+ All Categories
Home > Documents > EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf ·...

EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf ·...

Date post: 15-Jul-2019
Category:
Upload: vucong
View: 231 times
Download: 0 times
Share this document with a friend
15
EE141 1 EE141 1 EE141 Design Metrics EE141 EE141- Spring 2004 Spring 2004 Lecture 3 Lecture 3 EE141 2 EE141 Last Lectures Last Lectures Moore’s law Challenges in digital IC design in the next decade. Manufacturing process Today Design metrics
Transcript
Page 1: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

1

EE1411

EE141

Design Metrics

EE141EE141-- Spring 2004Spring 2004Lecture 3Lecture 3

EE1412

EE141

Last LecturesLast Lectures

Moore’s lawChallenges in digital IC design in the next decade.Manufacturing process

TodayDesign metrics

Page 2: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

2

EE1413

EE141

AdministriviaAdministrivia

If you have not signed-in on the class roster, please do so after the lecture.Problems?

EE1414

EE141

Design MetricsDesign Metrics

How to evaluate performance of a digital circuit (gate, block, …)?

CostReliabilityScalabilitySpeed (delay, operating frequency) Power dissipationEnergy to perform a function

Page 3: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

3

EE1415

EE141

Cost of Integrated CircuitsCost of Integrated Circuits

NRE (non-recurrent engineering) costsdesign time and effort, mask generationone-time cost factor

Recurrent costssilicon processing, packaging, testproportional to volumeproportional to chip area

EE1416

EE141

NRE Cost is IncreasingNRE Cost is Increasing

Page 4: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

4

EE1417

EE141

Die CostDie Cost

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)

EE1418

EE141

G. Moore, ISSCC 2003

Page 5: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

5

EE1419

EE141

Cost per TransistorCost per Transistor

0.00000010.0000001

0.0000010.000001

0.000010.00001

0.00010.0001

0.0010.001

0.010.01

0.10.111

19821982 19851985 19881988 19911991 19941994 19971997 20002000 20032003 20062006 20092009 20122012

cost: cost: ¢¢--perper--transistortransistor

Fabrication capital cost per transistor (Moore’s law)

EE14110

EE141

YieldYield

%100per wafer chips ofnumber Total

per wafer chips good of No. ×=Y

yield Dieper wafer Dies

costWafer cost Die

×=

( )area die2

diameterwafer

area die

diameter/2wafer per wafer Dies

2

××π−×π=

Page 6: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

6

EE14111

EE141

DefectsDefects

α−⎟⎠⎞

⎜⎝⎛

α×+= area dieareaunit per defects

1yield die

α is approximately 3

4area) (die cost die f=

EE14112

EE141

Some Examples (1994)Some Examples (1994)

$4179%402961.5$15000.803Pentium

$27213%482561.6$17000.703Super Sparc

$14919%532341.2$15000.703DEC Alpha

$7327%661961.0$13000.803HP PA 7100

$5328%1151211.3$17000.804Power PC 601

$1254%181811.0$12000.803486 DX2

$471%360431.0$9000.902386DX

Die cost

YieldDies/wafer

Area mm2

Def./ cm2

Wafer cost

Line width

Metal layers

Chip

Page 7: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

7

EE14113

EE141

ReliabilityReliability――Noise in Digital Integrated CircuitsNoise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and groundnoise

v(t) VDD

EE14114

EE141

DC OperationDC OperationVoltage Transfer CharacteristicVoltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOHVOL

fV(y)=V(x)

Switching Threshold

Nominal Voltage Levels

VOH = f(VOL)VOL = f(VOH)VM = f(VM)

Page 8: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

8

EE14115

EE141

Mapping between analog and digital signalsMapping between analog and digital signals

VIL

VIH

Vin

Slope = -1

Slope = -1

V OL

V OH

Vout

“ 0” VOL

VIL

VIH

VOH

UndefinedRegion

“ 1”

EE14116

EE141

Definition of Noise MarginsDefinition of Noise Margins

Noise margin high

Noise margin low

VIH

VIL

UndefinedRegion

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

Page 9: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

9

EE14117

EE141

Noise BudgetNoise Budget

Allocates gross noise margin to expected sources of noiseSources: supply noise, cross talk, interference, offsetDifferentiate between fixed and proportional noise sources

EE14118

EE141

Key Reliability PropertiesKey Reliability Properties

Absolute noise margin values are deceptivea floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)

Noise immunity is the more important metric –the capability to suppress noise sourcesKey metrics: Noise transfer functions, Output

impedance of the driver and input impedance of the receiver;

Page 10: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

10

EE14119

EE141

Regenerative PropertyRegenerative Property

v0

v1

v3

finv(v)

f(v)

v3

out

v2 in

Regenerative Non-Regenerativev2

v1

f(v)

finv(v)

v3

out

v0 in

EE14120

EE141

Regenerative PropertyRegenerative Property

A chain of inverters

v0 v1 v2 v3 v4 v5 v6

2

V (

Vol

t)

4

v0

v1v2

t (nsec)0

�1

1

3

5

6 8 10Simulated response

Page 11: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

11

EE14121

EE141

FanFan--in and Fanin and Fan--outout

N

Fan-out N Fan-in M

M

EE14122

EE141

The Ideal GateThe Ideal Gate

Ri = ∞Ro = 0Fanout = ∞NMH = NML = VDD/2g = ∞

V in

V out

Page 12: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

12

EE14123

EE141

An OldAn Old--time Invertertime Inverter

NMH

Vin (V)

V

o ut

(V )

NML

VM

0.0

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 5.0

EE14124

EE141

Delay DefinitionsDelay Definitions

Vout

tf

tpHL tpLH

tr

t

Vin

t

90%

10%

50%

50%

Page 13: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

13

EE14125

EE141

Ring OscillatorRing Oscillator

v0 v1 v5

v1 v2v0 v3 v4 v5

T = 2 × tp × N

EE14126

EE141

A FirstA First--Order RC NetworkOrder RC Network

vout

vin C

R

tp = ln (2) τ = 0.69 RC

Important model – matches delay of inverter

Page 14: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

14

EE14127

EE141

Power DissipationPower Dissipation

Instantaneous power: p(t) = v(t)i(t) = Vsupplyi(t)

Peak power: Ppeak = Vsupplyipeak

Average power:

( )∫ ∫+ +

==Tt

t

Tt

t supplysupply

ave dttiT

Vdttp

TP )(

1

EE14128

EE141

Energy and EnergyEnergy and Energy--DelayDelay

Power-Delay Product (PDP) =

E = Energy per operation = Pav × tp

Energy-Delay Product (EDP) =

quality metric of gate = E × tp

Page 15: EE141- Spring 2004bwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture3-Metrics.pdf · EE141- Spring 2004 Lecture 3 EE141 2 EE141 Last Lectures ... 8 EE141 15 EE141 Mapping

EE141

15

EE14129

EE141

A FirstA First--Order RC NetworkOrder RC Network

E0 1→ P t( )dt

0

T

∫ Vdd isupply t( )dt

0

T

∫ Vdd CLdVout0

Vdd

∫ CL Vdd• 2= = = =

Ecap Pcap t( )dt

0

T

∫ Vouticap t( )dt

0

T

∫ CLVoutdVout0

Vdd

∫12---C

LVdd• 2= = = =

vout

vin CL

R

EE14130

EE141

Next LectureNext Lecture

A First Glance at an Inverter


Recommended