+ All Categories
Home > Documents > Environmental Protection of a beta Stabilized TiAl Alloy ... · Period: 01.10.2010 –30.09.2013...

Environmental Protection of a beta Stabilized TiAl Alloy ... · Period: 01.10.2010 –30.09.2013...

Date post: 02-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
Environmental Protection of a betaStabilized TiAl Alloy by a Combination of the Halogen Effect with Thermal Barrier Coatings Di d t Di d t f ti lb d t -TiAl Combination of the Halogen Effect with Thermal Barrier Coatings S. Friedle, M.C. Galetz, M. Schütze email: [email protected] Funded by: DFG Period: 01.10.2010 – 30.09.2013 TiAl alloys Novel TBC Novel TBCConcept on Concept on TiAl TiAl Disadvantages Disadvantages of conventionalbond coats (BC) on TiAl: Formation of brittle intermetallic phases Interdiffusion between BC and substrate Insufficient oxidation resistance at longterm exposure Goal: Goal: Utilization of halogen effect (fluorine) Promotes formation of thermallygrown oxide (TGO) of Al 2 O 3 Enhances oxidation protection up to 1050°C Conventional TBCSystems thermally grown oxide (TGO) α-Al2O3 layer hot gas cooling Novel TBCSystem using FEffect Ti(4249)Al(0.110)X in at.% X = Cr, Nb, W, V, Ta, Si, B, C Low density: ~4 g/cm³ vs. ~8 g/cm³ for Nibased superalloys Good mechanical properties at HT High specific strengths and moduli Attractive materials for Attractive materials for aeroengines aeroengines GEnxengine: TiAl blades in lowpressure turbine Disadvantage: Oxidation resistance limited to ca. 800C E i l i i i d E i l i i i d Enhances oxidation protection up to 1050 C Simple fluorination methods allow treatment of even complex geometries. Preoxidation at around 900C promotes the formation of a protective alumina layer 1. Influence of 1. Ftreatment At 900°C: Oxidation resistance of HF and Fpolymer samples extends 1000 x 1hcycles α Al2O3 layer Cyclic Tests at 900°C and 1000°C in Lab Air Environmental protection is required Environmental protection is required Advantages Advantages Simple process Economical (especially Fpolymer and acid dipping) Long LongTerm Exposure Tests Term Exposure Tests Fluorine Treatments Fluorine Treatments extends 1000 x 1h cycles At 1000°C: Fpolymer samples perform best 2. TBCdeposition temperature Comparable lifetimes of TBCs deposited at 900°C and 1000°C at exposure tests at 900°C Samples with a 900°C TBC have a longer lifetime during exposure tests at 1000°C Only a thin zone is affected Production of the TBC Production of the TBCSystem System Failure declared when 30% of TBC had spalled Thermal barrier coatings of YPSZ were applied via ElectronBeam Physical Vapor Deposition (EBPVD) at 900°C and 1000°C with and without the implementation of a preoxidation step. The TiAl alloy TNMB1 Ti43.5Al4Nb1Mo0.1B was studied. As Asdeposited samples deposited samples Exposure to Synthetic Air Containing WaterVapor or Sulfur Dioxide The negative influence of the higher deposition temperature is currently under investigation. 10 vol.% H 2 O in synth. air 60 min. at 900°C; ~25 min. at 40°C 0.5 vol.% SO 2 in synth. air 60 min. at 900°C; ~25 min. at 40°C 30% of TBC had spalled Samples without a preexisting dense alumina layer fail in cyclic tests. Reason is the removal of volatile fluorine species in the vacuum atmosphere of the EBPVD process. Show excellent adherence of TBC on TiAlsubstrate, independent of Fluorination methods Preoxidation step Deposition temperature (Successful application of 1000°C TBC on TiAl alloy first time) TBC (ca. 150 μm) Oxide layer Substrate Conditions for cyclic oxidation tests: F treatment: HF Influence of the Pre Influence of the PreOxidation Treatment Oxidation Treatment After 1000 1hcycles: This new TBC system reveals excellent adherence of TBCs during long term cyclic No oxidation protection. A thick layer of nonprotective oxides and nitrides forms similar to untreated material. Excellent oxidation Conditions for cyclic oxidation tests: 60 min. at 900°C; 10 min. at T below 30°C Ftreatment: HF TBCdeposition at 1000°C Untreated samples show deep attack. Fpolymer samples show significantly thinner Aldepletion zones due to lower surface roughness. HF samples show thicker Aldepletion zone due to increased surface roughness by etching process. Internal oxidation (alumina) is partially observed. Outlook Outlook Ftreatment: Fpolymer HF Fpolymer HF TBCdeposition at 1000°C for all samples Literature: 1 A. Donchev, M. Schütze, R. Yankov, A. Kolitsch, W. Möller in Structural aluminides for elevated temperatures, ed.: Y.W. Kim et al. TMS (2008), 323332 2 S. Friedle, N. Nießen, R. Braun, M. Schütze, Surf. Coat. Technol. 212 (2012), 7278 Project Partners: R. Braun, N. Laska at DLR (German Aerospace Center) Köln: Application of TBCs, exposure tests ; C. Leyens, A.Straubel at Technische Universität Dresden: Investigation of mechanical properties This new TBCsystem reveals excellent adherence of TBCs during longterm cyclic tests in aggressive atmospheres, offering a promising alternative to TBCsystems on TiAl with conventional Alrich bond coats. Future work focuses on the understanding of the influence of this TBCsystem on the mechanical properties of the substrate material. protection. The thin and dense Aloxide layer barely changes its thickness.
Transcript
Page 1: Environmental Protection of a beta Stabilized TiAl Alloy ... · Period: 01.10.2010 –30.09.2013 ... ‐TiAlwith conventionalAl‐richbond coats. Future work focuses on the understanding

Environmental Protection of a beta‐Stabilized ‐TiAl Alloy by a Combination of the Halogen Effect with Thermal Barrier Coatings

Di d tDi d t f ti l b d t-TiAl

Combination of the Halogen Effect with Thermal Barrier Coatings S. Friedle, M.C. Galetz, M. Schütze

e‐mail: [email protected] by: DFG

Period: 01.10.2010 – 30.09.2013

‐TiAl alloys 

Novel TBCNovel TBC‐‐Concept on Concept on ‐‐TiAlTiAl

DisadvantagesDisadvantages of conventional bond coats(BC) on ‐TiAl:• Formation of brittle intermetallic phases• Interdiffusion between BC and substrate• Insufficient oxidation resistance at long‐term exposure

Goal: Goal: Utilization of halogen effect (fluorine)• Promotes formation of thermally‐grown oxide (TGO) of ‐Al2O3

• Enhances oxidation protection up to 1050°C

Conventional TBC‐Systems

thermally grown oxide (TGO) α-Al2O3 layer

hot gas cooling

Novel TBC‐System using F‐Effect

y

• Ti‐(42−49)Al‐(0.1−10)X  in at.%X = Cr, Nb, W, V, Ta, Si, B, C

• Low density: ~4 g/cm³ vs. ~8 g/cm³ for Ni‐based superalloys

• Good mechanical properties at HT• High specific strengths and moduli

Attractive materials for Attractive materials for aeroenginesaeroenginesGEnx‐engine: ‐TiAl blades in low‐pressure turbine 

Disadvantage: Oxidation resistance limited to ca. 800C

E i l i i i dE i l i i i d • Enhances oxidation protection up to 1050 C

Simple fluorination methods allow treatment of even complex geometries. Pre‐oxidation at around 900C promotes the formation of a protective ‐alumina layer 1.

Influence of 1. F‐treatment•At 900°C: Oxidation resistance of HF and F‐polymer samples extends 1000 x 1h‐cycles

α Al2O3 layer

Cyclic Tests at 900°C and 1000°C in Lab Air

Environmental protection is required Environmental protection is required 

AdvantagesAdvantages• Simple process• Economical (especially F‐polymer and acid dipping)

LongLong‐‐Term Exposure Tests Term Exposure Tests Fluorine TreatmentsFluorine Treatments

extends 1000 x 1h cycles• At 1000°C: F‐polymer samples perform best

2. TBC‐deposition temperature•Comparable lifetimes of TBCs deposited at 900°C and 1000°C at exposure tests at 900°C

•Samples with a 900°C TBC have a longer  lifetime during exposure tests at 1000°C

• Only a thin zone is affected 

Production of the TBCProduction of the TBC‐‐SystemSystem Failure declared when 30% of TBC had spalled

Thermal barrier coatings of YPSZ were applied via Electron‐Beam Physical VaporDeposition (EB‐PVD) at 900°C and 1000°C with and without the implementation of apre‐oxidation step. The TiAl alloy TNM‐B1 Ti‐43.5Al‐4Nb‐1Mo‐0.1B was studied.

AsAs‐‐deposited samplesdeposited samples

Exposure to Synthetic Air Containing Water‐Vapor or Sulfur Dioxide

The negative influence of the higher deposition temperature is currently under investigation.

10 vol.% H2O in synth. air60 min. at 900°C;  ~25 min. at 40°C

0.5 vol.% SO2 in synth. air60 min. at 900°C;  ~25 min. at 40°C

30% of TBC had spalled

Samples without a pre‐existing dense alumina layer fail in cyclic tests. Reason is theremoval of volatile fluorine species in the vacuum atmosphere of the EB‐PVD process.

Show excellent adherence of TBC

on TiAl‐substrate, independent of• Fluorination methods• Pre‐oxidation step • Deposition temperature (Successful application of 1000°C TBC on TiAl alloy first time)

TBC (ca. 150 µm)

Oxide layerSubstrate

Conditions for cyclic oxidation tests:F treatment: HF

Influence of the PreInfluence of the Pre‐‐Oxidation TreatmentOxidation Treatment

After 1000 1h‐cycles:

This new TBC system reveals excellent adherence of TBCs during long term cyclic

No oxidation protection. A thick layer of non‐protective oxides and nitrides forms similar to untreated material. 

Excellent oxidation 

Conditions for cyclic oxidation tests:60 min. at 900°C;  10 min. at T below 30°C

F‐treatment: HFTBC‐deposition at 1000°C

Untreated samples show deep attack.F‐polymer samples show significantly thinner Al‐depletion zones due to lower surface roughness.HF samples show thicker Al‐depletion zone due to increased surface roughness by etching process. Internal oxidation (alumina) is partially observed.

OutlookOutlook

F‐treatment:   F‐polymer HF F‐polymer HFTBC‐deposition at 1000°C for all samples

Literature: 1 A. Donchev, M. Schütze, R. Yankov, A. Kolitsch, W. Möller in Structural aluminides for  elevated temperatures, ed.: Y.‐W. Kim et al. TMS (2008), 323‐332   2 S. Friedle, N. Nießen, R. Braun, M. Schütze,  Surf. Coat. Technol. 212 (2012), 72‐78Project Partners: R. Braun, N. Laska at DLR (German Aerospace Center) Köln: Application of TBCs, exposure tests ; C. Leyens, A.Straubel at Technische Universität Dresden: Investigation of mechanical properties

This new TBC‐system reveals excellent adherence of TBCs during long‐term cyclictests in aggressive atmospheres, offering a promising alternative to TBC‐systems on‐TiAl with conventional Al‐rich bond coats.Future work focuses on the understanding of the influence of this TBC‐system onthe mechanical properties of the substrate material.

protection. The thin and dense Al‐oxide layer barely changes its thickness. 

Recommended