+ All Categories
Home > Documents > ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec...

ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec...

Date post: 08-Jul-2020
Category:
Upload: others
View: 4 times
Download: 4 times
Share this document with a friend
46
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016 – Khanna
Transcript
Page 1: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lec 8: February 9, 2016 MOS Inverter: Static Characteristics

Penn ESE 570 Spring 2016 – Khanna

Page 2: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Lecture Outline

!  Voltage Transfer Characteristic (VTC) "  Static Discipline Noise Margins

!  Resistive Load Inverter Analysis !  Design Perspective

2 Penn ESE 570 Spring 2016 – Khanna

Page 3: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Voltage Transfer Characteristic (VTC)

Penn ESE 570 Spring 2016 – Khanna

Page 4: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Ideal Voltage Transfer Characteristic (VTC)

4

Vin Vout

0

Logic “0” = 0 V Logic “1” = VDD

VDD

Penn ESE 570 Spring 2016 – Khanna

Page 5: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Actual Voltage Transfer Characteristic (VTC)

5

VDD

0 VDD VOL VT0n

VOH ≤ VDD

VOL ≥ 0

For DC steady-state Cout is open circuit.

Cout

o.c.

VDD

Penn ESE 570 Spring 2016 – Khanna

Page 6: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Noise Immunity and Noise Margins

6

VDD

NOTE: VIL ≥ VOL and VIH ≤ VOH

VOH ≤ VDD → max output voltage when the logic output is “1” VOL ≥ 0 → min output voltage when the logic output is “0” VIL → max input voltage that can be interpreted as a logic “0” VIH → min input voltage that can be interpreted as a logic “1”

Penn ESE 570 Spring 2016 – Khanna

Page 7: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

7

Slope of VTC or

inverter gain

Noise Immunity and Noise Margins

Penn ESE 570 Spring 2016 – Khanna

Page 8: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter Analysis

Penn ESE 570 Spring 2016 – Khanna

Page 9: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter

9

VSB

Penn ESE 570 Spring 2016 – Khanna

Page 10: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter

10

VSB

IL =VDD −Vout

RL

Resistor:

Penn ESE 570 Spring 2016 – Khanna

Page 11: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter

11

VSB

ID = ISWL

!

"#

$

%&e

Vin−VT 0,nnkT /q

!

"#

$

%&

1− e−VoutkT /q!

"#

$

%&!

"

##

$

%

&&

Vin =VGS <VT 0,nSubthreshold:

Resistor: IL =

VDD −VoutRL

Penn ESE 570 Spring 2016 – Khanna

Page 12: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter

12

VSB

ID = ISWL

!

"#

$

%&e

Vin−VT 0,nnkT /q

!

"#

$

%&

1− e−VoutkT /q!

"#

$

%&!

"

##

$

%

&&

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

Vin =VGS <VT 0,n

Vin =VGS ≥VT 0,n,Vout =VDS ≤Vin −VT 0,n

Subthreshold:

Linear:

Resistor: IL =

VDD −VoutRL

Penn ESE 570 Spring 2016 – Khanna

Page 13: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter

13

VSB

ID = ISWL

!

"#

$

%&e

Vin−VT 0,nnkT /q

!

"#

$

%&

1− e−VoutkT /q!

"#

$

%&!

"

##

$

%

&&

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

ID =µn ⋅Cox

2WLVin −VT 0,n( )2

Vin =VGS <VT 0,n

Vin =VGS ≥VT 0,n,Vout =VDS ≤Vin −VT 0,n

Vin =VGS ≥VT 0,n,Vout =VDS >Vin −VT 0,n

Subthreshold:

Linear:

Saturation:

Resistor: IL =

VDD −VoutRL

Penn ESE 570 Spring 2016 – Khanna

Page 14: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter

14

VSB

ID = ISWL

!

"#

$

%&e

Vin−VT 0,nnkT /q

!

"#

$

%&

1− e−VoutkT /q!

"#

$

%&!

"

##

$

%

&&

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

ID =µn ⋅Cox

2WLVin −VT 0,n( )2

Vin =VGS <VT 0,n

Vin =VGS ≥VT 0,n,Vout =VDS ≤Vin −VT 0,n

Vin =VGS ≥VT 0,n,Vout =VDS >Vin −VT 0,n

Subthreshold:

Linear:

Saturation:

Resistor: IL =

VDD −VoutRL

ID = 0

Penn ESE 570 Spring 2016 – Khanna

Page 15: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter

15

VSB

Penn ESE 570 Spring 2016 – Khanna

Page 16: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VOH

16

VSB

Resistor/Load: Transistor: Subthreshold

Penn ESE 570 Spring 2016 – Khanna

Page 17: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VOH

17

VSB

IL =VDD −Vout

RLID = 0

Resistor/Load: Transistor: Subthreshold

0 = VDD −VoutRL

⇒Vout =VDD =VOH

Penn ESE 570 Spring 2016 – Khanna

Page 18: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VOL

18

VSB

Resistor/Load: Transistor: Linear

Penn ESE 570 Spring 2016 – Khanna

Page 19: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VOL

19

VSB

IL =VDD −Vout

RL

Resistor/Load: Transistor: Linear

Vin =VDD,Vout =VOL

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

VDD −VOLRL

=µn ⋅Cox

2WL2 VDD −VT 0,n( )VOL −V 2

OL( )Penn ESE 570 Spring 2016 – Khanna

Page 20: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VOL (con’t)

20

IL =VDD −Vout

RL

Resistor/Load: Transistor: Linear

Vin =VDD,Vout =VOL

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

VDD −VOLRL

=µn ⋅Cox

2WL2 VDD −VT 0,n( )VOL −V 2

OL( )

kn = µn ⋅CoxWL

VDD −VOLRL

=kn22 VDD −VT 0,n( )VOL −V 2

OL( )

2kn⋅1RL

#

$%

&

'( VDD −VOL( ) = 2 VDD −VT 0,n( )VOL −V 2

OL

V 2OL − 2 VDD −VT 0,n +

1knRL

#

$%

&

'(VOL +

2VDDknRL

= 0

Penn ESE 570 Spring 2016 – Khanna

Page 21: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VOL (con’t)

21

IL =VDD −Vout

RL

Resistor/Load: Transistor: Linear

Vin =VDD,Vout =VOL

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

V 2OL − 2 VDD −VT 0,n +

1knRL

"

#$

%

&'VOL +

2VDDknRL

= 0

VOL =2 VDD −VT 0,n +

1knRL

"

#$

%

&'± 2 VDD −VT 0,n +

1knRL

"

#$

%

&'

"

#$

%

&'

2

− 4 2VDDknRL

2

VOL = VDD −VT 0,n +1

knRL

"

#$

%

&'± VDD −VT 0,n +

1knRL

"

#$

%

&'

2

−2VDDknRL

kn = µn ⋅CoxWL

Penn ESE 570 Spring 2016 – Khanna

Page 22: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VOL (con’t)

22

IL =VDD −Vout

RL

Resistor/Load: Transistor: Linear

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

V 2OL − 2 VDD −VT 0,n +

1knRL

"

#$

%

&'VOL +

2VDDknRL

= 0

VOL =2 VDD −VT 0,n +

1knRL

"

#$

%

&'± 2 VDD −VT 0,n +

1knRL

"

#$

%

&'

"

#$

%

&'

2

− 4 2VDDknRL

2

VOL = VDD −VT 0,n +1

knRL

"

#$

%

&'± VDD −VT 0,n +

1knRL

"

#$

%

&'

2

−2VDDknRL

0 <VOL <VT 0,n

Vin =VDD,Vout =VOL

kn = µn ⋅CoxWL

Penn ESE 570 Spring 2016 – Khanna

Page 23: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VIL

23

VSB

Resistor/Load: Transistor: Saturation

Penn ESE 570 Spring 2016 – Khanna

Page 24: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VIL

24

VSB

IL =VDD −Vout

RL

Resistor/Load: Transistor: Saturation

ID =µn ⋅Cox

2WLVin −VT 0,n( )2

VDD −VoutRL

=µn ⋅Cox

2WLVin −VT 0,n( )2

Penn ESE 570 Spring 2016 – Khanna

Page 25: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VIL (con’t)

25

Differentiate W.R.T. Vin:

VDD −VoutRL

=µn ⋅Cox

2WLVin −VT 0,n( )2

−1RL

dVoutdVin

= µn ⋅CoxWLVin −VT 0,n( )

1RL

= µn ⋅CoxWLVIL −VT 0,n( )

VIL =1

knRL+VT 0,n

VDD −Vout Vin=VILRL

=kn2VIL −VT 0,n( )2

Vout Vin=VIL =VDD −knRL2

VIL −VT 0,n( )2

Vout Vin=VIL =VDD −1

2knRL

Vout @ Vin=VIL:

Penn ESE 570 Spring 2016 – Khanna

Page 26: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VIH

26

VSB

Resistor/Load: Transistor: Linear

Penn ESE 570 Spring 2016 – Khanna

Page 27: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VIH

27

VSB

IL =VDD −Vout

RL

Resistor/Load: Transistor: Linear

ID =µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

VDD −VoutRL

=µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

Penn ESE 570 Spring 2016 – Khanna

Page 28: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VIH

28

Differentiate W.R.T. Vin:

−1RL

dVoutdVin

=kn22 Vin −VT 0,n( ) dVout

dVin+ 2Vout − 2Vout

dVoutdVin

"

#$

%

&'

1RL

=kn2−2 VIH −VT 0,n( )+ 4Vout( )

1knRL

=VT 0,n −VIH + 2Vout

VIH =VT 0,n + 2Vout −1

knRL

VDD −VoutRL

=µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

Penn ESE 570 Spring 2016 – Khanna

Page 29: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Resistive Load Inverter: VIH

29

VIH =VT 0,n + 2Vout −1

knRL

VDD −VoutRL

=µn ⋅Cox

2WL2 Vin −VT 0,n( )Vout −V 2

out( )

VDD −VoutRL

=kn22 VT 0,n + 2Vout −

1knRL

−VT 0,n"

#$

%

&'Vout −V

2out

"

#$$

%

&''

VDD −VoutRL

=kn24V 2

out −2

knRLVout −V

2out

"

#$

%

&'

VDDRL

=kn23V 2

out −2

knRLVout

"

#$

%

&'+VoutRL

VDDRL

=32knV

2out −

VoutRL

+VoutRL

VDDRL

=32knV

2out ⇒Vout Vin=VIH =

23VDDknRL

VIH =VT 0,n + 223VDDknRL

−1

knRL

Substitute:

Penn ESE 570 Spring 2016 – Khanna

Page 30: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Inverter Threshold: Vth

30

Kenneth R. Laker,

University of Pennsylvania,

updated 12Feb15

VDD −VoutRL

=µn ⋅Cox

2WLVin −VT 0,n( )2

VDD −VthRL

=kn2Vth −VT 0,n( )2

2kn

VDD −VthRL

=V 2th − 2VthVT 0,n +V

2T 0,n

0 =V 2th − 2 VT 0,n −

1knRL

#

$%

&

'(Vth +V

2T 0,n −

2VDDknRL

Vth =2 VT 0,n +

1knRL

#

$%

&

'(± 2 VT 0,n −

1knRL

#

$%

&

'(

#

$%

&

'(

2

− 4 V 2T 0,n −

2VDDknRL

#

$%

&

'(

2

Vth =VT 0,n +1

knRL± VT 0,n −

1knRL

#

$%

&

'(

2

− V 2T 0,n −

2VDDknRL

#

$%

&

'(

Penn ESE 570 Spring 2016 – Khanna

Page 31: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Summary: Resistive Load Inverter

31 VT0n

VDD

0 VDD Penn ESE 570 Spring 2016 – Khanna

Page 32: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Summary: Resistive Load Inverter

32 VT0n

VDD

0 VDD

Take Limit as knRL -> ∞

-> VT0n

-> VT0n -> VDD

-> VT0n -> 0

-> 0

-> VDD VDD

Vout

VDD Vin VT0n

knRL -> ∞

0

semi-ideal VTC

Penn ESE 570 Spring 2016 – Khanna

Page 33: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Example

33

VOL = 0.147 V or 8.503 V ?

Penn ESE 570 Spring 2016 – Khanna

Page 34: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Preferred Design

Example (con’t)

Penn ESE 570 Spring 2016 – Khanna

Page 35: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Design Perspective

Penn ESE 570 Spring 2016 – Khanna

Page 36: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Noise Implications

!  What is the output when all inputs are all 1s?

36 Penn ESE 570 Spring 2016 – Khanna

Page 37: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Noise Implications

!  What is the output when all inputs are all 1.0 and NAND(A, B) = 1-A*B?

37 Penn ESE 570 Spring 2016 – Khanna

Page 38: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Noise Implications

!  What is the output when all inputs are all 0.95 and NAND(A, B) = 1-A*B?

38 Penn ESE 570 Spring 2016 – Khanna

Page 39: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Degradation

!  Cannot have signal degrade across cascaded gates !  Want to be able to cascade arbitrary set of gates

"  No limit on number of gates to maintain signal integrity

39 Penn ESE 570 Spring 2016 – Khanna

Page 40: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Gate Creed

!  Gates should leave the signal “better” than they found it "  “better” # closer to the rails

40 Penn ESE 570 Spring 2016 – Khanna

Page 41: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Regeneration Discipline

!  Define legal inputs "  Gate works if Vin “close enough” to the rail

!  Regeneration "  Gate produces Vout “closer to rail”

"  This tolerates some drop between one gate and next (between out and in)

"  Call this our “Noise Margin”

Regeneration/Restoration/Static Discipline

41 Penn ESE 570 Spring 2016 – Khanna

Page 42: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Noise Margin

!  VOH – output high !  VOL – output low

!  VIH – input high !  VIL – input low

!  NMH = VOH-VIH

!  NML = VIL-VOL

“1”

“0”

VOH

VOL

VIL

VIHNMH

NML

Undefined region

Gate Output Stage M

Gate Input Stage M + 1

42 Penn ESE 570 Spring 2016 – Khanna

Page 43: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Regeneration Discipline (getting precise)

!  Define legal inputs "  Gate works if Vin “close

enough” to the rail "  Vin > VIH or Vin < VIL

!  Regeneration "  Gate produces Vout “closer to

rail” "  Vout < VOL or Vout > VOH

“1”

“0”

VOH

VOL

VIL

VIHNMH

NML

Undefined region

Gate Output Stage M

Gate Input Stage M + 1

43 Penn ESE 570 Spring 2016 – Khanna

Page 44: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Decomposing

!  An input closer to rail than VIL, VIH doesn’t make much difference on Vout

"  i.e transfer function is flat close to rails

!  Defining VIL lower (VIH higher) would reduce NMs and increase our undefined region

-1

-1

VIL VIH

VOL

VOH

VIL

VIH

NML

NMH

δVoutδVin VIL

=δVoutδVin VIH

= −1

VOH = f (VIL )VOL = f (VIH )

44 Penn ESE 570 Spring 2016 – Khanna

Page 45: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Big Idea

!  Need robust logic "  Can design into any (feed forward) graph with logic gates

and tolerate loss and noise, while maintaining digital abstraction

!  Regeneration and noise margins "  Every gate makes signal “better” "  Design level of noise tolerance

45 Penn ESE 570 Spring 2016 – Khanna

-1

-1

VIL VIH

VOL

VOH

VIL

VIH

NML

NMH

Page 46: ESE 570: Digital Integrated Circuits and VLSI …ese570/spring2016/handouts/...VLSI Fundamentals Lec 8: February 9, 2016 MOS Inverter: Static Characteristics Penn ESE 570 Spring 2016

Admin

!  HW 2 handback !  HW 4 due Thursday, 2/18

"  If you submit online and in-class only the online one will be graded.

!  Journal Thursday "  Gregory Fredeman, et. al., A 14 nm 1.1 Mb Embedded

DRAM Macro With 1 ns Access, pp 230 - 239

46 Penn ESE 570 Spring 2016 – Khanna


Recommended