+ All Categories
Home > Documents > EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf ·...

EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf ·...

Date post: 15-May-2020
Category:
Upload: others
View: 13 times
Download: 0 times
Share this document with a friend
35
1 EE241 - Spring 2005 Advanced Digital Integrated Circuits Lecture 7: Logic Families for Performance 2 Admin Homeworks due on We. New assignment on your way. Will get feedback on the projects within a week.
Transcript
Page 1: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

1

EE241 - Spring 2005Advanced Digital Integrated Circuits

Lecture 7:Logic Families for Performance

2

Admin

Homeworks due on We. New assignment on your way.

Will get feedback on the projects within a week.

Page 2: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

2

3

Logical Effort: Summary

D = DH + Pd = h + pDelay

pIntrinsic Delay

N1Number of Stages

hEffort Delay

H = FGBh = fgEffort

n/aBranching Effort

f = Cout/CinElectrical Effort (Fanout)

gLogical Effort

PathStage

∏= igG

inout CCF /=

∏= ibB

∑= iH hD

∑= ipP

4

Increasing Performance

Scaling technology

Circuit/logic level:1. Logic optimizations

2. Transistor sizing, buffering

3. Wire optimization, repeaters

4. Supply voltage

5. Threshold voltage

6. Logic styles

7. Timing, latches

Microarchitecture level

Page 3: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

3

5

Design Techniques

Performance does not come for free

Performance

DesignEffort

ASIC/RTL

‘Enhanced’ ASIC

Structured ASIC

Custom design

Dynamic custom

6

RTL Design Flow

RTLSynthesis

HDL

netlist

logicoptimization

netlist

Library

physicaldesign

layout

a

b

s

q0

1

d

clk

a

b

s

q0

1

d

clk

ModuleGenerators

ManualDesign

[from K. Keutzer]

Page 4: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

4

7

RTL/ASIC Design

Design description in Verilog/VHDL RTL

Synthesized logicStandard cells

Pre-defined macros

Static timing verification, pre- and post-layoutStatistical vs. extracted wire loads

Physical designTop-level floorplan

Automatic place and route

Clock tree synthesized

Post layout optimization, verification

8

Logic Optimization

Perform a variety of transformations and optimizations

Structural graph transformationsBoolean transformationsMapping into a physical library

smaller, fasterless power

logicoptimization

netlist

netlist

Library

a

b

s

q0

1

d

clk

a

b

s

q0

1

d

clk

[from K. Keutzer]

Page 5: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

5

9

Combinational Logic OptimizationInput:

• Initial Boolean network

• Timing characterization for the module

- input arrival times and drive factors

- output loading factors

• Optimization goals

- output required times

• Target library description

Output:

• Minimum-area netlist of library gates which meets timing constraints

A very difficult optimization problem ! [from K. Keutzer]

10

Logic Optimization

logicoptimization

netlist

netlist

Library

techindependent

techdependent

2-levelLogic opt

multilevelLogic opt

RealLibrary

GenericLibrary

[from K. Keutzer]

Page 6: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

6

11

Modern Approach to Logic OptimizationDivide logic optimization into two subproblems:

• Technology-independent optimization

- determine overall logic structure

- estimate costs (mostly) independent of technology

- simplified cost modeling

• Technology-dependent optimization (technology mapping)

- binding onto the gates in the library

- detailed technology-specific cost model

Orchestration of various optimization/transformation techniques for each subproblem

12

Logic Level Optimizations

R R

Logic Depth

or

Techniques: Restructuring, pipelining, retiming, technology mapping

Well covered by today’s logic and sequential synthesis

Page 7: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

7

13

Logic Optimizations (2)

Technique: Removal of common sub-expressionStart from tree structure/output

Fanout

Tp = O(FO) also effects wiring capacitance

Late arriving

14

Technology mapping

1 3 5 7 9fan-in

0.0

1.0

2.0

3.0

4.0

t p(n

sec)

tpHL

tp

tpLHlinear

quadratic

AVOID LARGE FAN-IN GATES! (Typically not more than FI < 4)

Tp = O(FI2) !Observation: only true if FI

translates in series devices -

otherwise linear

e.g. NAND pull-down

NOR pull-up

Fanin

Page 8: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

8

15

Technology Mapping for Performance

Alternative coverings

Use low FI modules on critical path(s)Library composition?

16

CMOS Logic Styles

CMOS tradeoffs:SpeedPower (energy)Area

Design tradeoffsRobustness, scalability

Design time

Many styles: don’t try to remember the names –remember the principlesChanging the logic style – can it be done without breaking the synthesis flow?

Page 9: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

9

17

CMOS Logic Styles

PUN

PDN

ABC

OUT

VDD

GND

ABC

Complementary

robustscales

large and slow

LOGICNETWORK

ABC

OUT

Pass Transistor Logic

simple and fastnot always very efficientversatile

18

CMOS Logic Styles

LOAD

ABC PDN

OUT

GND

GND

VDD

Ratioed Logic

small & faststatic power

RPDN <<RLOAD

VDD

PDN

φ

In1In2

In3

Out

φ

CL

Dynamic Logic

Small & fastest!Noise issuesScales?

Page 10: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

10

19

Others

Current-mode logic

Adiabatic logic

20

Pulsed Static CMOS

RH – Reset highRL – Reset low

Fast pull-up Fast pull-down

Chen, Ditlow, US Pat. 5,495,188 Feb. 1996.

Page 11: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

11

21

PS-CMOS

Evaluation and reset waves: reset is 1.5x slower

22

PS-CMOS

Advantages:

No dynamic nodes – good noise immunity

Reset delay slower than evaluation

No data dependent delay (worst case gets better)

No false transitions

Disadvantages

Width of reset wave limits logic depth

Margin in design

Page 12: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

12

23

Skewing Gates

Different rising and falling delays

W

W

LE =

24

Skewing Gates

4W

W

LE =

Page 13: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

13

25

Ratioed Logic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

26

Pseudo-NMOS

0.0 0.5 1.0 1.5 2.0 2.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Vin, V

Vo

ut,

V

W/Lp = 4

W/Lp = 2

W/Lp = 1

W/Lp = .25

W/Lp = 0.5

VDD

In1In2In3

F

PMOSload

PDN

Trade-off between performance and power + noise margins

Page 14: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

14

27

Differential Logic

28

Differential Logic

Differential Cascode Voltage Switch (DCVS)

Differential Split-Level Logic (DSL)

Regenerative Push-Pull Cascode Logic (PPCL)

Pass transistor logic families

Dynamic logic families

Page 15: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

15

29

Differential Logic

+ implicit invert, higher logic density

30

Cascode Voltage Switch Logic

VDD

VSS

PDN1

Out

VDD

VSS

PDN2

Out

AABB

M1 M2

Cascode Voltage Switch Logic (CVSL)

Sometimes called Differential Cascode Voltage Switch Logic (DCVSL)

Page 16: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

16

31

CVSL

A

B

M1

M2

A B

0 0.2 0.4 0.6 0.8 1.0-0.5

0.5

1.5

2.5

Time, ns

Vol

tage

,V

Out

Out

A,BA,BM3 M4

OutOut

VDD - Vth

Fast (but hysteresis due to latch function)No static power dissipationBUT: large cross-over current!

32

CVSL

Full adder design

How to design for reduced transistor count?

Page 17: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

17

33

Karnaugh Map Technique

34

Karnaugh Map Technique

0

1

00 01 11 10x1

x2x3

0

0

0 01

1 1 1

Build sharedcubes first!

Add other cubes next

LOAD

x1

x3

x1

x3

x2 x2

Q Q

LOAD

x1

x3

x1

x3

x2 x2

Q Q

x1 x2

Page 18: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

18

35

Example

Q = x1x2x3x4 + x1(x2+x3+x4)

36

Push-Pull Cascode Logic

Gieseke et al, U.S. Patent 5,023,480 June 1991.

Page 19: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

19

37

DSL Differential Split-Level Logic

38

Simulation Results for Different Adders

Page 20: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

20

39

Pass-Transistor Logic

Inpu

ts Switch

Network

OutOut

A

B

B

B

• N transistors

• No static consumptionA

B

BF = AB

0

• Transistor implementation using NMOS

40

Pass-Transistor Logic

Performance of PTL:Advantage over CMOS in implementing XOR, MUXDisadvantage in implementing AND, OR.

Datapaths, arithmetic circuits are examples of use:Adders and multipliers use XOR, MUXAdvantage of complementary implementation

Comparisons:When a new logic family is introduced, the examples are chosen to show its advantages; (not disadvantages).Comparison papers sometimes point to the disadvantages

Full-custom design

Page 21: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

21

41

Examples of PTL Styles

Complementary Pass-Transistor LogicNMOS-only pass-transistor network

Transmission-gate logicNMOS+PMOS pass gates

Double Pass-Transistor LogicNMOS+PMOS network

Numerous other logic families

42

NMOS-only switch

A =2.5V

B

C = 2.5V

CL

A = 2.5 V

C = 2.5 V

BM2

M1

Mn

Threshold voltage loss causes static power consumption

0 0.5 1 1.5 20.0

1.0

2.0

3.0

Time, ns

Volta

ge, V

xOut

In

Page 22: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

22

43

Solutions

Transmission gates – adding complexity

Low-threshold switches – leakage!

Level-restoration

M 2

M 1

M n

M r

OutA

B

V DDV DDLevel Restorer

X

44

Single-Ended Level Restoring

OutputInput

Feedback Inverter

Output InverterLevel Restoration

Transistor

Page 23: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

23

45

Differential Level Restoring

Differential NMOS Logic Tree

f f

Inputs

Inputs

Different level restoration leads to different logic families

46

Different Restoration Schemes

Differential NMOS Logic Tree

f f

Inputs

Inputs

Swing-Restored Pass-Transistor Logic

Parameswar, et alCICC’94, JSSC 6/96

Page 24: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

24

47

Other Level-Restoring Schemes

Differential NMOS Logic Tree

f f

Inputs

Inputs

Differential NMOS Logic Tree

ff

Inputs

Inputs

Energy Economized Pass-TransistorLogic

DCVS with Pass Gates(DCVS-PG)

48

Pass-Transistor Logic Families

Page 25: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

25

49

Complementary Pass-Transistor Logic (CPL)

F

F

Pass-Transistor

Network

Pass-TransistorNetwork

AABB

AABB

Complementary

• Complementary functions• Reduced number of logic levels• Less transistors than CMOS • Fast – reduced load• Complementary inputs – complementary outputs• VT drop – several solutions

50

CPL

Level restoration

Yano et al, CICC’89, JSSC 4/90

Page 26: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

26

51

CPL

Same topology of networksJust different signal arrangements

52

Complementary Pass-Transistor Logic (CPL)

AA

S S

A A

B

B

C

C

SS(a) (b)

B

B

Q Qb

n1 n2

n4n3

XOR Sum

nFET logicnetwork

- Fast- VT drop- Efficient

implementationof arithmetic

Page 27: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

27

53

CPL Karnaugh Maps

A

B

0 0

0 1

C1 C2

A

A

B A

BA ⋅

C2 C1

A

A

B

BA ⋅

C2 C1

54

CPL vs. CMOS

Page 28: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

28

55

Skewing Output Inverter

56

Differential vs. Single-Ended

Page 29: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

29

57

Leap Cell Library

Yano et al, CICC’94, JSSC 6/96

Goal: Implement full logic functionality with small libraryRely on automated design methodology

58

Various Logic Functions of the Leap Library

Page 30: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

30

59

LEAP Comparison

60

Double Pass-Transistor Logic (DPL)

A

B

A B B A

VDD

B

A

OO

A

B

A B BA

B

A

OO

B

A

B A B A

B

A

A B

A B

AND/NAND

XOR/XNOR

Page 31: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

31

61

Designing DPL Gates

A

B

0 0

0 1

C3 C4

C1

C2

A

A

B

BA×

C2

C1

A B

B

C3

C4

62

Designing DPL Gates (2)

A

B

0 1

1 0

C3 C4

C2

C1

A

B

0 1

1 0

C1 C2

C3

C4

B

BAÅ

B

A

A A

B

B

A

C2

C1C3

C4

A

BAÅ

A

B

B B

A

A

B

C1 C2

C3C4

Page 32: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

32

63

Applications of DPL

1.5ns 32-bit ALU in 0.25µm CMOS

Full adder:

Suzuki, ISSCC’93JSSC 11/93

64

Comparison of Logic Styles

Zimmermann, Fichtner, JSSC 7/97

Page 33: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

33

65

Comparison of Logic Styles

66

Comparison of Logic Styles

Page 34: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

34

67

Results

68

Results

Page 35: EE241 - Spring 2005bwrcs.eecs.berkeley.edu/.../Lectures/Lecture7StaticAndPTLogic.pdf · Pass-Transistor Logic Performance of PTL: Advantage over CMOS in implementing XOR, MUX Disadvantage

35

69

Results


Recommended