+ All Categories
Home > Documents > EE4800 CMOS Digital IC Design & Analysis

EE4800 CMOS Digital IC Design & Analysis

Date post: 26-Feb-2022
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
22
EE4800 CMOS Digital IC Design & Analysis Lecture 9 Combinational Circuit Design Zhuo Feng Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 9. 9.1
Transcript

EE4800 CMOS Digital IC Design & Analysis

Lecture 9 Combinational Circuit DesignZhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.11

Outline■ Bubble Pushing■ Compound Gatesp■ Logical Effort Example■ Input Orderingp g■ Asymmetric Gates■ Skewed Gates■ Skewed Gates■ Best P/N ratio

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.22

Example 11) Sketch a design using NAND, NOR, and NOT gates.

Assume ~S is available.

Y

D0S

YD1S

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.33

Bubble Pushingg■ Start with network of AND / OR gates■ Convert to NAND / NOR + inverters■ Push bubbles around to simplify logic

► Remember DeMorgan’s Law

Y YY Y

(a) (b)

Y

D

Y

(c) (d)

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.44

( ) ( )

Example 22) Sketch a design using one compound gate and

one NOT gate. Assume ~S is available.g

D0S YSD1SS

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.55

Compound Gates■ Logical Effort of compound gates

unit inverter AOI21 AOI22 Complex AOI

Y A B C= +i Y A B C D= +i i ( )Y A B C D E= + +i iY A=

ABCD

Y

ABC YYA A

C

DE Y

B

( )

D

AC

C

A B

A C

A

C

B

D

21

4

44

2 2

4

4 4

4A Y

2

1YY

C

Y

A

B

C

D E

6

6

6 6

3

BC

B D21

2 2

gA = 6/3 gA =gA = 3/3

Y

B C

A

D

E

gA =

2

2 2

22

gB = 6/3

gC = 5/3

p = 7/3

gB =

gC =

p =

gD =

p = 3/3 gB =

gC =

gD =

g =

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.66

p =

p =

gE =

Compound Gates■ Logical Effort of compound gates

unit inverter AOI21 AOI22 Complex AOI

Y A B C= +i Y A B C D= +i i ( )Y A B C D E= + +i iY A=

ABCD

Y

ABC YYA A

C

DE Y

B

( )

D

A

C

A B

A C

A

C

B

D

2

4

44

2 2

4

4 4

4A Y

2

1YY

C

A

B

C

D E

6

6

6 6

3

A

BC

A

B

C

D2

21

2

2 2

2

1Y

B C

A

D

E

D E

2

2 2

22

6 6

gA = 6/3

gB = 6/3

gC = 5/3

p = 7/3

gA = 6/3

gB = 6/3

gC = 6/3

g = 6/3

gA = 3/3

p = 3/3

gA = 5/3

gB = 8/3

gC = 8/3

g = 8/3

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.77

p = 7/3

p = 12/3

gD = 6/3 gD = 8/3

p = 16/3

gE = 8/3

Example 3■ The multiplexer has a maximum input capacitance of 16

units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate Estimate the delay of the NAND and compound gate designs.

Y

D0S

D1Y

D0SD1D1

SD1S

H = 160 / 16 = 10B = 1N = 2

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.88

NAND Solution

D02 2 4P = + =

Y

D0S

D1S

(4 / 3) (4 / 3) 16 / 9160 / 9

GF GBH= =i

S160 / 9ˆ 4.2N

F GBH

f F

= =

= =ˆ 12.4D Nf P τ= + =

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.99

Compound Solution

4 1 5P = + = D05(6 / 3) (1) 2

20GF GBH= =i Y

D0SD1S20

ˆ 4.5N

F GBH

f F

= =

= =

S

ˆ 14D Nf P τ= + =

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1010

Example 4■ Annotate your designs with transistor

sizes that achieve this delay.y

88

6 6

10

10Y

24

12

10

10

8

8

25

2525Y

6

6 6

6

12

8

8825

25

816 16160 * (4/3) / 4.2 = 50 160 * 1 / 4.5 = 36

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1111

Input Order■ Our parasitic delay model was too simple

► Calculate parasitic delay for Y falling▼ If A arrives latest? 2τ▼ If B arrives latest? 2.33τ

22 Y6C

2C2

2

B

Ax

Y

2C2B x

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1212

Inner & Outer Inputs■ Outer input is closest to rail (B)■ Inner input is closest to output (A) 22■ Inner input is closest to output (A)

■ If input arrival time is known2

2

22

B

A

Y

► Connect latest input to inner terminal 2B

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1313

Asymmetric Gatesy■ Asymmetric gates favor one input over another■ Ex: suppose input A of a NAND gate is most critical

► Use smaller transistor on A (less capacitance)► Use smaller transistor on A (less capacitance)► Boost size of noncritical input► So total resistance is same

A Yreset

Y

■ gA = 10/9 2 4

4/3

22

reset

AY

■ gB = 2■ gtotal = gA + gB = 28/9■ Asymmetric gate approaches g = 1 on critical input

4reset

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1414

■ But total logical effort goes up

Symmetric Gatesy■ Inputs can be made perfectly symmetric

2 2

AY

2

1

2

1

B 1 1

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1515

Skewed Gates■ Skewed gates favor one edge over another■ Ex: suppose rising output of inverter is most critical

D i iti l MOS t i t► Downsize noncritical nMOS transistor

HI-skewinverter

unskewed inverter(equal rise resistance)

unskewed inverter(equal fall resistance)

1/2

2A Y

1

2A Y

1/2

1A Y

( q ) ( q )

■ Calculate logical effort by comparing to unskewed inverter ■ Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.► gu = 2.5 / 3 = 5/6► g = 2 5 / 1 5 = 5/3

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1616

► gd = 2.5 / 1.5 = 5/3

HI- and LO-Skew■ Def: Logical effort of a skewed gate for a particular

transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter to the input capacitance of an unskewed inverter delivering the same output current for the same transition.

■ Skewed gates reduce size of noncritical transistors► HI-skew gates favor rising output (small nMOS)► LO-skew gates favor falling output (small pMOS)

■ Logical effort is smaller for favored direction■ But larger for the other directiong

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1717

Catalog of Skewed GatesgInverter NAND2 NOR2

1

2A Y

2

2

22

B

AY

BA

11

4

4

unskewedg = 1 g = 4/3 g = 5/3

Y

2

22Y

BA 4

4

1 2B 11gu = 1gd = 1gavg = 1

gu = 4/3gd = 4/3gavg = 4/3

gu = 5/3gd = 5/3gavg = 5/3

1/2

2A Y

1

1

B

A A

1/21/2

4HI-skew

gu = 5/6gd = 5/3gavg = 5/4

gu = 1gd = 2gavg = 3/2

gu = 3/2gd = 3gavg = 9/4

Y

LO-skew1

1A Y

2

2

11

B

AY

BA

11

2

2

gu = 4/3/

gu = 2 gu = 2Y

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1818

gd = 2/3gavg = 1

gd = 1gavg = 3/2

gd = 1gavg = 3/2

Asymmetric Skewy■ Combine asymmetric and skewed gates

► Downsize noncritical transistor on unimportant inputR d iti d l f iti l i t► Reduces parasitic delay for critical input

A YAreset

Y

4/3

21

AY

4reset

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.1919

Best P/N Ratio■ We have selected P/N ratio for unit rise and fall

resistance (μ = 2-3 for an inverter).(μ )■ Alternative: choose ratio for least average delay■ Ex: inverter

► Delay driving identical inverter► tpdf = (P+1)► tpdr = (P+1)(μ/P) 1

PA

pdr ( )(μ )► tpd = (P+1)(1+μ/P)/2 = (P + 1 + μ + μ/P)/2► Differentiate tpd w.r.t. P► Least delay for P =

1

μ► Least delay for P = μ

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.2020

P/N Ratios■ In general, best P/N ratio is sqrt of that giving

equal delay.► Only improves average delay slightly for inverters► But significantly decreases area and power

Inverter NAND2 NOR2

1

1.414A Y

2

2

22

B

AY

BA

11

2

2

fastestP/N ratio gu = 1.15 gu = 4/3 gu = 2

Y

ugd = 0.81gavg = 0.98

ugd = 4/3gavg = 4/3

ugd = 1gavg = 3/2

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.2121

Observations■ For speed:

► NAND vs. NOR► Many simple stages vs. fewer high fan-in stages► Latest-arriving input

For area and power:■ For area and power:► Many simple stages vs. fewer high fan-in stages

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 20109.9.2222


Recommended