+ All Categories
Home > Documents > Drilling · DTH rock mass drillability, DRI percussion power of hammer bit diameter hole wall...

Drilling · DTH rock mass drillability, DRI percussion power of hammer bit diameter hole wall...

Date post: 19-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
71
Drilling Arne Lislerud
Transcript

Drilling Arne Lislerud

Agenda for drilling operations

well planned operations and correctly selected rigs yield low cost drillingtechnically good drilling (good drill settings) and correctly selected drill steelyields low cost drillingstraight hole drilling yields safe and low cost D&B operations

The most common drilling methods in use

Top Hammer(hydraulic or pneumatic)

Down-the-Hole(pneumatic)

Rotary(roller bits)

Rotary(drag bits)

- 120,000

- 100,000

- 80,000

- 60,000

- 40,000

- 20,000

50,000 -

40,000 -

30,000 -

20,000 -

10,000 -Uni

axia

l com

pres

sive

str

engt

h, U

CS

(psi

)

Rot

ary

pulld

own

(lbs)

I I I I I I I I I I I I I I I1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "25 51 76 102 127 152 178 203 229 254 279 305 330 356 381 mm

Drilling consists of a working system of:

bit■

drill string■

boom or mast mounted feed■

TH or DTH -

hammerRotary - thrust

drill string rotation andstabilising systems

powerpack■

automation package■

drilling control system(s)■

collaring position and feed alignment systems

flushing (air, water or foam)■

dedusting equipment■

sampling device(s)

How rock breaks by indentation

ubutton

Fbutton

ubit

Vcuttings

Abutton footprint

Fbutton

ubutton

Volume of cuttings

Energy used for rock breakage

1

ubit

k1Energy lost as elastisc rock deformation

Chipping – as the button is off‐loaded

5 mm

Off-loading fractures at ( 2 ) which create

cuttings by chip spalling

Chipping around the button footprint area

On-loading fractures created at ( 1 )

ubutton

Fbit ( 1 )

( 2 )

k1

1

Chip formation by bit indentation and  button indexing

Spray paint applied between bit impacts

Chipping around button footprint

Button footprint

Ø76mm/3”

Direction of bit rotation

Selecting drilling tools

bit face and skirt designbutton shape, size and carbide gradeshanks, rods, tubes, …grinding equipment and its location

Guidelines for selecting cemented carbide  grades

avoid excessive button wear (rapid wearflat development)=> select a more wear resistant carbide grade or drop RPM

avoid button failures (due to snakeskin development or too aggressive button shapes)=> select a less wear resistant or tougher carbide grade or spherical buttons=> use shorter regrind intervals

PCD ?48 DP65

Selecting button shapes and cemented  carbide grades

R48

Robust ballistic buttons48

S65

Spherical buttonsDP65

Optimum bit / rod diameter  relationship  for TH

Thread Diameter Diameter Optimumcoupling bit size

R32 ∅44mm ∅32mm ∅51-2”T35 ∅48 ∅39 ∅57-2¼”T38 ∅55 ∅39 ∅64-2½”T45 ∅63 ∅46 ∅76-3”T51 ∅71 ∅52 ∅89-3½”GT60 ∅82 ∅60 ∅92-3.62”GT60 ∅85 ∅60/64 ∅102-4”

Optimum bit / guide or pilot (lead) tube  relationship for TH

Thread Diameter Diameter Optimumcoupling bit size

T38 ∅55mm ∅56mm ∅64-2½”T45 ∅63 ∅65 ∅76-3”T51 ∅71 ∅76 ∅89-3½”GT60 ∅85 ∅87 ∅102-4”GT60 ∅85 ∅102 ∅115-4½”

Trendlines for bit service life

102 4 61 2004020 10060

3,000

6,000

1,800

1,200

600

300

12,000

18,000

30,000

60,000

Siever’s J Value, SJ

Bit

Serv

ice

Life

(dr-

ft/bi

t)

Rotary Drilling -

Ø12½”

/ Std.

DTH *Tophammer *

* Bit service life highly dependenton regrind intervals – regardcurve as toplimit

Limestone

Dolomite

Granite

Quartzite

Relationship between SJ and VHNR

rock surface hardness, VHNRrock surface hardness, SJ

Vickers Hardness Number Rock, VHNR

700500400300200100 1000 1500

Non-weatheredrock

Weathered rock

Rock with "zero"grain bonding

Siev

ers

J Va

lue,

SJ

100

2

3

5

4

6

87

910

20

30

40

5060

8070

90

200

300

400

500600

800900

1000

700

0.5

0.4

0.6

0.80.7

0.91

chuck

guidetungsten carbide bit

guide

200 revs

8.5mm 110g

20 kg

Bit regind intervals, bit service life  and over‐drilling

33,0003,30033065 130 200

Bit service life (dr-ft)

Bit

regr

ind

inte

rval

s (d

r-ft)

6,600

3,300

7

33

330

13

2620

660

1,320

130

65

660 1,320 6,600 13,200Ove

r-dril

led

Premature button failures

d d

d/3 d/3

1,970

200

Example of drill steel followup for MF‐T51

ShanksMF-T51 rods

330

Bit service life (dr-ft)

Rod

and

sha

nk s

ervi

ce li

fe (d

r-ft)

165 3,3001,320 33,000660 6,600

3,300

330

33,000

Short holes

Long holes

6,600

13,200

66,000

13,2001,980

19,800

1,320

1,980

660

52,800

KPI’s for drill steel followup work

drilling capacity drm/phdrill-hole straightnessavg. percussion pressuregeological conditions

drill steel component lifebit regrind intervalsbit replacement diametercomponent discard analysiscost € per drm or m3

Flushing of drill‐cuttings

Insufficient air < 50 ft/slow bit penetration ratespoor percussion dynamicsinterupt drilling to clean holesplugged bit flushing holesstuck drill steel”circulating” big chip wear

Too much air > 100 m/sexcessive drill steel wearerosion of hole collaring pointextra dust emissionsincreased fuel consumption

Correction factorshigh density rockbadly fractured rock(air lost in fractures- use water or foam tomud up hole walls)high altitude(low density air)large chips

Flift

GFlift

G

Predicting bit penetration rates ‐

TH

rock mass drillability, DRIpercussion power level in rod(s)bit diameter✓ hole wall confinement of gauge buttons

goodness of hole-bottom chipping✓ bit face design and insert types✓ drilling parameter settings (RPM, feed)

flushing medium and return flow velocity

Rock drillability, DRI

20 30 40 50 60

Bit

pene

trat

ion

rate

(ft/m

in)

1.3

2.6

3.9

5.2

70

HL510/HLX5T 51 mm 2”HL600 64 mm 2.5”HL710/800T 76 mm 3”HL1500/1560T 102 mm 4”

2.0

3.3

4.6

5.9

HL510/HLX5T 64 mm 2.5”HL600 76 mm 3”HL710/800T 89 mm 3.5”HL1000 89 mm 3.5”HL1500/1560T 115 mm 4.5”

HL510/HLX5T 76 mm 3”HL600 89 mm 3.5”HL710/800T 102 mm 4”HL1000 115 mm 4.5”HL1500/1560T 127 mm 5”

Predicting bit penetration rates ‐

DTH

rock mass drillability, DRIpercussion power of hammerbit diameter✓ hole wall confinement of gauge buttons

goodness of hole-bottom chipping✓ bit face design and insert types✓ drilling parameter settings (RPM, feed)

flushing and return flow velocity

Rock drillability, DRI

20 30 40 50 60

Bit

pene

trat

ion

rate

(ft/m

in)

0.7

2.0

3.3

4.6

70

M50 / M55 140 mm 5.5”M60 / M65 165 mm 6.5”

1.3

2.6

3.9

5.2

M30 89 mm 3.5”M40 115 mm 4.5”M60 / M65 203 mm 8”

M85 251 mm 9 7/8”

Gross drilling capacities (dr‐ft/h)

rig setup and feed alignment time per drill-holecollaring time through overburden or sub-drill zonedrill-hole wall stabilisation time (if required)rod handling times (unit time and rod count)bit penetration rate loss percentage i.e.

rods and couplings 6.1 % per rod✓

MF rods

3.6 % per rod✓

tubes

2.6 % per tube

effect of percussion power levels on:✓

bit penetration rates✓

drill steel service life✓

drill-hole straightness

rig tramming times between benches, refueling, etc.effect of operator work environment on effectivework hours per shiftrig availability, service availability, service andmaintenance intervals

Poor net drilling capacities for:✓

very broken rock✓ terrain benches - winching✓ very low or very high benches✓

very poor collaring conditions

Bit penetration rate, BPR2

(ft/min)

Gro

ss d

rillin

g ca

paci

ty (d

r-ft

/ hou

r)2.0 2.6 3.3 3.9 4.6 5.2 5.9

32.5

65

100

130

165

195

230

Typical breakdown of longterm rig usage  and capacities

Shift time, 100 %

Mechanical availability, 80 -

90 %

Machine utilisation, 60 -

80 %

Net drilling time, 40 –

60 %

Bit penetration time

engine hours

percussion hours(30 -

60 % of engine hours)

net drilling hours

shift hours

Rod handlingHole stabilisationReposition rig and feedBit change…

Shift changeLunchBlast downtimeSet out pattern…

Daily serviceScheduledmaintenanceBreakdowns…

Set out TIMTrammingRefuelingNew set rods…

Mechanics of percussive drilling

Percussive drilling

� Down-the-hole, DTHStress waves transmitted directly through bit into rock

� TophammerStress wave energy transmitted through shank, rods, bit, and then into rock

Basic functions

� percussion

-

reciprocating piston used to producestress waves to power rock indentation

� feed

-

provide bit-rock contact at impact� rotation

-

provide bit impact indexing� flushing

-

cuttings removal from hole bottom� foam flushing

-

drill-hole wall stabilisation

FEED

PERCUSSION

CUTTINGS

FLUSHING

ROTATION

Percussive impact cycle in TH drilling

Ui Ubit

Piston accelerates forwards and strikes shank

Incident stress wave travels down drill string to bit. Rod compression ui

Incident stress wave powers bit indentation ubit

and reflections travel back to shank-end

Re-reflected stress waves travel to bit again –

etc. Piston accelerates backwards -

starting a new cycle

Rock drill now moved forwards by ubit –

and drill string ready for next piston strike

Energy transfer efficiency in TH drilling

ubutton

Fbit

1

k1

= indentation resistance of bit (kN/mm)

η / ( 1 -

γ

)

k1

Feed

2 ·

Lpiston

??

Lpiston

+

Energy transfer chain ‐

video clip cases

cavity

bit face bottoming –

caused by:■

drilling with too high impact energy■

drilling with worn bits i.e. buttons with too low protrusion

bit / rock gap –

i.e. underfeed

“perfect”

bit / rock match

Feed force requirements

From a drilling point of view

From a mechanical point of view-

to provide bit-rock contact

-

compensate piston motion-

to provide rotation resistance

-

compensate linear momentumso as to keep threads tight of stress waves in rods

14.99 15 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08-150

-100

-50

0

50

100

150

200

250

300

MP

a | m

m

time [s]

Feed forceRod force

Stress waves in rod (MPa)Piston movement (mm)

Energy transmission efficiencies are  divided into:

← Tensile wave

Compressive wave →energy transmission through the drill string-

optimum when the cross section throughout the drill string is constant

-

length of stress wave-

weight of bit

energy transmission to rock-

bit indentation resistance –

k1-

bit-rock contact

The most critical issue in controlling stress waves is to avoid high tensile reflection waves.

Tensile stresses are transmitted through couplings by the thread

surfaces -

not throughthe bottom or shoulder contact as in the case for compressive waves.

High surface stresses combined with micro-sliding result in high coupling temperaturesand heavy wear of threads.

Matching drill settings to site conditions

Chipping during bit indentationRock hardnessButton count and size

( and bit size )

Same bit in 2 different rock types or quarries

k1-good rockk1-soft

k1-soft k1-good rock

ηsingle pass

BPR ratio}

Feed ratio( pfeed

/ pperc. )ubutton

Fbit

1k1-soft

Drilling in variable rock mass

k1-void

≈ 0

k1-good rock

k1-joint

< k1-good rock

k1-good rock

k1-hard layer

> k1-good rock

Total overfeed(feed speed control)

OK(ratio set here)

Overfeed

OK

Underfeed

Actual feed conditions

Situation =>k1-soft k1-good rock

Feed ratio( pfeed

/ pperc. )

ηsingle pass

BPR ratiok 1

-goo

d ro

ck

k 1-h

ard

laye

r

k 1-jo

int

k 1-v

oid

}}

Ranger DX700 and 800 / Pantera DP1500

vgauge

(ft/s)

2nd

coup

ling

tem

pera

ture

, °F

1.0 1.2 1.4 1.5 1.7 1.9 2.1

100

140

180

210

250

285

UF

Drilling with disabled stabilizer

Baseline for stabilizer drills = ?

79 92 105 118 132 145 1586667 79 90 101 112 125 13556

RPM for Ø76mm –

3”

47 55 63 71 79 87 953939 46 53 59 66 72 7933

RPM for Ø89mm –

3½”

RPM for Ø127mm –

5”RPM for Ø152mm –

6”

0.85

HL700 + OMR50 HL700 +

Poclain MS 05

59 69 78 88 98 108 11849 RPM for Ø102mm –

4”

vgauge

= π d ·

RPM / ( 60·1000 )

R7002 / Poclain / Ø76 mm / MF-T45 / Otava

R700 / Ø76 mm / MF-T45 / Toijala

R700 / Ø70-89 mm / MF-T45 / Croatia

R8002 / HL800T / Ø76 mm / MF-T45 / Savonlinna

P1500 / Ø152 mm / MF-GT65 / Myllypuro

P1500 / Ø127 mm / MF-GT60 / Baxter-Calif.

70

HL800T + Calzone MR450

Summary of drill settings ‐

TH

higher percussion pressure => penetration rates increase proportionally with percussion power=> more drill steel breakage if …=> deviation increases with percussion energy

feed ratio ( Pfeed / Ppercussion )=> ratio controls average feed levels=> UF reduces drill steel life (heats up threads)=> OF increases deviation (especially bending)

higher rotation pressure => tightens threads (open threads reduce drill steel life)=> increases with OF=> increases with drill string bending

higher bit RPM => increases gauge button wear (especially in abrasive rocks)=> increases indexing of button footprints on drill hole bottom=> straighter holes=> higher thread temperatures

bits => select bits with regard to penetration rates, hole straightness,stabile drilling (percussion dynamics), price, …

=> bit condition / regrind intervals / damage to rock drill

How do we go about drilling  straighter holes?

understand the many issues leading to drill-hole deviationtechnically good drill stringtechnically good drill rig, instrumentation, …motivate the drillers!

Can we drill straight holes?

Ventilation Shaft, Olkiluoto Nuclear Power Plant

Shaft diameter, Section I

Ø21.3’Shaft length

49.2’Rock type

Quartz DioriteContour hole size

Ø60mm –

2.36”Contour hole charging

80 g/m cordContour hole spacing

1.3’Contour row burden

2.3’

What happens when we shoot holes that  look like spaghetti?

floor humps => poor loading conditions, uneven floorspoor walls => unstabile walls

=> difficult 1st row drillingflyrock => safety blowout of stemming => safety, dust, toes, …blast direction => quality of floors and wallsshothole deflagration / misfires => safety

=> locally choked muckpiles (poor diggability) good practice => max. drill-hole deviation up to 2 – 3%

for production drilling

Accurate drilling gives effective blasting

Sources of drilling error1. Collar position2. Hole inclination and direction3.

Deflection4.

Hole depth5.

Omitted or lost holes6.

Shothole diameter (worn out bits)

4

4

2

5

3

1

Shothole diameter error control

bits loose diameter due to gauge button weartypical diameter loss for worn out bits is ~ 10%diameter loss effect on drill patterns

Diameter new bit Ø102mm –

4”Diameter worn out Ø89mm –

3½”Diameter loss ( 4 –

) / 4 = 12.8%=> Drill pattern too big ( 4 / 3½

)1.6

= 24%

2 4 5.9 7.92.8 11.8 15.8

110

75

55

750

160

215

270

540

320

Drill-hole diameter, d ( " )

Dril

l pat

tern

, SB

(ft2 )

Finer fragmentation

Finer fragmentation

Better blastability

Better blastability

Collar position error control

Difficult 1st row drilling

use tape, optical squares or alignmentlasers for measuring in collar positionsuse GPS or total stations to measure incollar positionscollar positions should be marked usingpainted lines –

not movable objects suchas rocks etc.completed drillholes should be protected by shothole plugs etc. to prevent holesfrom caving in (and filling up)use GPS guided collar positioning devicese.g. TIM-3D

Examples of drill‐hole deviation

Directional error for Ø3½” retrac bit / T45 in granite

Drill string deflection caused by gravitasional pull or sagging of drill steel in

inclined holes in syenite

Examples of drill‐hole deviation

Deflection with and without pilot tube for Ø3½” DC retrac

bit / T51 in mica schist

Floor hump due to explosives malfunction – caused by drill string

deflection

Lafarge Bath Operations, Ontario

Bench height

105’Bit

Ø115mm -

4½”

guide XDCDrill steel

Sandvik 60 + pilot tube

Hole-bottom deflection

< 1.5 %Gross drilling capacity

220 dr-ft/h

Drill pattern

14¾’

x 15¾’

(staggered)Sub-drill

0’

(blast to fault line)Stemming

9¼’

No. of decks

3Stem between decks

5.9’Deck delays

25 milliseconds

Charge per shothole

520 lbsExplosives

ANFO (0.95 & 0.85 g/cm3)Powder factor

0.34 kg/bm3

Annual production

1.6 mill. tonsRock type

Limestone

Hole depth error control

laser level

quarry floor levelsub-drill level

bench top level

inclination Set-point values for TIM 2305

b

a

c

c -

a

Remaining drill length = c -

a(at 1st laser level reading)

Total drill hole length = c -

a + b

laser height

Inclination and directional error control

quarry floor levelsub-drill level

bench top level

inclinationSet-point values for TIM 2305

✓ inclination✓ blast direction projection✓ distant aiming point direction

(new aiming point readingrequired when tracks are moved)

blast direction

How bit face designs enhance drill‐hole straightness

Feed

When the bit first starts to penetrate through the joint surface

on the hole bottom - the gauge buttons tend to skid off this

surface and thus deflect the bit.

More aggressively shaped gauge inserts (ballistic / chisel inserts) and bit face gauge profiles (drop

center) reduce this skidding effect by enabling the gauge buttons to

“cut” through the joint surface quickly - thus resulting in less

overall bit deflection.

How bit skirt designs enhance drill‐hole straightness

Feed

As the bit cuts through the joint surface - an uneven bit face loading condition arises; resulting in bit and drill string axial rotation - which is proportional to bit impact force imbalance.

A rear bit skirt support (retrac type bits) reduces bit and string axial rotation by “centralizing” the bit.

Other counter measures:- longer bit body- add pilot tube behind bit- lower impact energy- rapid drilling control system reacting

to varying torque and feed conditions

Drill‐hole deflection error control

Hol

e de

flect

ion,

ΔL

Hole length, L

ΔL = ƒ ( L3 ) for δ ≠ 0

ΔL = ƒ ( L2 ) for δ = 0

δ

Feed foot slippage δ

occurs at this point

ΔL

Prior sub- drill zone

select bits less influenced by rock mass discontinuitiesreduce drill string deflection by using guide tubes, etc.reduce drill string bending by using less feed forcereduce feed foot slippage while drilling - since this willcause a misalignment of the feed and lead to excessivedrill string bendingavoid gravitational effects which lead to drill stringsagging when drilling inclined shot-holes ( > 15° )avoid inpit operations with excessive bench heights

Drill‐hole deflection trendlines in schistose rock

15° - 20°

15° - 20°

Stabile drilling direction perpendicular

to fissures along schistosity or bedding

planes

Relatively stabile drilling

direction parallel to fissures

along schistosity

Fissures along schistosity or

bedding planes

Selecting straight‐hole drilling tools ‐

TH

optimum bit / rod diameter relationshipinsert types / bit face and skirt

� spherical / ballistic / chisel inserts� normal bits � retrac bits� drop center bits� guide bits

additional drill string components� guide tubes / pilot (lead) tubes

Drill pattern at quarry floor

1 2

37

3

4 56

39 36 35 3433 32

31

7 8 9 1011

12

30 29

28

2726

1314 15

25 24

16 17 18

23

20

22

2119

1 2

38

3 4 5 6

39 36 3534

3332 31

78

9

3710 11 12 13 14 15 16

30 29 28 27 26 25 24 23 2221

20

17 18 19

Bench toe

Bench crest

Drill-hole collar positions

Drill-hole positions at quarry floor

Clustered shothole areas / Risk of dead pressing

Vacant shothole areas / Risk of toe problems

Small burden areas / Risk of flyrock

Bench height

108 ftHole inclination

14°Drill steel

Ø3”

retrac bit / T45Drill pattern

8.2’

x 9’Rock type

Granitic gneiss

Vertical projection of Row #1

104’

91’

78’

65’

52’

39’

26’

13’

0’

- 10’

2019181716151413121110987654321 2.75 2.752.792.722.902.852.772.752.783.032.752.782.902.72

2.773.182.842.882.21

3.491.755.972.203.742.992.423.542.683.742.721.674.146.08 m

19.9’

3.41

1.1 1.1

Prediction of deviation errorsDrill-hole Deviation Prediction

predH=33.xls/A. Lislerud

Location Bench H = 33mRock type Granitic gneissBit type Retrac bit

Bit diameter (mm) dbit 76Rod diameter (mm) dstring 45Guide tube diameter (mm) dguide / No No

Total deflection factor kdef 1,34rock mass krock 1,30drill-string stiffness kstiffness 0,138bit wobbling kw obbling 0,592guide tubes for rods kguide 1,000bit design and button factor kbit 0,88constant krod 0,096

Inclination and direction error factor k I + D 47,8

Drill-hole deviation predictionDrill-hole Drill-hole Drill-hole Drill-hole Drill-holeLength Inc + Dir Deflection Deviation Deviation

L ΔL I + D ΔLdef ΔLtotal ΔLtotal / L(m) (mm) (mm) (mm) (%)9,3 444 116 459 4,9

13,4 640 241 684 5,117,6 840 415 937 5,321,7 1036 631 1213 5,634,1 1628 1559 2254 6,6

direction of deviation can not be “predicted”magnitude of deviation can be predicted

Rock mass factor, krockmassive rock mass 0.33moderately fractured 1.0fractured 2.0mixed strata conditions 3.0

Bit design and button factor, kbitnormal bits & sph. buttons 1.0normal bits & ball. buttons 0.70normal X-bits 0.70retrac bits & sph. buttons 0.88retrac bits & ball. buttons 0.62retrac X-bits 0.62guide bits 0.38

Factors affecting drill‐hole deviation

drill string startup alignment■

bit will follow a joint if at sharp angle to bit path■

drill string stiffness and “tube”

steering behind bit■

deviation increases with impact energy■

button shape, bit face and bit body design■

drilling with dull buttons (worn bits)■

bit diameter checks when regrinding■

feed foot slippage while drilling■

removal or controlled drilling through prior sub-drill zone■

drilling control systems, i.e.-

applied feed, torque and percussion dynamics■

operator motivation!

Mina Alumbrera ‐ Double bench presplitting

Mina Alumbrera ‐ Pitwall scanlines

Wall control drilling ‐ Macon Quarry, GA

DP1500 - Ø87/3½” Tubes - 80’ Bench - Ø140/5½” Presplit Sorted hole "number"

0,0

0,5

1,0

1,5

2,0

2,5

3,0

1 3 5 7 9 11 13 15 17 19 21

Presplit

ProductionH

ole

devi

atio

n fr

om c

olla

r lo

catio

n, Δ

L (f

t)

Excessive deviation due to feed foot slippage

Wall control drilling ‐ Macon Quarry, GA

ΔL % Δx = Δy α β

Max error

1.48 ft 1.8

1.05 ft ( ≈

2d )

0.75°

12.0°Median error 0.49 ft 0.6 0.36 ft ( ≈ d ) 0.25° 4.2°

Δx = error parallel to wall -

lesser importanceα

= atan Δx / H

Δy = error perpendicular to wall is of greaterimportance to extent of blast damagein backwalls

β

= atan Δy / S

Δx

ΔL = ( Δx2

+ Δy2

)1/2

Δy

H

α

S

β

Thank You

Workshop ?

Optimisation of quarrying => overview of  operations, technology and markets

end-product volumescostspricesstockpiling=> right mix of parameters?

Mgt.

Plant SalesPit

Organisation

Technology

Market analysis

Key Performance Indicators, KPI’s

key financial performance in periodü overall quarry profitabilityü capital employed

(especially unscheduled stockpiling)

key production performance in periodü end-product tonnages, costs and marginsü productivity and cost per machineü safety in operationsü public relations

Occupational health and safety

work related accidents for:� mobile equipment� hazardeous work areas

emissions controlnoise controldust controlfly rock / charging / straight-hole drillingfalling rocks / wall control

⇒ safety is linked as much to equipmentas it is to attitudes

⇒ health, safety and environmentalissues are everyone’s concern

⇒ the ultimate safety target is zero harm –

notjust a mimimum occurrence of accidents

Assessment of some work related  health risks

RadonNoise

Oil mist Vibrations

Diesel

Silicosis Stress/mental workload

Musculoskeletal disorders

1950 1960 1970 1980 1990 2000 2010

Risk

Safety of inpit operations

unwanted incidences do not just happen – they have root causesactions can be taken so as to reduce frequency and consequences of unwanted occurrencesthe relationship between complexity and knowledgein the workforce is often unbalanced -

e.g. operator hazard training is a must!

Premature ignition of electric detonators and blast due to lightning

Pit wall failure burying 3 drill rigs in rubble

Safety of inpit operations

new equipment requirements for the future?

Rollover from terrain bench - 35m drop

Rock fall source area

Manditory 65’

personnel exclusion zone from highwall ?

How drilling and blasting affect down‐ stream operations

sizing drill patternsdrilling accuracy

boulder downtimecrushing capacitiespower consumptionproduction of finesand waste

field performanceof explosivesshotrock fragmentation� boulders� floor humps� fines and fragment

microfracturesmuckpile profiles & swell

loadability andloading capacitiesselectivity inmining & industrialmineral operations

Drilling Loading CrushingBlasting

Quality feed –

handling boulders

boulder count dependent on primary crusher opening(and to a lesser extent primary crusher capacity) sort boulders from muck piledown-size boulders before entering primary crusherminimize boulder count using reduced uncharged heightand/or tighter drill patterns

Quality feed –

effect of micro‐fracturing

Rock type

AnorthositeExplosive

Slurrit 50-10Test blasts

4 x 50,000 tonsBench height

36’

70

Hole diameter, d (mm)

80 90 110100 120

35

30

25

20

40

Perc

enta

ge o

f 0

–1¼

Ø3”

Ø3½” Ø4”

Ø4½”

Large SUB’ from prior

bench level

0 – 11¾”

0 – 1¼”

Belt weights

Feed

0 – 2¾”

1¼” – 2½”

0 – 37¼”

Criteria for selecting drills

annual production requirements in bm3 or t => number of drillscritical diameter of explosive => hole size big enough?flexibility in usage => different types of work?application costing => D&B costs per tlevel of automationoperator training and supportoperator comfort and safetyease of transport between pits

50 100 150 20070 300 400

10

7

5

70

15

2025

50

30

Dril

l pat

tern

, SB

(m2 )

Better blastability

Finer fragmentation

100

50 100 150 20070 300 400

10

7

5

70

15

2025

50

30

Drill-hole diameter, d (mm)

Better blastability

Finer fragmentation

100

Drill-hole diameter, d4” 8” 12”

D&

B c

osts

($/t)

Sandvik Mining and Construction

Case Study #10 – PresplittingChadormalu Iron Mine – before/after wall control blasting

Sandvik Mining and Construction

Case Study #10 – PresplittingChadormalu Iron Mine

15m

PS B1 B2 B3 B4

5,5m 3m 4,5m

4,1m

1,5m8,5m

2m

75 o

4,5m

3m

5m

PS B1 B2 B3 B4 B5

5,5m

5,2m

3m 4,5m 4,5m

1,45m

200ANFO

60ANFO

Charge, kg

4.5 x 5.23 x 5.25.5 x 1.45Drill Pattern B x S, m2

251165165165Diameter, mm

... PB2B1PS

18Ø36mm PVC

AZAR (ANFO + TNT)

Wall control D&B – Chadormalu Iron Mine

Thank You

www.quarryacademy.com


Recommended