .4036

. O O O l

.0033

.0046

.0036

-.1164

co

0.0359

.0469

- .0025

- .0009

.0076

.0615

.6679

.0657

- .1802

.4003

- .0093

.0133

.0377

.0004

.0056

- .0038

.0015

.0058

c02 0.1342

- .On65

.0196

- .0032

.2219

.0471

2.870

.2387

.6189

.5624

- .1608

.0562

- .0458

.0006

.0040

.0050

- .0080 -.01b2

l e m p e r a t u r e

0.0017

- .0004

. 0001 5

.0017

.0006

.0349

.0027

.0024

.0110

- .0005 .0007

- .0003

- 4 ~ 1 0 -

1 xl o - ~ . O O O l

. O O O l

3x1

- .0002

16

Page 19: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

z 0

W = a a W c -x W I I

Y V

0 I: m

z

z 0

I- 4

X 0

W z W N

z W

I

3

a I

m CL 0 L L

m I- z W

V

Y

iL W

0 V

).

- d

7 H

> c 3

d

10 z W

m , I 3 - W _I

m a I-

3

Y

0

0 U 7

,, aJ I

3 Y

m L 01 a

E Y

7

m Y

c

.r

.r

.r

._ 0

F

I,

0

Y

m L

aJ u c J

m >

3 W W

.r

- .r

Y

-

u W v1

a 0 N

N

I,

W

.r 4 2

+ m - F

a m \

m c - E -. .') 4

E

W

D m - r L

m >

w c aJ 0 c aJ W 0

a

c 0

w c W

U r

r L

c aJ 0 U

h Y

> Y

A

- - - - Y n -

- - 3 - 4 J

U u L

m u 7 a N m o m m o m U P m N 7 m o w c m 7 r n m o - - ~ i m I - o m o r - o ~ o o o o m o o ~ ~ 0 0 o o o o o o 0 0 0 0 0 0 7 0 0 0 7 0 7 0 0 0 0 0 ~~ . . . . . . . . . . X . X . . . . . 0 1 U N I

I

~ m m u c ~ m m m u m o a c ~ o m r n u m U 7 c u F 7 7 0 1 0 1 7 o m o o 0 - 0 0 0 0 \ D O O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . - 0 0 0 7 0 7 0 0 0 0 0 . . . . . . . . . X . Y . . . . . 0 I I c N I

I

P O C O P N O + N U o m ~ ) O ~ ) N U P v ) m m u a r m L o m ~m o o o m r n o ~ m b m ~ m m ~ ~ m o m o c o ~ m a ~ m ~ o a - m ~ u m 0 . - O O O N O O . . . . . . . . . . . . . . . . . . 0 I 0 I I I 1

7

m c m w m a m a - m m mam mom m . - a m r n m m m ~ r - ~m o u r u r n a m - a 7 0 u o m c o ~ o - o o o o o o W O C ) m N O ( ? - N O I O N O U O N N O . . . . . . . . . . . . . . . . . . 0 I Lo I I I

m ~ a m ~ m m m a m m 7 ~ u a ~ c m m m m o m o m 0 m u m m a m m m u m m o ~ o o ~ o c m - u e m m o m 7 m D 0 0 7 P U O N O m m N 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . .

I U I I 7

3

- - m m a 7 U P O e m - ~ o m m m ~ 5 ! g ~ z % z z z & z & % 8 L $ ; ; g : " 3 m o o o o 7 r q o o o m 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . 3 I N I I I

u a o a a o m m m m ,-- C ~ O P P O n I n m e m - - t ~ m m I ~o o m ~ - ~ o r - n - c - o r - m r n ~ a O N O ~ N N O - 3 0 0 o - ~ m r n o m - - o o o m m o . . . . . . . . . . x . . . . . . .

, I 3 I r n m i I I

3 m ~ m m ~ 0 n a m m c u m m N o O N N I D C N U - - o a o m m t n ~ r ' m m a o u - o u m 3 r o o 7 7 + m 7 a 0 0 0 7 0 N 0 0 . . . . . . s o 0 0 0 0 0 0 0 0 0 0

I . . . . . . . . . . . I 6 1 , , I l l ,

3 I I

- ~ o m m -T m m m m m m o o m ~ m e 7 m e ~ ~ m m ~ 7 0 - o - o m o m D O C O I D U P P O m N U U 0 O F Y V ) r D v )

N e O O O P N N O m O N 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . 7 I O I I I ! I

I I c 3 1 1

N 3 r

+ m Lo T I 0

_ I + +

+ 11 a a L o a S L +

_ ) V I

0 N O

N I I I O * + + + O O I

v) Inv Lo m I I + I S a a +

In0 Lo a v v

v u N

11 11 2 = I 0 0 0NVIn11 + + + + 1 l z

0 L o L o L o I n m + X I X I I L o o a L o a o

v v u v v v

0

+ 0

I

I V

m m

11 N

0

+ m m I:

V

0

I N

+ I

v) N +

N O

I:

0

I T

v u m

11 + ," 0, xu 11 I m

x u 0 a

11 +

+ m a I I

I a m o v v

x O S V + + + N

0 0 N I I

11 11 I o o + + + N

0 N N S I + N N

v v x

17

Page 20: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

R e a c t i o n number

R e a c t i o n S e n s i t v i t y c o e f f i c i e n t o f dependent v a r i a b l e

C6Hb CbHg C O Pressure

0.1900 .0220 .0015 .0053 .0018

7 1 0

8 6

15

TABLE V . - SENSITVITY OF COMPUlLO I G N I T I O N DELAY TIME T O RATE CONSlAN1

VARIATION FOR TWO SHOCK IGNTIIONS

CbH5 t 02 +CbH50 t 0 -10.28 -0.7590 6.839 C5H5 t 02 + C5H5O t 0 -.3129 -.Ob80 .4974 CbHrjO+ C5H5 t co -.2839 -.0325 .7193 C6Hb t OH?= CbH5 t H20 -.7214 .1342 .3036 C b H g t C4H3 + C2H2 -.0100 -.0148 .0449

R e a c t i o n number

R e a c t i o n T ~ , us T ~ , us Percent T ~ , us Percent

k s t d 2 k s t d change 0.5 k s t d change 1

7 CbHg t 02 *C6H50 + 0 272 188

6 CbHb t O H + C6H5 + H20 273 15 CbHg;"C4H3 t C2H2 212

10 C5H5 t 02 + C5H50 t 0 246 8 CbH50+ C5H5 t co 268

-30.9 420 54.4 -9 .6 31 3 15.1 -1 .5 289 6.3

.4 280 2.9 0 276 1.5

~ ~~~

7 1 0

8 6

15

18

CbHg t 02 F? CgH50 t 0 151 108 -28.5 203 34.4

CbH50+CgHg t C o 151 0 154 2.0 C6H6 t OH + C6H5 t H20 149 -1.3 159 5.3

C5H5 t 02+ CgH50 + 0 143 -5.3 160 6.0

CgH5 e C 4 H 3 t C2H2 125 -17.2 172 13.9

M i x t u r e Equ iva lence number r a t i o , +

Mole p e r c e n t I n i t i a l t e m p e r a t u r e - range, ( b e h i n d CbH6 O2 A r r e f l e c t e d shock) ,

K

1 2 3 4 5

0.5 1.354 20.313 78.333 1209-1 345 1 .o .516 3.868 95.616 1345-1 528 1 .o 1.69 12.68 85.63 1283-1435 1 .o 1.69 12.582 85.728 1355-1 408 2.0 1.354 5.093 93.555 1363-1 600

Page 21: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

TABLE V I I . - COMPARISON OF COMPUlt.0 AN0 EXPERIMENTAL I G N I l I O N DELAYS

Equ lv - A c t i v a t i o n energy c a l / m o l e a l e n c e r a t l o Exper lmenta l Computed

Q

Equiva lence r a t i o

v

Percent d l f f e r -

ence

Percent a rgon

1 .o 01 1 u t e

1 .o

I n l t l a l tempera ture

K

41470 27860 -37

37250 23560 -37

Exper lmenta l I g n l t i on d e l a y ,

psec

S t r o n g

2.0

Computed I g n l t i on d e l a y ,

psec

42400 3201 0 -24

Standard d e v l a t 1 or

p e r c e n t

52.5

P e r c e n t d l f f e r -

ence

-22. 6 -19.2

14.5 30.6 42.6 90.3 65.3 76.1

0.5 78.3 1209 1227 1254 1276 1291 1307 1314 1345

~

878 743 435 330 272 185 202 159

680 600 498 431 388 352 334 280

1 .o D l l u t e

95.6 1345 1314 1402 1412 1428 1482 1525 1528

755 604 41 5 41 2 367 21 3 122 122

550 450 370 345 31 3 21 6 160 159

-27.1 -25.5 -10.8 -16.3 -14.7

1 .4 31.1 30.3

22.0

1 .o S t r o n g

85.6 1283 1290 1294 1328 1355 1369 1379 1405 1408 1417 1435

750 61 3 601 490 303 287 291 198 189 178 151

600 575 556 4 50 378 342 320 272 266 252 225

-20.0 -6. 2 -8.4 -8.2 24.7 19.2 10.0 37.4 40.7 41 .6 49.0

28.3

2.0 93.6 1363 1415 1457 1540 1554 1570 1582 1600

1520 890 599 274 243 21 1 157 154

870 607 453 248 223 195 172 151

-42.8 -31.8 -24.4

-9.5 -8.2 -7.6

9.6 -1.9

21 .6

S tandard d e v i a t i o n o f a l l d a t a p o i n t s I s 33.2 p e r c e n t .

I -52 I 1 0 . 5 I 44160 I 21230

Page 22: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

4.0

F 3.2 4

w oz 3 v) v)

2.4

1.6

lo00 DILUTE MIXTURE

800 F 95.6% AR

; 400 - - 2 - L

E: t ---os-- COMPUTED L - = 200 EXPERIMENTAL -

-

7.2 7.4 7.6 7.8 8.0 8.2 8.4 10 000/T, K-l

100

I I u

600

Y In

1 400 >:

L E: t; L = 200

U W In

1

1000

800

600

400

I 6.4 6.6 6.8 7.0 7.2 7.4 7.6

10 000/T. K-l

100

200

I I I I I I 6.8 7.0 7.2 7.4 7.6 7.8 8.0

10 000/T. K-l

100

1515 1430 1350 TEMPERATURE, K

FIGURE 3. - BENZENE-OXYGEN-ARGON IGNITION DELAY VERSUS RE- CIPROCAL OF TEMPERATURE FOR EQUIVALENCE RATIO 1.0.

1430 1350 1280 TEMPERATURE, K

FIGURE 4.- BENZENE-OXYGEN-ARGON IGNITION DELAY VERSUS RE- CIPROCAL OF TEMPERATURE FOR EQUIVALENCE RATIO 1.0.

20

Page 23: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

~

1000

EQUIVALENCE RATIO = 1.0 I N I T I A L TEMPERATURE = 1115K

800

. 600

I

W

1

200

1000

800 -

600 -

- - MIXTURE PERCENT

ARGON -

v)

U

1 -

>: 400 -

; - L

EXPERIMENTAL 0 t El 200 - -

100 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8

10 000/T, K-'

4

3 In

2 X

W s 1

0

1515 1430 1350 TEMPERATURE, K

FIGURE 6. - BENZENE-OXYGEN-ARGON IGNITION DELAY VERSUS RE- CIPROCAL OF TEMPERATURE: EFFECT OF ARGON DILUTION FOR EPUIVALANCE RATIO 1.0.

EQUIVALENCE RATIO = 1.0 PRESSURE = 1.0 ATM -

EXPERIMENTAL, REFERENCE 5

-

I I I I I I

-

--. I

20 40 60 80 100 120

FIGURE 8. - CYCLOPENTADIENE MOLE FRACTION VERSUS TIME FOR

TIME, mSEC

BENZENE-OXYGEN-NITROGEN REACTION,

21

Page 24: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

EQUIVALENCE RATIO = 1.0 PRESSURE = 1.0 ATM

14

EQUIVALENCE RATIO = 1.0 PRESSURE = 1.0 ATM

5 -

I LQUIVALENCE RATIO = 1.0 PRESSURE = 1.0 ATM

EXPERIMENTAL, REFERENCE 5

3

2

0 I

x 2 . ------ COMPUTED z I . I . .

\ I

I I I

y, 8

w I C I \ *. I

I I

I I

y\... . $'$ .a# ----

0 20 40 60 80 100 120 TIME, mSEC

FIGURE 9. - PHENOL MOLE FRACTION VERSUS TIME FOR BENZENE- OXYGEN-N I TROGEN REACT1 ON.

12 3 z x 10

0 z

$ 8 4 p: U

w 6

a' 4

2

0 TIME. msEc

FIGURE 10. - BENZENE MOLE FRACTION VERSUS TIME FOR BENZENE- OXYGEN-NI TROGEN REACTION.

EQUIVALENCE RATIO = 1.0 PRESSURE = 1.0 ATM

EXPERIMENTAL. REFERENCE 5

COMPUTED

- _- _- - - --- [- -*..---.-

TIME. mSEC

FIGURE 12. - CARBON DIOXIDE MOLE FRACTION VERSUS TIME FOR BENZENE-OXYGEN-NITROGEN REACTION.

22

Page 25: Detailed Mechanism of Benzene Oxidation - NASA · ERRATA NASA Technical Memorandum 100202 DETAILED MECHANISM OF BENZENE OXIDATION by David A. Bittker October 1987 Page 4, at …

NASA 1. Report No.

Namnal Aeronaulics and Space AdminisIralion

2. Government Accession No.

Report Documentation Page 1

3 Security Classif (of this report)

U n c l a s s i f i e d 22 Price' 20 Security Classif (of this page) 21 No of pages

Uncl ass1 f l e d 23 A02

NASA TM-100202 4 Title and Subtitle

D e t a i l e d Mechanism o f Benzene O x i d a t i o n

7. Author(s)

Dav id A. B i t t k e r

9. Performing Organization Name and Address

N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n Lewis Research Center Cleveland, Oh io 44135-3191

2. Sponsoring Agency Name and Address

N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n Washington, D.C. 20546-0001

5. Supplementary Notes

3. Recipient's Catalog No. , I

I I 5. Report Date

I October 1987

6. Performing Organization Code

1 -.--

E-3797 I

8 Performing Organization Report No

10. Work Unit No.

505-62-2 1 I I i 11. Contract or Grant No.

i

13. Type of Report and Period Covered

Technica l Memorandum i

14. Sponsoring Agency Code i

6 Abstract

A d e t a i l e d q u a n t i t a t l v e mechanism f o r t h e o x i d a t i o n o f benzene i n b o t h argon and n i t r o g e n d i l u t e d systems i s presented. Computed i g n i t i o n - d e l a y t imes f o r argon- d i l u t e d m x i t u r e s a r e i n s a t i s f a c t o r y agreement w i t h exper imen ta l r e s u l t s for a wide range o f i n i t i a l c o n d i t i o n s . An exper imenta l temperature versus t i m e pro- f i l e f o r a n i t r o g e n - d i l u t e d o x i d a t i o n has been a c c u r a t e l y matched and seve ra l c o n c e n t r a t i o n p r o f i l e s have been matched q u a l i t a t l v e l y . A p p l i c a t i o n o f sensi - t l v l t y a n a l y s l s has g l v e n approxlmate r a t e cons tan t exp ress lons for t h e two dominant hea t - re lease r e a c t i o n s , t h e o x i d a t i o n s o f CgH5 and C5H5 r a d i c a l s by mo lecu la r oxygen.

7. Key Words (Suggested by Author(s))

Benzene o x i d a t i o n Chemical mechani sms I g n i t i o n de lay t imes

18. Distribution Statement 1 U n c l a s s i f i e d - U n l i m i t e d


Recommended