+ All Categories
Home > Documents > ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation...

ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation...

Date post: 10-Jul-2020
Category:
Upload: others
View: 14 times
Download: 0 times
Share this document with a friend
29
ESE 524 ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Research Laboratory Electrical and Systems Engineering Washington University 211 Urbauer Hall 314-935-4173 (Lynda answers) jao@wustl edu J. A. O'S. ESE 524, Lecture 2, 01/15/09 1 jao@wustl.edu
Transcript
Page 1: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

ESE 524ESE 524Detection and Estimation Theoryy

Joseph A. O’SullivanSamuel C. Sachs Professor

Electronic Systems and Signals Research LaboratoryResearch Laboratory

Electrical and Systems EngineeringWashington University

211 Urbauer Hall314-935-4173 (Lynda answers)

jao@wustl eduJ. A. O'S. ESE 524, Lecture 2, 01/15/09 1

[email protected]

Page 2: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

D t ti Th rDetection Theory Which model best fits the measured data? Which model best fits the measured data? Decision or detection or hypothesis testing Principled approach Principled approach

Define the concept of a model Define the concept of a decisionp Define an objective function to be minimized Given these, derive an optimal decision Quantify the performance (as a function of

parameters)

J. A. O'S. ESE 524, Lecture 2, 01/15/09 2

Page 3: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

E pl Thr i D rtExample: Throwing Darts Suppose that when people throw darts at a blackboard,

h i di ib i f h l i f h dthere is a distribution of the locations of the darts. The first individual is very good and his darts land in the

vicinity of the target, with a circularly symmetric distributiondistribution.

The second individual has a systematic error that he does not seem to be able to correct. His darts land in a circularly symmetric distribution offset from the truth.y

The third individual has no systematic error, but his darts, while still landing according to a circularly symmetric distribution around the truth, are more widespread than the fi t i di id lfirst individuals.

Problem 1: Individual 1 or 2 Problem 2: Individual 1 or 3

J. A. O'S. ESE 524, Lecture 2, 01/15/09 3

Other problems

Page 4: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Example: Thr i D rt 2

4

6

Throwing Darts These problems are still not -4

-2

0

well posed. Need additional assumptions such as:

A1: The distributions are two- -10 -8 -6 -4 -2 0 2 4 6 8-10

-8

-6

dimensional Gaussian distributions around the truth with known covariance matrix. 5

6

A2: All throws are independent of all other throws.

A3: The covariance matrix is 1

2

3

4

diagonal with equal variance in each direction

-2

-1

0

J. A. O'S. ESE 524, Lecture 2, 01/15/09 4

-3 -2 -1 0 1 2 3 4 5 6-3

Page 5: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Matlab Code f Pl t 2

4

6

for Plotsfunction errf=dartslecture2errf 0;

-4

-2

0

errf=0;x=randn(2,100);y=2*ones(2,100)+randn(2,100);z=3*randn(2,100); -10 -8 -6 -4 -2 0 2 4 6 8

-10

-8

-6

z 3 randn(2,100);figureplot(x(1,:),x(2,:),'bx')hold on 5

6

Can decide among hypotheses if more “throws” (data) are observed

plot(y(1,:),y(2,:),'ro')plot(z(1,:),z(2,:),'gv')axis equal;figure 1

2

3

4

figureplot(x(1,:),x(2,:),'bx')hold onplot(2+y(1,:),2+y(2,:),'ro')

-2

-1

0

p ( y( , ), y( , ), )axis equal;errf=1; J. A. O'S. ESE 524, Lecture 2, 01/15/09 5

-3 -2 -1 0 1 2 3 4 5 6-3

Page 6: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Probability Density Functions: M l b M h PlMatlab Mesh Plots

J. A. O'S. ESE 524, Lecture 2, 01/15/09 6

Page 7: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

M tl b C d f r pdf C p t tiMatlab Code for pdf Computationfunction errf=dartslecture2pdferrf=0;x=-5:.1:5;[x,y]=meshgrid(x);p1=exp( (x ^2+y ^2)/2)/(2*pi);p1=exp(-(x.^2+y.^2)/2)/(2*pi);p2=exp(-((x-2).^2+(y-2).^2)/2)/(2*pi);p3=exp(-(x.^2+y.^2)/18)/(18*pi);figuregmesh(x,y,p1)figuremesh(x,y,p2)figuremesh(x,y,p3)figuremesh(x y max(max(p1 p2) p3))mesh(x,y,max(max(p1,p2),p3))errf=1;

J. A. O'S. ESE 524, Lecture 2, 01/15/09 7

Page 8: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

E l Th i (O Di ) DExample: Throwing (One Dim) Darts Suppose that one of two possible known signals pp p g

is transmitted during the interval [0,T]: s(t) or –s(t)

Th i l i d i hit G i i The signal is measured in white Gaussian noise:

{ }( ) ( ) ( ), 0

1 1r t a Es t w t t Ta

= + ≤ ≤∈ + −

The receiver first computes the integral of r(t)times s(t) (unit energy) over the interval to get

{ }1, 1a ∈ +

0(0, / 2)r a E nn N

= +N

J. A. O'S. ESE 524, Lecture 2, 01/15/09 8

Problem: a=+1 or a=-1

Page 9: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

E pl Thr i 2D D rtExample: Throwing 2D Darts In QAM (quadrature amplitude modulation), one of four

signals is sent over [0,T]:

( ) ( ) ( ) ( )2 2 2 2( ) cos , cos , sin , cosc c c cs t t t t tT T T T

ω ω ω ω ∈ − −

Assume measurements are in white Gaussian noise Assuming the cosine and sine are orthogonal over the

interval the measurements are integrated against each to

T T T T

interval, the measurements are integrated against each to get two measurements.

Problem: which of four signals was sent?( ) ( ) ( ) 0r t Es t w t t T= + ≤ ≤ 1 1 0 0Ir −

0 0

( ) ( ) ( ), 0

2 2( ) cos( ) ( ) cos( )

2 2

T T

I c c I

T T

r t Es t w t t T

r r t t dt E s t t dt nT T

ω ω

= + ≤ ≤

= = + 0

1 1 0 0, , ,

0 0 1 1

(0, / 2)

I

Q

I

Er

n N

∈ −

N

J. A. O'S. ESE 524, Lecture 2, 01/15/09 90 0

2 2( ) sin( ) ( ) sin( )Q c c Qr r t t dt E s t t dt nT T

ω ω= = + 0(0, / 2)Q

I Q

n N

n n⊥

N

Page 10: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Finite DimensionalBi D i ThBinary Detection Theory Problem: Given a measurement of a random

t d id hi h f t d l it i dvector r, decide which of two models it is drawn from.

Source DecisionSystem

Source produces H0 or H1 probabilities P0 and

y

H0 or H1

r H0 or H1

Source produces H0 or H1 probabilities P0 and P1=1-P0. Probabilities may not be known.

Random measurement vector results. Transition probabilities (system) are often assumed known.p ( y )

Decision rule is a partition of measurement space into two sets Z0 and Z1 corresponding to decisions H0 and H1.

J. A. O'S. ESE 524, Lecture 2, 01/15/09 10

0 1

Page 11: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

O t B Crit riOutcomes, Bayes Criterion There are four possible outcomes:

Decide H0 and H1 is true: P1(1-PD) Decide H1 and H1 is true: P1PD Decide H0 and H0 is true: P0(1-PF)

D id H d H i t P P Decide H1 and H0 is true: P0PF

Probability of False Alarm: PF Decide H1 given H0 is true

P b bili f D i P Probability of Detection: PD Decide H1 given H1 is true

Probability of Miss: PM=1-PD Decide H0 given H1 is true

Error probabilities equal integrals of conditional (or transition) probability density functions over d i i i

J. A. O'S. ESE 524, Lecture 2, 01/15/09 11

decision regions

Page 12: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

B Crit riBayes Criterion Assumptions:

Source prior probabilities P0 and P1 are known Transition densities are known There are costs of decision outcomes and these are

known: Cij cost of deciding Hi and Hj is true C01- C11 >0 is the relative cost of a miss C10- C00 >0 is the relative cost of a false alarm10 00

Bayes decision criterion: Pick the decision rule to minimize the average risk (cost)

(1 ) (1 )C P P C P P C P P C PP+ + +R

( ) ( )00 0 01 1 10 0 11 1

01 11 1 10 00 0 00 0 11 1

(1 ) (1 )(1 )

(1 ) Simplified notation

F D F D

D F

C P P C P P C P P C PPC C P P C C P P C P C P

C P P C P P

= − + − + += − − + − + += − + ←

R

J. A. O'S. ESE 524, Lecture 2, 01/15/09 12

1 0

00 0 11 1

(1 ) Simplified notationM D F FC P P C P PC P C P

= − + ←+ +

Page 13: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

R ltResults Theorem: Likelihood ratio test is optimal Theorem: Likelihood ratio test is optimal Corrolary: The log-likelihood ratio test is

optimalopt a For proofs, see notes and text Example: deterministic signal in Gaussian Example: deterministic signal in Gaussian

noise

J. A. O'S. ESE 524, Lecture 2, 01/15/09 13

Page 14: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

D i i R lDecision RulesCriterion Transition

DensitiesPriorsP & P

CostsCDensities P0 & P1 Cij

Bayes: mimize expected risk or cost Yes Yes Yes

Minimum ProbabilityMinimum Probability of Error Yes Yes No

Minimax Yes No Yes

Neyman-Pearson Yes No No

1 0M M F FP P C P P= +R C The entire space is divided into two regions: Decide H0 or H1

1

0

| 1( | )M HP p H d= r R RZ

The integrals of the probability density functions determine the probabilities of errorIntegrate over the “other” or “wrong”

J. A. O'S. ESE 524, Lecture 4, 01/25/07 140

1

| 0( | )F HP p H d= r R RZ

Integrate over the other or wrong region

Page 15: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

B Crit riBayes Criterion Define the two decision regions. Minimize Bayes risk over

the decision regions. Every point in the space must be included in one integral or

the other Put a point in a region if it contributes less to that integral

than to the other Introduce new notation for the result of the comparisonp

1 0

( | ) ( | )M M F FP P C P P

P H d C P H d

= +

+ R R R R

R C

C1 0

0 1

1 | 1 0 | 0( | ) ( | )

( | ) ( | )

M H F HP p H d C P p H d

P p H C P p H

= + r rR R R R

R RZ Z

C

CJ. A. O'S. ESE 524, Lecture 2, 01/15/09 15

1 01 | 1 0 | 0( | ) ( | )M H F HP p H C P p Hr rR RC

Page 16: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

B Crit riBayes Criterion Compare and 11 | 1( | )M HP p Hr RC

00 | 0( | )F HC P p Hr R

Introduce new notation for the result of the comparison If the left side is bigger, decide H1

If the right side is bigger, decide H0

For continuous pdfs, do not worry about equality

1 0M M F FP P C P P= +R C

1 0

0 1

1 0

1 | 1 0 | 0( | ) ( | )M M F F

M H F HP p H d C P p H d= + r rR R R RZ Z

C0 1

1

1 01 | 1 0 | 0( | ) ( | )H

M H F HP p H C P p H><r rR RC

J. A. O'S. ESE 524, Lecture 2, 01/15/09 16

1 0

0H<

Page 17: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Bayes Criterion: Derivation of Lik lih d R ti T tLikelihood Ratio Test Compare and 11 | 1( | )M HP p Hr RC

00 | 0( | )F HC P p Hr R

There are several equivalent ways to compare these values including the likelihood ratio and the log-likelihood ratio

1H

>1 0

0

1 | 1 0 | 0( | ) ( | )M H F HH

H

P p H C P p H><r rR RC

( )1

1

0 0

| 1 0

| 0 1

( | )( | )

HH F

H MH

p H C Pp H P

η>Λ <r

r

RR

R

C

( )

0 0

1

1

|

| 1 0( | )

ln ln( | )

H

HH F

p H C PlH P

γ > <

r RR

R

CJ. A. O'S. ESE 524, Lecture 2, 01/15/09 17

( )0 0

| 0 1( | )H MHp H P < r R C

Page 18: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Bayes Criterion: Computation of Err r Pr b bilitiError Probabilities The likelihood ratio is a nonnegative-valued g

function of the observed data. Evaluated at a random realization of the data, the

lik lih d ti i d i bllikelihood ratio is a random variable. Comparing the likelihood ratio to a threshold is

the optimal test.the optimal test. The probabilities of error can be computed in

terms of the probability density functions for ith th lik lih d ti th l lik lih deither the likelihood ratio or the log-likelihood

ratio.

J. A. O'S. ESE 524, Lecture 2, 01/15/09 18

Page 19: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Opti l D i i R lOptimal Decision Rules Likelihood Ratio Test Threshold for Bayes Rule:

0 10 00 0( )( )

FC P C C PC P C C P

η −= =−

Computations of the error probabilities

( )1

1| 1( | )ln ln

H

Hp Hl η

>

r RR

1 01 11 1( )MC P C C P−

( )1

1| 1( | )H

Hp Hη>

Λ r RR ( ) 1

00

|

| 0

ln ln( | )

( | )

HH

lp H

P L H dLγ

η= <

r

RR

( ) 1

00

|

| 0( | )

( | )

HH

p H

P H dη

ηΛ =<

Λ Λ

r

RR

1| 1

| 0

( | )

( | )

M l H

F l H

P p L H dL

P p L H dL

−∞∞

=

=

10

0

( | )

( | )

M

F

P p H d

P p H d∞

= Λ Λ

= Λ Λ

J. A. O'S. ESE 524, Lecture 4, 01/25/07 19

0| 0( | )F l Hpγ0( | )F p

η

Page 20: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Mi i Pr b bilit f Err rMinimum Probability of Error Minimum Probability of Error Minimum Probability of Error

1 0

1e M F

M F

P P P P PC C

= += =

0

1

1M FC CPP

η =

Loglikelihood Ratio Test

1

J. A. O'S. ESE 524, Lecture 2, 01/15/09 20

Page 21: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Mi i Pr b bilit f Err rMinimum Probability of ErrorAlternative View of

1

1| 1 0( | )

H

Hp H P>r RDecision Rule:

Compute Posterior

00

1

| 0 1

| 0 0| 1 1

( | )

( | )( | )

HH

H

HH

p H P

p H Pp H P

<

>

r R

RRPosterior Probabilities on Hypotheses

Select Most

01

0

1

| 0 0| 1 1 ( | )( | )for any ( ) 0

( ) ( )

( | )( | )

HH

H

H

p H Pp H Pg

g g

H PH P

>>

<rr RR

RR R

RR Select Most Likely Hypothesis

01

0

| 0 0| 1 1 ( | )( | )( ) ( )

( ) ( | ) ( | )

HH

H

p H Pp H Pp p

H P H P

><

+

rr RRR R

R R R1 0

1

| 1 1 | 0 0

1 0

( ) ( | ) ( | )

( | ) ( | )

H H

H

p p H P p H P

P H P H

= +

>

r rR R R

R R

J. A. O'S. ESE 524, Lecture 4, 01/25/07 210

1 0

H<

Page 22: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

G i E plGaussian Example

J. A. O'S. ESE 524, Lecture 2, 01/15/09 22

Page 23: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Mi i D i i R lMinimax Decision Rule Find the decision rule that minimizes the Find the decision rule that minimizes the

maximum Bayes Risk over all possible priors. min maxR

Transition Priors Costs

1 1

min maxPZ

R

Criterion TransitionDensities

PriorsP0 & P1

CostsCij

Bayes: mimize expected risk or cost Yes Yes Yes

Minimum Probability of Error Yes Yes No

Minimax Yes No Yes

J. A. O'S. ESE 524, Lecture 4, 01/25/07 23

Neyman-Pearson Yes No No

Page 24: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Mi i D i i R l A l iMinimax Decision Rule: Analysis For any fixed decision rule the risk is linear in P1y 1

The maximum over P1 is achieved at an end point To make that end point as low as possible, the

risk should be constant with respect to P1

To minimize that constant value, the risk should achieve the minimum risk at some P *achieve the minimum risk at some P1 .

At that value of the prior, the best decision rule is a likelihood ratio test

1

1 0

| 1( | )M M F F

M H

P P C P P

P p H d

= +

= r R RZ

R C

J. A. O'S. ESE 524, Lecture 4, 01/25/07 24

0

0

1

| 0( | )F HP p H d= r R RZ

Z

Page 25: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Mi i D i i R l A l iMinimax Decision Rule: Analysis Bayes risk is concave (it is always below Bayes risk is concave (it is always below

its tangent) Minimax is achieved at an end point or at a s ac e ed at a e d po t o at

an interior point on the Bayes risk curve where the tangent is zero

J. A. O'S. ESE 524, Lecture 4, 01/25/07 25

Page 26: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

Minimax Decision Rule: 0.7

0.8

0.9

1

5: 5 0XH x e X− ≥Example0.3

0.4

0.5

0.6

PD

0

1

: 5 , 0

: , 04 ln 5

X

H x e X

H x e Xl X

≥= −

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

PF

Matlab Code

5 5 '

'

''

5

1

XF

XM

P e dX e

P e dX e

γ

γ

γγ

− −

− −

= =

= = −

20

25

30pf=0:0.01:1;pd=pf.^0.2;eta=0.2*(pf.^(-0.8)); % eta=dP_D/dP_Ffigureplot(pf pd);xlabel('P F');ylabel('P D')

00.2

0.2

1

(1 )F

F

D M

M F F

P P P

C P C P

= − =

− =

10

15

Ris

k

plot(pf,pd);xlabel('P_F');ylabel('P_D')cm=10;cf=100;p1star=1./(1+cm*eta/cf);riskoptimal=cm*(1-pd).*p1star+cf*pf.*(1-p1star);figure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

P1

plot(p1star,riskoptimal,'b'), hold onp1=0:0.01:1;r1=cm*(1-pd(10))*p1+cf*pf(10)*(1-p1);plot(p1,r1,'r'), hold onr2=cm*(1-pd(20))*p1+cf*pf(20)*(1-p1);

J. A. O'S. ESE 524, Lecture 4, 01/25/07 26

r2 cm (1-pd(20)) p1+cf pf(20) (1-p1);plot(p1,r2,'g'), hold onr3=cm*(1-pd(30))*p1+cf*pf(30)*(1-p1);plot(p1,r3,'c')xlabel('P_1');ylabel('Risk')

Page 27: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

N P r D i i R lNeyman-Pearson Decision Rule Minimize PM subject to PF ≤ α Variational approach Variational approach Upper bound usually achieved Likelihood ratio test; threshold?

( )M FF P Pη α= + −

1 0

0 1

| 1 | 0( | ) ( | )H Hp H d p H dη α

= + −

r rR R R RZ Z

Criterion TransitionDensities

PriorsP0 & P1

CostsCij

Bayes: mimize expected risk or cost Yes Yes Yesexpected risk or cost

Minimum Probability of Error Yes Yes No

Minimax Yes No Yes

J. A. O'S. ESE 524, Lecture 4, 01/25/07 27Neyman-Pearson Yes No No

Page 28: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

N P r D i i R lNeyman-Pearson Decision Rule Minimize PM subject to PF ≤ α Variational approach Variational approach Upper bound usually achieved Likelihood ratio test; threshold?

( )M FF P Pη α= + −

1 0

0 1

| 1 | 0( | ) ( | )H Hp H d p H dη α

= + −

r rR R R RZ Z

Plot the ROC: PD versus PF for the family of likelihood ratio tests

Draw a vertical line where PF = α Find the corresponding P

D

F

dPdP

η =

Find the corresponding PD At that point, the threshold equals

the derivative of the ROCD

F

dPd

dPd

η=

J. A. O'S. ESE 524, Lecture 4, 01/25/07 28

Page 29: ESE 524ESE 524 Detection and Estimation Theory€¦ · ESE 524ESE 524 Detection and Estimation Theory Joseph A. O’Sullivan Samuel C. Sachs Professor Electronic Systems and Signals

S rSummary Several decision rules Likelihood (and loglikelihood) ratio test is optimal Receiver operating characteristic (ROC) plots

probability of detection versus probability of false alarm with the threshold as a parameter all possible optimal performancepossible optimal performance

Neyman-Pearson is a point on the ROC (PF = α) Minimax is a point on the ROC (PFCF=PMCM) Probability of error is a point on the ROC (slope η

= (1-P1)/P1)

J. A. O'S. ESE 524, Lecture 4, 01/25/07 29


Recommended