+ All Categories
Home > Documents > Electronics Ch1

Electronics Ch1

Date post: 07-Jan-2016
Category:
Upload: raja-peram
View: 20 times
Download: 0 times
Share this document with a friend
Popular Tags:

of 42

Transcript
  • NTUEEElectronics L.H.Lu 11

    CHAPTER1ELECTRONICSANDSEMICONDUCTORS

    ChapterOutline1.1Signals1.2FrequencySpectrumofSignals1.3AnalogandDigitalSignals1.4Amplifiers1.5CircuitModelsforAmplifiers1.6FrequencyResponseofAmplifiers1.7IntrinsicSemiconductors1.8DopedSemiconductors1.9CurrentFlowinSemiconductors1.10Thepn JunctionwithOpenCircuitTerminals1.11Thepn JunctionwithAppliedVoltage1.12CapacitiveEffectsinthepn Junction

  • 1.1Signals

    SignalprocessingSignalscanbeofavarietyofformsinordertocarryinformationfromthephysicalworldItismostconvenienttoprocesssignalsbyelectronicsystem,therefore,thesignalsarefirst

    convertedintoanelectricform(voltageorcurrent)bytransducers

    SignalsourcesThevenin form:(voltagesourcevs +seriesresistanceRs) Presentingthesignalbyavoltageform IspreferredwhenRs islow(Rs canbeneglected)

    Nortonform:(currentsourceis +shuntresistanceRs) Presentingthesignalbyacurrentform IspreferredwhenRs ishigh(Rs canbeneglected)

    Inelectronicssystems,thesignalistakenfromoneofthetwoformsforanalysisTwoformsareinterchangeablewithvs(t)=is(t)Rs

    NTUEEElectronics L.H.Lu 12

    Transducer SignalProcessor TransducerInputsignal(voice,speed,pressure,etc.)

    Outputsignal(voice,speed,pressure,etc.)

    ElectricalSignals ElectricalSignalsv(t)

    t

    v(t)

    t

  • 1.2FrequencySpectrumofSignals

    SinusoidalsignalAsinusoidalsignalisgivenas:va(t)=|Va|sin(at+a )Characterizedbyitsamplitude(|Va|),frequency(a)andphase(a )

    FrequencydomainrepresentationAnytimedomainsignalcanbeexpressedbyitsfrequencyspectrum Periodicsignal Fourierseries Nonperiodicsignal Fouriertransform

    PeriodicsignalThefundamentalfrequencyofperiodicsignalsisdefinedas0 =2/T.Aperiodicsignalcanbeexpressedasthesumofsinusoidsatharmonicfrequencies(n0)Example:asquarewavewithperiodT

    NTUEEElectronics L.H.Lu 13

    ...)5sin5

    13sin

    3

    1(sin

    4)( 000 tttVtv

    Timedomainrepresentation Frequencydomainrepresentation

    va(t)

    t

    Va

    Ta

  • NonperiodicsignalTheFouriertransformisappliedtoanonperiodicfunctionoftimeThespectrumofanonperiodicsignalcontainsallpossiblefrequencies

    NTUEEElectronics L.H.Lu 14

    FrequencydomainrepresentationTimedomainrepresentation

    ...)5sin5

    13sin

    3

    1(sin

    4)( 000 tttVtv

  • 1.3AnalogandDigitalSignals

    SignalclassificationAnalogsignal:signalcantakeonanyvalueDigitalsignal:canonlytakeonfinitequantizationlevelsContinuoustimesignal:definedatanytimeinstantDiscretetimesignal:definedonlyatthesamplinginstantsSampling:theamplitudeismeasuredatequaltimeintervalsQuantization:representthesamplesbyfinitevaluesQuantizationerror: Differencebetweensampledvalueandquantizedvalue Canbereducedbyincreasingthequantizationlevels

    DataconversionAnalogtodigitalconverter(ADC):

    Digitaltoanalogconverter(DAC):

    NTUEEElectronics L.H.Lu 15

    A/Dconverter

    ...

    b0b1bN1

    vA

    Analoginput

    Digitaloutput

    D/Aconverter

    .

    .

    .

    b0b1

    bN1

    vD

    Analogoutput

    Digitalinput

    vA =vD +quantizationerror

    111

    00 2....22

    NND bbbv

    3,3,3,2,3,3

    Continuoustimeanalogsignal

    Digitalsignal

    Quantizationerror

    v(t)

    t

    Discretetimeanalogsignal

    t

    Sampling

    Quantization3

    2

    1

    0t

    t

  • 1.4Amplifiers

    GainofamplifiersVoltagegainAv vO/vICurrentgainAi iO/iIPowergainAp vO iO/vI iIAmplifiergainsaredimensionless(ratioofsimilarlydimensionedquantities)Voltageandcurrentgaincanbepositiveornegativedependingonthepolarityofthevoltageand

    thecurrentThegainisfrequentlyexpressedindecibels: VoltagegainAv (dB) 20log|Av| CurrentgainAi (dB) 20log|Ai| PowergainAp (dB) 10log|Ap| Gain>0dB |A|>1(amplification) Gain

  • TransfercharacteristicsoflinearamplifierTheplotofoutputresponsevs.input transfercharacteristicsForlinearamplifier,thetransfercharacteristicisastraightline

    passingtheoriginwithslope=AvItisdesirabletohavelinearamplifiercharacteristicsformostof

    theapplicationsOutputwaveformisanenlargedcopyoftheinput:vO(t)=AvvI(t)NohigherpowertermsofvI attheoutput

    AmplifiersaturationPractically,theamplifiertransfercharacteristicremainslinear

    overonlyalimitedrangeofinputandoutputvoltagesTheamplifiercanbeusedasalinearamplifierforinputswing:

    L/Av vI L+/Av vO =AvvIForinputlargerthantheswinglimitation,theoutputwaveform

    willbetruncated,resultinginnonlineardistortionThenonlinearitypropertiescanbeexpressedas:

    vO =a0+a1vI+a2vI2+a3vI3 ..

    NTUEEElectronics L.H.Lu 17

  • NonlineartransfercharacteristicsandbiasingInpracticalamplifiers,thetransfercharacteristicsmayexhibitnonlinearitiesofvariousmagnitudeThenonlinearitycharacteristicswillresultinsignaldistortionduringamplificationInordertousethecircuitasalinearamplifier: Usedcbiastooperatethecircuitnearthemiddleofthetransfercurve quiescentpoint Superimposethetimevarying(ac)signalonthedcbiasattheinput Besurethatthesignalswingissufficientlysmallforgoodlinearapproximation Thetimevarying(ac)componentsattheoutputisthedesiredoutputsignal

    NTUEEElectronics L.H.Lu 18

    vO (t)

    vI (t)

    vO

    vI

    Q

    Slope=Av

    VI

    VO

    )()( tvVtv iII )()( tvVtv oOO

    )()( tvAtv ivo Qat

    I

    Ov dv

    dvA |

  • Symbolconvention:dcquantities:IC,VDIncremental(ac)quantities:ic(t),vd(t)Totalinstantaneous(ac+dc)quantities:iC(t),vD(t)

    iC(t)=IC+ic(t)vD(t)=VD+vd(t)

    NTUEEElectronics L.H.Lu 19

  • 1.5CircuitModelsforAmplifiers

    ConceptofequivalentcircuitPracticalamplifiercircuitcouldberathercomplexUseasimplifiedmodeltorepresentthepropertiesandbehavioroftheamplifierTheanalysisresultsdonotchangebyreplacingtheoriginalcircuitwiththeequivalentcircuit

    VoltageamplifiersAsimplifiedtwoportmodeliswidelyusedforunilateral voltageamplifiers

    Themodeliscomposedofthreecomponents: Inputresistance(Ri):theresistancebylookingintotheinputport Outputresistance(Ro):theresistancebylookingintotheoutputport Opencircuitvoltagegain(Avo):thevoltagegain(vo/vi)withoutputopencircuit

    Circuitanalysiswithsignalsourceandload: Voltagegain: Overallgain: Idealvoltageamplifier:Ri = andRo =0

    NTUEEElectronics L.H.Lu 110

    oL

    Lvo

    i

    ov RR

    RAvvA

    oL

    Lvo

    si

    i

    s

    ov RR

    RARR

    RvvG

    VoltageAmplifier

  • CircuitparametersintheamplifiermodelThemodelcanbeusedtoreplaceanyunilateralamplifierbypropercircuitparameters

    Theparameterscanbeobtainedbycircuitanalysisormeasurement Analysis(measurement)oftheinputresistance:Theresistancebylookingintotheinputport

    (findix foragivenvx orfindvx foragivenix) Analysis(measurement)oftheoutputresistance:Setvi =0byinputshortTheresistancebylookingintotheoutputport

    (findix foragivenvx orfindvx foragivenix) Analysis(measurement)oftheopencircuitvoltagegain:Givenvx atinputFindopencircuitoutputvoltagevovo isdividedbyvx

    NTUEEElectronics L.H.Lu 111

    vx

    vx

    vx

    ix

    ix

    vo

    Ri vx/ix

    Ro vx/ix

    Avo vo/vx

  • CascadeamplifierMultiplestagesofamplifiersmaybecascadedtomeettheapplicationrequirementTheanalysiscanbeperformedbyreplacingeachstagewiththevoltageamplifiermodel

    BufferamplifierImpedancemismatchmayresultinareducedvoltageswingattheloadBufferamplifiercanbeusedtoalleviatetheproblem Thegainofthebufferamplifiercanbelow(~1) Thebufferamplifierhashighinputresistanceandlowoutputresistance

    NTUEEElectronics L.H.Lu 112

  • AmplifiertypesVoltageamplifier:gainofinterestisdefinedbyvo/vi (V/V)Currentamplifier:gainofinterestisdefinedbyio/ii (A/A)Transconductane amplifier:gainofinterest isdefinedbyio/vi(1)Transimpedance amplifier:gainofinterestisdefinedbyvo/ii ()

    Amplifiermodels

    UnilateralmodelsTheamplifiermodelsconsideredareunilateral;thatis,signalflowonlyfrominputtooutputThemodelissimpleandeasytousesuchthatanalysiscanbesimplifiedNotallamplifiersareunilateralandmorecomplicatedmodelsmaybeneededfortheanalysis

    NTUEEElectronics L.H.Lu 113

    VoltageAmplifier

    Transimpedance AmplifierTransconductance Amplifier

    CurrentAmplifier

  • Circuitanalysisforamplifiers

    NTUEEElectronics L.H.Lu 114

    vo =Avovi RL /(RL+Ro)vo /vs =Avo[Ri /(Ri+Rs)][RL /(RL+Ro)]Foridealcase(Ri ,Ro 0):vo /vs =Avo

    io =Gmvi Ro /(RL+Ro)io /vs =Gm[Ri /(Ri+Rs)][Ro /(RL+Ro)]Foridealcase(Ri ,Ro ):io /vs =Gm

    VoltageAmplifier Transconductance Amplifier

    CurrentAmplifier Transimpdeance Amplifier

    io =Aisii Ro /(RL+Ro)io /is =AisRsRo /[(RL+Ro)(Ri+Rs)]Foridealcase(Ri 0,Ro ):io /is =Ais

    vo =Rmii RL /(RL+Ro)vo /is =RmRsRL /[(RL+Ro)(Ri+Rs)]Foridealcase(Ri 0,Ro 0):vo /is =Rm

  • Exercise1.12(Textbook)Exercise1.13(Textbook)Exercise1.14(Textbook)

    Exercise1: ForavoltageamplifierwithRi =100k,Ro =10k andAvo =20,finditsequivalentmodelsascurrent,transconductance andtransimpedance amplifiers.

    Exercise2: Considertwoamplifierstagesarecascaded.ThemodelofthefirststageisgivenbyRi =1M,Ro =10k andAvo =20,whilethemodelofthesecondstageisgivenbyRi =100k,Ro =10 andAvo =2.(1) Findthevoltageamplifiermodelforthecascadeamplifier.(2) ForRs =100k andRL =100 ,findAv andGv.

    NTUEEElectronics L.H.Lu 115

  • 1.6FrequencyResponseofAmplifiers

    ConceptoffrequencyresponseTheinputsignaltoanamplifiercanbeexpressedasthesumofsinusoidalsignalsFrequencyresponse:thecharacteristicsofanamplifierintermsofitsresponsetoinputsinusoidals

    ofdifferentfrequencies

    MeasuringtheamplifierfrequencyresponseApplyingasinusoidalsignaltoalinearamplifier,theoutputisasinusoidalatthesamefrequencyTheoutputsinusoidalwillingeneralhaveadifferentamplitudeandashiftedphaseTransferfunctionT()isdefinedasafunctionoffrequencytoevaluatethefrequencyresponse MagnitudeofT()isthevoltagegainoftheamplifier:|T()|=Vo/Vi PhaseofT() isthephaseshiftbetweeninputandoutputsignals:T()=

    AmplifierbandwidthThebandwidthisdefinedwithin3dBfromtheflatgainForsignalcontainingcomponentsoutsidethebandwidth,theoutputwaveformwillbedistorted

    NTUEEElectronics L.H.Lu 116

    vi(t)=Visin(t+ )

    vo(t)=Vosin(t+ +)3dB

    Flatgain

  • FrequencydependentcomponentsinamplifiersThefrequencyresponseofamplifiersismainlyduetofrequencydependentcomponentsThemostwidelyusedcomponentsarecapacitorsandinductors

    CapacitorsCurrentvoltagerelation:Forsinusoidalsignals:Theratioofvoltageamplitudeandcurrentamplitudeisproportionalto1/C,andisconsidereda

    frequencydependentimpedancePhasoranalysis:

    InductorsCurrentvoltagerelation:Forsinusoidalsignals:TheratioofvoltageamplitudeandcurrentamplitudeisproportionaltoL,andisconsidereda

    frequencydependentimpedancePhasoranalysis:

    NTUEEElectronics L.H.Lu

    )()( tvdtdCti CC

    )sin()()cos()( 00 tCVtitVtv CC

    CjIVZeCVItCVti

    eVVtVtv

    CCC

    jCC

    jCC

    /1/

    )sin()(

    )cos()()2/(

    00

    00

    )()( tidtdLtv LL

    )sin()()cos()( 00 tCItvtIti LL

    LjIVZeLIVtLItv

    eIItIti

    LLL

    jLL

    jLL

    /

    )sin()(

    )cos()()2/(

    00

    00

    117

  • DerivingthetransferfunctionofamplifiersComplexfrequency(s) TreataninductanceL asanimpedance sL TreatacapacitanceC asanimpedance1/sC DerivethetransferfunctionwithphysicalfrequencyT(s)=Vo/Vi

    Physicalfrequency(replaces byj) TreataninductanceL asanimpedance jL TreatacapacitanceC asanimpedance1/jC DerivethetransferfunctionwithphysicalfrequencyT(j)=Vo/Vi

    EvaluatingthefrequencyresponseofamplifiersThetransferfunctionforphysicalfrequencyisgenerallyacomplexvalueasafunctionofThemagnitude|T()|definesthevoltagegainofasinusoidalatThephaseT()definesthephaseshiftofasinusoidalat Themagnitudeandphasearegenerallyplottedversusfrequencytoevaluatethefrequencyresponse

    FrequencydomainanalysisUseFourierseries/FouriertransformtorepresentatimedomaininputsignalUsethefreq.responsetodeterminetheamplitude/phaseofthesinusoidalcomponentsattheoutputThetimedomainoutputsignalcanbeobtainedbyaddingtheoutputsinusoidalcomponentsExample:vi(t)= Ansin(nt+n)=A1sin(1t+1)+A2sin(2t+2)+ ..

    vo(t)=A1|T(1)|sin(1t+1+T(1))+A2|T(2)|sin(2t+2+T(2))+ ..NTUEEElectronics L.H.Lu 118

  • NTUEEElectronics L.H.Lu

    RCjCjRCj

    jVjVjT

    i

    o

    1

    1

    /1

    /1

    )(

    )()(

    Singletimeconstant(STC)networksThenetworkisgenerallycomposedofonereactivecomponent(L orC)andoneresistanceMostSTCnetworkscanbeclassifiedintotwocategories:lowpass (LP)andhighpass (HP)

    LowpassSTC

    Straightlineapproximations: Lowfrequencymagnitude:|K|indB Cornerfrequency:0 Fastevaluationofgainandphase

    Bodeplot

    0/1)(form General j

    KjT

    20 )/(1

    |)T(j| Magnitude K

    )/(tan)( Phase 01 jT

    )/(tan180or 01

    119

  • Exercise3: Findthetransferfunctionandplotitsfrequencyresponse.IsitaSTCnetwork?

    Exercise4:Findthetransferfunctionandplotitsfrequencyresponse.IsitaSTCnetwork?

    Exercise5: AvoltageamplifierismodeledasRi =100k,Ro =10k andAvo =20V/V.ConsiderthecasewhereRs ofthesignalsourceis25k andtheamplifierisloadedwith10k||100nF.(1) Findthetransferfunction(Vo/Vs)andplotitsfrequencyresponse.(2) Giventhatvs(t)=10cos(102t)+5cos(104t)+3cos(106t)V,findvo(t).

    NTUEEElectronics L.H.Lu 120

  • 1.7IntrinsicSemiconductors

    CovalentbondEachvalenceelectronofasiliconatomissharedbyoneofitsfournearestneighborsElectronsservedascovalentbondsaretightlyboundtothenucleus

    ElectronholepairAt0K,nofreecarriersareavailable SibehavesasaninsulatorAtroomtemperature,asmallamountofcovalentbondswillbebrokenbythethermalenergy electronholepairgenerationasfreecarriers

    Bothelectronsandholesarefreetomove cancontributetocurrentconduction

    NTUEEElectronics L.H.Lu 121

  • CarrierconcentrationinintrinsicsemiconductorForintrinsicsemiconductorsatthermalequilibrium,electronholegenerationandrecommendation

    ratesareequalTheelectronandholeconcentrationsremainunchangedatthermalequilibriumTheconductanceofintrinsicsemiconductorisproportionaltothecarrierconcentrationThecarrierconcentrationisgivenby n =p =ni (intrinsiccarrierconcentration) np =ni2 ni2(T)=BT3eEg /kT ni increasesastemperatureincreases ni decreasesastemperaturedecreases

    IntrinsiccarrierconcentrationforSiatroomtemperature:ni =1.51010 /cm3Theconductivityisrelativelylowduetothecarrierconcentration

    NTUEEElectronics L.H.Lu 122

  • ExtrinsicsemiconductorExtrinsic(doped)semiconductor=intrinsicsemiconductor+impuritiesAccordingtothespeciesofimpurities,extrinsicsemiconductorcanbeeitherntypeorptype

    ntypesemiconductorThedonorimpuritieshave5valenceelectrons

    areaddedintosiliconP,As,SbarecommonlyusedasdonorTheSiatomisreplacedbyadonoratomDonorionsareboundedinthelatticestructureand

    thusdonatefreeelectronswithoutcontributingholesByaddingdonoratomsintointrinsicsemiconductor,

    thenumberofelectronsincreases(n>p) ntypesemiconductor

    Majoritycarrier:electronMinoritycarrier:hole

    NTUEEElectronics L.H.Lu 123

  • ptypesemiconductorTheacceptorimpurityhas3valenceelectron(Boron)Th SiatomisreplacedbyanacceptoratomTheboronlacksonevalenceelectron.Itleaves

    avacancyinthebondstructureThisvacancycanacceptelectronattheexpenseof

    creatinganewvacancyAcceptorcreatesaholewithoutcontributing

    freeelectronByaddingacceptorintointrinsicsemiconductor,

    thenumberofholesincrease(p>n) ptypesemiconductor

    Majoritycarrier:holeMinoritycarrier:electron

    NTUEEElectronics L.H.Lu 124

  • CarrierconcentrationChargeneutrality: Particleswithpositivecharge:p:holeconcentration(mobile);ND:donorconcentration(immobile) Particleswithnegativecharge:n:electronconcentration(mobile);NA:acceptorconcentration(immobile) Chargeneutrality (positivecharge=negativecharge): NAn =NDp

    Massactionlaw np =ni2 forsemiconductorunderthermalequilibrium

    Forntypesemiconductor

    Forptypesemiconductor

    Exercise1.27(Textbook)Exercise6:WhatmustND besuchthatn =10000p atroomtemperature(T =300K)

    NTUEEElectronics L.H.Lu 125

    n =ND pnp =ni2

    ])2

    (11[2

    2

    D

    iD

    NnNn

    nnp i /2 ifND ni Di Nnp /2

    DNn

    p =NA nnp =ni2

    ])2

    (11[2

    2

    A

    iA

    NnNp

    pnn i /2 ifNA ni Ai Nnn /2

    ANp

  • 1.9CurrentFlowinSemiconductors

    FreecarriersinsemiconductorsMobileparticleswithpositiveornegativecharges:electronsandholesThetransportationofcarriersresultsincurrentconductioninsemiconductors

    CarrierdriftThermalmotionintheabsenceofelectricfield: Thedirectionofflightbeingchangedateachcollisionwiththeheavy,almoststationaryions Statistically,aelectronhasarandomthermalmotioninthecrystalstructure Netdisplacementoveralongperiodoftimeiszero nonetcurrentflow(I =0)

    ThermalmotionunderelectricfieldE: Thecombinedmotionofelectronunderelectricfieldhasarandomandadriftcomponent Still,nonetdisplacementduetorandommotioncomponentoveralongperiodoftime Thedriftcomponentprovidestheelectronanetdisplacement

    Driftisthecarriermovementduetotheexistenceofelectricfield

    NTUEEElectronics L.H.Lu 126

    Speed(instantaneous)>0NonetdisplacementVelocity(average)=0

    ElectricfieldE =0 ElectricfieldE 0

    Speed(instantaneous)>0DriftcomponentduetoEVelocity(average) 0

  • MobilityF =qE a = F /m* (m* istheeffectivemassofelectron)

    Assumethetimeintervalbetweencollisionistcoll andthedriftvelocityimmediatelyafterthecollisionis0

    Thentheaveragevelocityoftheelectronduetotheelectricfieldis:

    Mobility()indicateshowfastanelectron/holecanmoveundercertainelectricfieldintensity n isusedtospecifythemobilityofelectronSimilarly, p isusedtospecifythemobilityofholeInmostcases,electronmobilityislargerthanholemobilityinasemiconductor

    CarrierdriftinsemiconductorSemiconductorparameters: Electronconcentration:n(1/cm3) Electronmobility:n (cm2/V) Holeconcentration:p(1/cm3) Holemobility:p (cm2/V)

    Dimensions: Crosssectionarea:A (cm2) Length:L(cm)

    NTUEEElectronics L.H.Lu 127

    EtmqEatdriftv collcolld *22)( )/Vseccm( 2

    2*m

    qtEv colld

    A

    L

  • DriftcurrentinsemiconductorElectroncurrent: TimeintervalforelectronsflowingacrossL:T =L/vd =L/nE (sec) Totalelectroncharge:Qn =qnAL (Coulomb) ElectrondriftcurrentIn,drift =Qn/T=qnAL/T=qnnEA (A) CurrentdensityJn,drift =In,drift/A =qnnE (A/cm2)

    Holecurrent: TimeintervalforholesflowingacrossL:T =L/vd =L/pE (sec) Totalholecharge:Qp =qpAL (Coulomb) HoledriftcurrentIp,drift =Qp/T=qpAL/T=qppEA (A) CurrentdensityJp,drift =Ip,drift /A =qppE (A/cm2)

    Theelectroncurrentandholecurrentareinthesamedirection Totaldriftcurrentdensity:Jdrift=Jn,drift +Jp,drift =(qnn +qpp)E=E

    Conductivity =qnn +qpp (cm)1OhmsLow

    I =JA =EA =VA/L =V/R (A)R =L/A =L/A ()

    NTUEEElectronics L.H.Lu 128

  • CarrierdiffusionDiffusionisamanifestationofthethermalrandommotionofparticles SectionI:total#=6(3movingtotheleftand3movingtotheright) SectionII:total#=4(2movingtotheleftand2movingtotheright) Netflux:1movingacrosstheinterfacefromsectionItosectionII

    Statistically,anetcarrierflowfromhightolowconcentrationregioninainhomogeneousmaterial

    EinsteinRelation:Dp/p =Dn/ n =kT/q =VT (thermalvoltage)TotaldiffusioncurrentdensityBothelectronandholediffusioncontributetocurrentconductionTotaldiffusioncurrentdensity:

    NTUEEElectronics L.H.Lu 129

    I II

    dxdpqD

    dxdnqDJJJ pndiffpdiffndiff )()(

    dxdpqDJ pdiffp )(

    dxdnqDJ ndiffn )(

    Dn:diffusionconstant(diffusivity)ofe

    Dp:diffusionconstant(diffusivity)ofh+

  • GradedsemiconductorForanonuniformsemiconductor,thedopingconcentrationisrepresentedasND(x)ThemobilecarrierwilldiffuseduetothenonuniformdistributionTheuncompensatedspacechargebuildsupafield(potential)forthesystemtoreachequilibriumNonetcurrentflowsatanypointunderequilibriumThebuiltinpotentialcanbederivedunderthermalequilibriumbetweenpointswithdifferent

    dopingconcentration

    NTUEEElectronics L.H.Lu 130

    dxdV

    dxdp

    pVE T

    dxdpDEp pp

    pdpVdV T

    0dxdpqDEqpJ ppp

    TVVepp /21 212

    11221 ln p

    pVVVV TTVVenn /21 21

    dxdV

    dxdn

    nVE T

    dxdnDEn nn

    ndnVdV T

    0dxdnqDEqnJ nnn

    1

    21221 ln n

    nVVVV T

    Builtinpotentialfromholeconcentration

    Builtinpotentialfromelectronconcentrationn(x)

    ND(x)

    x

    Electrondiffusion

    Electrondrift

    E

    Excesspositivespacecharge

    Excessnegativemobilecharge

    n(x)

    ND(x)

    x

    Electrondiffusion

  • CurrentinsemiconductorsDriftcurrent:Jdrift =qnnE +qppEDiffusioncurrent:Jdiff =qDn(dn/dx) qDp(dp/dx)Totalcurrent:J =Jn +Jp =(qnnE +qDn(dn/dx))+(qppE qDp(dp/dx))

    Exercise7:Asiliconbarhasacrosssectionalareaof4cm2 andalengthof10cm.(1) ForintrinsicSiwith n =1350cm2/Vsandn =480cm2/Vs,findtheresistanceofthe

    baratT =300K.(2) ForextrinsicSiwithNA =1016 /cm3,n =1100cm2/Vsandn =400cm2/Vs,findthe

    resistanceofthebaratT =300K.Exercise1.28(Textbook)Example1.9(Textbook)Exercise1.29(Textbook)

    NTUEEElectronics L.H.Lu 131

    E

    e

    h

    Jn

    Jp

  • 1.10Thepn JunctionwithOpenCircuitTerminals

    Physicalstructureofapn junctionClosecontactofantypesemiconductorandaptypesemiconductorAtwoterminaldevicewithanodeandcathode

    pnjunctionincontact

    Majority carriersarecrossingtheinterfacebydiffusionandrecombinedintheothersideLeavinguncompensatedspacechargesND+ andNA depletionregionIndepletionregion,electricfield(potential)buildsupduetotheuncompensatedspacechargesThebuiltinpotentialbehavesasanenergybarrier,reducingthemajoritycarrierdiffusionThisfieldresultsinminority carrierdriftacrosstheinterfaceintheoppositedirectiontodiffusion

    NTUEEElectronics L.H.Lu 132

    ptype:dopingconcentration:NA

    ntype:dopingconcentrationND

    ptype(NA)ntype (ND)

  • pnjunctionformation(thermalequilibrium)DepletionregionincreasesduetomajoritycarrierdiffusionacrossthejunctionThebuiltinpotentialfromuncompensatedspacechargeincreasesasabarrierforcarrierdiffusionMinoritycarriersaresweptacrossthejunctioninthepresenceofthebuiltinfield driftcurrentEquilibriumisreachedwhenJdiff andJdrift areequalinmagnitudeandoppositeindirectionNonetcurrentflowsacrossthejunction

    NTUEEElectronics L.H.Lu 133

    holediffusionholedriftelectrondiffusionelectrondrift

    Jp =0

    Jn =0

    20

    0

    0

    00 lnlnln||

    i

    DAT

    n

    pT

    p

    nT n

    NNVpp

    VnnVV

    NeutralRegion

    NeutralRegion

    DepletionRegion

    ptype(NA)ntype (ND)E

    V0ptype

    ntype

  • ThedepletionregionStepgradedjunction(abruptjunction)isusedforanalysisCarriersarefullydepletedinthedepletionregionNeutralregioninntypeandptypeoutsidedepletionregionBuiltinpotential:V0 =VT ln (NAND /ni2)Poissonsequation:Derivationofpnjunctionatequilibrium:

    NTUEEElectronics L.H.Lu 134

    SidxdE

    dxVd

    2

    2

    2max0

    max

    /ln2/)(

    ///

    iDATpn

    SipASinDSiv

    pAnD

    nNNVxxEVEdxV

    xqNxqNEdxE

    xqNxqN

    AD

    DASi

    DAA

    DSi

    DAD

    ASipn NN

    NNqV

    NNqNNV

    NNqNNVxxW

    000 2

    )(

    2

    )(

    2

    D

    Si

    qNVW 02 ForNA>>ND:

    A

    Si

    qNVW 02 ForND>>NA:

    2/ln2/))(/( iDATpnSinDpAnD

    nNNVxxxqN

    xNxN

    Chargedensity(v)

    Electricfield(E)

    Electrostaticpotential(V)

    Potentialofelectron

    xp xn

    xp xn

    xpxn

    Emax

    x

    x

    x

    V0

    qNA

    qND

  • CarrierdistributionNeutralntyperegion: Majoritycarriernn =nn0 =ND Minoritycarrierpn =pn0 =ni2/ND

    Neutralptyperegion: Majoritycarrierpp =pp0 =NA Minoritycarriernp =np0 =ni2/NA

    Depletionregion: n =0 p =0

    NonetcurrentflowsacrossthejunctionBuiltinpotentialacrossthepnjunction: Fromholedensity: Fromelectrondensity:

    Example1.10(Textbook)Exercise1.32(Textbook)

    NTUEEElectronics L.H.Lu 135

    1018

    1014

    1010

    106

    102

    102

    cm3

    xp xn

    pp0

    np0

    nn0

    pn0

    V0V0

    )/ln()/ln(|| 2000 iDATnpT nNNVppVV )/ln()/ln(|| 2000 iDATpnT nNNVnnVV

  • 1.11Thepn JunctionwithanAppliedVoltage

    DepletionregionForwardbias:VF reducesthedepletionregionandtheenergybarrierReversebias:VR increasesthedepletionregionandtheenergybarrier

    NTUEEElectronics L.H.Lu 136

    Chargedensity(v)

    xnxp

    qND

    qNA

    x

    Electricfield(E)

    xnxp Emax

    x

    x

    Electrostaticpotential(V)

    xnxp

    V0+VR

    Chargedensity( v)

    xnxp

    qND

    qNA

    x

    Electricfield(E)

    xnxp Emax

    x

    x

    Electrostaticpotential(V)

    xnxpV0VF

    Forwardbias(V=VF) Reversebias(V=VR)

    SipASinD xqNxqNE //max

    AD

    ADSi

    NNNN

    qVVW )(2 0

    )(

    )(2 0

    DAD

    ASi

    DA

    An NNqN

    VVNWNN

    Nx

    )(

    )(2 0

    DAA

    DSi

    DA

    Dp NNqN

    VVNWNN

    Nx

  • MinoritycarrierdistributionduetojunctionbiasMinoritycarrierdistributionisinfluencedbythejunctionbiasDiffusioncurrentsexistduetononuniformcarrierdistributionJunctionbiascondition: Zerobias(equilibrium):V =0 Forwardbias:V =VF Reversebias:V =VR

    Minoritycarrierdistributionforallbiasconditions:

    n (p):excessminoritycarrierlifetime Ln =Dnn (Lp =Dpp ):diffusionlength

    Boundarycondition: pn(x=xn)=pp0exp[(V0V)/VT]=pn0exp(V/VT) pn(x =)=pn0 np(x=xp)=nn0exp[(V0V)/VT]=np0exp(V/VT) np(x=)=np0

    NTUEEElectronics L.H.Lu 137

    0/)(/

    0

    0/)(/

    0

    )1()(

    )1()(

    pLxxVV

    pp

    nLxxVV

    nn

    neenxn

    peepxpnpT

    pnT

    1018

    1010

    102

    cm3pp0

    np0

    nn0

    pn0

    1018

    1010

    102

    cm3pp0

    np0

    nn0

    pn0

    1018

    1010

    102

    cm3

    pp0

    np0

    nn0

    pn0

    np0eV/VT

    pn0eV/VT

    pn0eV/VT

    ZeroBias(V =0)

    ForwardBias(V =VF>0)

    ReverseBias(V=VR

  • JunctioncurrentdensityAssumenocarriergenerationandrecombinationwithinthedepletionregion:

    Jn(xp)=Jn(xn)andJp(xp)=Jp(xn)DiffusioncurrentsJp andJn attheedgeofthedepletionregioncanbeobtainedby:

    Totaljunctioncurrent:J(x)=Jn(x)+Jp(x)=Jn(xp)+Jp(xp)=Jn(xp)+Jp(xn) AssumeJp andJn donotchangeacrossthedepletionregion:Jp(xp)= Jp(xn)andJn(xp)=Jn(xn) Thetotalcurrentcanbeexpressedas:J(x)=Jn(x)+Jp(x)=Jn(xp)+Jp(xp)=Jn(xp)+Jp(xn)

    TheIVcharacteristicsofthepn junctionThejunctioncurrentdependsonthejunctionvoltageThejunctioncurrentisproportionaltothejunctionareaThejunctioncurrentisgivenby

    Saturationcurrent:

    NTUEEElectronics L.H.Lu 138

    )1()(

    )1()(

    /0

    /0

    Tp

    T

    n

    VV

    n

    pnx

    pnpn

    VV

    p

    npx

    npnp

    eLnqD

    dxdn

    qDxJ

    eLpqD

    dxdpqDxJ

    )1()1()()( //00

    kTqVskTqV

    p

    np

    n

    pnnppn eJeL

    pqDLnqD

    xJxJJ

    An

    n

    Dp

    pi

    n

    pn

    p

    nps NL

    DNLD

    qAnLnD

    LpD

    qAI 200

    )1( / kTqVs eII

  • ReversebreakdownBreakdownvoltage:areversejunctionbiasVR=VZAlargereversecurrentflowswhenreversebiasexceedsVZForbreakdownvoltage5V avalanchebreakdownBreakdownisnondestructiveifthepowerdissipationislimited

    Zener breakdownStrongelectricfieldinthedepletionregionbreakscovalentbonds,generatingelectronholepairsGeneratedelectrons(holes)aresweptintontype(ptyperegion)forareversecurrentZener breakdownnormallytakesplaceforpn junctionwithhighdopingconcentration

    AvalanchebreakdownTheminoritycarriersthatcrossthedepletionregiongainsufficientkineticenergyduetothefieldThecarrierswithhighkineticenergybreakcovalentbondsinatomsduringcollisionMorecarriersareacceleratedbythefieldforavalanchereactionAvalanchenormallytakesplacefirstforpn junctionwithlowdopingconcentration

    Example1.11(Textbook)

    NTUEEElectronics L.H.Lu 139

    Breakdownregion

  • Comparisonofbreakdownmechanism

    NTUEEElectronics L.H.Lu 140

    Zener breakdownAvalanchebreakdown

    Electricfield(E)

    Chargedensity(v)

    qNA

    qND

    Electrostaticpotential(V)

    Emax

    Breakdownvoltage

    Electricfield(E)

    Emax

    Chargedensity(v)

    qND

    qNA

    Electrostaticpotential(V)

    Breakdownvoltage

  • 1.12CapacitiveEffectsinthepn Junction

    DepletionorjunctioncapacitanceThedepletionwidthiscontrolledbytheterminalvoltageThechangeofterminalvoltage(dV)willresultindQ atthe

    edgeofthedepletionregion capacitanceThejunctioncapacitanceduetospacechargeisCj =dQ/dVR

    Cj canalsobeestimatedbyaparallelplatecapacitor:

    Underforwardbiasconditions,W reduces largerCjUnderreversebiasconditions,W increases smallerCjGeneralformulaofjunctioncapacitanceforarbitrarydopingprofile:

    NTUEEElectronics L.H.Lu 141

    00

    00

    0

    0

    1

    2

    11

    2

    )(2

    VNNNNqAC

    VVC

    VVNNNNqA

    wAC

    VVNNNN

    qW

    DA

    DASij

    Rj

    RDA

    DASi

    dep

    Sij

    RAD

    ADSi

    AD

    AD

    R

    Si

    R

    nD

    Rj NN

    NNVVVqA

    dVwqANd

    dVdQC )(2 0

    0

    mRjj V

    VCC )1(0

    00

    Chargedensity

    ntypeptype

    positivespacecharge(donors)

    negativespacecharge(acceptors)

  • DiffusioncapacitanceExcessminoritycarrierstoredinneutralregionschangewiththeterminalvoltage capacitanceByintegrationtheexcessminoritycarriersatbothsides:

    Smallsignaldiffusioncapacitance:

    Cd islargeunderforwardbiasconditionsCd isneglectedunderreversebiasconditions

    CapacitanceofpnjunctionOperatedatforwardbias:C =Cj +CdOperatedatreversebias:C CjTotalcapacitanceincreasesasamorepositivejunctionvoltageisapplied

    Exercise1.40(Textbook)

    NTUEEElectronics L.H.Lu 142

    IIIIDLI

    DL

    QQQ Tnnppnn

    np

    p

    pnp

    22

    IVdV

    dQC

    eIeIIQ

    T

    Td

    VVsT

    kTqVsTT

    T

    )(

    //


Recommended