+ All Categories
Home > Documents > FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE...

FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE...

Date post: 18-Sep-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
163
If o / ' 3 DNA-TR-84-236 In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM FIT METHOD I D.W. Steedman J.C. Partch Applied Research Associates, Inc. 4300 San Mateo Blvd N.E., Suite A220 Albuquerque, NM 87110 25 May 1984 Technical Report CONTRACT No. DNA 001-82-C-0098 Approved for public release, distribution is unlimited. THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B344083466 Y99QAXSDO0049 H2590D. C.DTIC :, Prepared for F t -CT I C E Director D EU"i 1985 DEFENSE NUCLEAR AGENCY Z / Washington, DC 20305-1000 B 85 0 17 m ---.- -. ':;-.-.. --.- . .--.-... '......':-.'." ".. '.. - -.-..... .. ...- o ... .....--. .... -..,,
Transcript
Page 1: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

If o / ' 3 DNA-TR-84-236

In0r FOURFIT-A COMPUTER CODE FOR DETERMININGN EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE

BY A FOURIER SPECTRUM FIT METHODI

D.W. SteedmanJ.C. PartchApplied Research Associates, Inc.4300 San Mateo Blvd N.E., Suite A220Albuquerque, NM 87110

25 May 1984

Technical Report

CONTRACT No. DNA 001-82-C-0098

Approved for public release,distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCYUNDER RDT&E RMSS CODE B344083466 Y99QAXSDO0049 H2590D.

C.DTIC :,Prepared for F t -CT I C E

DirectorD EU"i 1985DEFENSE NUCLEAR AGENCY

Z / Washington, DC 20305-1000 B

85 0 17m ---.- -.':;-.-.. --.- ..--.-... '......':-.'." ".. '.. - -.-..... .. ...-o ... .....--. .... - ..,,

Page 2: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Destroy this report when it is no longer needed. Do not returnto sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY,ATTN: STTI, WASHINGTON, DC 20305-1000, IF YOURADDRESS IS INCORRECT, IF YOU WISH IT DELETEDFROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEEIS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

0 N

%

'14

S b

,Q?,

.4N'.

Page 3: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGEla REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

,Approved for public release, distribution is2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unl imi ted.N/A since UNCLASSIFIED4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

DNA-TR-84-236

6a NAME OF PERFORMING ORGANIZATION |6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONApplied Research Associates, (if applicable) Director

Inc. Defense Nuclear Agency6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

4300 San Mateo Blvd, NESuite A220 Washington, DC 20305-1000Albuquerque, NM 871108a. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)DNA 001-82-C-0098

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITELEMENT NO NO NO ACCESSION NO

62715H Y99QAXS D DH006922

11 TITLE (Include Security Classification)

FOURFIT-A COMPUTER CODE FOR DETERMINING EQUIVALENT NUCLEAR YIELDAND PEAK OVERPRESSURE BY A FOURIER SPECTRUM FIT METHOD

12 PERSONAL AUTHOR(S) David Wayne Steedman and J.C. Partch13a TYPE OF REPORT 13b TIMP rOVFRE' J14 DATE OF REPORT (Year, Month, Day) 5 PAGE COUNTTechnical I FROM8 30501 TO84_229 840525 16416 SUPPLEMENTARY NOTATION

This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS codeB344083466 Y99QAXSDO0049 H2590D.17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Airblast Simulation Fourier Transform19 1 4 1 Data FittingS9 1 2 1 HEST

19 ABSTRACT (Continue on reverse if necessary and identify by block number)A computer code is presented which performs least squares fitting of simulated airblastpressure Fourier amplitude spectra. The code iteratively determines the simulated nuclearyield and peak overpressure of a record by the FOURFIT method of analysis by comparing thedata spectra to the spectra representing candidate fits.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION

OlUNCLASSIFIEDIUNLIMITED M SAME AS RPT. -1DTIC USERS I UNCLASSIFIED22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Betty L. Fox 1202 325-7042 1 DNA/STTIDD) FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. UNCLASS IF I ED

II L

-"-u" . . t ..__ rK r , , . . . . . , - - .-- ,,. < . . . , . - ". .- -- .'>,,' ' "-' ,', " 1'-~'-" . - ' ' '-*"*

Page 4: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

V -7 4 - V . - M-

SUMMARY

A computer code for determining the equivalent nuclear pressure and

yield of airblast simulation records is presented. The code was written

to automate a previously developed graphical fitting technique known as

FOURFIT. FOURFIT determines a best fit nuclear waveform to airblast

simulation data by comparing the Fourier amplitude spectra of the data

with spectra for ideal nuclear waveforms. This report also presents

results of the use of this code, also named FOURFIT, and a companion code,

FOURPLT, which permits the results to be plotted. Fits to record traces

from two separate simulation events are compared to previously published

results which were determined using the graphical version of the technique.

)~ C, QUA-, -

3

; .',.

K 1

Page 5: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

PREFACE

The analysis presented herein was performed as part of work conducted

during the period May 1983 to February 1984, on Contract DNAO01-82-C-0098/

P00002, Investigation of Scaling, Simulation and Associated Requirements

for the STP 3 Combined Effects Program.

'A

VT

4%

w

k 2

->.-.. , -4-r*-4*4

- . \ * fm4 .a

Page 6: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Conversion factors for U.S. customary

to metric (SI) units of measurements.

To Conert From To %lullipl) By

augstrom meters (m) 1. 000 000 X E -10atmosphere (nornal) klo pasc3l (ITA) 1 013 25 X E .2bar kilo pascal (kra) 1.000 000 X E .2

barn meter2 (m 2 IOO u00O0 X £ -26B -. ritish tiern, At.nit (thermocheemical) joule (J) 1. 0S4 35.0 X E 43

calorie (t1ermuchemical) joule (J) 4 I.4 000Cal (the rmo,'hcmical)/cm2

mega joule/rn (NIJ/m' ) 4 164 000 X E -2

curia Ogiga becque ret (G~q) 3. ;00 000 X E .1deree (angle) radian (rad) 1.7,4S 329 X E -2degree Fahrchrtit degree Lelsin (K) I t( I#* 459 67)/1 Ielectron volt joule (J) 1.602 19 X £ -19erg joule (J) 1. 000 000 X E -1erg/second watt (W) 1.000 000 X E -7foot meter (m) 3.04S 000 X E -1foot-pound-force joule (.J) 1. 355 M16

gallon (U.S. liquid) meter 3 (m 3) 3.785 412 X E -3

lnch meter m) 2 S,40 000 X E -2jerk joule (J.) 1 000 C0CX E #9JouleAilosram (J/1) (radiation dozeabsorb

-d)

Gray (Cy) 1.000000* ."kilotons tetrajoules 4 163

kip (1000 Ibn newton (N) 4.446 222 X E 43kip/nch (ksli) kilo pascal (1,Pa) 6. 694 75? X E 43

tap newton -second/rn 2

(N-s/m 2 ) 1.00 000 X E .2micron meter (m 1 000 000 X E -4mll meter (m) 2. 540 000 X E -Smile (international) meter (m) 1.609 344 X E .3ounce kilogram (kg) 2.634 952 X E -2

pound-force (Ibs avoirdupois) ne- ton (NI 4.446 222pound-force Inch newton-meter (. m) 1. 129 648 X E -1pound -force/ndth newton/meter (N/m) 1. 751 269 X E 42pound-forcefJootlt kilo pascal (kP&) 4. 76 026 X E -2pound-force/in:h (psi) kilo pascal (kPa) 6. 94 757pound-mass (Ibm avoirdupois) kilogram (ft) 4. 35 924 X E -1pound-mass -foot2 (moment of inertia) kilgrarn -meter

2

pond-asfl-rnft 2 ) 34 214 011 X CE -2

--pound -massI~ t3 klog ram/meter(kg/m

3) 1.601 946 X tIc

red (radiation dose absorbed) *Cray fey) 1.000 00 X I -2roentgen coulomb/kllogram

(C/IA) 2 519 790 X E -4shak O*o€ (ae ) I O 00 X it -8

slug kilogram (is) 1. 459 390 X It #1

tort (mm "I. 0* C) ilo paasl (kPa) 1. 333 22 X I -1

*the becquerel (8q) Is the SI unit of radio:ctivlty, I Sq - I event/s.• Tbe Cray (Cy) Is the 31 unit of absorbed radiation.

A more complete listing of conversions may be found In "Metric PractIce Guide E 360-74.-Amerlcan Society for Tesllng and lilstcrlals.

3

-- --- ,

Page 7: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

TABLE OF CONTENTS

Section Page

SUMMARY 1

PREFACE 2

CONVERSION TABLE 3

LIST OF ILLUSTRATIONS 5

1 1NTRODUCT ION 11

2 THE FOURFIT TECHNIQUE 13

2.1. Reasons for FOURFIT Analysis 132.2. Development of the FOURFIT Technique 14

2.2.1. Estimation of Peak Pressure and 15Yield

2.2.2. Estimation of Fidelity Frequency 18

3 PROGRAM FOURFIT 21

3.1. Input Variables 223.2. Program Structure 25

3.2.1. Data Calculations 253.2.2. Speicher-Brode Calculations 263.2.3. Fit to Data 27

3.3. Program FOURPLT 313.4. Programming Notes 32

4 PROGRAM RESULTS 33

4.1. Sample Output 334.2. Results of Fitting Routine 34

5 FILTER STUDY 39

6 CONCLUSIONS AND RECOMMENDATIONS 43

LIST OF REFERENCES 47

Appendices

A Listing of Program FOURFIT 49B Flow Chart of Program FOURFIT 65C Flow Chart of Subroutine FIT 69D Listing of Program FOURPLT 71

4

,,. -..- w. .., . . ,. . , , . ,- ., .' . ... ... ' . ,. , ' , ,t, , ,. . . . - . - ,, .-. . . , . i.-. -.. . . " - L , .,' -17. ,, ,I

Page 8: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LIST OF ILLUSTRATIONS

Figure Page

1 Typical HEST pressure history 79

2 Fourier amplitude spectrum for typical HEST record 80

3 Normalized Brode pressure histories 81

4 Normalized Brode Fourier amplitude spectra 82

5 Overlay of first iteration fit to Fourier amplitude 83spectrum of the HEST record shown in Figure 1 withBrode spectra

6 Pressure history for HEST record compared with final 84fit; Pso = 2.95 MPa, W : 5.05 KT

7 Impulse history for HEST record compared with final 85fit; Pso = 2.95 MPa, W -- 5.05 KT

8 Fourier amplitude spectrum for HEST record compared 86with final fit; Pso = 2,95 MPa, W = 5.05 KT

9 Normalized low pass filtered Brode pressure 87histories; Pso = 10 MPa

10 Normalized low pass filtered Brode impulse 88histories; Pso = 10 MPa

11 Overlay of typical HEST record filtered peaks 89compared with normalized filtered Brode peaks

-' 12 FOURFIT pressure history compared with example HEST 90

record

13 Normalized Speicher-Brode pressure histories 91

14 Normalized Speicher-Brode impulse histories 92

15 Normalized Speicher-Brode Fourier amplitude spectra 93

16 Example FOURFIT output for IOPT = 1: automated fit 94to 0.35 KBAR DISC HEST record AB-5 (Speicher-Brodeparameters listed on file OUTPUT)

17 Example FOURFIT output for IOPT = 2, IFILT = -1: 950.35 KBAR DISC HEST record AB-5 pressure history

5

Page 9: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LIST OF ILLUSTRATIONS (Continued)

Figure page

18 Example FOURFIT output for IOPT = 2, IFILT = -1: 960.35 KBAR DISC HEST record AB-5 impulse history

19 Example FOURFIT output for IOPT = 2, IFILT = -1: 970.35 KBAR DISC HEST record AB-5 Fourier amplitudespectrum

20 Example FOURFIT output for IOPT = 2, IFILT = 1, 98FLO = 1000.: 0.35 KBAR DISC HEST record AB-5 lowpass filtered pressure history

21 Example FOURFIT output for IOPT = 3, IFILT = -1: 99Speicher-Brode (Pso = 39.60 MPa, W = 0.87 KT)pressure history

22 Example FOURFIT output for TOPT = 3, IFILT = -1: 100Speicher-Brode (Pso = 39.60 MPa, W = 0.87 KT)impulse history

23 Example FOURFIT output for IOPT = 3, IFILT = -1: 101Speicher-Brode (Pso = 39.60 MPa, W = 0.87 KT)Fourier amplitude spectrum

24 Example FOURFIT output for IOPT = 3, IFILT = 1, 102FLO = 1000.: Speicher-Brode (Pso = 39.60 MPa,W = 0.87 KT) low pass filtered pressure history

25 Example FOURFIT output for IOPT = 1: automated fit 103to 0.35 KBAR DISC HEST record AB-5 pressure historycomparison

26 Example FOURFIT output for IOPT = 1: automated fit 104to 0.35 KBAR DISC HEST record AB-5 impulse history

comparison

27 Example FOURFIT output for IOPT 1: automated fit 105to 0.35 KBAR DISC HEST record AB-5 Fourier amplitudespectrum compari son

28 0.35 KBAR DISC HEST record AB-5 and FOURFIT 106automated rit: fidelity frequency low pass filtercomparison

29 FOURFIT automated fit to 0.35 KBAR DISC HEST record 107

AB-3: pressure history comparison

1-i 6

R4 4

Page 10: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LIST OF ILLUSTRATIONS (Continued)

Figure Page

30 FOURFIT automated fit to 0.35 KBAR DISC HEST record 108AB-3: impulse history comparison

31 FOURFIT automated fit to 0.35 KBAR DISC HEST record 109AB-3: Fourier amplitude spectrum comparison

32 FOURFIT automated fit to 0.35 KBAR DISC HEST record 110AB-4: pressure history comparison

33 FOURFIT automated fit to 0.35 KBAR DISC HEST record 111AB-4: impulse history comparison

34 FOURFIT automated fit to 0.35 KBAR DISC HEST record 112AB-4: Fourier amplitude spectrum comparison

35 FOURFIT automated fit to 0.35 KBAR DISC HEST record 113AB-7: pressure history comparison

36 FOURFIT automated fit to 0.35 KBAR DISC HEST record 114AB-7: impulse history comparison

37 FOURFIT automated fit to 0.35 K3AR DISC HEST -ecord 115AB-7: Fourier amplitude spectrum comparison

38 FOURFIT automated fit to 0.35 KBAR DISC HEST record 116AB-9: pressure history comparison

39 FOURFIT automated fit to 0.35 KBAR DISC HEST record 117AB-9: impulse history comparison

40 FOURFIT automated fit to 0.35 KBAR DISC HEST record 118AB-9: Fourier amplitude spectrum comparison

41 FOURFIT automated fit to 0.35 KBAR DISC HEST record 119AB-1O: pressure history comparison

42 FOURFIT automated fit to 0.35 KBAR DISC HEST record 120AB-1O: impulse history comparison

43 FOURFIT automated fit to 0.35 KBAR DISC HEST record 121AB-1O: Fourier amplitude spectrum comparison

44 FOURFIT automated fit to 0.35 KBAR DISC HEST record 122AB-12: pressure history comparison

7

Page 11: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LIST OF ILLUSTRATIONS (Continued)

Figure Page

45 FOURFIT automated fit to 0.35 KBAR DISC HEST record 123AB-12: impulse history comparison

46 FOURFIT automated fit to 0.35 KBAR DISC HEST record 124AB-12: Fourier amplitude spectrum comparison

47 FOURFIT automated fit to 0.35 KBAR DISC HEST record 125AB-13: pressure history comparison

48 FOURFIT automated fit to 0.35 KBAR DISC HEST record 126AB-13: impulse history comparison

49 FOURFIT automated fit to 0.35 KBAR DISC HEST record 127AB-13: Fourier amplitude spectrum comparison

50 FOURFIT automated fit to 0.35 KBAR HEST record 51: 128pressure history comparison

51 FOURFIT automated fit to 0.35 KBAR HEST record 51: 129impulse history comparison

52 FOURFIT automated fit to 0.35 KBAR HEST record 51: 130Fourier amplitude spectrum comparison

53 0.35 KBAR HEST record 417: pressure history 131

54 0.35 KBAR HEST record 417: Fourier amplitude 132spectrum

55 FOURFIT automated fit to 0.35 KBAR HEST record 417: 133Fourier amplitude spectrum comparison

56 FOURFIT automated fit to 0.35 KBAR HEST record 417: 134pressure history comparison

57 FOURFIT automated fit to 0.35 KBAR HEST record 417: 135impulse history comparison

58 FOURFIT automated fit to 0.35 KBAR HEST record 411: 136pressure history comparison

59 FOURFIT automated fit to 0.35 KBAR HEST record 411: 137impulse history comparison

,.8

* .e ,

U ~ ~ :.::

Page 12: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

r i - .... .... , - _, .. . .'..-.JA~x.,. 4 SW 'r

LIST OF ILLUSTRATIONS (Continued)

*Figure Page

60 FOURFIT automated fit to 0.35 KBAR HEST record 411: 138Fourier amplitude spectrum comparison

61 FOURFIT automated fit to 0.35 KBAR HEST record 418: 139;" pressure history comparison

62 FOURFIT automated fit to 0.35 KBAR HEST record 418: 140impulse history comparison

63 FOURFIT automated fit to 0.35 KBAR HEST record 418: 141Fourier amplitude spectrum comparison

64 FOURFIT automated fit to 0.35 KBAR HEST record 419: 142pressure history comparison

65 FOURFIT automated fit to 0.35 KBAR HEST record 419: 143impulse history comparison

66 FOURFIT automated fit to 0.35 KBAR HEST record 419: 144Fourier amplitude spectrum comparison

67 FOURFIT automated fit to 0.35 KBAR HEST record 54: 145

pressure history comparison

68 FOURFIT automated fit to 0.35 KBAR HEST record 54: 146impulse history comparison

69 FOURFIT automated fit to 0.35 KBAR HEST record 54: 147Fourier amplitude spectrum comparison

70 FOURFIT automated fit to 0.35 KBAR HEST record 55: 148pressure history comparison

--- 71 FOURFIT automated fit to 0.35 KBAR HEST record 55: 149r- impulse history comparison

72 FOURFIT automated fit to 0.35 KBAR HEST record 55: 150Fourier amplitude spectrum comparison

73 Band pass filtered (FLO = 200., FHI = 1000.) 151Speicher-Brode (W = 0.87 KT, Pso = 39.60 MPa)pressure history

74 High pass filtered (FHI 1000.) Speicher-Brode (W 1520.87 KT, Pso = 39.60 MPa) pressure history

9

Page 13: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LIST OF ILLUSTRATIONS (Continued)

Figure Page

75 Effect of high pass filter on peak Speicher-Brode 153overpressure

76 FOURFIT automated fit to 0.35 KBAR DISC HEST record 154AB-5 noting high pass equivalent peak overpressure

77 0.35 KBAR DISC HEST record AB-5 and FOURFIT 155automated fit: fidelity frequency high pass filtercomparison

V 1

p...

,p.?

r15

.L U

10

"" " " " .... - ]-....-v -°.'-..'...' v -..".-';,'...'-; . 4... .-.- - '.-- v -4-.. " , :

Page 14: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SECTION 1

INTRODUCTION

The development and application of a Fourier domain technique for

estimating the equivalent nuclear yield (W) and peak overpressure (Pso)

of airblast simulation records are. presented in References 1 and 2. The

estimates are made graphically by comparing the Fourier amplitude spectra

of the data records to the amplitude spectra of ideal nuclear airblast

curves. Additionally, the methodology includes a means for identifying,

through low pass filtering of the data, a "fidelity frequency" below which

the data and the ideal curves are in good agreement.

The technique, called FOURFIT, has several advantages. These

include:

0 The Fourier amplitude representation of the data

provides considerable insight into the frequency

content of the data.

* The method provides consistent results for the values

of W and Ps0 estimated for multiple records from

the same event. Other methods give more scattered

estimates (see Ref. 3).

eThe technique is quick and easy to perform.

SFOURFIT can be performed graphically.

Despite the advantage of the physical insight provided to an analyst

through graphical fitting, an alternative "automatic" fitting approach is

desirable to enable quicker turn-around time for the results of large

numbers of data records.

.... 11

4' . : . , . , ,- ,. . - - ,." ... .. ,. - -,. ... -'- .. - ''-', i . ' " " I ' - "i '" -.. '''' " "'

Page 15: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

jrv~~~- -r Lm 7.W V W ' -V

This report documents such a method. A computer program, FOURFIT,

has been written which seeks to minimize the sum of the squares of the

difference between the data Fourier amplitude and the amplitudes of

candidate ideal nuclear fits. The amplitudes for the candidate fits are

determined by an equation, parametic in Pso and W, which describes the

spectra for the Speicher-Brode nuclear overpressure (Ref. 4). In

addition, the program provides an estimate of the low pass fidelity

frequency mentioned above.

Section 2 of this report reviews the background of the FOURFIT

technique. Section 3 discusses the structure and use of the computer code

and its algorithm for determining best fit equivalent yield and pressure.

Section 4 presents some initial results determined by the code. Section 5

discusses some considerations into the effects of high pass and band pass

filtering of airblast simulation data. Finally, Section 6 presents

conclusions and recommendations.

J ,I

12

i"Ll,4 . 4

4

Page 16: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SECTION 2

THE FOURFIT TECHNIQUE

2.1. REASONS FOR FOURFIT ANALYSIS

High explosive simulations of nuclear airblast often lead to

inherent differences between the simulated environment and the ideal

nuclear environment being modeled. For example, high frequency spikes in

the early time portion of High Explosive Simulation Technique (HEST)

simulated airblast records, as seen in Figure 1, are not normally present

", in actual nuclear overpressure pulses.

High frequency spikes in the HEST waveform and other simulation

pressure history differences pose difficulties when fitting these records

with an ideal nuclear pulse in the time domain. Time domain fitting

methods and, indeed, the acceptance of HEST as a useful simulator, assume

that the high frequencies of the HEST waveform do not drive the response

of systems of interest. Yet time domain fitting is complicated by the

fact that high frequencies and low frequencies are superimposed in that

domain. This complication is especially difficult in the interpretation

of HEST peak overpressure because the absolute peak overpressure is

associated with a high frequency spike.

However, when viewed in the frequency domain, the relative

importance of waveform differences is revealed. The Fourier transform

unfolds the various frequency contributions to the pressure history and

allows the analyst to fit those spectral portions of a record which

dominate the power in the waveform. Use of the Fourier amplitude spectrum

for fitting purposes thus provides for a more accurate ideal nuclear fit

to the simulation data than do time domain techniques.

13

.. . . . .. .. . . . . . .,......... . . .

Page 17: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

|"

2.2. DEVELOPMENT OF THE FOURFIT TECHNIQUE

The nuclear airblast pressure waveform satisfies the conditions for

existence of the Fourier integral transform. That is,

0 It contains a finite number of minima and maxima.

* It contains a finite number of discontinuities.

* The function is aperiodic.

Therefore, a measured airblast waveform may be Fourier transformed using a

fast Fourier transform (FFT) based upon the integral discrete Fourier

transform (DFT) as represented by equation I below.

H (n/NAt) = T h (k~t)eJ 2 kn/N (1)c k=Oc

where T = duration of the signal

At = timestep between data points

k,n = integer values and represent the periodicity of the time and

the frequency functions, respectively.

The DFT represents a limited duration signal, h, as one period of an

infinite periodic series summed over N samples of data and the subscript c

above is used to denote an approximation caused by this truncation of the

signal. The FFT computes a real portion and an imaginary portion of the

Fourier transform, H. These portions, in turn, may be used to compute

Fourier amplitude and phase. Figure 2 shows the Fourier amplitude

representation of the pressure history for the HEST record of Figure 1.4.

To determine the nuclear representation of the simulation data, the

Fourier spectrum computed for that data must be compared to the spectra

computed for ideal nuclear waveforms. The studies of References I and 2

and the example presented in this section were based upon the "New Brode"

14

Page 18: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

description of the nuclear waveform (Ref. 5). However, a later study

(Ref. 3) and the FOURFIT code discussed in following sections of this

report are based upon the more recent Speicher-Brode formulations

(Ref. 4). Figure 3 presents the "New Brode" pressure histories for

several overpressures in scaled form. The scalars make the curves

applicable for all yields.

2.2.1. Estimation c" Peak Pressure and Yield

A parametric review of Fourier amplitude spectra and dimensional

consideration of the DFT and the Brode equations revealed the proper

scaling parameters for the airblast Fourier amplitude spectra. It was

found that Fourier amplitude scales by the product of peak overpressure

and the cube root of the yield (i.e., (Pso x W1/3)-1 ). Furthermore,

Fourier frequency was found to scale by the cube root of the yield (i.e.,

W1/3). Figure 4 illustrates a set of surface burst Brode Fourier

amplitude spectra in scaled form.

The normalization of the ideal nuclear spectra provides the

basis for the implementation of the FOURFIT technique. The analyst first

notes that the slope of each Brode spectrum is inversely proportional to

the value of peak overpressure. That is, - Pso increases the spectra

flatten as the amount of power carried within the higher frequencies

increases relative to the power in the low frequency regime. With this in

mind, the analyst makes an initial estimate of the data equivalent peak

pressure by comparing the data spectrum to the Brode spectra. The ideal

spectrum which best compares to the data defines the initial estimate of

P so The corresponding yield is determined as guided by the scaled

amplitude plots. The steps discussed below and illustrated by Figure 5

15

Page 19: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

utilize those scaled plots as an overlay to the data to find the final

fit. The technique will be illustrated using the HEST spectrum shown in

Figure 2.

In the first step, a comparison of the data spectrum to the

Brode spectra indicates a peak pressure of about 3 megaPascals to be a

reasonable estimate. Next, note that since amplitude scales by

(Pso x W 1/3)1 and frequency scales by W1 / 3, the amplitude scalar

is exactly Pso times the frequency scalar. With Pso already

estimated, the problem is reduced to finding one unknown, namely, the

yield. Graphically, this is performed by overlaying the spectral data

onto the ideal spectra such that, at equal locations on the respective

frequency axes

i.e., FB 1/3 (2)

the amplitude axes are shifted by a ratio equal to the estimate for P

i.e., P so x (AB/(Pso x W1/3)) - AD (3)

or, in the example, a vertical shift by a factor of about 3. The

. subscripts B and D refer to the Brode and the data, respectively. Since

the plots are in the logarithmic domain any shift represents a constant

multiplier.

1/3)Similarly, the scalar WI/ 3, as a constant multiplier, can be

represented by a shift. This shift is defined such that, since W1 / 3 is

the same multiplier on both axes, only a shift along a line of slope equal

%% to 1:1 will maintain an equal axis shift. Furthermore, the shift occurs

along a line of -1 slope since the actual scalars are (W1/3 )-1 for

amplitude and W1 /3 for frequency. With the shift thus defined, it

simply is left to perform this shift until the data spectrum properly

16

h.',LY ,•

.L .." '.-.. ''''''',.-., -o ' '" " -' -." " " ,"-"-'" - ,- -. ''.,.' ' , . -' '" . - " -"; .- . ."- .

Page 20: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

interpolates the Brode spectra to a location representing the value for

peak overpressure chosen for the fit (i.e., between the 2 MPa spectrum and

the 5 MPa spectrum). The resulting pressure/yield pair is then computed

by "unscaling" the overlay. That is, the comparisons of the respective

frequency and amplitude axes for the data and for the normalized Brudes,

as shown in the equations below, will result in estimates of the two

variables (Pso and W).

Ff -(W113 )1 (4)F FB X W 1/ 3 f W / )

andA f1[AB/(Pso X W/ 3 )] = Pso FB X W1/3)

The subscript f refers to the fit to the data.

The results for the example are shown on Figure 5 and the yield

is ccmputed below.

3300 Hz KT1/3 1/3200 Hz = Wf

or (6)

Wf = (1.64 KT1/3)3

= 4.44 KT

Also, the calculation below confirms the amplitude scale using the peak

pressure (2.78 MPa) and the yield (4.44 KT) defined for the fit.

.1 MPa-sec = (2.78 MPa)(4.44 KT)1 /3 (7)

.0218 sec/KT /3

A Brode overpressure history and associated impulse history and

Fourier amplitude spectrum are then calculated for these values of peak

17

A* .

Page 21: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

. overpressure and yield. The three representations of this signal can now

be compared to those of the data to refine the fit. A need for slight

adjustment to the fit is expected considering the graphical nature of the

technique.

The amplitude spectrum fit procedure is repeated to improve the

frequency and time fits. The adjusted estimates for the example define

the pressure to be 2.95 MPa and the yield to be 5.05 KT. Figures 6 to 8

show the pressure and impulse histories and the amplitude spectrum of the

* .; ' Brode defined by these final values compared to the respective

representations of the record. This is an acceptable fit and thus will be

carried to the next step of the process.

2.2.2. Estimation of Fidelity Frequency

It may be noted from Figure 4 that the low frequency regime of

the nuclear airblast carries significantly more power than is carried by

the high frequencies. Furthermore, most systems of interest in airblast

simulations respond to low frequency input. This section describes a

methodology which, through low pass filtering, quantitatively defines a

frequency cutoff where systems sensitive to frequencies below that cutoff

experience the loading as defined by the FOURFIT results in the preceding

paragraphs. This frequency is identified as the fidelity frequency for

the record since it defines a limit above which the fidelity of the

simulation relative to the prototype degrades.

Identification of a fidelity frequency makes use of the fact

that most of the power in the airblast signal exists in the low

frequencies. This suggests that although low pass filtering of the signal

may alter the exact shape of the waveform, it should have limited effect

18

Page 22: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

on the total power delivered. This is illustrated in Figures 9 and 10 for

a Brode pulse. In Figure 9 it is seen that as the cutoff frequency is

lowered, the peak of the filtered pressure history decreases. However,

this peak reduction is accompanied by a broadening of that peak. This

suggests that the deliverance of power is only delayed, not diminished.

This hypothesis is supported by noting that the total impulse of the

filtered Brode (Fig. 10) is virtually unchanged.

The determination of fidelity frequency utilizes the

relationships between peak attenuation and cutoff frequency. It was found

that the filtered peaks of the data record show a similar trend versus the

respective cutoff frequency. Fidelity frequency is identified by using

this similarity and with an overlay technique similar to that used to

determine Pso and W using the Fourier amplitude spectra.

A plot of the data peak attenuation versus cutoff frequency is

an overlay to the Brode peak attenuation curves (Fig. 11). Note that the

filtered Brode peak is scaled by Pso and that the Brode cutoff frequency

is scaled by W1/3. As illustrated in Figure 11 for the record of the

example, the data attenuation plot is shifted the proper amount on the

vertical axis and on the horizontal axis as defined by Pso and by W,

respectively. This allows that the data attenuation curve approaches and

eventually merges into the attenuation curve for the equivalent value of

P The merger of these curves defines the fidelity cutoff frequency

(180 Hz for the example). Below this frequency the data record is similar

to the equivalent Brode. Above this frequency, the data contains

diversions from the Brode which, in effect, do not load systems sensitive

only to frequencies below this cutoff. Figure 12 compares the filtered

19 .-............................................

Page 23: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

data record to its filtered equivalent Brode for different cutoff

frequencies. Note the excellent agreement between the data history and

the Brode history at the 200 Hz (~180 Hz) cutoff.

Previous studies (Ref. 1, 2, 3) have shown that the FOURFIT

technique provides consistent estimates of peak pressure and yield for

multiple pressure records from the same event. In addition, the technique

is graphical in nature and easy to perform. However, it is desirable that

an alternative "automatic" fitting routine be available. The existence of

a computer oriented fitting alternative would allow for more rapid

analysis of airblast records and would be free of analyst bias. A

computer program, FOURFIT, has been written to achieve this goal and is

.. discussed in detail in the following section.

o 20

I--p..

,%' -

2o.

Page 24: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SECTION 3

PROGRAM FOURFIT

Despite the advantages of performing the graphical FOURFIT techniquedescribed earlier, a quick "automated" version of the method was desired

to provide rapid analysis of the typical airblast simulation record.

Program FOURFIT was written to achieve this goal. Appendix A provides a

listing of this code.

Program FOURFIT finds the best fit nuclear waveform for airblast

data based upon a search to minimize the sum of the squares of the

differences between the data Fourier amplitude spectrum and trial ideal

spectra. The Fourier transform of the data is performed by a call to the

International Mathematics and Statistics Library (IMSL) routine FFTRC

* (Ref. 6). IMSL is maintained on the Defense Nuclear Agency (DNA) CDC

Cyber 176 computer on which FOURFIT was written. The ideal nuclear

Fourier amplitudes for trial fits are computed by an equation, parametric

in P and W, which describes the amplitude spectra for a set of curves

similar to those presented in Figure 4. The equation, however, describes

the more recent Speicher-Brode fit to the nuclear overpressure waveform

(Ref. 4) represented in scaled form in Figure 13. Scaled Speicher-Brode

impulse histories and Fourier amplitude spectra are presented in Figures

14 and 15, respectively. A detailed description of the fitting program

fol lows.

Tho program is run by reading an input deck (TAPE2) to define user

options. Results are listed in output (TAPE6) and plotting information is

written to TAPE48 to be plotted by FOURPLT, the accompanying plotting

program.

21

Page 25: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

3.1. INPUT VARIABLES

The main purpose of the program FOURFIT is to pertorm fits to

surface burst airblast simulation data. The program compares data Fourier

amplitude spectra to estimates of the Fourier amplitude spectra of the

3- - ideal nuclear represented by the Speicher-Brode pressure-time equation.

However, the code is also set up to perform FFT analysis of the data

without finding a fit, or to perform a FFT on a specific Speicher-Brode

defined by a pressure/yield pair requested by the analyst. FOURFIT also

computes the impulse history for either of these latter cases. Finally,

the code is set up to perform a low pass Butterworth filter of either data

or a Speicher-Brode at up to seven cutoff frequencies, specified by the

user, per run.

The options mentioned above are to be chosen by the analyst and read

from an input deck, TAPE2, assembled by that analyst. The contents of

TAPE2 are summarized below. The code reads all input lines, including

those -ot used in analysis, in all runs.

Line 1: NEPTS, IUNITS, JUNITS (Format 315)

The value for NEPTS is the number of points to be read from the data

tape. The other variables in this line account for data input units. For

IUNITS greater than zero, the code assumes that the pressure values are

read in pounds per square inch and converts the data to megaPascals, the

internal units of the code. For IUNITS less than zero, the data is

assumed to be read in the program units. Furthermore, the program works

in units of seconds for time and Hertz for frequency. JUNITS less than

zero indicates an input time step consistent with this fact. For JUNITS

greater than zero, the program assumes input in milliseconds and performs

22

Page 26: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

the proper conversion. The value of these variables do not affect the

calculation of a Speicher-Brode function.

Line 2: PSOI, WI (Format 2F5.2)

The meaning of these terms in line 2 differs depending on the

program option (explained in line 3) chosen. For analysis of a data trace

for its impulse and FFT or for filtering that data, without performing a

fit, PSOI and WI are not used. However, for the case of fitting the data

with a Speicher-Brode, these variables provide the "seeds" for defining

the candidate fits. PSOI is the seed for peak overpressure in MPa and WI

is the seed for nuclear yield in kilotons. A wide range about these seeds

(plus and minus a decade for each) is tested and so they need not be

exceptionally close to the final values. However, a good set of seeds may

nominally be considered to be the event design pressure and yield. For

cases in which only the Speicher-Brode will be analyzed, PSOI and WI are

the peak overpressure and yield values, respectively, of the ideal

waveform to be calculated.

Line 3: IOPT, IFILT (Format 215)

IOPT defines the program option to be run. IOPT equals 1 for

performing the FOURFIT automated fitting routine. To simply integrate and

FFT the data, IOPT equals 2. For IOPT equals 3, the code analyzes only

the Speicher-Brode specified by PSOI and WI in line 2. The value for

IFILT determines whether or not the pressure history is to be filtered.

No filtering is done for IOPT equal to 2 or 3 if the value of IFILT is

less than zero. A value of IFILT greater than zero for these same IOPT

values performs a low pass Butterworth filter on the pressure history at

the cutoff frequencies defined by FLO (line 4). For IFILT greater than

23

p°°,'

Page 27: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

zero, neither impulse nor FFT calculations are performed. For IOPT equal

to 1, IFILT may be any value.

Line 4: FLO(I), I=1,7 (Format 7FI0.O)

FLO() are the low pass cutoff frequencies in Hertz used by the

Butterworth filter. Up to seven filter levels, in any order, are allowed

for options 2 and 3. For the number of filters, N, less than seven,,1*

FLO(N + 1) must be set to 0. Although option 1 does not utilize the IFILT

value (line 3), it nevertheless performs filtering in order to determine

fidelity frequency. Therefore, IOPT = 1 requires that TAPE2 contain

several filter levels to be defined on this line. Furthermore, the

algorithm requires that these filters be in descending order

(e.g., FLO(1) = 5000., FLO(2) = 2000., FLO(3) = 1000., etc.). The values

for FLO in this series may be chosen by the analyst. However, bounding

* values of FLO(1) = 5000. and FLO(7) = 50. with a reasonable spread of

* .values for FLO(I), I = 2,6 between these, have proven to be adequate.

Additionally, each FLO() must be less than or equal to the Nyquist

frequency for the digital filter to remain stable. (Note that if either

FLO(1) or FLO(7), i.e., the limiting cases, is determined to be the,..

fidelity frequency, the values should be altered accordingly and the

program resubmitted.)

These four lines complete the input deck needed to submit a FOURFIT

run. An example input deck is listed below. The program, will

subsequently compute a 6000 point FFT on data read in the units of psi and

seconds (line 1). The initial estimated pressure and yield pair are

20. MPa and 2. KT, respectively (line 2). The third line indicates that a

fit will be performed. The second value in this line represents the

24

Page 28: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

filter switch and, since this run asks for a fit, it will not be used. The

final line of input lists the seven low pass filter levels, in Hz, to be

tested for locating the low pass fidelity frequency.

Column

5 10 15 20 30 40 50 60 70

6000 1 -1

20. 2.

1 -1

5000. 2000. 1000. 500. 200. 100. 50.

3.2. PROGRAM STRUCTURE

3.2.1. Data Calculations

IOPT equal to 2 is the simplest option to perform and, hence, the

option taking the most direct calculation route. This option simply requires

a subroutine to read the data, a subroutine to integrate that data for

impulse and a subroutine to calculate the Fourier transform of the record.

For IFILT greater than 1 (filters to be executed) the impulse and FFT are not

calculated. Instead, a filter subroutine is called and the record is low

pass filtered at specified cutoff frequencies.

The program FOURFIT, as listed in Appendix A, calls the subroutine

EBREAD to read the data pressure histories. EBREAD is set up to read a card

image format (EBCDIC) tape of the data and its header. The format of EBREAD

is the format of several tapes analyzed by the author which were provided by

the U.S. Army Engineer Waterways Experiment Station (WES). The format that

those tapes employed was pressure data written as five data values per card

(SE16.8). The set of cards for a given trace is preceded by a header record

containing shot and data information (i.e., shot title, gage title, time

step, total number of points) in the format of 3(2A10), E15.8, 15. These

tapes have been written in psi for pressure and the program converts the

25

Page 29: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

values to MPa. The time step is written in seconds. Any tape of

different format must be accompanied by a substitution for EBREAD to read

that data. However, this new subroutine must retain the structure of

EBREAD if the program is to perform properly. This includes proper units

(pressure in MPa, time in seconds), proper ordering of calls to impulse,

FFT and filtering subroutines and identical writes to TAPE48.

After the data has been read, IOPT equal to 2 causes EgREAD to

take one of two paths, depending on the value of IFILT. If filtering is

not to be done, the subroutine causes the impulse history and the Fourier

amplitude spectrum to be calculated. Subroutine IMPULSE integrates the

data by Simpson's approximation. Subroutine FFTRC computes the fast

Fourier transform after the algorithm of Singleton (Ref. 7). On the other

hand, if filter histories are desired, subroutine FILTER filters the data

using the recursive equations derived for a two pole low pass Butterworth

filter as found in, for example, Reference 8.

3.2.2. Speicher-Brode Calculations

IOPT equal to 3 causes calculation of a Speicher-Brode pressure

history and either its impulse and FFT or its specified low pass filtered

pressure histories. Structure of subroutine SPBRODE is similar to that of

EBREAD except that the data reads are substituted for by the

Speicher-Brode equations. Also, SPBRODE requires a target range to

perform its calculations. Therefore, before entering into SPBRODE, the

program utilizes subroutines RANGE and PPEAK to iterate on the distance

from surface burst ground zero for the given PSOI and WI pair specified.

Impulse and FFT or filter histories are calculated as described for IOPT"'K-. equal to 2.

26

Page 30: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

3.2.3. Fit to Data

A value of IOPT equal to I causes th.e code to find a best fit

nuclear waveform for the data. That data is read, integrated and Fourier

transformed. A least squares algorithm finds a best fit to the data

Fourier amplitude spectrum based on an equation, parametric in peak

pressure and yield, which describes the scaled Speicher-Brode Fourier

amplitude spectra. The actual best fit Speicher-Brode waveform is

calculated, integrated and Fourier transformed for comparison to the data

in the form of plots. The data pressure history and the equivalent

Speicher-Brode are low pass filtered at several levels of frequency

cutoff. The peaks of these filtered histories are compared in the

determination of fidelity frequency.

The best fit search is performed within the subroutine FIT.

This subroutine is modeled after a similar subroutine discussed in

- Reference 9. The search begins with a set of five peak pressure values

and five yield values. These values are equivalent to the product of the

coefficients .1, .4, 1., 4. and 10. times PSOI and WI. The final results

for equivalent peak overpressure and yield are found within these values.

(If the final result for either pressure or yield is either .1 or 10.

times PSOI or WI, respectively, i.e., the limiting cases, the analyst is

advised to alter the seeds accordingly and/or to check the quality of the

data.)

Subroutine FIT takes a value of peak overpressure, PP, and pairs

that value with each of the five yield values, W. The comparison between

each candidate Speicher-Brode and the data occurs after, for each value of

frequency for the data spectrum, a value of ideal nuclear Fourier

amplitude is computed using the-parametric equation below.

27

Page 31: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Al = .1788PP-*7 (F S) V )*0 (8a)

A2 = .17P '1175(8b)

A3 = .01P(P .3( 215(80)

A4 = .00132(F S)- 54 (8d)

S

so

A6 =.000011PP.7(..)7. (8f)

.0066P3(rF.. )1.5A7 .0066P (8g)

ASCL =Al - A2 + A3 + A4 + A5 -A6 +A7 (8h)

A -ASCL xPP xW 1 /3 (80)SB-

where Fs yield scaled frequency (F x W1"3)

Fs0 = yield scaled fundamental frequency (F0 x W 1/ 3)

F = 1/positive phase duration

ASCL = scaled Speicher-Brode Fourier amplitude

(ASBI(Pso x /

ASB =estimated Speicher-Brode Fourier amplitude

This equation represents a fit to the normalized surface burst Speicher-

Brode Fourier amplitude spectra shown in Figure 15. (Use of this equation

is facilitated when, for each candidate fit, successive calls to RANGE and

PPEAK calculate the positive phase duration.)

28

Page 32: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

,- T .k

For a given data frequency, equation 3 is used to calculate a

Speicher-Brode amplitude for the trial peak pressure and yield pair. In

order to assimilate the graphical methodology, which is carried out in

log-log form, the common logarithm of the amplitLde estimate is computed.

The difference between this last value and the common logarithm of the

data amplitude is computed and then is squared to accomodate algebraic

sign. To further assimilate the graphical method, this difference is

divided by the particular data frequency. This last step considers that

the FFT is computed using a constant frequency step. Therefore, the point

density increases by an order of magnitude with each decade increase in

frequency. Division by the frequency compensates for the weighting that

results.

The value just computed is added in a summation of squared

-differences for the PP/W pair for the present trial. This summation

process is repeated starting at the data fundamental frequency and

continuing to some high frequency (a value which is a function of the data

record) which sufficiently includes the signficant portion of the data.

(This final frequency must be chosen so as to include the peak of the

data, but must be limited to avoid extensive calculation within the high

point density "record noise" frequency regime.) The results of this

summation provide a value DELTAW for the present pressure/yield pair.

A DELTAW value is computed for each of the other candidate

yields until, for the given PP(J), five DELTAW(I) values are available for

comparison. The minimum of these five values is then located and the next

iteration occurs with a new set of yields replacing the old set with the

yield which gave the minimum DELTAW(1) being the central value. (For

29

Page 33: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

example, for W(I), I = 1,5, DELTAW(2) may have been a minimum. For the

next iteration, then, W(2) becomes the new W(3); W(1) remains unchanged

and the past W(3) becomes the new W(5). The new W(2) and W(4) values are

intermediate to the new W(1) and W(3) and the new W(3) and W(5),

respectively.) This procedure is repeated until, for the given PP(J), the

field of W() is narrowed so that the extremes are within 1 percent of

each other (i.e., 2 x (W(5) - W(1))/(W(5) + W(1)) < .01). When this

tolerance is met, the minimum DELTAW(I) of the final group is set to be

DELTAP(J) for the given value of PP(J).

The iteration next proceeds to the second value for PP(J)

coupled with each of the original five values for yield. Eventually, four

more DELTAP(J) values are computed and the minimum of the five DELTAP(J)

values is determined. In this manner, the field of PP(J), J = 1,5 is

narrowed to five new values and the entire process continues until the

spread of PP(J) values are limited to within a tolerance as was specified

for the W(M) above. When this criterion is met, the best fit

Speicher-Brode is considered to be found as the pressure/yield pair for

which the final minimum DELTAP(J) was found. (Recall, though, that if the

,. final pressure or yield is either .1 times or 10. times the respective

seed, the validity of the answer must be checked.)

* Next, for this case where IOPT 1, a Speicher-Brode pressure

history is computed for the pressure/yield pair defined by FIT. This

history is integrated and Fourier transformed so that final plots,

provided by program FOURPLT, represent comparisons between the data and

the best fit Speicher-Brode pressure history, impulse history and Fourier

amplitude spectrum. Additionally, this ideal waveform is low pass

30

'-•M ,W

.%, ,,,, . . . ,, ,, - "' " - - " ,,' " ' ' " ' - " " - " " " " " -"X " " " " " " ' " " " "[

Page 34: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

filtered. The peaks of the filtered pressure histories are determined and

compared to the peaks, at their respective cutoff frequency, of the

filtered data which have also been determined. Beginning with the highest

frequency filter and proceeding in descending order, the level at which

the filtered data peak is within 10 percent of the filtered Speicher-Brode

peak is chosen as the low pass fidelity frequency. If a fidelity

frequency is not found, a value of -999. is assigned to this variable. If

this value appears in the output, further investigation is warranted.

The analysis discLssed in the previous paragraphs creates a

file, TAPE48, which contains information to be plotted. Program FOURPLT,

discussed below, utilizes this file to produce plotted output of results

for the three program options (IOPT). In addition, the results for IOPT

equal 1, fitting of data, will be written to the output file for the

analyst's record. An example of this output is shown in Figure 16. (For

IOPT equal to 3, just Speicher-Brode calculations to be done, similar

output is provided.) A flow chart of FOURFIT is presented in Appendix B.

Appendix C provides a flow chart of subroutine FIT.

3.3. PROGRAM FOURPLT

Program FOURPLT is to be used in conjuction with program FOURFIT.

FOURPLT exists to attach the TAPE48 made by FOURFIT, read that file, known

as TAPE9 within FOURPLT, and plot the contents. The program uses the

DISSPLA plotting capabilities maintained for the DNA CDC Cyber 176

computer. A separate plotting routine allows for analysis of greater

sizes of data arrays and provides for quicker turn around by dividing the

core requirement of the combined job. FOURPLT requires no input other

than the TAPE48 file to run successfully. A listing of program FOURPLT is

provided as Appendix D.

31

IL

i' .

".:,; ,", 'W Q ?'-" . .,I,,?Lw,,. .L ',.' -"

,' , .' . ; ,, ' - - " " '"." ' - - ' - - • - """ -" - " -''" - " . . .

Page 35: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

3.4. PROGRAMMING NOTES

Before continuing with presentation of the results from running

FOURFIT and FOURPLT, a point should be noted which will assist the

operator in successfully running the codes. The Speicher-Brode Fourier

amplitude equations describe the total positive phase duration of the

respective pressure histories. Therefore, the data to be analyzed should

similarly be carried as nearly as possible through full positive phase.

Since the amount of data that can be analyzed is set within several

arrays, these arrays must be large enough to contain all of the data.

* This includes pressure (PRESS) and time (TTIM) to be dimensioned at least

as large as NEPTS; impulse (PIMP) and impulse times (TIMP) must be

dimensioned at least (NEPTS/2)-I; amplitude (AMP) and frequency (FRQ) must

* be at least as large as (NEPTS/2)+I. In addition, the data FFT working

arrays (IWKE, WKE) must be of sufficient size. (Reference 6 contains an

algorithm for computing the necessary size of these two working arrays by

*' factoring NEPTS.) The Speicher-Brode calculations use these identical

-* arrays and the number of points assigned to these calculations is NBPTS

equal to 2048. Each array must be at least large enough to accomodate

this value.

i3

7%

4

z 32

"- : -" ,-. - -.- ;-.°. :. .' -,i _ - . * -" . .. ?: -... . , .2." . -"-. --- --.-. ,.i-.': *,? . .* .. ?.? - - .. .i? ?-'

Page 36: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

017 "W v -ri r .-. .i.--

SECTION 4

PROGRAM RESULTS

K 4.1. SAMPLE OUTPUT

Figures 17 to 28 illustrate the possible output from FOURFIT and

FOURPLT for the various options. Figures 17 to 19 result from requesting

IOPT = 2 with IFILT = -1. The program reads, integrates and Fourier

transforms a data record, in this case record AB-5 from event 0.35 KBAR

DISC HEST. In Figure 20, the same data record is read, IOPT = 2, but is

low pass filtered, IFILT = 1, at a cutoff frequency, FLO, equal to

1000. Hz. In each case, the identifying header is presented at the top of

the plot.

In Figures 21 to 23, the results of computing, integrating and

Fourier transfoming a Speicher-Brode pressure waveform (PSOI = 39.60 MPa,

WI = 0.87 KT, IOPT = 3, IFILT = -1) are presented. Figure 24 presents

this same waveform (IOPT = 3) low pass filtered (IFILT = 1) at 1000. Hz

(FLO) frequency cutoff. Information to the right of the plot identifies

the ideal waveform plotted. Each of the types of submittals discussed in

this and the preceding paragraph require on the order of 0.5 CP seconds of

execution time on the Cyber 176 computer.

Finally, Figures 25 to 27 show an example of the results of a run to

fit the data record (IOPT = 1) presented in Figure 17. Both the data and

the computed best fit Speicher-Brode are plotted for comparison of

pressure histories, impulse histories and Fourier amplitude spectra.

Figure 28 compares the data and its equivalent fit both low pass filtered

at the low pass fidelity frequency identified by the fit. The job

requiring a fit to this record required on the order of 80 CP seconds

.13

433 .. . .. . ..'

Page 37: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

execution time on the Cyber 176 computer. (The required computer time

will vary as the number of data points and, hence, frequency comparisons,

varies. )

4.2. RESULTS OF FITTING ROUTINE

Several records from the test 0.35 KBAR DISC HEST were fit using

program FOURFIT. These records were chosen because they were data

" histories which were fairly representative of a nuclear pressure

waveform. Furthermore, these records were previously analyzed using the

graphical FOURFIT technique (Ref. 3) and thus provided a basis for

comparison between the program results and accepted fits.

The fits calculated for several records from the DISC HEST are shown

in Figures 29 to 49. (These results are in addition to those for record

* AB-5 shown earlier.) These figures represent the output from running

FOURFIT and FOURPLT and includes both the data and the fit compared by

; pressure history, impulse history and Fourier amplitude spectrum for each

record. Table 1 summarizes these fits and compares the results of the

program ("automated") to fits found graphically ("graphical"). The

authors feel that Figures 29 to 49 show favorable compari ons. (Though

some of the latest automated results do not agree closely with previous

graphical results--i.e., yield values for AB-4, for AB-9 and for

AB-10--the plot comparisons for these records are very acceptable.)

The program was next applied in the analysis of a second event,

0.35 KBAR HEST. FOURFIT managed to determine acceptable fits to several

of the records (e.g., the fit for record 51 shown in Figures 50 to 52).

However, for other records of this event, the data record and its time

domain fits diverge after several milliseconds. This divergence may be

34

............ . ..... * ,.-., .o ._, .o, •

Page 38: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Tabl e 1. Comparison of FOURFIT results for 0.35 KBARDISC HEST: graphical (ref. 3) versus automated.

Yield (KT) Ps0 (MPa)

Gage Graphical Automated A%* Graphical Automated A%

AB-3 1.05 1.07 +1.9 40. 41. +2.5

AB-4 .52 1.15 +121. 45. 37. -18.

AB-5 .84 .87 +3.6 40. 40. 0.

AB-7 .80 .97 +21. 35. 35. 0.

AB-9 .91 .66 -38. 29. 33. +14.

AB-10 .66 .99 +50. 45. 42. -6.7

AB-12 .31 .57 +84. 50. 41. -18.

AB-13 .80 .73 -8.8 40. 42. +5.0

AVE** .74 .86 41.** 40. 39. .*

).23 .20 43.** 6.5 3.4 7.6**

0j/AVE .31 .23 1.04 .16 .09 .95

*percent of graphical

35

V..............................

Page 39: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

traced to trends in the pressure data which are atypical of the ideal

nuclear pulse. These trends, as noted for one of the records, are

discussed below.

Figure 53 presents the pressure history of record 417 from 0.35 KBAR

HEST. Several variations between the ideal waveform and record 417 are

readily noticeable. First, in contrast to the DISC HEST records, record

417 contains one relatively high magnitude (46 MPa), but very narrow spike

suggesting a low amount of power carried in the peak of the record. This

spike is followed by an extended vibratory component at about 2.1 MPa and

another at about 7 MPa suggesting that a lower, but still fairly high

frequency regime may be sustaining too much power. The remainder of the

waveform shows, rather than a purely exponential decay, a decay that, at

times, shows a nearly linear trend, upon which is superimposed a low

* frequency oscillatory component. This would foretell a rise in the

* amplitude spectrum in the low frequency end.

The Fourier amplitude spectrum for record 417 was computed and is

presented in Figure 54. This figure fulfills the expectations resulting

* from review of the pressure history. The spectrum falls off rapidly

between the fundamental frequency and about 150 Hz. At this point, the

slope changes to a lesser decay of power toward the intermediate to high

frequencies. As the Nyquist frequency is approached, the spectrum falls

* off more rapidly. These observations seem to correspond to the low

frequency oscillation, the early time/low magnitude oscillations and the

narrowness of the peak, respectively.

The factors listed above indicate that the recorded trace carries a

* low qualitative fidelity in comparison to the Speicher-Brode. These data

36

Page 40: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

T-'07

trends suggest that the fits to such records may show obvious variances in

comparisons to those records. Figure 55 presents the Fourier amplitude

fit determined by a FOURFIT run on record 417. It is seen that the data

spectrum diverges from the fit at times, with the non-nuclear trends of

the data becoming obvious. The pressure history comparison, Figure 56,

also illustrates regions of divergence between the data and the nuclear

waveform. The fit impulse history (Fig. 57) is seen to be a mismatch to

the data beyond about 10 msec. The difficulties encountered in analysis

of poor fidelity records, such as 417, indicates a need for more study

into the approach for analysis of such records. For example, different

frequency regimes of such data may be subject to varying weighting

functions to perform the fit.

Comparisons between other records from 0.35 KBAR HEST and their

respective fits are shown in Figures 58 through 72. These fits are

summarized in Table 2.

37

. .. ... . ., ,

. . . .' . -" ". -'- . - .- , L-" " ", '" . , . " . •, , - - 4 i1 " > .. " . . . -- . , . .

Page 41: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Table 2. Comparison of FOURFIT results for 0.35 KBARHEST: graphical (ref. 3) versus automated.

Yield (KT) Ps0 (MPa)

Gage Graphical Automated A%* Graphical Automated A%*

411 1.01 2.67 +164. 16. 14. -12.

*.417 .75 2.70 +260. 18. 14. -22.

418 .67 .80 +19. 15. 15. 0.

419 .50 .74 +48. 15. 14. -.

51 .50 .59 +18. 15. 16. +7.

54 .74 .50 -32. 14. 17. +21.

55 .41 1.23 +207. 20. 17. -15.

AVE .65 1.32 107.** 16. 15. 2*

a.20 .96 101.** 2.1 1.2 8.**

ay/AVE .31 .73 .94 .13 .077 .67

*percent of graphical

38

..............................................

Page 42: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

- ~ - .~. ~-a -:"-

SECTION 5

FILTER STUDY

The previous sections discuss the development of the FOURFIT

technique and a computer code written for the purpose of perfonyning that

technique numerically. Consideration of fidelity through low pass

filtering suggested that more information could be culled from data

records through more extended analysis. Specifically, it was hypothesized

that high pass filtering and possibly band pass filtering of the data and

of the nuclear waveforms could prove insightful. For example, different

frequency regimes of the simulated waveform may represent a different

equivalent peak pressure and/or yield for systems with sensitivity in

those frequency regimes.

An extended version of FOURFIT was written to include high pass and

band pass filters. As in the low pass filter, these filter types were two

pole recursive digital Butterworth filters. Extensive analysis into the

effects of these filters on the Speicher-Brode waveform was undertaken. A

band pass filtered ideal waveform of Figure 21 is shown in Figure 73. It

can be seen that the band pass filter drastically alters the form of the

signal. This most likely is due not only to a removal of low frequency

power, but also to phase shifting.

Although low pass filtering left the final airblast impulse

virtually unaffected, it is obvious from Figure 73 that the impulse and,

hence, the power of the original signal are reduced. Several attempts

were made to correlate this reduction in power to various factors.

Comparisons using varying high pass cutoff and low pass cutoff

combinations with various P 50/W pairs failed to produce any promising

39

Page 43: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

results. These comparisons included studies of the filtered peaks (both

positive phase and negative phase peaks) and of impulse (both positive

phase and total impulses).

High pass filter studies were more promising than those regarding

the band pass filter. Figure 74 presents a high pass filtered waveforn

from Figure 21. Although the waveform is altered similar to the effect of

the band pass filter, a correlation between the filtered trace and the

filter was developed. Before discussing this effect, it must first be

noted that recursive digital filters are a function of the data time step

as well as of the cutoff frequency and the number of filter poles. It was

found that the time step dependence is an important ftor for a high pass

filter of a waveform such as the nuclear airblast pulse (i.e., sudden rise

to peak). With this in mind, several Speicher-Brode waveforms of various

peak pressure and yield combinations were calculated with the same time

step for each and were then filtered at various high pass cutoff levels.

Figure 75 shows the effect of cutcff frequency on the scaled peak of the

filtered ideal waveform. The curve applies for all yields and represents

the high pass filter peak attenuation curve for data with a sampling rate

of 100 kHz (the sampling rate of the 0.35 KBAR DISC HEST). The

application of the attenuation curve to the data analysis is described

below.

Given the time step of the data to be analyzed, a table of values

for Speicher-Brode peak attenuation as a function of those cutoff

frequencies listed in the input deck (TAPES) must be developed. This

array of information is then added to the code. Then, in the process of

running FOURFIT, the data must be high pass filtered and the filtered

40

". . ""'-".., "w Z ,' ,,,',.- " ,", , % , .,-, , , , •... -'. . w"

, - " . - . .-",-.' '" " -" - "•. . . ..-. ''-, - ' , ,

Page 44: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

record peaks stored. Next, the code determines a best fit Speicher-Brode

and a fidelity frequency. For all systems with sensitivities below this

value, the equivalent fit is a valid loading function. Systems sensitive

to frequencies higher than the fidelity frequency will experience a

different loading function. This different function is determined by

reference to the high pass attenuation table for the ratio of filter peak

to P for the specific fidelity frequency just determined. Throughso

this value, the high pass loading function is determined by the following

relation:

(PHPD)FF/(Stored Ratio)FF = PsoHP

or (P HPD)FF/(PHPB/Pso)FF PsoHP (9)

where PHPD = the peak of the high pass filtered data

PHPB = the peak of the high pass filtered Speicher-BrodePsoP = the high pass equivalent Speicher-Brode for the

data record.

The subscript FF refers to the respective values at the fidelity frequency.

No yield dependence was found in this study. Therefore, the high

pass equivalent waveform is assigned a yield identical to that of the low

pass equivalent waveform. Figure 76 presents a plot of record AB-5 from

0.35 KBAR DISC HEST with its FOURFIT comparison. The high pass equivalent

peak overpressure is identified on the plot along with the information

listed previously with FOURFIT plots. Figure 77 compares the data record

high pass filtered at the fidelity frequency to the high pass equivalent

Speicher-Brode filtered at the same cutoff frequency. These waveforms are

seen to compare quite well.

The results of high pass equivalency have not been adequately

tested. In addition, more investigation into yield dependence is

41

Page 45: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

warranted. For example, Reference 10 discusses a method for removing the

phase shift resulting from a filter. Application of this technique may

prove useful. Therefore, though the work is promising, the FOURFIT code

as presented in Appendix A does not include the capabilities discussed in

this section.

42

Page 46: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

Ambiguity and uncertainty in performing evaluations of airblast

simulation records have suggested the need for a methodology to achieve

consistent and meaningful analysis of such data. Previous studies (Refs.

1, 2, 3) have shown that the FOURFIT technique meets most requirements.

Until the present, FOURFIT has been used to graphically determine a

best fit ideal nuclear waveform for a simulation record based upon

comparison of the data Fourier amplitude spectrum to a set of normalized

Fourier amplitude spectra derived from the formulations for the ideal

nuclear airblast pressure history (i.e., "New Brode" or Speicher-Brode).

.* . In addition to providing consistent estimates for equivalent nuclear yield

and peak overpressure for records from a single event, the frequency

analysis provides considerable insight into the frequency content of the

data relative to the ideal nuclear. Furthermore, the FOURFIT methodology

allows for determination of a "fidelity" frequency. This frequency

indicates a cutoff whereby systems with frequency sensitivity at or below

that level experience a good simulated loading defined by the equivalent

nuclear fit determined for the record. Above that frequency, the

simulation breaks down.

The computer code FOURFIT, and its companion plotting routine

4.. FOURPLT, provide an automated method for fitting which allows for rapid

analysis of records while eliminating analyst bias. In addition, the code

allows for studies of individual records and of Speicher-Brode waveforms

V by allowing the analyst to specify a fast Fourier transform and integrated

43

4.4.. .,'

Page 47: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

impulse or low pass filtering of either type of waveform. These codes

were written for use on the Defense Nuclear Agency CDC Cyber 176 computer.

The results o9' the applicaton of these codes for analysis of two

simulation events, 0.35 KBAR DISC HEST and 0.35 KBAR HEST indicates that

the code is capable of determining nuclear fits for the records of the

former of these events which compare favorahly to those determined

previously using the graphical methodology. It must be noted, however,

that the 0.35 KBAR DISC HEST data bdse consisted of high fidelity,

Speicher-Brode-like pulses. Data from the second event, 0.35 KBAR HEST,

were not of such high fidelity. These records were analyzed graphically

in the study of Reference 3 and at the time were found to be difficult to

fit due to their poor fidelity marked by obvious diversions from the ideal

nuclear wave shape. The FOURFIT code managed to fit several of the

records rather well. However, in some cases the poor data waveforms

caused the fit and the data to show poor agreement at late time. Closer

examination of such records may enable better fits to be defired.

However, it is not possible to automate a consic.tent method for fitting

non-typical waveforms.

Finally, a study into the usefulness of high pass arid band pass

filtering yielded mixed conclusions. Although no importat results were

recovered from the band pass filter study, some limited insight was

provided through high pass filtering. The extent of this effort was

limited in the study of high pass filter effects and so was not totally

conclusive. However, this study indicated that a high frequency

equivalent nuclear waveform may be estimated through application of high

pass filters.

44

* * .. * *..-. * ~ ' - % ~

Page 48: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N ,

Several recommendations may be made in view of the preceeding

comments. For example, when the available data from an event proves to be

of low fidelity relative to the ideal nuclear waveform, a means for

determining guidelines for pursuing the fitting of such data needs to be

developed. Variable weighting schemes for the squared difference values

". may allow the analyst to better address the different power regimes in

such signals. This analysis would be performed on a case by case basis.

Next, it is recommended that the FOURFIT code be applied to define

record fidelity in addition to the low pass filter definition of fidelity

frequency. It is suggested that the methodology may be expanded to enable

*quantification of fidelity and that, with increasing interest in the

development of a high fidelity HEST, a set of fidelity guidelines may be

established based upon a scheme of sum of differences between the data and

its best fit Fourier amplitude spectrum. Various guidelines, as a

- function of frequency range, may help to determine the relative fidelity

. of various so-called Hi-Fi HEST candidates.

-The fits to the normalized Speicher-Brode Fourier amplitude spectra

have only been checked between peak pressure values of 1 MPa and 200 MPa.

There is increased interest in higher overpressure regimes, on the order

of 600 MPa and above. It is, therefore, recommended that the ability to

fit simulated overpressure pulses in that range be demonstrated and/or

:, 3 developed. This would require a study of the Speicher-Brode Fourier

amplitude equations to determine additional parametric validity up to,

say, 1000 MPa.

45

*. . .-. . .. .. ..

Page 49: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

It is recommended that the effects of high pass filtering on ideal

and simulated nuclear overpressure histories be studied further. The high

pass equivalency technique discussed in this report may perhaps be

extended to evaluate the influence of high pass filters on estimates of

equivalent yield for the high pass fit. This might be accomplished

through use of the "zero phase shift" filter as discussed in Reference 10.

Finally, it is recommended that the computer program FOURFIT be used

to determine equivalent nuclear yield and peak overpressure for all future

simulation events.

A4

t"

I,.

~46

Page 50: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LIST OF REFERENCES

1. Steedman, D.W. and Higgins, C.J., Interpretation of Airblast

Simulation Tests, Volume II-.-Equivalent Nuclear Yield and Pressure by

the Fourier Spectrum Fit Method, DNA 6101F-2, Applied Research

Associates, Inc., Albuquerque, NM, 31 March 1982.

2. Steedman, D.W., Equivalent Nuclear Peak Overpressure and Yield in

Simulation Events STP2 and STP2.5 by the Fourier Spectrum Fit Method,

DNA-TR-84-151, Applied Research Associates, Inc., Albuquerque, NM,

July 1982.

3. Simons, D.A., A Comparison of Techniques for Estimating the

Overpressure and Yield in Airblast Simulations, Draft Report, R and D

'* Associates, Marina del Rey, CA, 10 January 1984.

4. Speicher, S.J. and Brode, H.L., Airblast Overpressure Analytic

Expressions for Burst Height, Range and Time--Over an Ideal Surface,

PSR Note 385, Pacific-Sierra Research Corp., Los Angeles, CA,

November 1981, as modified for time of arrival at high overpressures

by memo from S.J. Speicher, Pacific-Sierra Research Corp, 7 June 1982.

5. Brode, H.L., Height of Burst Effects at High Overpressures, DASA

2506, The Rand Corporation, Santa Monica, CA, July 1970, as modified

by "Correction to Fit for Pressure-Time at High Overpressures,"

interoffice correspondence, R and D Associates, 6 November 1978.

6. IMSL Library User's Manual, IMSL LIB-0008, IMSL, Inc., Houston, TX,

June 1980.

7. Singleton, R.C., "On Computing the Fast Fourier Transform," Comm.

ACM, Vol. 10, No. 10, 1967.

47

Page 51: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

8. Stearns, S.D., Digital Signal Analysis, Hayden Book Co., Rochelle

*Park, NJ, 1975.

9. Renick, J.E., "Some Considerations in the Design of a Dynamic

Airblast Simulator," Proc. of the Nuclear Blast and Shock Simulation

Symposium, 28-30 November 1978, Vol. 1, DNA 4797P-1, G.E. Tempo,

Santa Barbara, CA, December, 1978.

10. Carleton, H.D., Digital Filters for Routine Data Reduction,

Miscellaneous Paper N-70-1, U.S. Army Engineer Waterways Experiment

Station, Vicksburg, MS, March 1970.

4-P

48

p ,.,. o4

L .*--

Page 52: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

APPENDIX A

LISTING OF PROGRAM FOURFIT

PROGRAM FOURFIT(INPUT.OUTPUT.TAPE5sINPUT.TAPE6.OUTPUT,TAPE2.TAPE26.TAPEAS)

C ...............................................

C PROGRAM FOURFIT ESTIMATES THE PEAK OVERPRESSUREC AND NUCLEAR YIELD FOR AIRELAST SIMULATION RECORDSC BY COMPARING FITS OF THE DATA FCURIER AMPLITUDEC SPECTRUM TO THE FOJPIER AMP. ITUDE SPECTRA OF TRIALC SPEICHER-ERODES PESJ.TS ARE WRITTEN TO A FILEC (TAPE48) TO EE READ AND PLOTTED E' PROGRAM FOURPLI.C WR1TTEN B' C. W STEEDMAN. APPLIED RESEARCH ASSDC.,C INC .ALBUQUEROUE. NM. FEB 1984.C .. . . . . . . . . . . . . . . . . . . . . . . . .

CC

COMMON /FFT7 FRO(3001).AMP(3001),XFFT(3001)COMMON /T7ERAT/ W( 5),P)5) .OELTAW( 5) .OELTAP( 5) YLO( 5)COMMON /THIST /TTIM(6000).PRESS(6000).TIMP(2999),PIMP(2999).

PFILT(6000)COMMON /IMP /IIMPDTD.DTB.TPEB.DTt3NCOMMON /POINTS/ NEPTS.NBPTS,NI.NEF.N6FCOMMON /ESTIM !' PSOI.WI.PPW13,PSOF.WFFSOCOMMON /PEAK / DP.TA.PSD.ALPFCOMMON ,'SBZONS/ RSKCTQI'S.S.XMCOMMON /FILT /IFILT.FLO(7l.PFDM(7)KPFEM)7COMMON /,PL0TV /ITLfFEA.IS7L(8),IDECOMMON /UNITS / UNITS.JUNITSCOMMON /COJNT /1COUNT.IOPT.LFILTCOMPLEX XFFT

CC TAPE2 CONTAINS INPUT PARAMETERSC NEPTS - NO. OF POINTS TO BE READ FROM TAPEC IUNITS - I FOR TAPE INPUT PRESSURE IN PSIC --I FOR TAPE INPUT PRESSURE IN MPAC JUNITS - 1 FOR TAPE INPUT TIME IN MILLISECONDSC --I FOR TAPE INPUT IN SECONDSC PSOI - INITIAL PEAK OVERPRESSURE ESTIMATE IN MPAC WI - INITIAL NUCLEAR YIEL.D ESTIMATE IN KTC IOPT - 1: FITTING ROUTINE TO BE DONEC -2: JUST FOURIER TRANSFORM THE DATAC - 3: JUST FOURIER TRANSFORM THE SPEICHER-BRODEC DEFINED BY PSOI, WIC IFILT - I FOR FILTER TO BE EXECUTEDC --I FOR ND FILTERC FLO - LOW PASS CUTOFF FREQUENCY IN HZ (UP TO 7 ALLOWED)C (NOTE-FOR LESS THAN 'FILTERS. FLOC MUST BE SET TO 0. TO ESCAPE THE LOOP.)CC

REWIND 2READ(2.11i) NEPTS.IUNITS.JUNITSREAD(2.112) PSO!,WIREAD(2.113) IOP7 IFILTREAD(2. 115) (FLO ). 1.1,7)

iii FORMAT(315)112 FORMAT(2F5.2)113 FORMAT(215)115 FORMATt7FIO 0)

wRZI'Ei6.11 PSOI.WI1 FORMAT12X..PSOI a *.F5.2.5X..WI -,*F5.2)

WR:TE(48. 113) IOPT.IFILTICOUNT *0

NBPTS 2048IF(IOPT.EO.3) GO TO 7CALL EBREADIF(IOPT.EO.2) GO TO 666CALL FIT

7 ICOUINT - ICALL RANGECALL SPSROOE

666 END

49

Page 53: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SUSROUTINE EBREADC *s..* .. e. .... ......... st .....

C THIS SUBROUTINE READS PRESSURE VALUES FROM ANC EBCDIC TAPE BASED UPON THE FORMAT PPEVI0USLf

C USED By WES.C. ................. *............ *..............

CC

COMMON /FFT /FRO(3001),AMP(30>01),XFFT(30>01)COMMON /POINTS/ NEPTS.NBPTS.NI.NEF.NEFCOMMON /THIST / TTIM(6000) .PRESS(6000) .TIMP(2999),PIMP(2999).

PFILT 6000)COMMON /FILT / IFILT.FLO(7).PFDMX(7).PFBMX(7)COMMON /IMP / IIMP.DTD.EOTB.TPEB.DTBNCOMMON /UNITS / IUNITS.JUNITSCOMMON /PLOTV / ITL(B).ISTL(B).IDECOMMON /COUNT / ICOUNT,IOPT.LFILTCDMPLEA XFFTDIMENSION IWKE(2000),WKE(2000)DIMENSION DUM(3).DA(5)

C DELP IS THE DATA BASELINE SHIFT. BEC SURE THAT IT IS IN THE PROPER UNITS.

DELP - 0.0PEWIND26

CC READ TA-PE HEADER INFORMATIONC

READ(26.30) ITL(3).ITL(4).* DUM(l).DUM'2).

ITL( I).ITL(2).DTD.NP

30 FORMAT(312Al0).El5.8. 5)C

17Lt5) - 10H PRESSJREITL(6) - IOHHISTORYI TL(7 ) - A OHITL(8) - 10HWRITE(4S.35) (ITL(L).L-1 .8)

35 FQRMkT(SAlO)DO 20 1.1.NEPTS

TTIM(I) 0.PRESS(I) *0.

20 CONTINUEIF(EOF(26)) 900,901

C SET UP DATA UNITS CONVERSIONS.C MSEC TO SEC AND PSI TO MPA.

901 IF(JUNITSGE.1) DTD - DTO-.001PFACT = .006894757IF(IUNITS.LT.0) PFACT - i.IF = I

TIME *0,

N'LINE *NEPTS/5

PLINE *FLOAT(NEPTS)/5.

d IF(RLINE.GT.NLINE) NLINE - NLINE+lV C

C READ PRESSURE VALUESC

.1~D A 0 ' J-1.NLINEREAD(26.50) (OA(JJ).JJ-1.5)

50 FORMAT(5E16.8)IF(EOF(26) 900,902

902 DO 60 K-1.5TTIm(IP) *TIME

P - DA(K)PRZESS; IF, (P-PFAC7I-OELFIF' - 10-1TIME - T1ME-D7D

60 CONTINUJE

40 CON7INUECC SPLINE THE END OF THE DATA TO ZERO INC CASE OF A 7RUNCL.7ED RECORD

TLAST - !TMNEC7S,CALL SPLINE(TLAST.NEPTS.TTIM.PRESS I

C

*1NO5

1~%

Page 54: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CC IF ]OPT *1, FIND THE TIME TO DATAC PEAK TO AID IN PHASING THE OVERLAYS.C AID IN PHASING OVERLAYS

PMAX -0.

DO 78 IK-1.NE.PTSPMAX -AMAXI(PMAX.PRESS(IKflIF(PMAX.EO.PRESS(IKJ) TPEB - TTIM(IK)

78 CONTINUEC

C REMOVE BASELINE CORRECTION FOR POINTSC BEFOPE THE ARRIVAL OF THE SHOCK

DO 77 M=1.NEPTSIF(TTIMIm) G7 TPEE) GO TO 990PRESS(MI PIRESS(MI+DELP

77 CONTINUEC

GO TO 990900- WRITE(6.7O)70 FORMAT(10',-ENDj-OF-FILE REACHED EAPLY-. i

990 CONTINUEIF) IOPT.NE .2 ) GO TO 45CALL FMAx(PPESS,NEPTSji'PMN,YPMY)CALL FMAX(TTIMNEPTS.XPMN.XPM )WRITE(48, 100) NEPTS.XPMN.XPMx.YPMN.YPMXIF(IFILT.LT.O) GO TO 700

C CALL FOR FILTERS TO BE EXECUTEDCALL FLOOP(TTIM.PRZESS.DTO.NEPTS.PFILT)RETURN

C700 WRITE(48,105) (TTIMU<),K-i,NEPTS)

WRITE(48. iOE) (PRESS(KL).KL=1.NEPTS)100 FOPM47fIE;.4E15-8)105 FORMA') 10E'5 8)45 lIMP 1

C IMPULSEC

CAL-L IMPULSE(IIM:IDTD.NEPTS.NI)IF(IOP7.NE .2) GO TO 110ITL(5) - IH IMPULSE HITU(6) -10HISTORYWRITE(48, 115) ITL(5).ITL(6)CALL FMAX(TIMPNI.XIMJ.XIMY)CALL FMAX(PIMPNI,YIMN.YIMx)WRITE(4E.100)) NI.XIMN,XIMX.YIMN.YIMXWRITE(48.105) (TIMP(IHL.IH=1.NI)WRITE(48. 105) (PIMP(JH),JH-1,NI)

115 FORMAT(2A10)

C FIND THE FOURIER TRANSFORM AND CALCULATE AMPLITUDE.C

110 TTDT -DTD.NEPTSC FREQUENCY INCREMENT

OFE - ./TTOTFO~E - 0.

C COURIER TRANSFORMCALL FFTRC) PRESS.NEPTS.XFFTIWKEWKE)XRE a REAL(XFFT(1))/(2*NEPTS)XIE a AIMAGIXFFT(1))/(2-NEPTS)FOE a FQE.DFE

m AMPLITUDE PECTRUIM

AMP)1) - SORT(2..)XRE.XRE*XIE0XIE))TT

NEF - NEPTS,/2+10-, e() JK'2,NEF

FOE =FOE.OFEr~ PQtjK I FOE~PE -REALI ,rT~iJvWNEPTS

IE -AIMAG) YFF'(J< )/NEPTSAMP) UK 3 SORT(XRE-xRE+XIE.XIE )*TTOT

C80 CONTINUE

Page 55: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

'1

IF(IOPT.NE.2) RETURNITL(5) - IOH FOURIER AITL(6) - IOHMPLITUDE SITL(Y) = 1OHPECTRUMCALL FMAX(FRO.NEF.XFMN.XFMX)CALL FMAX(AMPNEF.YFMN,YFMX)WRITE(48. 117) ITL(5),ITL(6).ITL(7)

117 FORMAT(3A10)

WRITE(48,1O) NEF.XFMN.XFMXYFMNYFMXWRITE(49. 105) (FRO(LI).LI=1.NEF)WRITE(48.I05) (AMP(JI).JI=1,NEF)RETURNENDSUBROUTINE FIT

C ............................0* ** * *0m** ..........

- C THIS SUBROUTINE ITERATES ON YIELD WITHIN ITERATIONS ON-.u C PEAK PRESSURE. ITS AIM IS TO REDUCE THE SUM OF THE SQUARES

C OF THE DIFFERENCE BETWEEN THE DATA AMPLITUDE AT F() ANDC THE ESTIMATED SPEICHER-BRODE AMPLITUDE AT F(I) DIVIDEDC BY F(1) BASED UPON A TOLERANCE ON PEAK PRESSURE AND YIELD.

0. j C END RESULT IS A FINAL ESTIMATE OF PEAK OVERPRESSUREC (PSOF) AND YIELD (WF). ALSO. AN ESTIMATE OF THE GOODNESSC OF FIT (DELL) IS DETERMINED. PRESSURE IS IN MPA, YIELD ISC IN KT.

" C ................... ll lll lll

I I

* . .. ... .. .. ... . .. .. .. * l.. ..

, CC

COMMON /POINTS/ NEPTSNBPTSNI.NtFNBFCOMMON /ESTIM / PSOI,WI.PP,W13.PSOF,WF.FSOCOMMON /ITERAT/ W(5).P(5).DELTAW(5),DELTAP(S),YLD(5)COMMON /FFT / FRQ(3001),AMP(3001).XFFT(3001)COMMON /PEAK / DP.TA.PSO.ALPFDATA TOL/.Ol/

P(U) - .1-PSOI* _ P(2)

= .4'PSOI

P(3) = 1.0-PSOIP(4) - 4.-PSOIP(5) = 10.-PSOI

"< JPRESS = 0

. C LOOP ON PRESSURE TOLERANCE

DO 100 J=1.50* JPRESS = JPRES +1

JMIN - 2JMAX = 4IF(JPRESS.NE 1) GO TO 105JMIN - 1JMAX - 5

C* C LOOP ON PRESSURE

C105 DO 200 II'JMIN.JMAX

PP z P(II)

JYLD * 0W(1) * 0.1WIW(2) * 0.4-WIW13) * 1O-WI

W14) = 4.0-WIW(5) * 10.-WI

C LOOP ON YIELD TOLERNACE

CDO 250 KK1.50

JtLD - JYLD+7% IMIN - 2

-%-' IMAX - 4

IF(,JYLD.NE.1i GO TO 255IMIN - iIMAX a 5

CC LOOP ON YIELD

255 DO 300 LL.IMIN,IMAXW13 - W(LL), .333-3IF(LL NE .1) GO TO 256CALL RANGE

52

-. ..

.- - 2:-:-PAV:- .,: -- , S%2

. - ' ' KK7>:K, -j-%:,-,- . ,'' ",t ," '':$Q ".u->." ",,' - " ,',: -. * *'* *,' % , -

Page 56: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

C*C DETERMINATION OF RESIDUALS

C256 DELTAWILL) - 0.

00 350 LK.1.NEFFSCL - FRO(LK).W13IF(FRO(LK).GT.7)00.) GD TO 300IF(FSCL.LT.FSO) GO TO 353CALL AMPALG(FSCL.BAMP)AMPN *ALOGiO(AMP(LK))BAMPN *ALDGIO(SAMP)DF2 - FRO(LK).FRQ(LK)DELTAA - (AMPN-BAMPN)'FRQ(LK)IF(FRO(LK).LT.100.) DE.LTAA -2..DELTAA1F(FRO(LK).GT.5000. AND. FRQ(LK).LI.7000.)

DELTAA - 2.*DELTAADELTAA - DELTAA.DELTAADELTAW(LL) -DELTAW(LL)+DELTAA

350 CONTINUE300 CONTINUE

CC RESET YIELDSC

IF(EPSW.LT.TOL) GO TO 360CALL RESETW

250 CONTINUEWRITE(6. 1250)

1250 FORMAT) 2A,.FAILED TO CONVERGE ON *IELDISTOP 14

360 CONTINUEDWMIN - AMIN1(DELTAW(l1K0ELTAW(2).DELTAW(3),OELTAW(4).DELTAW(5))DO 365 MM,1.5

IF(DELTAW(MM).EQ.DWMIN) KW -M365 CONTINUE

YLD(II) - W(KW)DELTAP) II) - DELTAW(KW)

200 CONTINUECC RESET PRESSURESC

IF(EPSP.LT.TOL) GO TO 400CALL RESETP

10:, CONTINJEWRITE (6. 1100)

1100 FORMAT(2X,.FAILED TO CONVERGE ON PEAK PRESSURE-)STOP 10

400 DPMIN - AMINI(DELTAP(1).DELTAP(2).OELTAP(3)LDELTAP(4).DELTAP(5))DO 405 NNI1.5

IF(DELTAP(NN).EO.DPMIN,) KP -NN405 CONTIN4UE

W13 *YLD(KP).*.33333PP *P(KP)DELL - OELTAP(KP)/NEFRETURNENDSUBROUTINE AMPALO) FSCL .BAMP)

cf C ........................ ***.................

C THIS SUBROUTINE ESTIMATES THE FOURIER AMPLITUDE OF THE TRIALC PEAK PRESSURE AND YIELD BASED UPON A FIT TO THE SUITE OFC OF NORMALIZED SPEICHER-BRODE rOURIER AMPLITUDE SPECTRA.C THE ALGORITHM USES SCALED FREQUENCY OF INTEREST (FSCL),C SCALED FUNDAMENTAL FREQUENCY OF THE S-6 OF CONCERN (FSO)C AND THE PEAK OVERPRESSURE (PP) TO CALCL)LATE THE SCALEDC AMPLITUDE. THE ALGORITHM USES PRESSURE IN MPA AND YIELDC IN KT. THE EQUATIONS ARE FOR A SURFACE BURST ONLY. THEY AREC VALID FOR ANY YIELD AND FOR PEAK OVERPRESSURE UP TO 100MPAC

CCOMMION /EsTIM/ PsO1*wI*pp*Wl3.psOF.Vf.fSO

CAl a .l788oPP-(-.72)-(FSCL-(t.*PPI*(-.1031)A2 a .01474.PP=.(-.15).(FSCL/FSO)..(-1.75)A3 a .0011.PP..(PP..(-.234)).(FSCL/FSO)..(-2.15)Ad4 .00132.FSCL..(-.547)AS *.01034.PP..(-.113).(1.'FSCL)(FSCL/FS01..(-i.51

A6 *.00001 1.PP...77.(FSCL/FS0)..(-7.5)A7 *.0000666-PP=..3-(FSCL/FSO)=.(-1 .5)ASCL - Al-A2*A3+A4AA-A6.A7SAMP - ASCL.PP-W13RE TURNEND

ii 53

Page 57: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SUBROU7INE RESETW

C THIS SUBROUTINE RESETS THE FIvE YIELD VALUES BASED

C UPON THIS ITERATION'S MINIMUM RESIDUAL.

CC

COMMON /ITERAT/ W(5).P(5).DELTAW(5).DELTAPiS).YLD(5)CC FIND THE MINIMUM DELTA

IF(DELTAW(5).LT.DELTAW(4)) GO TO 10IF(DELTAW(A).LT.DELTAW(3)) GO TO 20IF(DELTAW(3).LT.DELTAW(2)) GO TO 30IF(DELTAW(2).LT.DELTAW(1)) GO TO 40

CC REDEFINE YIELDS BASED UPON THE MINIMUMCC IF DELTAW(1) IS MIN.

DYLD = (W(2)-W(1l))-0.25W(5) - W(2)DELTAW(5) = DELTAW(2)GO TO 50

CC IF DELTAW(5) IS THE MINIMUM,

10 DYLD = (W(5-W(4)).0.25W(1) = W(4)DELTAW(1) = DELTAW(4)

-GO TO 50

CC IF DELTAW(4) IS THE MINIMUM,

20 DYLD = (W(5)-W(3)).0.25w(i) - w(3)DELTAW(1) = DELTAW(3)GO TO 50

* cC IF DELTAW(3) IS THE MINIMUM.

30 DYLD - (W(4)-Wt2))O.25W{l) = W(2)W(5) = W(4)DELTAWil ) = DELTAW( )

DE LIw15) = DELTAw(4)GO TO 50

C IF DELTAW(2) IS THE MINIMUM,40 D,LD

= (W(3)-W(l)),O.25

W(5) = w(3)DELTAW(S) - DELTAW(3)

50 W(2) W( I )+DYLD

3 W(3) w(2)+DYLDW(4) * W(3).DYLDRETURNENDSUBROUTINE RESETP

C ................................C THIS SUBROUTINE RESETS THE FIVE PRESSURE VALUESC BASED UPON THIS ITERATION'S MINIMUM RESIDUAL.

C .......................... ............

C

COMMON /ITERAT/ W(5).P(5).DELTAW(5) .DLLTAP(5).YLD(5)CC FIND THE MINIMUM DELTAP

IF(CELTAP(5).LT.DELTAP(4)) GO TO 10IF(DELTAP(4).LT.DELTAP(3)) GO TO 20IF(CELTAP(3).LT.DELTAP(2)) GO TO 30IF(CELTAP(2).LT.DELTAP(1)) GO TO 40

cC REDEFINE PRESSURES BASED UPON THE MINIMUMCC IF DELTA( Il IS THE MINIMUM.

DPRESS - (P(2)-P(i))-0,25P(5) * P(2)W(5) * W(2)DELTAP(5) DELTAP(2)GO TO 5C

54

Page 58: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CC IF DELTAP(S) IS THE MINIMUM.

10 DPRESS - (P(S)-P(4))-.25P(l) - P(4)W(1) - W(4)DELTAP(1) - DELTAP(4)GO TO 50

CC IF DELTAP(4) IS THE MINIMUM.

20 DPRESS - (P(5)-P(3)),0.25P(1) - P(3)w(1) - W(3)DELTAP(1) - DELTAP(3)GO TO 50

CC IF DELTAP(3) IS THE MINIMUM.

30 DPRESS = (P(4)-P(2))sO.25P(1) = P(2)W(1) = w(2)DELTAP(1) - DELTAP(2)P(5) = P(4)W(5) = W(4)

DELTAP(5) - DELTAP(4)GO TO 50

CC IF DELTAP(2) IS THE MINIMUM.

40 DPRESS = (P(3)-P(i))=0.25P(5) = P$3)W(5) = W(3)DELTAP(5) = DELTAP(3)

50 P(2) = P(1)+DPRESSP(3) - P(2)+DPRESSP(4) = P(3)+DPRESSRETURNENDSUBROUTINE RANGE

C ....... **.* .. ** ..... ...... ............

C THIS SUBROUTINE IS AN ITERATION TO FIND THE RANGEC OF THE ESTIMATED PEAK PRESSURE FOR THE ESTIMATEDC YIELD. THIS IS NECESSARY FOR COMPUTATION OF THEC SPEICHER-BRODE PRESSURE HISTORY. TIME OF ARRIVALC AND POSITIVE PHASE DURATION.C .................................................Cc

COMMON /ESTIM / PSOI.WI.PP.W13.PSOF.WF.FSOCOMMON /PEAK / DP.TA.PSO.ALPFCOMMON /SBCONS/ RSKFTYS.S,XMCOMMON /COUNT / ICOUNT.IOPT.LFILT

CC INITIAL RANGE SPREAD

IF(IOPT.NE.3) GO TO 78PP - PSOIW13 f WI,-.33333

78 RI - 0.01R2 0-1R3 * 1.0R4 - 10.

CC HOB EOUAL TO ZERO

Y . 0.YSI a 0.YS2 a 0.YS3 - 0.YS4 w 0.DO 100 1-1.1000

RSI - R1/W13RS2 w R2/w13RS3 - R3/W13RS4 - R4/W13

C CALCULATE PSO FOR EACH TRIAL SCALED RANGECALL PPEAK(RSIYSi,PI)

55

Page 59: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

DPI i O PCAL PPEA~i RS2. v52.P2)DP2 - OPCA-- PPEA~j PS3. YS3P3)OF: -.-CA-L PPEAKIPS4,V54,P41OP4 - OP

C FIND eCJNDING RANGESIFIPP GT P2 AND. PP.LT.P1) GO TO 110F PP GT P3 AND, PP.LT.PI) GO TO 120

IFHPP GT P4 AND. PP.LT.P3) GO TO 130

1,40 FORMAT)2x.-PRESSURE OUT OF RANGE-)STOP 11

C BETWEEN RI AND R2110 DR - (P2-R1)/3.

Q2 - PI+DRR3 - R2.ORGO TO 99

CC BETWEEN R2 AND P3

120 DR - (R3-R2)/3.

P4 - R3R2 - R1+DRR3 - P2*DRGO TO 99

C BETWEEN R3 AND R4130 DR =(P4-R3)/3.

P1 P3P2 =R+~R3 R2+[DR

99 IFH(R4-Rl)LE..00C1) GO TO 101100 CONTINUE

WPITE(6. 1100)1100 FORMAT(2x. .FAILED TO CONVERGE ON RAN E-)

WRITE(6.1200) IJ 1200 FOPMAT(2X..I - -,15)J ~WRITE(6.1201) PP.RI.P4

t201 FORMAT(2X,.PP - *.E12.5./.2X.*Rl *.El2.5./.2X.-R4 -,*E12.5)STOP 12

101 PAKFT - (RI4R2.R3+R4).0.25RSKFT P AKFT/W13OF (;PI.DP2.DP3.DP4)*0.25FS C 1 (l;100F I COUN' NE.1) GO TO 103

D * , ETAI 0C O) w13

Rl.JKWr A~r- 304EPSO'F - PPWF -W13.W13-W13

CC WRITE FINAL RESULTS TO OUTPUT FILE

WP,:TEIE.1102')PSOF.WF.RANKM.TASEC.DPOCS1102 FORMAT( 'IIX, ..... +...e..+........... + *......***.....

* 2Y..PEAK OVERPRESSURE.MPA - -,6' .E'2 5.'!.* 2X.*Nu7hEAR YIELD.KT * , 11x.E12 5;!,

'I. * ~~2X..RANGE FROMUGZ.KM.*l.E5./* 2X.*TIME OF ARRIVALSEC - *.BX.EI2.5.//.* 2X.*POSITIVE PHASE OURATION.SEC - -.E12 .1X

CWR:TE(48. 1103) PSOF.WFWRITE(48. 1104) DP.TA.RSKFT

103 FORMAT(2E 15.8)11104 FORMAT(3ElI5.I103 RETURN

E ND

56

% .

Page 60: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SUBROUTINE PPEAK(X.Y.PEAKP)Cc THIS SUBROUTINE CALCULATES THE PEAK OVERPRESSURE (MPA).

C TIME OF ARRIVAL (TA.MS/KT.**/?). AND POSITIVE PHASEC DURATION (DP.MS/KT.-1/3) AFTER SPEICHER-BRODE. JUNE. 1982.

C ...

CC

COMMON /PEAK( / DO.TA.PSO.ALPFCOMMON /SbCONS/ RSKFT.YSS.XM

CXLEAST - I.E-9YLEAST - .E-9

ZMlx 100.IF( .LT.XLEAST) X~ XLEASTIF(Y.LT.N'LEAST) Y *YLEAST:R SQRT(X-X+Yv)

'R2 *R.R

R3 *R-R2

R4 R2-R'R6 *R2-R4

RBe R4.R4

Z2 = 2.Z3 =Z-Z2

Z5 Z2-Z3217 -Z-.17.Zia - Z-18.Y7 *Y-.7.

IF(Z.GT.ZMAX) Z ZMAX

C M-10-/143/--.5 94Y-.

C SCALED TIME OF ARRIVALC

UI - (.543-21.B-*3B6.*R2+2383..R3)=RBU2 - 2.99E-14-1 .91E-i0-R24#1.032E-6-R4-4.43E-6.R6U3 = (1.028+2.O87-R+2.69-R2)-R8UTA =U1/(U2.U3)TA - UTAIF(X.LT.XM) GO TO 101Wi - (1.086-34.605-R.486.3-R2.23B3.=R3.-REW2 - 3.C137E-13-1.212SE-9-R2+4.12E-6-R4-.16E-5-R6

W3-(163Z.2.629-P42 69.R2)-RE:WTA -WlW4ZTA -UTA.XM.'X+WTA.(l.-XM/X)

CC SCALED POSITIVE PHASE DURATIONC1015 S I.-1.IEIO.V7/(t..1I.1E10=v7)-(2.441E-8.Y*Y/

( (1 .9.Ei0=V7)).( I./(4.4IE-11.X..10. ))DP =((1640700..24629.=TA.416.15TA=TA)/

* (10B8O.+619.76.TA+TA-TA))S ( .4+.001204.(TA-*1.51/(i.+.001559-TA--i.5)+

* C.0426+.5486.(TA==.25)/(1...00357=TA.*I.5))-S)

CAA -1.22-(3.908-Z2)/( 1.810.275)

* (I ..02415"Z17)..6692'/(1.I4164.-Z.=B.)

- - ~~~ ~~~~~~CC 4. 15(.1.ZB/1 1.4.1).1f.27..25

EE *i -(.C00d64.>Z8l')(1.+.0)38E6,Z1iiFF *.6O96+(2.879-Z-9.25)'( 1..2.359*-Z=.14.5)-17. 5-Z2/

GG *1.83+5.361.Z2!(1.4.3139.Z..6A)

HH *-(64.67.25+.2905)/C1.*44d1.S.Z A-i.3S9.Z/( I..d9.03-ZS)*

CC PEAK OVERPRESSURE

Po a io.47/(R.-AA).SB/(R-*CC).DD.EE/(1.4FF.R-*GG).HHPEAKP *PQ=.OO6394757RE TURN

57

.4 -. .. ... N. . .

Page 61: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SUBROUTINE SPBRODEC ...C THIS SUBROUTINE CALCULATES THE PRESSURE HISTORY FORC THE FINAL PRESSURE-YIELD PAIR DETERMINED BY SUBROUTINEC FIT. IT USES THE SPEICHER-BRODE JUNE.1982 ALGORITHM.C .. . . .. . .0 . - 0. . ....

CCOMMON /THIST / TTIM(6000).PRESS(6000).TIMP(2999),PIMP(2999).

PFILT(6000)COMMON /FFT / FRO(3001).AMP(3001).XFFT(3001)

*COMMON /ESTIM /PSOI.WI.PP,W13.PSDF.WF.FSOCOMMON /PEAK / P.TA.PSO.ALPFCOMMONJ /ILT IFILT.FLO(7).PFDMX(7).PFBMX(7)COMMON /SBCONS/ RSKFTYS.S.XMCOMMON /POINTS/ NEPTSNBPTS.NI.NEF.NSFCOMMON 'IMP / IIMP.DTD.DTB.TPEBDTBNCOMMON ./COUNT / ICOUNTIOPT,LFILTCOMMON /PLOTv / ITL(8).ISTL(8).IOBCOMPLEX XFFTLIMENSION IWKe( 11)DATA .JCOUNT/0I

CIF(IOPT.NE.3) GO TO 5ITL(l) - I10HCALCULATEOITL(2) = 10H SPEICHER-IT.A3) - OHBRODE PRES17Lf 4) = 0HSURE HISTOITL(5) - 1OHRYITL(6) - 10H

*.ITL(7) - 10HITL(8) - IOHWRITE(4B,26) (ITL(IO),IO-1,8)

26 FORMAT(BA10)CC CALCULATE SPEICHER-BRODE TIMESTEP BASEDC UPON THE POSITIVE PHASE DURATION.

DTB - DP/NBPTSGO TO 15

5 ISTL(i) - IOHWITH FOURFISTL(2) - iGHIT SPEICHEISTL(3) - 1OHR-BRODEISTL(4) - 10HISTL(5) = 10HISTL(6) - 10HISTLIY7) - IOHISTL(8) = 10HWRITE(48.26) ( ISTL( IG). IG-1 .8)

'p CALL FMAX(PRESS.NEPTSYPMN.YPM)CALL FMAX(TTIMNEPTS.XPMN.XPMX)W~RITE( 48.200) NEPTS.XPMN.XPMX, YPMN. YPMXWRITE(48.210) (TTIM(IU),IU=1 .NEPTS)WRITE(48,210) (PRESS( IP). IP=I .NEPTS)

200 FORMAT(I5.4EI5.8)210 FORMAT(IOE15.8)

ICOUNT -0CC FIND THE PEAKS OF THE LOW PASSC FILTERED DATA PRESSURE HISTORIES

DO 7 I=1,7CALL FILTER(DTD.NEPTs)CALL FMAX(PFILT.NEPTS.PFDMN,PFDMX(I))

7 CONTINUE]COUNT - I

CC CALCULATE SPEICHER-SPODE TIME STEP BASEDC UPON THE DATA TIME STEP FOR FILTERING

D5=DTD'1000./W13CC CALCULATE THE SPEICHER-BPODE TIME STEP BASEDC UPON THE POSITIVE PHASE DURATION FOR OVERLAYS

35 IF(JCOUNT.EO.1) DTB DP/NBPTS15 DO 25 KJ-1.NBPTS

TTIM(KJ) 0.PRESS(KJ) *0.

25 CONTINUE

58

Page 62: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

X a RSKFTTF - TA+OPPO - PSOF.145.038F - ( .01477-(TA--.75)/(I.+.005836TA)+7.42E5(TA--2.5)/

(1.1l 429E-8-TA.4.75).216)S+.7076-3.077E-5 I* TA.TA.TA/(l.+4.367E-5.TA*TA.TA)Gt1O.e(77.5S-64.99.(TA-.i.25)/(1.+.04348S0RT(TA)))*SH 2.753i+.560iTA/)1.+1.473E-9*TA--5.)+(.O1769sTA/* 1.'3.207E-1O.TA..d.25)-.O3209.(TA..1.25)/(1.+9.914E-8

h

* TA..4. J-i.6)-SCC CALCULATE PRESSURE HISTORYC

DO 400 J1.NePTS 0T -TA4(J-2)*OTB

C SAVE UNSCALED TIMESTTIMkJ) * W13/1000.

IF(T.LT.TA) GO TO 400IF(T GT.TF) GO TO 410

POFT - Po-EIF(Y.LT.XM. OR .Y.GT.0.38) GO TO 390xE 3 039.s/(i.- 7"v)E *AESI-P/EXk

IF(E.GT.50. ) E - 50.D .23.5300).=. ,(2 6667.+1.E6YyY).27E+(.5583.Y-Y/

*(26667. .E6-))-E--.

0D s 474..'Y.(Y-XMJ* 1.25IF(DT.LT.l.E-9) DT i.E-9G4 = (T-TA)/DlIF(GA.GT.400.) GA 400.V - .. (3?.2BE~l(Y-6.)/( 1.,1.5El2.Y..6.75)).(GA.GA-GA/

* (6.13+GA-GAGA))-( 1/( 1..9.23.E*E))C -((l.4-240.9(X.A-)/(.+231.7.A--))iGA--7)/

* *2.3El3.Y.*9./(l.+2.3El3.Y--9)POFT - PO-(1.,A)-(BV+C)

390 PRESS(.J) - POFT/145.

400 CON~TINUEC

410 JCOL)NT - JCOUNT+lCC UNSCALE THE SPEIC*4ER-BRODE TIMESTEP

DTBN -DTB-W13/1000.IF(JLOUNT.GT.1 OR. IOPT.EO.3) GO TO 900

CC FIND THF PEAKS OF THE LOW PASS FILTERED

C SPEICHER-ERODE PRESSURE HISTORIESLFILT 1 0DO 17 J-i.7

CALL FILTER(DTEN,NEPTS)CA.LL FMAX(PF1LT.N8PTS,PFEMN.PFBM> (J))

17 CONTINUECC FIND THE LOW PASS FIDELITY FRE0UENCVC

DO 27 I(=1,7PFMAX -PFDMX(K).0-90IF(PFMAX.LE.PFBMX(K)) GO TO 47

27 CONTINUEWRITE (6. 37)

37 FORMAT(2X,*++4 FAILED TO LOCATE LOW PASS FIDELITY +++-)

ALPF - -999. .IWRITE(48.57) ALPFGO TO 35

47 ALPF - FLO(K)WRITE(48.57) ALPF

57 FORMtT(F 10.0)WRITE(G,67) ALPF

67 FORMk7(2^X,*4* LOW PASS FIOELITY (HZ) **P0C. .*

IFUJ)COLNT.E0.1) 00 TO 35

59

Page 63: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CC DETERMINE NUMBER OF SPEICH4ER BRODE PAIRS TOC BE PLOTTED FOR OVERLAY

900 TE - NEPTS.DTONPPTS - IFIX(TE/DTBN)IF(IOPT.EO.3) NPPTS -NBPTSWRITE(48.450) NPPTS

40IF(IDPT.EO.3) GO TO 810

C AFFECT A TIME SHIFT IN SPEICHEP-SRODE HISTORYC TO ALLOW THE OVERLAY TO BE PROPERLY PHASED

TSHFT - (TA-W13/1000. I-TPEP,00 800 JT.1.NBPTS

TTIM(JT) - TTIM(JT)-TSHFT800 CONTINUE

C ALFA(TMNPFXMP~GO TO 130

CALL FMIX(PRESS.NSPTS.YPMN,YPMX)

IF(IFILT.LT.O) GO TO 130CC CALL FOR FILTERS TO BE EXECUTED

CALL FLOOP(TTIMPRESc,.DTSN.NtPTS.PFILT)RETURN

130 WRITE(40.210) (TTIM4lil'I.1 -. NPPT5)WRITEi4B.,'ICI IPRESS(JI ).JI.1.NPPTS)IFIOPT.EC.3) GO TO 850

CC IMPULSEC

135 ITL(5) - 10H IMPULSE HITL(6) = OHISTORYWRITE(48.215) ITL(5).ITL(6)

215 FORMAT(2A10)CALL FMAX(TIMP.NI .YIMNXrMX)CALL FMA,(PIMP.NIYNIMN vIMt)WRITE(48.200) NI .XIMN.XIMX.YIMNYIMXWRITE(48.210) (TIMP( IY). IY=1 NI)WPITE(48,210) (PIMP(IT).IT-1.NI)

850 lIMP - 2CALL IMPULSE(IIMP.DTBN.NPPTSNI)WRITE(48,450) NIIF (IOPT.NE.3) GO TO 150TTL(3) - OHBRODE IMPUITL(4) -IOHLSE HISTORITL(5) -IOHYWRITE(48,225) ITL(3). ITL(A) .ITL(5)

225 FORMAT(3A10)CALL FMAX(TIMP.NI.XIMN.XIMX)CALL FMAX(PIMP.NI .YIMN.YIMX)WRITE (48.840) XIMN, XIMX. YIMN. YIMX

150 WPITE(48,210) (TIMP(KJ).Kj=1.NI)WRITE(48.210) IPIMP(KL)KKL-i.NI PIF(IOPT.NE.1) GO TO 175

CC FIND THE FOURIER TRANSFORM AND CALCULATE AMPLITUDE.C

ITLI5) IOH FOURIER AITL(E) - 1OHMPLITUDE SITLI7) - I0t-PECTRUMWPITE(48.225) ITL(5k. ITL(6). ITL(7)CALL FMAXPFRO.NEF.XFMN.XFMXI

- CALL FMAx(AMPNEF.YFMNYFMX.)WRITE(48.200) NEF .XFMN.XFMXYFMN.YFMXWRITE(48,210) (FRO) 10).10-1 NEF)WRITE(48.210) (AMP(IP).IP-I.NEF)

175 TOTT -DTBN-NBPTSC FREQUENCY INCREMENT

OS-./TOTT

WKS - 0NE NBPTS/2+1

60

Page 64: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

DO 349 LK.1.NBFFRO(LKI - 0.AMP(LKI -C

?FrT(LK) 0.349 CONTINUE

CALL FFTRC( PRESS.NBPTS.XFFT. IWKB.W(8)C AMPLITUDE SPECTRUM

DO 500 KK.1,NBFFOB - FOE.DFBFRO(KKI - FOBxRB =REAL(X.FFT(KK))/NBPTS

.4 KIB - AIMAG).XFrT(KK))/NBPTSAMPIKC) - SOR7iXRB.XRB+XIB.XXB)-TOTT

500 CONTINUEC

WRITE(48,450) NSFIF(IOPT.NE.3) GO TO 165ITL)2) - ICH6RODE FOURITL(4) 10)-tIER AMPLITITL(5) =l1HUDE SPECTRITL(6) =IOHUMWRITE(48.235) ITL(3'JITL(4).ITL(5). ITL(6)

235 FORMAT(4A10)CALL FMAX(FRO.NBF.XPMNXFMX)CALL FMAX(AMAP.NBFYFMN.YFMXJ)WRITE( 48,840) XFMN.XFMX,YFMN.YFMX

165 WRITE(A8.210) (FRQ( IU) .IUrl .NBF)WRITE(48.210) (AMP(IE) IE-I .NBF)RETURNENDSUBROUTINE FLOOP(TTIM.PRESS.OT.NP.PFILT)

C .... *...e ......................

C THIS SUBROUTINE PERFORMS THE LOOPING REQUIREDC TO FILTER THE DATA OR THE ERODE UP TO SEVENC TIMES. FOR LESS THAN SEVEN FILTER LEVELS.C FLO MUST BE SET TO 0. IN THE INPUT DECK INC ORDER TO ESCAPE THE LOOP.C . . . . . . . . . . . . . . . . . . . . . . .CC

COMMON /FILT/ IFILT.FLO(7).PFDMX(7 ).PFBMX.(7)DIMENSION TTIM) 1) .PRESS(1). PF ILTt1)

CDO 750 JF=1.7

IF(FLO(JF).EO.O.) GO TO 555IFLAG - IWRITE(AS.95) IFLAG

95 FORMAT(I5)WRITE(4B.96) FLO(UF)

96 FORMAT(FIO.O)DO 725 KF-I.NP

PFILT(KF) - 0.

-~~.725 CONTINUECC CALL TO FILTER

r CALL FILTER(OT.NP)CALL FMAX(PFILT.NPyFMNVFMX)WRITE)48.100) YFMN,YFMX

100 FORMAT(2E15.B)WRITE(AB.105) ITTIM(LF.,LF=1Nr.)WRITECAB. 105) (PFILT(MF ).MF=1 NP)

105 FORMAT)10E15.8)750 CONTINUE555 IFLAG - -1

WRITE) 48.95) IFLAG* RETURN

END

61

.......................... N

Page 65: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SUBROUTINE SPLINE(TLAST.NP.TTIM,PRESS)C e.0 .. ... 0 ..... 0o .. * .... 0 .... 0 ..... 0 ......

C THIS SUBROUTINE SETS UP A COSINE SOUARED SPLINE

C FUNCTION AND APPLIES IT TO THE FINAL 15% OF THEC PRESSURE HISTORY TO AVOID A FREOUENCY IMPULSEC IN TRUNCATED RECORDS.C .................. ..............

CDIMENSION TTIM(1).PRESS(1)

CPIE = 3.1415927K = IFIX(.85NP)N - NP-K*lTi - TTIM(K)DO 10 J-=.N

TFACT - (TTIM(K)-Ti)/(TLAST-T1)SFACT - COS(TFACT-PIE-.5)SFACT - SFACTSFACTPRESS(K) - PRESS(K)-SFACTK - K 1

10 CONTINUERETURNENDSUBROUTINE IMPULSE(IIMPDT.NP.NI)

C Ce.~*s* . ... . . . . .C THIS SUBROUTINE CALCULATES THE IMPULSE OF THE INPUT

C PRESSURE DATA (IIMP- 1) OR OF THE CALCULATED SPEICHER-C BRODE (IIMP - 2) BY SIMPSON'S APPROXIMATION.C .... .... .... ..... * .. .. . .. .

C

COMMON /THIST/ TTIM(6000).PRESS(6000).TIMP(2999),PIMP(2999).a PFILT(6000)

NTMP - NP-3NI - NTMP./2

DO 90 I=1.NITIMP(I) - 0.

PIMP(I) = 0.9o CONTINUE

Id - 0SUMIMP a 0.

DO 80 J=3,NTMP.2Id - Id+lTIMP(IU) - TTIM(d)AREA - (PRESSIJ-11+4.-PRESS(J)+PRESS(d+i))DT/3.SUMIMP - SUMIMP+AREADIMP(Idi - SUMIMP

8C CCNTINUERETURNENDSUBROUTINE FILTER(OT.NP)

CC HIS SUOUT FILTE IN PRESSURE HISTORY

C (DATA OR SPEICHER-BRODE). IT USES THE DIrcERENCE

C EOUATIONS DERIVED FOR A SECOND ORDER BUTTERwCRTH

C FILTER AS PRESENTED By STEARNS. 19'5.

4. C. . . . . . . . . . .. . . . . . . . . . . . .

C

COMMON /THIST/ TTIM(6000),PRESS(6000),TIMP(2999).PIMP(2999).. PFILT(6000)

COMMON /COUNT/ ICOUNTIOPTLFILTCOMMON /FILT / IFILT.FLO(7).PFDMX(l).PFBMX(7)DATA LFILT/O/PI z 3.1415927S2 - SORT(2.)LFILT * LFILT*1

62

. .. . . .. . .

9..m** * ~;~ *'

:::'.''z *:. : '."- .:.. "'.-': ' g,: " .:".";. ': "/.:.:": <.; 9:'N , ."'*,".'; '.,. '- ".' ".'- '.' .''-'"*-:.': :4.-

Page 66: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-. CC LOW PASS FILTER COEFFICIENTS

-. CAT =TAN(PI.FLO(LFILT).DT)AT2 =AT-AT

Al l .+S2.AT+AT2A =AT2/AI81 2.-(AT2-1.)B = 81/AlCl = .-S2'AT+AT2

*C = C! 'AiFAC =1.

CC CALCULATE THE FILTERED HISTORYC

150 PFILT(1) = A=PIRESS(1PFILT(2 - A-(PRESS(2)+2*FAC.PRESS(l))-B-PFILT(l)DO 200 1-3.NP

PC - A.(PRESS(I)+2..FAC-PRESS(I-1)+PRESS(I-2))PFILT(I ) -PC-B-PFILT(I-i)-C-PFILT(I-2)

200 CONTINUERETURNENDSUBROUTINE FMAX(ARY.NA.XMNXMX)

CC THS URUIEFNSTE AIUSADMNMM

*C OF THE VAP:OUS ARRAYS TO BE PLOTTED BY FOURPLTC C. . . . . . . . . . . .. . . . . . . . . . . .

CDIMENSION ARY(NA)

CXMN zARY(1)XMX = ARY(1)IF(NA.EO.l) RETURNDO 10 I.2.NA

IF(XMN.GT.ARY(I)) X(MN - ARY(I)IF(XMX.LT.ARY(Il XMX -ARY(I)

10 CONTINUE

RETURNEND

63

* .. *~ ~''' ~ ~ ~ ~ Y :.. 1::; :.V

Page 67: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

64

Page 68: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

APPENDIX B

FLOW CHART OF PROGRAM FOLIRFIT

Start

ReadInpu t(TAPE5)

ReEnd

Dat

(TAPE26)

Page 69: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

FFTDa ta

FitEn

(see Figure B-2)

Speicher-Brod

PS09 W9 R9,OT

TDs TOA

FilterData

66

Page 70: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

F il1teredData Peaks

Filpte4 Speicher-Brode

FFilterSpeSpeicher-Brode

FilteredeSpepeicher-Brode

Peaks

67

Page 71: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CompareFidelity Filtered PeaksFrequency (Data vs

Spei cher-Brode)

IntegrateSpei cher-Brode

F FTSpei cher-Brode

End

68

Page 72: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

APPENDIX C

FLOW CHART OF SUBROUTINE FIT

DataA(f)

W(I), J 1,5

Revisee

W(I), I = 1,

RaAge

R(P(J) W(69

Revis

Page 73: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

EAA

FiedindinTolrane miAmi

Find <Find- (ZAA~min

4)5

70

s"--

Page 74: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-- - I Vc

APPENDIX D

LISTING OF PROGRAM FOURPLT

PROGRAM FOURPLT(INPUT.OUTPUT,TAPE5.INPUT.TAPE6=OUTPUT.* TAPE9.PLOT)

C ........ o... . .oo..o................ o...........C PROGRAM FOURPLT WAS WRITTEN TO PLOT THE RESULTS OFC PROGRAM FOURF IT. 1T READS INPUT ON ASSIGNED FILE 7ArJE22C AND PLOTS SPEICHER-ERODE OR DATA PRESSURE AND IMP'ULSEC HISTORIES AND FOURIER AMPLITUDE SPECTRA OR PLOTSC OVERLAYS IN THESE SAME DOMAINS OF A DATA TRACE AND 1TSC BEST FIT SPEICHER-BRODE AS DETERMINED BY FOURFIT.C WRITTEN 6 J. C. PARTCH AND 0. W. STEEDMAN. APPLIEDC RESEARCH ASSOC.,. INC.. ALBUQUFRQUE. NM, FEE 1984.C.. . . . . . . . . .o. . . . . . . . . . . I.. . . . .

COMMON /ESTIM/ PSOI.WI.PPW13.PSOF.WFFSOCOMMON /'PEAK / CDP.TA.PSO,ALPFCOMMON /THIST/ RSVFT.YS.S.XMCOMMON /FILT / IFILT.ITYPE.FLO(7).FHI(7).PFOMY(7),PFBMx(71COMMON /COUNT/ ICOUNTIOPILFILTCOMMcN /PLOTV/ ITL(8).ISTL(8).ID6DIMENI TON XARY(6000).YARY(6000)

CALL GPLOT( 1HU.7HARAARDS.7)CALL BGNPL(-I)READ(9. 100) IOPT.IFILT

100 FORMAT(215)IF(IOPT.EO.3) GO TO 200RE AD (9.120) 1111I) . 1=1.8)

120 FOPwMAT)81 C.)IF(IOFT.NE.2) GO TO 200

CC OPTION 2 (DATA ONLY)CC READ PRESSURE-7IME PAIRSC OR FILTERED PRESSURE-TIME PAIRS

REAO(9.130) NEPTS.XPMN.XPMXYPMN.YPMX130 FORMAT) 15,4EI5.8)

00 135 IF~i.7UF(IFILT.LT.0) GO TO .:8READ(9. '251 IFLAG

IF(IFL4G,'VT 01 GO TO 112PEArl 9 1274 rLf 'FPEA D1 . 172) YPMrj, iPlA;

1117 FORMA (F IC~ 01128 READIS9,140 ) FXAP~ IK ,K~ I N-ErTS)

READI9. 14() U AP~. I.L-lI.NEP'TS)140 F OPMA 7 f,'E 15. 8)

CALL PLOTTER(AARY,YARZ).NEF'TS.XPMN.XPMX.YPMN.YPMX.,1.2.1.2)CALL ENDPL(-i)IF(IFILT.LT.0) GO TO 144

135 CONTINUE112 CALL GOONE

* STOP11CC READ IMPULSE-TIME PAIRS FOR OPTION 2

144 READ(9.145) ITL(5).ZTL(6)'2%: READ(9,130) NEIXIMN.XIMX.YIMNYIMXREAD(g,140) (XARY(M).M-1.NEI)READ(g.140) (YARY(N).N.1.NEI)

145 FORMAT(2Ai0)CALL PLOTTER(XARY,VARY.NEI .XIMN.XIMX.YIMN.YIMA.1. 1.3. 1.3)CALL ENDPL(-I)

CC READ AMPLITUDE-FREQUENCY PAIRS FOR OPTION 2

READ(9,254 I ITLIS L ITL(6). ITL(7)READ(S. 130) NEF.XFMN.XFMX.YFMN.YFMXREAD(g. 140) (XARY) II ).Il~l.NEF)REAO(S.140) (YARYhlhJ)...J.1.NEF)CALL PLOTTER( XARY ,VARY .NEF . FMN, XFMA VFMN. YFMX 2.5.4.4.3)CALL ENDPL(.-1)CALL GOONESTOP 777

71

Page 75: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CCC OPTION I (OVERLAY) AND OPTION 3 (SPEICHER-BRODE)

*200 READ(9,205) PSOFWFREAD(9.207) DP.TA.RSKFT

205 FORMAT42Ei5.S)207 FORMAT(3E15.8)

IF(IOPT.NE.1) GD TO 765READ(9.120) IISTL(KK).KK=1.8)

CC READ PRESSURE-TIME PAIRS (DATA)

READ(9. 130) NEPTS.XPMN.XPMX.YPMNYPMXREAD(9. 140) (XARY(IT).IT=1 .NEPTS)READ(9. 140) (YARY(IW).1W1i.NEPTS)READ(9.766) ALPF

766 FORMAT(FIO.O)CALL PLOTTER(XARYYARY.NEPTS.XPMN.XPMX.YPMN.YPMX1.12.1.2J

CC READ PRESSURE-TIME PAIRS OR FILTEREDC PRESSURE-TIME PAIRS (SPEICHER-BRODE)

765 IF(IOPT.EQ.3) READ(9.120) (ITL(IR).1R-1.8)READ(g.160) NPPTS

160 FORMAT(I5)IF(IOPT.NE.3) 80 TO 768READ(9.170) XPNN.XPMtX.YPW4,YPOX

170 FORMAT(4E15.8)AP14X a XPMX/4.NBPTS - NPPTS/4

766 00 234 MF.1.7IF(IOPT.EQ.1 .OR. IFILT.LT.0) GO TO 171READ(9. 125) JFLAGIF(JFLAG.LT.O) GO TO 236REAO(9, 127) FLOWM)READ(g.172) YPMN.YPMX

172 FORMAT(2Ei5.S)4.171 READ(g.140) (XARY(LL).LL-1.NPPTS)

R:AD(g.140) (YA:Y(MN) .MN-1 ,NPPTS)

IF(IOPT.EO.3) CALL PLOTTER* (XARY,VARY.NBPTS.XPMN.XPMXYPMN.YPMX. 1.1.2,1.2)

CC OVERLAY

IF(IOPT.EQ.1) CALL PLOTTER* (XARY.YARY.NPPTS.XPMN.XPMX.YPMN,YPMX,-1. 1,2.1.2)

CALL ENDPL(-1)IF(IOPT.EQ.i .OR. IFILT.LT.O) GO TO 264

234 CONTINUE236 CALL SCONE

S TOP2 2

C IMPULSE264 IF(IOPT.EO.3) GO TO 280

CV.C READ IMPULSE-TIME PAIRS (DATA)

READ(9.145) ITL(5).ITL(6)READ(9. 130) NEI.XIMN.XIMX.YIMN.YIMXREAD(9,140) (XARY(NN).NN~1.NEI)

* READ(9.140) (YARY(MN),MN-1.NEI)CALL PLOTTER(XARy.YARY.NEI.XIMN.XIMX.YIMN.YIMX.1.1.3.1.3)

CC READ IMPULSE-TIME PAIRS (SPEICHLR-BRODE)

280 READ(9. 160) NIPTSIF( OPT.EO.3) READ(9.254) ITL(3). ITL(4).ITL(5)

254 FORMAT(3A10)IF(IIPT.EQ.3) READ(g. 170) XIMN.XIMX.YIMN.YIMXREAO(9. 140) (XARY( IJi)IJ*1 .NIPTS)*EAD(g.140) (YARY(JI) .JI.1.NIPTS)

C PLOT SPEICHER-BRODE ONLYIF(IOPT.EO.3) CALL PLOTTER

.1' * (XARV.YARY.NIPTS.XIMN.XIMX.YIMN.YIMX.1. 3 . . 3 )

C OVERLAYNIPTS=NIPTS-IF(IOPT.EO.I) CALL PLOTTER

* (XARY.1ARY.NIPTS.XIMN.XIMX.YIMN.YIMX.. 1.3.1.31

CALL ENOPL(-IJ

72

Page 76: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

C

C FOURIER AMPLITUDEIF(IOPT.EO.3) GO TO 340

CC READ AMPLITUDE-FREQUENCY PAIRS (DATA)

~ READ9,254) ITL(5).ITL(6).ITL(7)READ(9. 130) NEF.XFMN,XFMXYFMNYFMxREAD(9.14O) (XARY(KJ).KJ~i.NEF)

-~~~ READ( 9.i4lA (YARN (JK),.JK~ 1*NEF)* CALL PLOTTER(XAPv .YARY'NEF.XFMN.XFM/.YFMNYFMX.25.443)

CC READ AMPLITUDE-FREOUENCY PAIRS (SPEICHER-BRODE)

340 REAO(9.160) NEFIFl IOPT.E0.3) READi(,.256) ITL(3).ITL(41,ITL(5).iTLl6)

256 FORMAT(4A10)IFfIDPT.EQj.3) REAO'9. 70) XFMNXFMX.YFMNVFMXPEAD(9,140) (XARY(KL).KL~i.NBF)

L-, 0 READ(9. 140) (YAR',(LKl.LK~l.NEF)CC SPEICHER-ERODE ONLY

IF(1OTE.3) CALL PLOTTER'XARY . ARY .NBF .XFMN. XFMX .YFMN.YFMX .2.5.4.4.3)

C* .C OVERLAY

IF(IDPT.EO.1) CALL PLOTTER* (XARY.YARY.NBF.XFMNXFMX.YFMN,YFMX.-1,5.4*4,3)

CALL ENDPLt-l)CALL GDONEENDSUBROUTINE PLOTTER(XARYYARY.NP.XMN.XMX.YMN.YMX.KINDLBLX.LBLY.

NITS))KNITSY)C

COMMON /ESTIM/ PSOI.WI.PP.W13.PSOFWF.FSOCOMMON /PEAK /DP,TA.PSO.ALPFCOMMON /FILTI IFILT.ITYPE .FLOU7).FHI(7).PFDMXV7 ).PFBM'(7)COMMON /TH I T RZKFT.,YS.S. XMCOMMON /COUNT' ICOUNT.1OPT.LFILT

CCOMMON /PLOTV/ ITL(8).ISTL(B) .1DBDIMENSION XARY(NP).VARY(NP).LABS(6,2 ),LEND(4.2) .LABX(4),

LABY (4 )DATA (LAESfi.J).J=1.2) /10H- .10H TIME/

*DATA (LAES(2.J).J-1.2) /10H1 10H-PRESSUREDATA (LAPS(3.J).0-1.2) 110H .10H IMPULSE

*DATA (LAES(4.J).J=1,2) /10)- A.IOHMPLITUDE-- DATA. ( L AC! II . .' ) / 10.- F,lOHREO'JENCY ,

LIAI- L N.- ( low Mrt I

DATA LEND( E. i 1OH( RADIAN-:.C

DATA LFILT/0/C

WRITE (6. 2300) NP. XMN. XMX .YMN. YM)X .KIND2300 FORMAT(5X.. ENTERED PLOTTER -. /.

*NP.XMN.MX.YMNYMXKIND *.I5,A(lX.F7.4).15)CALL HEIGHT(0.1)IF(KINO.LT.0) GO TO 200

C0O 10 1-1.2

LABX(I) - LABS(LBLX.I)LABY(I) , LASS(LBLYI)

10 CONTINUELABX(3) w LEND(NITS()LABY(3) m LEND(NITSY)

CIF(KIND.E0.2) GO TO 100

CC e..IF KIND.EQ.i THEN PLOT IS LINEAR-LINEAR **C

50 LINET *0*1'LINES *0

73

Page 77: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CCALL SCLI(XMN.XMX.XORG,XSTP.XEND)CALL SCL I( YMN. YMXYORG. YSTP.NEND)WRITE(6,2303) XORG.XSTPXEND.YORG.YSTP.YEND

2303 FORMAT(2X..LINEAR PLOT *.6(2X.FB.4))CALL RLINER(XOPG.XSTP.XEND.YORG.YSTP.YENDLAEX.LABY)CALL DRAWC(XARY.YARY.NP.LINET.LINES)GO TO 400

CC so ... IF KIND.EO.2 THEN PLOT IS LOG-LOG

* NM C100 LINET - 0

LINES -0C

CALL SCL2(XMNXMX .XOPG,XCYC.KIND)

IF(KIND.EO.1) GO TO 50CALL SCL2(YMN.YMX.YORG.YCYC.KIND)IF(KIND.EO.l) GO TO 50WRITE(6,2305) XOPG.XCYC.YORG.VCYC

2305 FOIZMAT(5X.*LOG-LOG PLOT . .4(2X.FB.4))CALL LOGLLL(XOPG.XCYC.YOPG,YCYC.LAEX.LAEY)CALL DRAWC(XARYNARY ,NP,.LINET.LINES)GO TO 400

CC IF KIND.LT.0 THEN PLOT AN OVERLAY *.

C200 LINET -LINET"1

WRITE(6,2307)2307 FORMAT(5X.. OVERLAY PLOT *

CALL BLOFF(IDB)CALL MESSAG( ISTL.80.O.0.6.25)CALL MESSAG( 4HDATA .4,4.5,5.8)CALL STRTPT(5.2.5.8)CALL CONNPT(B.S.5.8)CALL MESSAG(4HFIT .4.4.5.5.6)CALL DASHCALL STRTPT(5.2,5.6)CALL CONNPT(5.8,5.6)CALL RESET(4HDASH)

CCALL DRAWC(XARY.YAR ,NP.LINET.L!NES)GO TO 900

C400 IF(IOPT.EO.1 .OR. IP!LT.LT.0) 00 TO 300LFILT.LFILT4ICALL MESSAG(I5HLOW PASS FILTER.15,6.5.1.0)CALL MESSAG(I5HFCUTOFF (HZ) =.15.6.5.0.75)CALL REALNO(FLOMLILT1,1.8.2.0.75)

300 IF(IOPT.EO.2) GO TO 900CA-.L ME! SAGt13HYIELO (KT) .13,6.5,5.5)CtI1-. REALlN0WF,2.E.2.F.5)CA.. -L ME .4G'13HPS0 (Mr,-,) .1'.C ,5.2CALL RE40 O(PSOr-..:'.5.2n)CALL ME'F 5AG( I3HrAN';E 1KM'I . 1 ,CRRP- ;SK -C. 301 (WF - "Z=CALL RAN(~....0

A.JCALL M7SSLG119HPOS,. PHASE (SEZ) ~ 19.6.5,4.75.)OPP =DP*0.C01-(W-0.3333.3Z2CALL REALNO(DPP.5.8.2.4.751CALL MESSAG(13HTOA (SEC) - .13.6.5,4.5)TAA w TA.0.001.(WF--0.3333333)CALL REALNO( TAA .5.8.2.4.5)IF(IDPT.NE.1) GO TO 900WRITE(6.666) IOPT

666 FORMAT(2X..+++IOPT-0,I5)CALL MESSAG(20H4LOW PASS FID (HZ) = 20.6.5.4.25)CALL REALNO(ALPF .0.8.2.4.25)

COW CONTINUE

* - RETURNEND

74

Page 78: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SUBROUTINE FMAX(ARY .NA.XMN.XMX)DIMENSION ARY(NA)

CWRITE (6.2300)

2300 FOPMAT(5X..SUBROUTINE FMAX.)XMN =ARYf 1)XMX -ARYCI)IF(NA.EQ.1) RETURNDO 10 I=2.NA

IF(XMN.GT.ARY(Il XMN = ARYfI)IF(XMX.LT.ARY(II) XMX -ARY(I)

10 CONTINUEC

RETURNENDSUBROUTINE SCL1(XMNXMXAORG.ASTPAMA>')DIMENSION S(7)

"V CC ..... FIND LINEAR SCALESC

WRITE(6,2300) XMN4.XMX

2300 FORMA7(5X.-SUBROUTINE SCLI XMNXMX~ *.2(FS.4,2X))SMIN =0.00006S(1) z 0.00012S(2) -0.00018S13) =0.00024S(4) =0.00030

.%4 S(5) =0. 00036S(6) = 0.00060S(7) =0.00120

CDIF =XMX - XMNIF(DIF.LT.S(1)) GO TO 90

5 CCNTINUED0 10 1=1,7

ILI=10 IF(DIF.LT.S(I)) GO TO 30

DO 20 J=1,720 Sb.)- S(J)-10.0

IF(S( I KGT.1 .0E15) STOP111GO TO 5

C30 DMAX -S(IU)

DSTP = DMAX/6.0CC DETERMINE OFFSETC

IP(lMN LT.0.0) GO TO 60DORG =0.0IF(YMN.LT.DSIP) GO TO 99O;SET DSTP

35 OFFSET -OFFSET+DSTPIF(XMN.CT.OFFSET) GO TO 35DORG -OFFSET-DSTPDMAX -DMAX+OORGGO TO 99

C60 OFFSET - 0.065 OFFSET - OFFSET-DSTP

IF'YV,. .T.OFFS.ET) GO TO C5

DMY DMtx-DORGFtyV/ LT.DMAY) GO TO 499

'clL Ef. -1 DW.-DSTP DMA). t .0GO Tu SO

CC DIFFERENCE IS ZEROC

90 CONTINUJEDORG - XMN-SMINOMAX - XMW+SMIN

DSTP a SM!Pd/3.0C

75

*.1z

Page 79: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

99 £006 a DORGASTP a DSTP

* AMAX a DUSAXWRITE(6.2303) DORG.DSTP.DMAX

2303 FOOUAT(SX.s LEAVING SCLI *.3(F8.4.2x))C

* RETURNENDSUBROUTINE SCL2(XMtlXMX.AORG.ACYC,KIND)

C SCALE FOR LOG-LOG PLOTSC

WRITE(6.2300) XMN.XMX2300 FORMAT(5X,.ENTER SCL2 -.2(FS.4.2X))

IF(XMN.LT.1.OE-8) GO TO 80IF(XMX.LT.1.OE-8) GO TO S1

CSMN - ALOGIO(XMN)SUX - ALOGIO(XMX)MN IIFIX(SMNjIF(SMN.LT.0.0) MN=MN-1MX - IFIX(SMX)AORG 10...MNDIF *(MX-MN).1IF(MN.LT.0 .AND. MX.LE.O) DIF =MX-MN

ACYC - ASS(6.0/DIF)GO TO 90

C80 WRITE(6.1000) XMN

1000 FORMAT(5X.*XMN - *.E12.5.- A LINEAR PLOT WILL BE MADE.-)GO TO 82

S1 WRITEf6.1001) XMX1001 FORMATI(5X.XMX - o.E12.5.'* A LINEAR PLOT WILL BE MADE.-)

82 KIND 1C

90 CONTINUEWRITE(6.2303) MNMX.DIF .AORG.ACYC

2303 FORMAI(5X.*LEAVING SCL2 MN.MX.DIF.AORG.ACYC-,215,3(lX.F8.43)RETURNENDSUBROUTINE DRAWC(X.Y.NP.LINET.LINES)DIMENSION X(NP),Y(NP)

CWRITE(6.2300) NP. LINET.LINES

2300 FORMAT(5X..ENTER DRAWC NP.LINET.LINES e .315)IF(LINET.LE.0) GO TO 10IF(LINET.EO.1) CALL DASHIF(LINET.EO.2) CALL CHNDOTIF(LINET.EO.3) CALL CHNDSHIF(LINET.EO.4) CALL DOT

C10 CALL CURVE(X.Y.NP.LINES)

CIF(LINET.LE.0) GD TO 99CALL ;r-SET(3HALLICALL HEIGH-T(0.1)

C99 CONTINUE

RETURN* END

76

* ~ %''j> ~. .. ... .. ..Wk

Page 80: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

SAIROUTINE RtLINER(XORG.XSTP.XEND.YORG.YSTP.YENO.LASX.LABY)COMMON /COUNT/ ICOUNT.IOPT.LFILTCOMMON /PLOTV/ ITL(A).ISTL(8).IDBDIMENSION LABX(3).LABY(3)

CWA'IT E f E, 2300)

22c 3 ,FORM.1(5Y.-ENTERED RLINEP ..... ...........CALL PAGE( 1C,.c.E.5)CALL PHfDP(I.!.CI

* CALL XNAMEILAEF).Ci -CALL YNAMEILACY.20)CALL AREA2Ed(6.0.E.0)IF(IDPT.EO.1 I CALL BLREC(4.4.5.5.1.6.0.r5.1.0)IF(IDPT.EO.i) CALL ELKEY(lDB)CALL MESSAG(ITL.80.O.O.6.5)CALL GRAF(XORG.XSTP.XEND.YORG.YSTP.YEND)CALL DOTCALL GRID(1.1)CALL RESET(3HDOT)

CRETURNENDSUBROUTINE LOGLLL(XOR.XCY.YOR.YCY.LAX.LABY)COMMON /COUNT/ ICOUNT.IOPT.LFILTCOMMON /PLOTV/ ITL(8),ISTL(8).IDBDIMENSION LABX(3).LABY(3)

C230 RITE(6 .2300) LGLL..........230FORMAT(5Xa ENTERED OL ......... )

CALL PAGE(10.5,8.5)CALL PHYSDR(1.O.I.OJCALL XNAME(LABX.30)CALL YNAME(LABY.30)CALL AREA2D(G.0.6.0)IF(IOPT.EO.1) CALL BLREC(A.4.5.5.1.6.0.5.1.O)IF(IOPT.EO.1) CALL BLKEY(IDB)CALL MESSAG( ITL.80.O.0.6.5)CYC -XCYIF(YCY.LT.XCY) CYC -YCYCALL LDGLDG(XDR.CYC.YOR.CYC)CALL DOTCALL GR1D(1.i)CALL RESET(3HDOT)

RETURNEND

77

Page 81: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

THIS PAGE IS INTENTIONALLY LEFT BLANK

.P~j 78

Page 82: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

8.0

6.0-0

~?4.0-

2.0-

0.0 0.04 0.08 0.12 0.16

Time (sec)

Figure 1. Typical HEST 7 essure history.

PRVIU PG

79

21. . . .. . . . . .

Page 83: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

1* *

Data10-- EBrode

C--2

10

10- -

E

10 0od 101 102 10 1

Frequency (Hz)

Figure 2. Fourier amplitude spectrum for typical HEST record.

80

Page 84: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

1.6PS (MPa)

20*1.2 10

- - 5

0

0? 0.8

CL

0.4-

0.010.00 0.80 1.60 2.40 3.20

(t - tc)/t0,

Figure 3. Normalized Brode pressure histories.

81

Page 85: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Pso (MPa)1o-1 20

1010-2 5

2:2

.. 10-4

Lii:0 10 ol ,2 o o4

f X W / 3(Hz.KTI/ 3 )

Figure 4. Normalized Brode Fourier amplitude spectra.

82

Page 86: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

.,

2021

~10-2.

10-

10-

Data<:3 10-4-Brodes

10-5

E~1-5

: I0- 6

10-6%A~10 II 0 if XW ~(Hz*KT')

Frequency (Hz)

Figure 5. Overlay of first iteration fit to Fourier amplitudespectrum of the HEST record shown in Figure 1 withBrode spectra

83

.e-= ia.

Page 87: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-n.

4 8.0

-Data

.:-,Brode

6.0

4.0

0S0.40

2.0~

0.0 &0.00 0.04 Q08 0.12 0.16

Time (sec)

Figure 6. Pressure history for HEST record compared with final fit;Pso = 2.95 MPa, W = 5.05 KT.

84

. -° . . . - ~4 4 .. . . .. . - ° ... " . . . , , ° •. • ,. . . . • , - . . " -" . .""* . " ," . ° °- . I

Page 88: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

.08Data

-- Brode

06

~.04-

7)KCL

E

0.00 0.04 0.08 0.2.1

Time (sec)

Figure 7. Impulse history for HEST record compared with finalfit; P 0 2.95 MPa, W =5.05 KT.

85

Page 89: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

DataSBrode

0- 0

0-4

E

b~

<.'5-

i~0-1 rd

: :: 10-6 .

10. 0 10112-041I '1 11 I 11111 I IIIII I 11 1 1 1 I 1 1 1

Frequency (Hz)

Figure 8. Fourier amplitude spectrum for HEST record comparedwith final fit; P s 2.95 MPa, W = 5.05 KT.

86

.,SORV. -.. "....,-.''';> -, '' '' . ., - ".. ..". ".% , .,?,i-'''..,l..'.' - ''.' .'i'i',".-' ">'"-'. ..'' -',

Page 90: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

1 . 6 f c o ( H z )unf iltered

1.2- 2000

- - 500

010

0.00.00 0.8 1.6 2.4 3.2

(t to)/ta

Figure 9. Normalized low pass filtered Brode pressure histories;P 0 10 MPa.

87

A %.

Page 91: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

.... ..° ...

.032fco (Hz)

.unfilteredH ~ 2000.024--- 1000

(500

05

.016r1o

.00 -°-

U)

E0.0

0.0 0.8 1.6 2.4 3.2

(t-ta)/ta

4~q.

Figure 10. Normalized low pass filtered Brode impulsehistories; P 10 MPa.* so

88

..' - 4,500

• /

Page 92: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

(DdVJ) d

0) 0

0 CLN

4-4 J

- W-

C0 0 0LOC\ SW

LLJ C

(5.9 0L

- 0 C) 4- -000 i2 ..

Somm

0 0 LO

L I a Cm-

00So m

0-

89

Page 93: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

4.0

Pfmax (Brode)E 2.0

U)L_

0.0,-0.00 0.04 0.08 0.12 0.16

Time (sec)(a) 1000 Hz low pass filtered

Pfmax(Brode)2.0

)")

U)

a_- 0.0,

0.00 0.04 008 012 0.16Time (sec)

(b) 500 Hz low pass filtered

" 2.0 ' Pf max(Brode)

F6 U)

0.00.00 0.04 0.08 012 0. 16

Time (sec)(c) 200 Hz ljv pass filtered

Figure 12. FOURFIT press,re history compared with

example HEST record.

* 90

Page 94: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

... ....... . ... .... ......... ... .... . .. ...... 4

... . .... . .......... . .

* II LO C)C D DC

CLL

M i .. .. .. ... .. .. .. .. . . .. .. .. .

.. ... .... . . . . . ... . . .

C3,

- 91

Lle

Page 95: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Co C0 0) 0 n :eIJ

I C* Lc).

... ...

I I 0.

0

Li L

c-f

Cl~c

CL-

C3Li

Li4

el'o 01 9 0 90* 00 Wo e*0 00*0

92

Page 96: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

.. . . " . . . . . . ... , . ... .. . . .

....... ... . . .. . . . . . . .

.. . . C. .. . .. . . .. . . . . .... .... ...... .... ... .. .. .. . . . ... .0 .

... .. . .. . . .. . . . .

Lii

LJ 0

IF-i

) x.. ..... .... .. . .. .. .

cc ... .. ... .. ..Of - 7 7... .. .... .. ... ... .... ... ... ... .. x

LJ N~

Li.......

LLiCLL

C 3 Q 0

Li . ... .. . .. . . .. . . .. . . . .

.. . . . ... .. . ... .. . . . .. .. . .. .

IiI

93

Page 97: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

4++++4+++44 44+ ++4+ ++44 ....... .+.+..

PEAK OVERPRESSURE.MPA = .39600E+02

NUCLEAR YIELD.KT = .87149E00

RANGE FROM GZKM = .24767E-01

TIME OF ARRIVAL.SEC = .15382E-02

POSITIVE PHASE DUPATION.SEC .,14308C+O0+++44.+ .. +++4 ..........4 4++I++4+..........

++ LOW PASS FIDELITY (HZ) = 1000. ++

Figure 16. Example FOURFIT output for IOPT = 1:automated fit to 0.35 KBAR DISC HEST recordAB-5 (Speicher-Brode parameters listed onfile OUTPUT).

94

I t ' " " " " " " . . .. . ... . . .. ... .... .. .., , , - , -, . .,.,S; -i.. .; . .-.. -.. .. .. ...t.

Page 98: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

.)V 4-S I

C-4J

-. 1 )

I L - = L-

- LL. *V) C.

L It t

.. wo- ..-

m co

0L - L-o

S .................... ......... ......... ................... ................... ......... ...-, ..... .......... -

.. .. .. ... .. . .. .......... ....... ...... ...... ..EI4" I~

Li -0 .

CLC

I-

"")

LL)

U

% C.,

% II%

Page 99: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N: cof

Co ou-eLo

U... .. & LA0

C)11 -4 .

1D LA- F- r

C' a- 11L c

L L -E U .. -M .- -

x 0 U-0

. . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .0.. . . . . . .

. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .

.. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .... ... ... . . . . .

-r .. . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . .. . .. . . . . .

C.3a

LI

96

Page 100: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

=- S- S

- L)0ULLL. C V) LL. 4

4 =3 o - - 0. CC) S--4 1

alLLOI0 O w 3 (* - 4- 40' c

=* 0.=- S..-LA.. E 0.-J--1L0

ro 4-J *- CV) U 0.Lu 0 P" co '

01

. . . . . . . . .......

m . . . . .7D' '. . . . .

Li

U-2U 3

CL

LiL

kfl

* N J

.. .. . .. L

en

- cr_

C- . . . . -. -

Page 101: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

:') '. wv -- I. -o I.

tu 0

41 wI 0* 0

M -co l>) ,

- ' L) a)

. '. " M O S-3 _ :LL.,

C) . )S L(-)

0L. C 3-o ~ C) LI

11 LA S.-

XJ I--) -J

Li-.. .. . .. - .

U3 o

[LiLiLi- r0"- O iLA

......... ........... ... ... ..

. .,,n 0" .. 0"9 .0" !O'e '0 0 .....

0. -i.098

i ..- . .,-, ,." .. ...... .. ..... .. . .-... , ..... . .... .., .... ..... . . ... ....... .. .... .... . .. , . .• . - - . , . . - ..

Cl -4

O-il 0* 04 0t 0

.98

-LI--A*

Page 102: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-a -W

0-0

4-L *,-

C-4 4-S &ALi Ou

IM. LL. aX: U n I- I.- U.-1-

-. Lr i LL = L-4

-r L - r LL ---J a -r o o

-j C.!) a)~ 00LLi (- r

a- ~ ~ Ck L =- a1toCL 0 1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ P _ _ _ CO_ _ _ :c

E-1

I-. IDLi

E-1

Li

W,

Li Ca-8

I-

'40 ~ sOc U EU e00

HdW) 38Gjjr38

99

Page 103: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LAN r~ltN 0') tA

CD 0~ * C 10 fl) L D 0oj

4.-

4. WOOui cli 0 1C

- -Vi La.- 0a-~F - )-

-,2r a: p.- S-.a - m Li LL. C0 o

C) l. CLL-L, CD -

U, cr CD (= 0 L C

Q- re 0- 6- 0 1 -- ' :to - LACL

FR L)

LLi

LI

Lfl

L)

oP0 0 0 9VU u ;0 0 00,0

100

......., *****.. . *. - . ~ . - . .

Page 104: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LO Z%. ro

C) V, N' - a) 01)

CD C* *CD 41)

4-i 0n .-E

4J 1 (1)

L.3 CJ 0 11 o L-V0)

a) -- F- (7)LJ ~ L.

M u)- 0 W-LL. 11M L) LA. 0 0Oi- Lii Li. Ln

C3 *L 0 ) il. -

L D Z. U) Cr i-I *L- (J) (z CD C) C. (V C04>-. CL X 0.. - El -v- u

mm0 0 11 a)

x C- _ _L_

CLU-)

:D

CL -

LiI

.1* CD

.9

CL

Ln

cr.. .. . . . .

L)

L)

(33S-OdW) 30fllfldWU

101

Page 105: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N .Y. I..) to

.I C) C -0_

'. , I I I C -J OQ'--

N. coj"0 C)O X:a-- 4 S - C

*0)~4 C* M 0or')ooo- MI '.4-

i- E 1 4- I. l:z:L. '-

0 C,-A

c 4- 0~ cc

l .~ ~ ~ ~~~~L CLC - EI-- P _1t0 LL. II (A

m -a S- G

LA 3 C-9 a) WO L I-

- Li C) = E- 0 .m

I n a: LC) C- 0- L. C)( C

C) L

• ,. , - , q . . .. X, . ...- .. ........... .... ..... ..... .." . , . ... .. .. . .. ..... .. .. -. ... .. . -0 -. .- .

........ ------- c;

*) co J

........... ............. . ................ .......... C

)<00 S.

U4- O

j..

..

Ll

........ ............. ...... ........... ..........

1U0

Page 106: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

r-. '"I

[ LA

c . \ CD 0 03

1-- -o14- 4-) 0'-

I .- s-

-. Q a- . E- i m 4-) -() L 0

C- " "- -L -0t F--U-) L 0 t -J

LI Lfl - 0 -,- 4-) L.) 0S .0 . S- UI- L) ,4

Lo m -+ X 2z L,.y- Lo ' ..

I - U) C)

* U,

X- CL- V; L-L L

Li CU-)P- :, D C) C a

a_ I i L I- jE O(

to a- m -

X~ ~ CD-S

LL, ., CCa

("-)

Li -

cc LA.

0-

.. . .....--

a~0

r, .-

103

,- . - .. .. . . . . * . -. .. ., . - . . .. ,. .. . ...

Page 107: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N. C) LP L

Lf9 * Ci 0o S- 0

4- 4-' 0 wf

4J4- a)S-

X 4Ja F

r0v0LAJ ( 4-OJL-(Li - - U 3VInrr r- Zn 0 4-

*7 w l- U)mCIAI -L i -- W X

-~~ a- 0V) -4. LI-~~~~ CD -. En-S.-~~L C. 2 J .f

U CZ P CL- v ~r c-i

0J.

-~ ~' 'i

w . .. .0. . .. .. . . .

AM II

5,l

Cl-

*~~.. .. .. ~... ~ '

LLi

C)0 i *091 9* 1*0z ~ O' 40

104

Page 108: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

W - C~ -r CL

C90 9 0: 0

C) 11 I- I) C, CD - S-3 -0 E0- 4-0S

p 4 4-~ Q)

* Li = - 4-) V)C\J o Iu L

-'S L 4L 4L)4-.)

L E Cf) -' E L C

4~~a co S_' a~c~- ,- OL _j* C*- to0

E' F- n 0..Ca

U~ Lto0 - c ) = E

X C) 0 0

.i ......L.. .

Lij

Lfl J

Li

00

SLi

Lr, L) .

J -.. . . ... . . . . .. .

ci LO. .. . .. .. . . .

0 105 l

Page 109: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

C) Lt n OGo D-. 0 0 Cr)

1c. .J 0. .0 C3n0 C* I,~ C.. 0 o - -

o0.- 0.S- 04-

S) 3*--

00 4-0

-n a cc , ,.-

-Li II

S - 4-) 0)U CA

W E :3 ,

- - : 7rr ' i: C_: r- a) 'LOU

CL m Li L LL. .- .CLl

": "i w 0 -C :

-', 4c >,

L or Q - _jLL- 0 (

U- ~4) 4-)

C0 tv 4- 4-

; " - . ." .. . . .. :... ... ... ..... .. .. . .. .. ... .... ... .. .. . .... .. .... . .. ..... . '....... ... . .. . . ... .. .. .... .. ... .. . .

--., I-U'),

.... ....... ................... .............. ......... ... .....

u . to

U)0.1- .-....

Lr) cr. ... .. . . .. . .. .. . . . . . . . . .. .. ............ ... .. ... .. ... . . . . . . .

co 0

a- C

. . 10

Li

0- 4.) 4J

m ', -? ' . , * , " ' v ', " " " : , , . ., ..-. .... ....., ' , v . ., . .- .... -. . ..-- . " . . -. . . . . . . .

0"0

m c

C) 0

% Li

It I- L. I-t.

Page 110: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CC C sJ L) C Ci

0 C - Co 0 V

C)L C CD U-) C) CV)

o u

'4 0

0) 4-00SLi S- O o

:z MU C\M 4:) LJ I

CL - Q L 4-) = -.z CL L )mU 3 ~--0 L/ tu EL.)

Li cD z : v-) a:~ a SL -- U-I) m=

> : . ti' a, CL -jL 4

C-Ln

CD * (A

U') Z I a

LCi~ 0-

LP a:

C;:0*0 Li'F 0.?-L'

iIw3no

L10

Page 111: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

0D In LI)

o C No --C 0C)0 C)

a4-) L)

I S - 0 4J S-

- Li n (A

a. J -A to i LZ .LO l .- E )=

a- m LOlcn 4-)M =- U

m cfLc u00 a:=CC

C) Li a- LL- 0 E

__ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ 0. c -

W CD Ln ( :X 0

ke S-LO x CD C o L- t

LL Of C . O m rE0

f-J

. . . ....... .

LU

Li

0

Li

V) Li

m 0i

CL

C-)-dW LnflW

108.. . .... .ot

Page 112: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

0 LP 0 P

r " 00 0 0f O

I. (L) =4-) S-4.)

49- 9-

L.JL VL-E 4A

L. S- to C .Li a -

4J -l S- L

0- U) m r u

CD Li Q- c -

Li C) z if; a: m. U- 4-a- n k 0- 1--c* _j= M I~~~-.~C a. 03 CL. - ~'

C-)Li

Li -

cra:

-Ci

0~0

a..

Li

C:

-..- 0 1 010 1f~

(0S'dW .v'*.. *

d ~ - -

Page 113: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N' N N -

- *0 = C)-tI C0 C) CD i) S-

00

~4- S- 0

r1 4- 1- oL Lu - (Y) L0 L

LZ Qr 4- a)c i

o- to I-0...V)D 0) 0.- CM-

r] U) M .in 0f I --n u: 0 0 U. w a

CD- a J CL (a. L n ~

-i CD c

LO Cr Dm DU

DLn

Li q

LAJi

LEl* CD

CNC;0

M0

Li

LO

0.-

m 0

r -(YdW) 38OOO1.

110

Page 114: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N MCflN

- c - cC)

C) CD C Lfl c00 U

Li u 0

LO a (V1 ) 4) OE

0) 4-J >1LA L S- m -

- 1-: cf3 E V)

CL - Li i'

C La - Q

Li C z (.f m a: -CML-Xf) MCC C-

>-~~L LL W --

* CL.

Li

LitCD'00

*~ Lo xC

Ne La

cJ*) m

CD :

01 C0 @0 0 9C,0 L' o, 00,0 zi w i fldcw

d, e 111

Page 115: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

n CY) - co

(D V N J-) 0)0 C) .g-sO~

*0 m

4- o 4AU.

Ln (v a)C., uL. cu 4-) =

a- mi ai 0 )*4) 0) CLV.:~Q ig u~ to 0- 2L~*-

Li~~~C C) 0 0' r m -

= E'

0..- le U- .-

UC)

LI

Qa: ... ..

I _

zLi

Li L.LI

LiSL

... ... ..

If) m.n I-- I .I

(3S-dW) 3Ofli rd4,.o - I

112

%1

%

Page 116: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

(.0 C'J CD0

r"0 rj 000 CD C!34- 1 #A

rsJ - 00

-0 4 0 L

ri -- m 0* OLAJ(A

- 0. - = wI 0f

m : 0 00) o LQ-. CIL.

E0

z f, m zc LL

0 -F

Li

U')

CLI

Li

0

cr

LiL

L

C11

Page 117: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

\-N N N.4.0 (-0 0) - *L

%N I0 CJ C 0CT0) CD -: CD 0p. LA ,0 . ICD t) C) C C0 CNJ oca

S-

- CL Dt0 .4- 0 E

Li -0 -a) u-') . 4 ) S-

,- - I L. .,- O J4-

-. 2:' C LA- LA.. ." 4-'.. C C C Q L

ol F- V)W: 0.. 0A LJ4-

0 - LLw

.I 0 Z L Cr. u..

-L -) CC 000

D Ii CL - G

>- QL cr a- 5- =D co E

CC

o Cr-LA ..

F:

U-) .... ..... ...... ... .. ...... ....... . .. . . ...

A .. i L"

0C

Li i

0 .

I tf

-' ....... .. .....

Lia.-

I- LOL. ),

Cr :Dm CD

LA Ir) F-

90'0G~ 900 ib00 Z0.0 00, z

* (33s-6Udw) J31fldwi

114

'%-%

Page 118: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N O CD a) Q0

(I. C 0 - 0 0iL . .0CC)r- C) CD C 'N Or.E

*0 ILS-4- CX 4)4-)

C-) fl. 4-0uoLi-

M ~ aj $-,aI f 4Li L-:3 1 - 4-)

- 2= LO -0) EV)-

Q. - 2: Li LOl U-. 4- = CLCD L CL L) m

CD Z Ct :9- S- .-- U) CE CD CD CD a)DC S-

>- oL orf L i. -, I I. tu*'

0) o 0 0LL UeL- u

Lin

CC)

-Ln

L-1

% CLi

fOf

CC

Li i

Li

uE L) C

0-

m C)

LO .

1 011 1I ~ (o2&-udw] nbliiidwi o

115

1. Ch'.,Wp i~~jP~.4* * ( & ~ C ~.te* *.

Page 119: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CDD

CD •0 0c0

LD 0-) -- 0 CD U) c0 a, o

.r*. C .-

L"..

0LI .,- -

-L V) m7 0

>- CL af Q F- -j L L ,"

, , ci o%0) cc S.-

W ~m t j.. 0

-rr

f

C:) LC

....... ...................... ......

:D:

LDL.

LIi

.. 0-

ClCD

I-.'L-, ,~. .. .. .. .. .. .. .. . . ... .... .. .. ..... .. ; . .... , -". . ...

Li

..... ... , -..-.

Li

.. .. ... . .

. 9'..11

w-,6E.

m 03

rng

00SG 0 0fr C, 6f.- 00 0*01-

116

Page 120: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-r -r N - . .

LD OD " -e 0 C0LO0 C) ) CD-

1 4-) S- S-

4- . - 4-

Cf))Li 'D - C 4-

-~ - i L ) Ec.v)u

. a: )z a C:) C~L

CL 0. m ) U)* f E

Ci - Li LL. c L

I CD Z ) a: M= U-) a-- CD C CD LiL *

= 10

.L 0: L

Li

. Li

Li

CDCY) cr

Li

UCLLO

C.-

Ca:x

(oJ9-YIjw) 3s1fldw

117

%p A..' * .

Page 121: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

. D (DD

.~~ , 979c,CD t)C)C C 'U

W)E-4-') S- 0-'U ) u

E Ea

-4-) Li

CL m u - .LO

1 : Li 01 U)

1: L 0 O a_- -0

CE C C L- L

Co -Wa)ELk. C S-- m

C::

C-C

L-1

Lii)

CCM

U-. C, ) C

77

-? C D~I li ---

QE0 I Z-0 01 -0fD]S-6dWI bn -~lid.w *

a'd

118

Page 122: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

L) 00 -

4-) < S..

LiL

- w 4- 0

cm -4- S-F -~S - o (

ar I. : - Li (p 4)X: L (p a--L- o -

CDO Li a- V) a

Li C) z a- am f CD CD 0 LL-. (A

CD o S.-

Li.i

cr--

Li

Lii

Li iLi

CL

0r- =D

a: M

OZ0.0? 0. 1 010 00

119

Page 123: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

a) r-j r\ j en~a) ) .0-0 V4 -" 0- (3

0 * 0 a-

-r.O -r iC o,--(J) S._)a)

" I 4-0 S- I 4- ¢

I I - UU- - I L, a.) Ev.-)I- )

~~. a: LL: C ClJ 4 )~

-'.- Lc4-) - . .0-'to -. LA

%-,? {..J~I (-3 Z f (I) -U: " "

C) Sn

a- Ln M to w 01 C..:0

U') Z V; a: :K:

(rr)r :- ) C: C U

ii

mm I E

IC, - o 0.

LiL

I--Ln

020

m CD

m I

CL.

Lii

v.. 3Li -

co C

~120

% n

Page 124: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

- ~ ~ ~ ~ ~ ---- - .!~-

a) c) 0-00

SS W

4r- CL

u E 0 C

rf (f-)

C : : U. un 0- o-E(I- V CC~f m 40O

M LLA to .U-3 CD ZL <J2 EIw i CD 00 kna F O:

n C) C3 - LL- C) 4

C) m 0w

.. ... ...... .. 0. .......

Li

CDLE.... .. . . .. ... . . .

Lii

Lii

LLi

. ..~. . .. . .. . .

ci .........

Page 125: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

~ rn

- M0

4-' ) I0) 0

(A(A

-4 -L I

E ~1 (I' -0V)

m u LJ( *S- c

0. coa L0- Li CD :: -S

- () a C m m 0 LO ca.

>- CLwQ - i= D *CoLL- D CX u

Li L

U),

LiiN~ CD

i

F- ML3(LJ

. .. . . .. . ..

tr am CD

Wiool 0108 009 0.4 O0 0"o00z

122

I. P'Cy*. 14

Page 126: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

a"3) C0

*o 0 0

Lr)) "1 C-)-

0. . . 0 ..CD Nr - CO CO U") s-

00

1 L4.) u- *r

4 I .(/)* J in - .)

(1_~ ~ Lo "T(1 )O' t-i . ai E ,), - Z U! . c-

m •L m iL C)) E cA r

- a u a : " = -L

"C) -M 0

. ... ....

0 C) -

• CA . .

: :

.. . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . cLi I. i

- (ALii

•r~ CD"'

Li

(A 0" 0 " ,O '0O" 0 0

.n u

m 2i

CC =r')-dW JSfdIJ

123

I, ,. , . - .. . . ,- ., ' - . ". ". -.- ' . ., -. ',.':.:*.'- . ." .. . -* *., ., - .- , ,. , - -. ' ,, ' ., ' , " ,

Page 127: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-4 - W

LA a m) C3LA-n0 0 m*oS

C) V, C) C) C:) Ln *Ou0

S0 to

ko 1. CE.R3,. 4J -

Li wi 4- M

LO S- cz - EI o -3 a

- Ll . S- 4-)-V) - ea L ~~ u

x wi 0! 0 a) Ca

-3 u- W a_

j~~~L CDz'nM :KVLO~~ ~ M CDCEC

>- 0L w iF- i:4

LiL

LAI

LO

cm

*Li

C3

. . . . . . .. . .

C0

Li

* L iI~CD

L O L . .. .... . . ..

m L.J. . ..... . . .

.. . . .: . . . . . . . . . . . .. . . . . . . .. . . . . .CL. ... :." ' :r, (n. ... ... ..-. ... ..... ..

... . . . .... _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ __................. C

'IIc I' I

(ml-~W CDlI'd~. . .. . . . . . . .. .. . . .. . . .. . .. . . .

L124

V) *F';;

-. -.*~ I I* *vP* V

Page 128: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

C0 C) 0 00-0C) ~ ~ ~ Lfl C)c;.

U - -0

4- 0 0OJ>

-~S 4-)0 E 4--v F- 0A

0 L - T- i U

oi EZ LiCLn x:- a: o 0

-. CD SLD~~ ~ zwn M x:

Lir

Li-.*

X0

000 - . ... . . .

UGS 00raOC o O1

L125

Q--C2'- Ln

Page 129: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

.W - - -c. -

Coo

S0 - 0t t14 -

- V0 E -

0 q-.0 0 0

C 000

4-) a)

,i

LO co E VCL -M L 4-) M )

IE

-. -iLi CD az U')ur mLO ~ (E .C CD) U- 0 (a

-x Q.) CaL.C

0 L

i= E

, . .. .. .. ... ..

.. n

Li C) Z LD a:i

LL0 i

. . . . . . . . . . .

M 8

,r

CC 00

u0

LOL

LC.) . o

cc Lt

* - 0)

m C3

Ne Li

ZCA

C, V ST 00Cuo 0* oo(os1)w 0snw

r 12 60 N

-a ,. .,, '- ...-, . ' " , ;,7 .' .. .,. . , (A 9 0.0 $,.:.. .,, 0-' .- .. .0. - ".00..."0,.. ... .. . . . . . .;D.":'-'" " ""'": " '"'7"r:" ''"' " " " ' " "" '"fld"" '" " " " ""

Page 130: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

f CD

9 - 9 E

* N. * - a)

U 4- 0. -oU-) ~~ -0 V o(

m u~ Ln - - S-E

M U a- 0uW

CD 1 E 'r-wE C) U Ln m a.-o

rn CZ, C) CDC)l

LiLL m 4-)- E- wt CL 00 0n

cn I CU

C)

Li -

CCE

-.

Lir 0

mV 7 . ..

r-) ... ..

DI M

(03S-UdW) 3bni fdwu

127

Page 131: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

u - --

Ul M - M' M.

4-) OS

* J 4-) 0 .

I4 4- 0 0 u

%- (aC-.~~ -) 41 ~ LJ

m: 0 LU o i.u LO . 4L3 f = .-

oL -r a_- go

CD ca z r ::)01 C C C LL. LA

>- a- Of Q. I-- -.j w U-) (A

Li~Ln0

0 M

af:

Lia- On

................................

00

i

Lii

.. . . ....... .. .. ...

Li

Ln

C;pzCLit 's

'/,o

128

Page 132: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

r" CC(N ~) 0 0

CYA 0 -00

a) 00 (N NJ C

.4' 0

4J LC)u

Li u 00V) -0 LA ) >

- - Li L-.f - 1.-- LO Q) E )

a: u Ln w. OL.i->

01 0I . . .

U-

Li ~ Z LA QC) - E

LL- CD

0

F4-

CD LC

VC-) 1LL- LA

ICD

Lii

L)

WCALM

&-

- =

m CD

50*0 10 £0 zo 0 10io 00 0 10O-

(oJ9-Ydw) 2sfldwi

129

Page 133: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

o) CY) - r

Lf) . = - M m eojo0C C- C: CD C C'4 C..-

r-S-

C..)4-,- 0

Li O L0 E

I I 4- S- -L 4- -Li L t~o o

- = wi cf U.. .4-) S- L

m Li (I. aCD V)-

a- w~C C 0 C

L- 2 z t

C-CD

Li

Ln

Li

CCD

Li

CD C

Li1

. ~ ~ ~ ~ ~ ~ r .. . .. . .. . . . ..

C-:)

0. ......__ C

.- .. . ..

SC

0-- 01 0ILO' t~-S

(OSLb.) JflLJW

% 130

m C) I*.*-*..~~.*

.~ . . . . .. . ..

Page 134: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

IL (

-

C) C

.. . .. . ... ....

Lif

.5-.

. . . . . . . . .0

Ln,

cl0

C, czC, o C-c 0*0C'C 0

L~~j S 4

* 131

. *e

Page 135: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

- a-

U S.- -0

S- V

E

co S..

Ln E

LiL

-- c

... .. ... . . -

I 37-7h

L : .. . . . . . . . ... .

-- -- ---- -- ----- -

-. *)

-*1 1. Li. -

Page 136: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

O ) - ) Lfl CO4

M 0nM 0 0

m co t 0C) ~ *.-o

LO C~ : :Li 4- LL.~Q

-~ 0 EL ) S- E

LC) v Xn U: M U E ED-l m) w: 0 0 E

0 - Li CL - uL~~~j~ C) = WM

LL- 4-Jf

=n F-

C)CD

7-D7

UEU.- - I L

or

Lii

Lil0.. _ _ _ _ _ _ _ _ _ _ _

Li-

I -C). ....

rr

Page 137: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

0 0C) 1

04-

tD 4--

4-. S- ,to 0 S

-O 0 a)- C- L

a- Il .- LA - .

-2: co m M 00-U

-3 CD Li > -,C: -1 LiU) m0 =U: m~ Lflc C) C)- o.- xi I.-tL -jW 4-

ZD F- F--

F-0 M

CD Lcr-.

U-)

LOw0

LiO

Li

LiiCD 200

LiJ

to. ..

41I

Lna.

4.134

L.%

Page 138: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-In -O iZLfl - U')f)U

N * C V' CD C) V* C)

CDJ - C C) C-0E

4-,

% r- 4-i"

C4~

S 0-O 4-) S-- - Li L.. o, r O -

CD- La.- E U (iz a: z m: L) C 0 (v CD

CL o- T: I W : u 0 -o - LI CL U 0

W CD Z U)G L-. L O C : CD CD CD

LL.

(L0

C)C

Lii

Li x

l. 0 C

in

wcr)c-D C

Ne L-

0~ M011 go 0 00K0zlo0* o

< (3G-UJ ) 39niLI

ci 135

Page 139: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Y - M LI)

C)0C L)

0 CL

-4-)

00 . .

co ~ -0

a- -. oLL D

3-Z a Lr) CC 4- s-0CD U :30

(<r(

Li

M I-

. . . . . . . . . . . ... .

... .. ...... .... .... .. . . . . . . .. . . . . . .

Page 140: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

"-". C1 In r.. ,~

.. ,. : ' U

O-Z--Ww

.,'°," tlww * 0 "0 0 0N,."00. Lr) 0

* .0

cv- 00r 0 b- " o

4-. 4-t

S-Ca

-. .. . . . 1.... .

U-4- 0E

122) 4-)

-LJ Li

CL

-- ja C9 a1(

LS CD Z (f 4-' X

a - Li a- • .O

0. L J L3S- ..I ) sIr

CD Li E .

LU: 02 ! a

M0 2

U137

XLi 0i

Li

•~~~~. . ..... .. .. ........ . . . .. .. . . . . . . . . . . . .. ...

Li4

LO.

Ur)

-

. . . . I

Page 141: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LO N

N OD~ L-0 0 L )r(D 0 cmJ 0 0M.

* 0 . S- (Ao. -0 0 - C 3.

4)CL

I E4- - 0r--4

0D 4- -4

i ea 0 uO~

- a- m:Li v)- 4J S.- tA

3- CL Li r ) Li. 4-'t

W CD'- LO M 0.-

-e

-L inz fo0 0

LJ

Li

CD

ini

Li'

x CD

wLci.. .. >

m C3

n X ... ....

- I _ _ _ _ _ I_ _ _ _ _

0! -1C- -f0 0-0110 1(33s-dw) ofli idwu

* - ... K138

Page 142: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

'~~0 LfC% -a.

m rl) o1 n-~ LON * 0 0 Ln

CD f . -0 C)C)L

4- )

- 4-

L)Li a) -o 0

a~-J S e t-Li E u*co

Z - LL 0OWO-C

- L r Li (fn 0

CD - Li CL VC. D >1

Li CD Z U) CC S

- ~ ~ ~ ~ C COr ) )L

U- U

u~E.3

.. . .. ..... . . . . . . . . . . . . . .

Li C

CLi

.- M~

kc L.

U')

C) :K

010i olvz 0-91 0 10.9 0i uLI) 3efls38j

1.39

Page 143: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

rLnr) V)0"'! ' c; *; o; - o- o ~

* I-_ C-.J 0) . 0, .-.

Cf., 0) -0 0

0 0 0 CLa)u

• ,-- u

- - I- E-. 14 C . .--- U

.! -a ,, ° e : -cP ,,,)0

-~ 0--- ILJ(%D 4-'-

0- u a

o) -', -

o S- z -. CA.

"- .a,, : :D

>*** LA- o) to 0 Li

N~=". w LO 4-JW 3 S- E

-J Q-I

ED ::

w C mmm, m14.0 =S

• " :"

ri-4

LO

U -) . . . . . . . .. .. . . .. .. . . . . .. .. . .. .... ... ... ... ... .... ... . . ... ... ..

C)g-dW % fldW

Page 144: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

co . C) C) C)M.. In * * 3 *0 S 0

0 LL- tC)~O 4- C

Li 'tE

*e .- C) L J L)) to 4--

- - Li -L. OE~Lf: 0) -

:3 4- 1- 4)(~U W -

m -Li -0 uIG

- n : C) C) C Qv' x l cr C- Ln LA. *r1)

D) -

CiC) ; LLiM CDC

a:a

* Li

CD C

C~L

.....

Ctf)

z

Li

CDE

OD~~~~ L. ....

. ..... .. .. .._ .. . . .. . . .

L ) .. .... .... ...

V ~ c*1LAJ

"0p

i~n .... . ..... .... . ....-.

... ..... . ... ...... ..

Page 145: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CY) rl C oN -~ D O) LO =

o CL.4-)

C3 4-)..

-' L- E-a

C.))

>- CL -w1.- leu

a aLo

M Lif)-

Li-L

Eli 0 ) I I

00

00

m0

CL q

Li C

142i

Page 146: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CY- ) LoO

1 .4-)

Li-0 0

m o -s0 .

CL - mLi LOI_- () -) rZm U

CD-L LiL V)-3 Li LJ>

Li Q -- xiE m XL- - Mi CD C) C LiL 0

>- L x CL -j = 4-

Co M

Li

(.n

Lii

Li

0-0

C-)X

1L143

Page 147: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

en C~ C't CD

N 0 -r41) C) .,.M .-0

c, -000- C

0.

I E

to 4- -Li E.

C3 0) d-a S_o I _ 4J S-4

-. - Li L_ 0)F- - Z V) - * (- owo

z (r ie : C-) in U.. 4J-S_ (a-o - = iL

z .a- n m:oD - Li C )-Li C) Z- (J) =:

in) (L C) C) 0 LjL .

~ 40C)~CD

Li

Li

Li . . . . . .

cr

ZDC:)

z0i

Li

C))0m

Li ...

.. ..:.. .

Li

'C,m ) ...le.L

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . .. . .. .. ......___ __ __ _ .__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.~( 3 ...... .. .......... Y .o .. . ... ..

4 144

* * -A

Page 148: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

LfLooq(N (N Q) 0 1.

0 CD M 0 o4n

- ;7 -4

I I - -0 0LCD S- S-

Le m u LnL- 41 S-E

X-. - LO)

-i 9

mLmi D CD U' 0:w a- i- 000 cr~ 0

LL

00

Lii

Li -40

CL Ln

LiJ

Lii

0 C0

Lia

C-,

LiI

'A 0

O'Os 0*0 ~ 0 0*0 0*01 0 0 01

145

Page 149: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

0 (\j N 003l)a

C- CDCD m (NC0 E

ul~ 0I I -v 1- 4- Ln

- ~ - Li (0 o~I--~ (f) - C) Eoeu

CL Lj U-) L1- 4- S-E3- QL cJ) m 0

M LL) CL o- u

LiD -- LO) M: iL

i- O f CL i- 0jU

4-))

CD cn

I-L

LiO

Ln

LiOn .. . . . . . . .. . . .

Li'

LiJ

00

LI-

cr =Dle L-

i1*~dw zo0 o0 00'

146

Page 150: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

*n W

o v c'.i C"J m ( cu 0*r -0 M C*M..

CD-CD0C Co-L 0-

I E

Li * 0 -

U')LI CD U 4- S-4-I -S- (ao u

-Li L - E uwc- U- 0) 0 0 C

mE V m L) Ll 4.- - Ul~CL w L o U*)

0 CE; M -ftw Li -0

LiF Wf =wi QD z w~ mE m -

- Mf CD CD0 M U-L- Of Q- -j w 2

=) <

LL)

Li

CL

CD

C:)

LiiDO

LiiQU

0

Li

0-

LP

LOO

(33s-udw) Jbflllwu ~

147

Page 151: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CD U') C

) ( C 0-0 LA

C- 4- LOLin

W0 (A 0

I CU CL

I L.- 4- S-

a c i- LQ)r- - V.-tj C .D V)CZ LAJ>-

.- "r m D= S

>- CL cr 0 0 jU

o .-

L3

.. . ... .. .......... .. ..... . .... ... .......... ................ .0

CL Lo

'.U,

0

i--. -,1

* -: 5 - ..- . . . . . . . .. . . . . ... . . . . . . . . . .

ISn I :

Li LCLA

LLi

"-

m CD

La

( IdW)re 3 ng3

18 0 0 0

LA148

LiS

Page 152: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

D t) co0*U- 00

[ . .,.:, oE4-

4- LOl

N i -- a 0

(' m a) 0- 0-C3 4-)S- "-0

L.in L-LL u

, -. Z 0) C . C-4 ." "E000

0 0

- - I I. | I

* I0l r )o 6 | -

:z L

JC" CID -

0

OL.i

* . I Li

* Z. . . ... . .. .. . .. . .

.. .. .. .. . .. .. .

*n ILO w

m C

Ln x

W o D' go o 90*0 roo olo 00'o zo-S(o0s-uidw) 3s7idw iE-- 149

,. ' . Z '" , .- .,. ... , : ,.","."." '.% '.",", . , ' .,.. -, - . - . -. . . . . .. , .. -. . ,..I,. -. - . ,.

Page 153: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

CD L c

CN M c - m U)s-

C) ~ ~ C). -0

C) S-E

L 4-LfLCLE

U Lii 4- - OW)r U -)-Ef

LiD) "0f)~-. a "D CD D

Li L- 4 S-L 4-M LO tu 0 u

cr ~ ~ ~ ~ D E! DL ) EuaCL = LO 0(D C

LiC V zm n-

LA.

CD ~ ~ ~ ~ ~ ~ C M_ E_ _ _ _ _ _ _ _ _ _

LiL

F- F

C) L)

Li

0A-

Li

Li

Li

CL)

Li

k- U.)

m D . ..... . , . . .. .. ..

Ne~~~~~, 01 ........

. . . ... . . . .. . . .. . .

Page 154: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

N : C~ Li c af

CZ) ~ C:) 0) 0.. XCC' -0 CD CDJC: C. 0 CD C

Cri- CD cD CD I-~ c-J a

-)

0) 0OLi S- -a C - r- N

-,(1 CL~ CLa S-> -*3 M

-4-)/ 0 -

F-4 N4.Lh.

C. - i (n C: CD -- V) CT) 00 4) CL .i L

C La - S-- C, Cc Z. C) C F- E-

Li2 C z Uia: mI Zn z D=c - 1 = (- CD 11 ii a C: C-)

>- C f C- IL- (V0 D iL

Li

* >- . . L

Lii

Li-

C:)Li

LI

C

Li

-Ni-

Page 155: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

Lfl NDN Q )Cm~ C) C~) CDC:

CV- C C C a)

LLO CD L

Li 4--o Q) Q-GI- ) L 0 2:

LL. 4- S- C:- - co%.

- CL V ) -

0 Li CiDL-: c,~ z~ (n Q- E)

La:C- a: C) 11 0D

V) a-

00

L)i

L~Li

C

Li L

L)~

Li0

(152

C-j

Page 156: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

S.-

a)

o0=S-

0

-W4-j

4-

4A

V-)

0

4-)

-T 0)

'4-

'4-

CL0

153)

"p CJ

Page 157: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

9 -.- 9 . CD M,, ,.

&n,,--, r-

"" 'Lfl°~ . 0 .. C.

I0

UD -4 -

4-- 0--

u a)

a)) s- CA S.J

w LO tol -m 4LM Or CL LL E L/)C.UL

m a- LOLLO 0) M

a: L) a w-j Lu u a >U D Z Vf) M

0- T0 - -he

C0 cc 0 a)

U- Nea0

T

Lii

. .. .. . . . . . . . . . . . . . .0.. .

154

Li

4I-

Li

if. . ..) . . . .. . . . . . . .

a: r* Li4m

Li -ZLia-L) f)

U")

m 0D

415

Page 158: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

,,c.' s4... .*1:, ;- ~ ~a

be a,

-~0 N~0C.',NO ("i O ("(",, t'0 C -', C:

C C) -D "0-

,W 000,,. 0 S-0.

"' 0 -3,-

ILI" LI o --

L.) - L7N

u ] . -- 0 f,.. -.U

Li cr: ci- L 0--w 0 - C. z (a ,. )

C C S.- o.-

CL M U LL- LL~- 4- Ea A

o =C . u

'/-- I L w - I 1)( -

V 1C)

... ,m .. ... .. .. .. ... .. .. .. ... .. .. .. ... .. .. .. ... .. .. ............. ................... -. ............. . ,

LI a

Cl ILLI

:D................... ................... ............ .".. ..... ................... .................. ............... .... --

t-- --

* .*, . I* . LL-

too

.,,.* i . Cv --.

Li-o

LI

.,-1, C.55

CL"C. Ln

L)

* -

000ot 0069 0109 0*0 Oo * 'e(WdW) flnss38d

'CA 155

m**

Page 159: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-2

I? '"

-.9-q

'"

115.

r' ..

[i,, 5,

-N

[A'

: k3 .'156

V ' -. ' - b . " " . '' . ' ' . ' - . . . " , - - .- . - - . " . . . . . - ," .

51 "* ',, • . "".'4 '..' ."-- . - .'. ,. -. ,y.-.:? .'.;i' .. - -~' .7 ' >-. <". > .' "-. .7 .. '"., ' ' '. " '-. :,' ' ,. -.-°

, ' -. " .

Page 160: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

-S. DISTRIBUTION LISTb'=S

DEPARTMENT OF DEFENSE DEPARTMENT OF THE ARMY (Continued)

Asst to the Secy of Defense, Atomic Energy US Army Communications Command

ATTN: Executive Assistant ATTN: Tech Reference Division

Defense Intelligence Agency US Army Concepts Analysis Agency

ATTN: DB-4C ATTN: CSSA-ADL, Tech Library

ATTN: DB-4NATTN: DT-1C US Ar,,y Corps of Engineers

ATTN: DT-2 ATTN: DAEN-ECE-TATTN: RTS-2A, Tech Library ATTN: DAEN-RDL

, .ATTN: RTS-2B. AT TUS Army Engineer Div Huntsville

Defense Nuclear Agency ATTN: HNDED-SR

2 cy ATTN: SPSS ATTN: HNDED-FO

4 cy ATTN: STTI-CAUS Army Engineer Div Ohio River

Defense Technical Information Center ATTN: ORDAS-L, Tech Library

12 cy ATTN: DOUS Army Engr Waterways Exper Station

Dep of Defense Explo Safety Board ATTN: J. Strange

ATTN: Chairman ATTN: J. Zelasko- ATTN: Library

Field Command, DNA, Det 2 ATTN: WESSD, J. Jackson

Lawrence Livermore National Lab ATTN: WESSE

ATTN: FC-1US Army Foreign Science & Tech Ctr

Field Command, Defense Nuclear Agency ATTN: DRXST-SD

ATTN: FCPRATTN: FCT US Army Material & Mechanics Rsch CtrATTN: FCTT, W. Summa ATTN: DRXMR, J. MescallATTN: FCTXE ATTN: Tech Library

Joint Strat Tgt Planning Staff US Army Material Command

ATTN: JLK, DNA Rep ATTN: DRXAM-TL, Tech Library

ATTN: JLKSATTN: JPPFN US Army Mobility Equip R&D Cmd

ATTN: JPST ATTN: DRDME-WC, Tech Library

ATTN: JPTMUS Army Nuclear & Chemical Agency

Under Secy Of Def for Rsch & Engrg ATTN: Library

ATTN: St-at & Space Sys (OS)ATTN: rat & Theater Nuc For, B. Stephan US Army War College

ATTN: Library

DEPARTMENT OF THE ARMYUS Amy White Sands Missile Range

BMD Advanced Technology Center ATTN: STEWS-TE-N, K. Cummings

ATTN: ATC-T

ATTN- 1CRDABH-X USA Missile CommandATTN: Documents Section

BMD Systems Command ATTN: DRSMI-RH

ATTN: BMDSC-LEE, R. BradshawATTN: BMDSC-LEE, R. Webb DEPARTMENT OF THE NAVY

Dep Ch of Staff for Ops & Pins David Taylor Naval Ship R&D Ctr

ATTN: DAMO-NC, Nuc Chem Dir ATTN: Tech Info Ctr, Code 522.1

Harry Diamond Laboratories Naval Civil Engineering Laboratory

ATTN: DELHD-NW-P, 20240 ATTN: Code L51, J. Crawford

ATTN: DELHD-TA-L, 81100, Tech Library' Naval Electronic Systems Command

US Army Armament Material Readiness Command ATTN: PME 117-21ATTN: MA Library

Naval Ocean Systems Center

US Army Ballistic Research Lab ATTN: Code 013, E. Cooper

ATTN: DRDAR-BLT, J. Keefer ATTN: Code 4471, Tech Library

2 cy ATTN: DRDAR-BLA-S, Tech Library

,a

157

.7V%

.Al

Page 161: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

DEPARTMENT OF THE NAVY (Continuedj DEPARTMENT OF THE AIR FORCE_(Continued)

Naval Facilities Engineering Conmand Ballistic Missile Office/DAAr ATTN: Code 04B ATTN: ENBF, D. GageATTN: ENSNaval Material Command ATTN: ENS, W. Weisinger

ATTN: MAT 08T-22 ATTN: ENSNATTN: MGEN A. SchenkerNaval Postgraduate School ATTN: PP

ATTN: Code 1424 LibraryNaval Research Laboratory Dep Ch of Staff, Logistics & EngineeringNa RATTN:

LEEEATTN: Code 2627, Tech LibraryATTN: Code 4040, D. Book Dep Ch of Staff, Rsch, Dev, & AcqATTN: Code 4MO , J. Boris ATTN: AF/RDQI

Naval Sea Systems Command Foreign Technology DivisionATTN: SEA-0351 ATTN: NIIS LibraryATTN: SEA-O9G53, Library

Rome Air Development CenterNaval Surface Weapons Center ATTN: TSLDATTN: Code F31

Naval Surface Weapons Center Sacramento Air Logistics CenterNava Sufac Wepon CeterATTN: MMEAE, R. DallingerATTN: Tech Library & Info Svcs Br

Strategic Air CormmandNaval War College ATTN: OOWE

ATTN: Code E-11, Tech Service ATTN: INAO

ATTN: NRI/STINFONaval Weapons Center ATTN: XPFSATTN: Code 266, C. Austin ATTN: XPQATTN: Code 343, FKA6A2, Tech Svcs

* Naval Weapons Evaluation Facility DEPARTMENT OF ENERGYATTN: Code 10, Tech Library Department of EnergyATTN: R. Hughes Albuquerque Operations Office

ATTN: CTIDOfc of the Dep Ch of Naval Ops ATTN: R. JonesATTN: NOP 03EGATTN: NOP 981 Department of Energy

O e N R aOffice of Military Application, GTNSOffice of Naval Research ATTN: OMA/RD&T

ATTN: Code 474, N. Perrone

Department of EnergyStrategic Systems Project Office Nevada Operations OfficeATTN: NSP-272 ATTN: Doc Con for Tech LibraryATTN: NSP-43, Tech Library"- OTHER GOVERNMENT AGENCIES

DEPARTMENT OF THE AIR FORCEAir Force Systems Coimand Central Intelligence AgencyAr F e Ssems CATTN: OSWR/NEDATTN: DEB

Department of the Interior, Bureau of MinesAir Force Geophysics Laboratory ATTN: Tech LibraryATTN: LWH, H. Ossing

Federal Emergency Management AgencyAir Force Institute of Technology ATTN: Asst Assoc Dir for Rsch, J. KerrATTN: ENA ATTN: W. Chipman, NP-CPATTN: Library

",' NATOAir Force Systems Command

ATTN: DLW ;JATO School, SHAPE

ATTN: US Documents OfficerAir Force Weapons LaboratoryATTN: DEX UEPARTMENT OF ENERGY CONTRACTORSATTN: NTE, M. Plamondon ..A.M. OFATTN: NTED, R. Matalucci University of CaliforniaATTN: NTES-C, C. Henny Lawrence Livermore National LabATTN: SUL ATTN: L-203, R. Schock

ATTN: L-203, T. ButkovichAir University Library ATTN: P. CoyleATTN: AUL-LSE ATTN: Tech Info Dept Library

Asst Ch of Staff, IntelligenceATTN: IN

158

# '. "',' - - , .-"-= " ", .""- . "" ", .-"-" "-". .-"- - ". . "-". r .'"- . -"-" .. . .. ,. . . .. . . .. .-V

Page 162: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

VV w

DEPARTMENT OF ENERGY CONTRACTORS (Continued) DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Los Alamos National Laboratory California Research & Technology, IncATTN: MS P364 Reports Library ATTN: K. KreyenhagenATTN: MS530, G. Spillman ATTN: Library

ATTN: R. Whitaker

California Research & Technology, IncOak Ridge National Laboratory ATTN: Tech Library

ATTN: Central Rsch Library

ATTN: Civil Def Res Proj Calspan Corp

Sandia National Laboratories ATTN: Library

ATTN: Library & Security Classification Div Carpenter Research Corp

Sandia National Laboratories ATTN: H. Carpenter

ATTN: Div 7111, B. Vortman University of Denver

ATTN: J. Bannister ATTN: Sec Officer for J. Wisotski

ATTN: Org 7111, L. HillATTN: Tech Library 3141 EG&G Wash Analytical Svcs Ctr, Inc

ATTN: W. Roherty ATTN: Library

DEPARTMENT OF DEFENSE CONTRACTORS Electro-Mech Systems, IncATTN: R. Shunk

Aerospace Corp

ATTN: H. Mirels General Research Corp

ATTN: Library Acquisition MI/199 ATTN: Tech Info Office

Agbabian Associates H-Tech Labs, Inc

ATTN: M. Agbabian ATTN: B. Hartenbaum

Analytic Services, Inc, ANSER Horizons Technology, IncATTN: G. Hesselbacher ATTN: R. Kruger

Applied Research Associates, Inc lIT Research Institute

ATTN: J. Bratton ATTN: Documents Library

2 cy ATTN: D. Steedman ATTN: M. Johnson

2 cy ATTN: J. Partch ATTN: R. Welch

Applied Research Associates, Inc Information Science, Inc

ATTN: D. Piepenburg ATTN: W. Dudziak

Applied Research Associates, Inc Institute for Defense Analyses

ATTN: R. Frank ATTN: Classified Library

Applied Theory, Inc Kaman Sciences Corp

ATTN: J. Trulio ATTN: Library

ATTN: N. Hobbs

41. Artec Associates, Inc ATTN: R. RuetenikATTN: S. Gill ATTN: S. Criscione

AVCO Systems Division Kaman Sciences CorpATTN: Library A830 ATTN: F. Sheton

ATTN: LibraryBON Corp

ATTN: A. Lavagnino Kaman Sciences Corp

ATTN: Corporate Library ATTN: E. ConradATTN: T. Neighbors

Kaman Tempo

BUM Corp ATTN: DASIAC

ATTN: F. LeechATTN: R. Hensley Kaman Tempo

Boeing Co ATTN: DASIAC

ATTN: Aerospace Library Lockheed Missiles & Space Co, IncATTN: M/S 42137, R. Carlson ATTN: J. Weisner, Dept 80-82

ATTN: Tech Info Ctr D/COLL, D/90-11, B/l06Boeing Co

ATTN: MS-85-20, D. Choate Martin Marietta Corp

California Research & Technology, Inc ATTN: 0. Fotieo

ATTN: F. Sauer

159

Page 163: FOURFIT-A COMPUTER CODE FOR DETERMINING N ...If o / ' 3 DNA-TR-84-236In 0 r FOURFIT-A COMPUTER CODE FOR DETERMINING N EQUIVALENT NUCLEAR YIELD AND PEAK OVERPRESSURE BY A FOURIER SPECTRUM

DEPARTMENT OF DEFENSE CONTRACTORS (Continued) DEPARTMENT OF DEFENSE CONTRACTORS (Continuedj

McDonnell Douglas Corp Science Applications Intl CorpATTN: R. Halprin ATTN: Tech Library

McDonnell Douglas Corp Science Applications Intl CorpATTN: M. Potter ATTN: J. Cockayne

ATTN: M. KnaselMerritt CASES, Inc ATTN: R. Sievers

ATTN: J. Merritt ATTN: W. LaysonATTN: Library

Science Applications, IncUniversity of New Mexico ATTN: D. Maxwell

ATTN: N. BaumSouthwest Research Institute

Nichols Research Corp, Inc ATTN: A. WenzelATTN: N. Byrn ATTN: W. Baker

Pacific-Sierra Research Corp SRI InternationalATTN: H. Brode, Chairman SAGE ATTN: G. Abrahamson

Pacifica Technology Structural Mechanics Associates, IncATTN: R. Allen ATTN: R. Kenwedy'Z ATTN: R. BjorkATeledyne Brown Engineering

Patel Enterprises, Inc ATTN: D. OrmondATTN: M. Patel ATTN: F. Leopard

ATTN: J. RavenscraftPhysical Research, Inc

ATTN: W. Mendes Terra Tek, Inc

ATTN: A. JonesPhysics International Co ATTN: Library

ATTN: E. Moore ATTN: S. GreenATTN: L. Behrinann

Tetra Tech, IncR&D Associates ATTN: L. Hwang

ATTN: A. KuhlATTN: D. Simons TRW Electronics & Defense SectorATTN: J. Lewis ATTN: Tech Info CenterATTN: P. Haas 2 cy ATTN: N. LipnerATTN: Tech Info CenterATTN: W. Wright TRW Electronics & Defense Sector

ATTN: E. WongR&D Associates ATTN: G. Hulcher

ATTN: G. Ganong ATTN: P. Dai

Rand Corp Universal Analytics, IncATTN: P. Davis ATTN: E. Field

Rand Corp Weidlinger Assoc, Consulting EngrgATTN: B. Bennett ATTN: T. Deevy

S-CUBED Weidlinger Assoc, Consulting EngrgATTN: D. Grine ATTN: I. Sandler

ATTN: Library ATTN: M. BaronATTN: T. Riney

Weidlinger Assoc, Consulting EngrgScience & Engrg Associates, Inc ATTN: J. Isenberg

ATTN: B. Chambers III

Science Applications International CorpATTN: G. Binninger

r

160

- -- '--P.-. .


Recommended