+ All Categories
Home > Documents > ESTIMATION AND MODEL FIT LECTURE 2 EPSY 651. ORDINARY LEAST SQUARES Minimize sum of squared errors:...

ESTIMATION AND MODEL FIT LECTURE 2 EPSY 651. ORDINARY LEAST SQUARES Minimize sum of squared errors:...

Date post: 27-Dec-2015
Category:
Upload: ethel-james
View: 215 times
Download: 2 times
Share this document with a friend
48
ESTIMATION AND MODEL FIT LECTURE 2 EPSY 651
Transcript

ESTIMATION AND MODEL FIT

LECTURE 2

EPSY 651

ORDINARY LEAST SQUARES

Minimize sum of squared errors:

SSe = (y – yhat)2

Best Linear Unbiased Estimates (BLUE) are

B = (X’X)-1X’y

In SEM this is translated as

F = (s-)’ (s-)

Also termed Unweighted Least Squares

ORDINARY LEAST SQUARES

ASSUMPTIONSNormality of endogenous variablesUncorrelated errorsHomogeneity of errors for conditional

values of predictors

Not robust with respect to violations, particularly skewness for estimating mean differences, kurtosis for estimating covariances among variables

WEIGHTED LEAST SQUARES

Minimize

f = ½ tr [ I – S-1 () ]

Where I = Identity matrix and S-1 = inverse of sample covariance

matrix ( S S-1 = I ) tr is the “trace” of a matrix (sum of the

diagonal elements of the matrix)

Simpler, but may not be as robust overall

MAXIMUM LIKELIHOOD

minimize

FML = ln| ()| + tr)S-1())– ln|S| - (p+q)

Where () is the hypothesized model cov-

ariance matrix

S is the sample covariance matrix

p is the number of exogenous var’s

q is the number of endogenous var’s

MAXIMUM LIKELIHOOD

ASSUMPTIONS

Multivariate normality on the p+q variables

Mardia’s statistic is used to test this

some evidence this is too strict

local independence: estimates are asymp-

totically independent

i / (ij ) = 0

Correct model specification

All data present

MAXIMUM LIKELIHOOD

VIOLATIONS OF ASSUMPTIONS

Nonnormality: little effect on estimates or standard errors for moderate violations (Lei & Lomax, 2005 SEM) but n> 100

Better than GLS, WLS under nonnormality (Olsson, Foss, Troye & Howell, 2000 SEM)

Errors correlated: can affect estimates and standard errors (Yuan, 2004; Box, 1954)

RESTRICTED MAXIMUM LIKELIHOOD

This method uses OLS or related estimates for fixed effects (all conditions of the population present in the study) and ML for the residuals of the fixed effects

Used in multilevel modeling (HLM analysis), discussed later in the course

ASYMPTOTICALLY DISTRIBUTION FREE (ADF)

MinimizesF = (s-)’ W-1 (s-)

Where s’ = (s11, s21, s31, …spp) ’ = (11, 21, 31, … pp) W = some weight function

Browne (1984) showed all fit functions are special cases of this function

Theoretically it should work well, but does not appear as robust or efficient even for large sample size as ML and its variants

ML VARIANTS

ML with Satorra-Bentler ADF approximations for standard errors and chi square statistic; approximates chi square as a sum of chi squares weighted by functions of a WLS type estimate

Used with nonnormal data to estimate fit statistics based on the chi square, works better than standard estimates with non-

normal data (Chou, Bentler, & Satorra, 1991; Hu, Bentler, & Kano, 1992; Curran, West, & Finch, 1996)

ML VARIANTS

ML with Satorra-Bentler : in MPLUS termed MLM

LISREL: Diagonally weighted least squares

EQS: option available

AMOS 7: does not include

SAS Proc CALIS: not available

ML VARIANTS

ML with Yuan-Bentler chi square T-square test statistic; used for nonnormal data with so-called sandwich estimator; useful for small sample data

MODEL EVALUATION

Statistical analysis

Fit indices

FIT AND LIKELIHOOD FUNCTIONS

Fit functions (equivalent to log(L), log of maximum likelihood function)

FML = log|()| + tr{S-1()|} -log|S| - (p+q)

FGLS = ½ tr{[ I - ()S-1 ]2}

FGLS = ½ tr{ [S - () ]2 }

FIT AND LIKELIHOOD FUNCTIONS

-2log(L0/L1) = (N-1) FML ~2 (df = df1 – df0)

log L0 = -{(N-1)/2}{ log |(0)| + tr{-1(0)S} = -{(N-1)/2}{ log |S)| + p+q}

under perfect fit and df0 = 0

log L1 = -{(N-1)/2}{ log |(1)| + tr{-1(1)S}

GOODNESS OF FIT INDEXGFI = F1/F0

note: GFI = 1.0 if fit is perfect; it is the ratio of the chi square under the fitted model to the chi square under no fit

AGFI = 1 – [q(q+1)/2df1] [ 1 – GFI ]

RMR = [ Sum(Sij -( ))2 /(p+q)(p+q+1)/2)]½ = square root of mean of residuals of variances

and covariances between observed and fitted covariance matrices

SRMR = SQRT ( average {residual/sresid})

INCREMENTAL FIT INDICES

NFI = (b2 - m

2 )/ b2 where b=baseline,

m = model

Tucker-Lewis = (b2 /dfb - m

2 /dfm) /(b2 /(dfb-1))

= NNFI (nonnormed fit index)

CFI = 1-{max(m2 -dfm,0)} / {max(( b

2 -dfb),

(b2 - dfb),0}

PARSIMONY-ADJUSTED FIT INDICES COMPARED TO S

RMSEA = ½ ((m2 /(n-1)dfm)-(dfm/((N-1)dfm)))

Parsimony ratio

PR = df(model)/df(maximum possible df)

Parsimonious GFIPGFI = GFI * dfm/dfb

PNFI = NFI*PR PCFI = CFI*PR

INFORMATION-BASED INDICES

Akaike Information Criterion AIC = (m

2 /N) + (2k/(N-1)), k= (.5v(v+1))-dfm, v = # parameters fitted

Bayesian Information CriterionBIC = m

2 /N) + ((2k)/(N-v-2)

Both are used to compare non-nested models – lower values indicate better fit

Other related statistics:The Consistent AIC (CAIC) adjusts forboth sample size and model complexity and is interpreted in the same

way as the AICBrowne-Cudeck Criterion (BCC) is a cross-validation statistic

BCC = F(ML) + 2q/n

EVALUATING A MODEL

• Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.  – use CFI> .95, TLI>.95, RMSEA<.06

• Fan, X. and Sivo, S.A. (2005) Sensitivity of fit indices to misspecified structural or measurement model components: rationale of two-index strategy revisited. Structural Equation Modeling, 12, 3, 343-367.

• Yuan, K.H. (2005) Fit indices versus test statistics. Multivariate Behavioral Research, 40, 1, 115-148.

• Their conclusions: depends on the model and on misspecifying the model. NO ONE CRITERION WILL WORK

EVALUATING A MODEL

• Hayduk: chi square statistic is the only test of significance; all other statistics are derivatives and not necessarily statistically better

• Chi square tests’ power increases with sample size; SEM is a large sample method; therefore, you will almost always reject a model with large N

• Conclusion: chi square testing is useless

EVALUATING A MODEL

• Chi square DIFFERENCE testing between competing, nested models is the most useful statistical test and approach to model evaluation

• Compare a model with simpler ones, not with a null model- you will almost certainly always reject the null model, but so what?

MODIFICATION INDICES

• WALD STATISTICS: test if a path should be removed (parameter = 0)

• LAGRANGE MULTIPLIER: test if a path should be added (parameter changed to nonzero value)

• Chi Square statistics equivalent to holding model constant except for the parameter being considered (ie chi square difference between baseline and model in slides above)

• Can only be computed with full data (no missing data elements)

MODIFICATION INDICES• Use as evidence to change a model• Recommended statistical approach:

– Liberal alpha level for statistical test if parameter was theoretically specified

– Conservative alpha level for statistical test if parameter was not theoretically specified

• Only one change can be made at a time, each change affects all other parameters and modification indices

• MI chi square will NOT equal model chi square improvement, should be close, however

Evaluating a data analysis with AMOS

Predict Teacher Salary from predictors:

Enrollment

Local revenues available

Percent majority students

Student-Teacher ratio

AMOS REGRESSION ANALYSIS- OUTPUTYour model contains the following variables (Group number 1)

Observed, endogenous variables

LOGPAY

Observed, exogenous variables

LOGENROLL

LOGREVLOC

MAJPCT01

TCHSTD01

Unobserved, exogenous variables

Epay

Variable counts (Group number 1)

Number of variables in your model:6Number of observed variables:5Number of unobserved variables:1Number of exogenous variables:5Number of endogenous variables:1

AMOS REGRESSION ANALYSIS- OUTPUTParameter summary (Group number 1)WeightsCovariancesVariancesMeansInterceptsTotalFixed200002L

abeled000000Unlabeled3654119Total5654121Models

Default model (Default model)

Notes for Model (Default model)

Computation of degrees of freedom (Default model)Number of distinct sample moments:20Number of distinct parameters to be estimated:19Degrees of freedom (20 - 19):1Result (Default model)Minimum was achievedChi-square = .047Degrees of freedom = 1Probability level = .829

AMOS REGRESSION ANALYSIS- OUTPUTRegression Weights: (Group number 1 - Default model)

Estimate S.E. C.R. PLabelLOGPAY<---LOGENROLL .145 .010 14.589 ***LOGPAY<---LOGREVLOC .060 .007 8.698 ***LOGPAY<---MAJPCT0 1.000LOGPAY<---TCHSTD01 -.017 .004 -4.696 ***

Standardized Regression Weights: (Group number 1 - Default model)

EstimateLOGPAY<---LOGENROLL.695LOGPAY<---LOGREVLOC.317LOGPAY<---MAJPCT01.000LOGPAY<---TCHSTD01-.129

AMOS REGRESSION ANALYSIS- OUTPUTMeans: (Group number 1 - Default model)

Estimate S.E. C.R. PLabelLOGENROLL 7.198 .047 153.236 ***LOGREVLOC 15.040 .0522 90.870 ***MAJPCT01 61.018 .907 67.263 ***TCHSTD01 12.598 .074 171.216 ***Intercepts: (Group number 1 - Default model)

Estimate S.E. C.R. PLabelLOGPAY 9.613 .0651 48.875 ***

AMOS REGRESSION ANALYSIS- OUTPUTCovariances: (Group number 1 - Default model)

Estimate S.E. C.R. PLabelLOGENROLL<-->LOGREVLOC 1.890 .0961 9.665 ***MAJPCT01<-->TCHSTD01 -11.956 2.007 -5.957 ***LOGREVLOC<-->TCHSTD01 2.121 .133 15.927 ***LOGREVLOC<-->MAJPCT01 -9.888 1.421 -6.957 ***LOGENROLL<-->MAJPCT01 -12.684 1.327 -9.561 ***LOGENROLL<-->TCHSTD01 2.427 .1311 8.531 ***

Correlations: (Group number 1 - Default model)EstimateLOGENROLL<-->LOGREVLOC .897MAJPCT01<-->TCHSTD01 -.207LOGREVLOC<-->TCHSTD01 .643LOGREVLOC<-->MAJPCT01 -.243LOGENROLL<-->MAJPCT01 -.343LOGENROLL<-->TCHSTD01 .810

AMOS REGRESSION ANALYSIS- OUTPUTVariances: (Group number 1 - Default model)

EstimateS.E.C.R.P

Label

LOGENROLL 1.913 .092 20.821 ***

LOGREVLOC 2.317 .111 20.817 ***

MAJPCT01 713.50 34.269 20.821 ***

TCHSTD01 4.694 .225 20.821 ***

Epay .017 .001 20.819 ***

Squared Multiple Correlations: (Group number 1 - Default model)

Estimate

LOGPAY .799

AMOS REGRESSION ANALYSIS- OUTPUTModel Fit SummaryCMINModel NPAR CMIN DF PCMIN/DFDefault model 19. 0471.829.047Saturated model20.0000Independence model53990.05815.000266.004Baseline ComparisonsModel NFI RFI IFI TLI CFI

Delta1 rho1 Delta2 rho2Default 1.000 1.000 1.000 1.004 1.000Saturated model 1.000 1.000 1.000Independence .000 .000 .000 .000 .000Parsimony-Adjusted MeasuresModel PRATIO PNFI PCFI Default .067 .067 .067Saturated .000 .000 .000Independence 1.000 .000 .000

AMOS REGRESSION ANALYSIS- OUTPUTRMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Default .000 .000 .054 .941

Independence .553 .538 .567 .000

AIC

Model AIC BCC BIC CAIC

Default 38.047 38.311

Saturated 40.000 40.279

Independence 4000.058 4000.128

MPLUS REGRESSION analysisINPUT CODE:TITLE: TEXAS A&M SUMMER INSTITUTE REGRESSION

EXAMPLE PREDICTING TEACHER SALARY FROM 3 PREDICTORS

DATA: FILE IS SUMMER INSTITUE EXAMPLE REGRESSION.dat;

VARIABLE: NAMES ARE TCHSAL01 TCHSTD01 WHTPCT01

TAAS801 LPROPTX LLOCTAX LENROL01 LSUPPY01; USEVARIABLES ARE TCHSAL01 WHTPCT01 LPROPTX LENROL01;MODEL: TCHSAL01 ON WHTPCT01 LPROPTX LENROL01;OUTPUT: STANDARDIZED;

MPLUS REGRESSION analysis OUTPUT

• MODEL RESULTS

• Estimates S.E. Est./S.E. Std StdYX

• TCHSAL01 ON• WHTPCT01 -17.820 2.481 -7.183 -17.820 -0.189• LPROPTX 1510.289 88.070 17.149 ******* 0.425• LENROL01 899.791 46.613 19.304 899.791 0.502

• Residual Variances• TCHSAL01 ********* ******* 21.201 ******* 0.535

• R-SQUARE

• Observed• Variable R-Square

• TCHSAL01 0.465

Evaluating a data analysis with MPLUS

Reanalysis of the Salary data

• including student-teacher ratio

• restricting the stdt-tchr path to salary to zero to test its necessity

• Why include a variable with zero path?– 1. evaluate its spurious contribution– 2. suppressor effect potential– 3. evaluate complete model with all variables

PATH MODEL- ML ESTIMATES IN STANDARDIZED FORM

LENROLL

LPROPTAX

% MAJ

ORITY

TCHR

SALARYe

R2 = 0.465

1 - .465 = .731

.502

.425

-.189

-.346

-.097

.169 2e = .7312 = .535

STUDENT TEACHER RATIO

-.204

.80

-.267

0

MPLUS Model FitChi-Square Test of Model Fit Value 2.249 Degrees of Freedom 1 P-Value 0.1337Chi-Square Test of Model Fit for the Baseline Model Value 564.867 Degrees of Freedom 4 P-Value 0.0000CFI/TLI CFI 0.998 TLI 0.991Loglikelihood H0 Value -16207.536 H1 Value -16206.412

Model Fit continuedInformation Criteria Number of Free Parameters 4 Akaike (AIC) 32423.072 Bayesian (BIC) 32442.278 Sample-Size Adjusted BIC 32429.574 (n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation) Estimate 0.037 90 Percent C.I. 0.000 0.105 Probability RMSEA <= .05 0.501

SRMR (Standardized Root Mean Square Residual) Value 0.005

Model Revision

• Theoretical issue: should you revise the model?– What about sample specificity (changes hold

for the sample but not for the population)– What happened to confirmation of the theory?– How much revision?– Where to revise- error covariances vs. path

changes

Model Revision

Some considerations:1. Split sample, model and revise on 1 sample, confirm

on the other2. Start with confirmation; if it fits, stop; if it fits poorly,

revise3. Begin with error covariances that are nonzero: they

imply reliable covariance not modeled in your study4. Consider paths (or factor loadings, to be discussed

tomorrow) from theoretical perspectives first: do they make sense to change?

5. Retain general theoretical direction of the model rather than change directions inconsistent with previous research

LISREL

TUTORIAL:

http://www.utexas.edu/its/rc/tutorials/stat/lisrel/lisrel8.html

Syntax approach

INPUT SYNTAXStability of Alienation ! See LISREL8 manual, p.  207 ! Chapter 6.4: Two-wave models DA NI=6 NO=932 LA ANOMIA67 POWERL67 ANOMIA71 POWERL71 EDUC SEI CM FI=ex64.cov MO NY=4 NX=2 NE=2 NK=1 BE=SD TE=SY,FILE ALIEN67 ALIEN71 LK SES FR LY(2,1) LY(4,2) LX(2,1) TE(3,1) TE(4,2) VA 1 LY(1,1) LY(3,2) LX(1,1) OU 

GOODNESS OF FIT STATISTICS     CHI-SQUARE WITH 4 DEGREES OF FREEDOM = 4.73 (P = 0.32)     ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 0.73     90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 10.53)       MINIMUM FIT FUNCTION VALUE = 0.0051      POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.00079     90 PERCENT CONFIDENCE INTERVAL FOR F0 = (0.0 ; 0.011)     ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.014     90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.053)      P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.93        EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.042     90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.041 ; 0.052)          ECVI FOR SATURATED MODEL = 0.045          ECVI FOR INDEPENDENCE MODEL = 2.30        CHI-SQUARE FOR INDEPENDENCE MODEL WITH 15 DEGREES OF FREEDOM = 2131.40     (Further output not shown)

• If you plan to have LISREL read full matrices you create with other software products, you must use the FU keyword.

• CM FI=ex64.cov FU• The MO line defines the model. NY and NX define the number of

measurement or observed variables present. Notice that you can have two sets of measured variables, one set on each end of a structural model. A structural model is the portion of your model composed exclusively of latent variables (as opposed to measurement variables). NX identifies the "starting" or "upstream" side of your model; NY refers to the "finishing" or "downstream" side of your model.

• NE and NK define the number of latent variables associated with the observed variables of NY and NX, respectively. In the example program, there are four observed variables (NY) influenced by two latent NE variables. There are two observed variables (NX) influenced by one NK latent variable.

• The LE and LK commands allow you to label the latent variables numbered in the NE and NK commands, respectively. In this example, the two NE latent variables are called ALIEN67 and ALIEN71. The single NK variable is called SES.

Stability of Alienation ! See LISREL8 manual, p.  207 ! Chapter 6.4: Two-wave models DA NI=6 NO=932 LA LABELSANOMIA67 POWERL67 ANOMIA71 POWERL71 EDUC SEI CM FI=ex64.cov COVARIANCE MATRIX INPUTMO NY=4 NX=2 NE=2 NK=1 BE=SD TE=SY,FI MODELWITH 4 ENDOGENOUS 2 EXOGENOUS MANIFEST VARIABLES, 2ENDOGENOUS LATENT VARIABLES (NE), ONE EXOGENOUS LATENT VARIABLES (NK), FULL SUBDIAGONAL B-MATRIX, ENDOGENOUS ERROR MATRIX (TE) IS SYMMETRIC AND LE LATENT ENDOGENOUS LABELS ALIEN67 ALIEN71 LK LATENT EXOGENOUS LABELS SES FR LY(2,1) LY(4,2) LX(2,1) TE(3,1) TE(4,2) FREE PARAMETERS VA 1 LY(1,1) LY(3,2) LX(1,1) VALUES FOR PARAMETERS OU OUTPUT 

LISREL MATRIX MODES• Matrix      Default Form   Default Mode       Possible Forms       

LY                   FU                   FI                   ID, IZ, ZI, DI, FU    LX                   FU                   FI                   ID, IZ, ZI, DI, FU    BE                   ZE                   FI                   ZE, SD, FU            GA                   FU                   FR                   ID, IZ, ZI, DI, FU    PH                   SY                   FR                   ID, DI, SY, ST        PS                   DI                   FR                   ZE, DI, SY            TE                   DI                   FR                   ZE, DI, SY            TD                   DI                   FR                   ZE, DI, SY           


Recommended